The Camaro EcoSuper Sport is a P2-P2 parallel-series PHEV with 7 distinct modes of operation with different power flow strategies. The EcoSuper Sport (ESS) branding and 2 distinct packages offer the efficiency of 57 MPGGE and performance of 4.9s IVM-60MPH.

Year Three Overview

Over the course of the EcoCAR 3 competition, the team has worked to improve various aspects of the vehicle to meet specific design requirements. The following improvements were made:

- Complete refined integration of all vehicle components
- Pass safety and tech inspections and On-Road Safety Evaluation at competition.
- Participate in all competition dynamic events.

Several unique features and aspects of the vehicle include:

- The efficiency of 57 MPGGE and performance of 4.9s IVM-60MPH
- The EcoSuper Sport (ESS) branding and 2 distinct packages
- 7 distinct modes of operation with different power flow strategies

Abstract

Embry-Riddle Aeronautical University has been accepted into EcoCAR 3 Advanced Vehicle Technical Competition (AVTC). The program is a 4-year program which humanity sponsored by General Motors and Department of Energy, and managed by Argonne National Lab. This is ERAU’s third AVTC competition with previous platforms being a Saturn Vue and Chevrolet Malibu. The new vehicle platform is a Chevrolet Camaro. Sixteen teams internationally compete to create a vehicle that reduces well to wheel emissions, increase fuel efficiency, and maintain consumer acceptability.

EcoCAR 3 Vehicle Technical Specifications (VTS)

The VTS are a set of design requirements the team needs to meet in order to complete in this spring’s competition. The ERAU specific VTS targets were re-evaluated for the fall 2016 Swinlane report. The ESS Camaro is intended to be spotted between the RS and SS versions of the Camaro. This is the last time ERAU’s VTS targets could be changed in the four year competition.

Phase Change Material

The team is working with phase change material that will promote faster cooling of the energy storage system (ESS) battery pack. The ESS is an 18.9 kWh and 340V A123 lithium ion energy storage system and when charging from regenerative breaking can reach high temperatures very close to limiting operating conditions. The PCM being researched, is combined with high density polyethylene (HDPE) into a composite matrix that can be formed and will retain its shape even when heat is introduced to the system. The PCM can absorb large amounts of heat energy while it changes phases and the HDPE acts as a shape stabilizing matrix, preventing the liquid PCM from leaking out of the compartment beneath the battery.

Data Acquisition Module

In order to meet VTS targets the team must insure integrated components in year three can operate optimally. The EcoCAR 3 team replaced the EcoCAR CAN Management System (ECMS) with a general control module (GCM). This unit is used to control the Camaro’s radiator fans and the electric motor water pump. The module functionality has also been expanded to gather data from the water pressure and oil sensors to send back through the car’s CAN network.

The unit selected was the GCM196 an automotive grade control module for general purpose use. The module was created by New Eagle, a competition sponsor. The module is programmable using customizable blocks created for MATLAB and Simulink. The system has 45 inputs, 45 outputs, and 3 channels for CAN communication.