Aug 14th, 3:45 PM - 4:45 PM

A Human-Systems Approach to Proactively Managing Risk through Training in an Evolving Aviation Industry

Michael W. Sawyer
Partner, Principal Human Factors Engineer, Fort Hill Group, Michael.Sawyer@FortHillGroup.com

Katherine A. Berry
Fort Hill Group, katie.berry@forthillgroup.com

Jason P. Kring
Embry-Riddle Aeronautical University, kring024@erau.edu

Edward M. Austrian
Fort Hill Group, eddie.austrian@forthillgroup.com

Follow this and additional works at: https://commons.erau.edu/ntas
A Human-Systems Approach to Proactively Managing Risk through Training in an Evolving Aviation Industry

Michael Sawyer, Ph.D.
Katherine Berry, Ph.D.
Jason Kring, Ph.D.
Edward Austrian, CFI

Fort Hill Group
National Training Aircraft Symposium
Embry-Riddle Aeronautical University
August 14, 2018
NextGen will introduce new procedures & operational conditions

Changes Impact Performance

- New human-system and human-human interactions
- New off-nominal conditions
- Gaps in existing checklists & SOPs
- Gaps in existing training programs
Human Organizational Safety Technique

- Human-centered method for proactively bridging the gap between current & future operations
- Identifies task impacts, sources of resiliency, emerging risks, and performance metrics
- Data-driven outputs that are repeatable and scalable to evolve training platforms
HOST Approach

Baseline

1. Review Change vs Current Operations
2. Identify Actors, Tasks, KSAs, & Systems
3. Strategic Impact Analysis

Model

4. Human-System Interaction Models
5. Key Interaction Analysis
6. Assess, Quantify, Prioritize Impacts

Implement

7. Develop Mitigation/Implementation Strategies
8. Implement Mitigations Into Training Platform
Interval Management

PBN Route

Assigned Spacing Objective: 6 NM

Current Operations
- ATC utilizes speed instructions & vectors to maintain spacing
- Vectoring and speed instructions may create system inefficiencies
- Flight crews may not be aware of controllers purpose or plan

Future Operations
- ATC assigns eligible aircraft pairs an interval management clearance
- Trailing flight crew will maintain an assigned interval behind lead aircraft
- Capability utilizes ADS-B in/out capabilities & advanced avionics

Source: Pilot and Air Traffic Controller use of Interval Management during Terminal Metering Operations. MITRE – January 2018
Interval Management

Assigned Spacing Objective: 6 NM

En Route Controller
- Input IM Pair
- Monitor Conformance
- Traffic & Aircraft Info
- Aircraft Pair

En Route Automation

Flight Crew
- IM Clearance – Interval, Target, Termination Point
- IM Clearance Acknowledgement

Flight Crew Automation
- Check clearance viability
- IM Interval & Target AC
- Monitor Interval Conformance
- Terminate Interval Pair
- Other Aircraft Traffic
- Current Interval Status

Fort Hill Group
Interval Management

En Route Controller

ID Pairing Opportunity

En Route Automation

IM Clearance – Interval, Target, Termination Point

IM Clearance Acknowledgement / Readback

Flight Crew

Check clearance viability

Flight Crew Automation

IM Interval & Target AC

Monitor Interval Conformance

Terminate Interval Pair
Interval Management

- Task-specific KSA impacts
- Sources of human-system resiliency
- Emerging risks
- Post-implementation performance measures

Fort Hill Group
Key Takeaways

HOST identifies key intersection points between task impacts, risks, and training opportunities

HOST may be used to revalidate and/or evolve an existing training platform

Guides the use of safety performance indicators & post-implementation alerting thresholds
Fort Hill Group provides strategic guidance, analysis, and training to empower organizations to improve human performance and reduce operational risks.

Michael Sawyer, Ph.D.
Michael.Sawyer@FortHillGroup.com

Katie Berry, Ph.D.
Katie.Berry@FortHillGroup.com

Jason Kring, Ph.D.
Jason.Kring@FortHillGroup.com

Eddie Austrian, CFI
Eddie.Austrian@FortHillGroup.com