An Alternative Method of Identification of a Failed Engine in Twin-Engine Propeller Aircraft

Andrey Babin
Piedmont Airlines, Inc., andrey.k.babin@gmail.com

Andrew R. Dattel Ph.D.
Assistant Professor of Graduate Studies, Embry-Riddle Aeronautical University, dattela@erau.edu

Follow this and additional works at: https://commons.erau.edu/ntas

Part of the Aviation and Space Education Commons, and the Aviation Safety and Security Commons

This Presentation is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.
An Alternative Method of Identification of a Failed Engine in Twin-Engine Propeller Aircraft

Authors:
Andrey Babin
Dr. Andrew R. Dattel
1

Introduction
TransAsia Flight 235

- ATR 72-600 aircraft
- Uncommanded feather of the right engine
- Captain reduced throttle of the left engine and shut it down
- No power at 1,500 feet AGL, engine restart attempts unsuccessful
- Uncontrolled stall and crash
- 43 fatalities
Engine misidentification

- Turboprops: From 1985 to 1997, almost 50% of in-flight engine shutdowns involved a shutdown of the working engine (Sallee & Gibbons, 1999)
- Turbofans: From 1958 to 1997, 29% of in-flight engine shutdowns involved a shutdown of the working engine (Sallee & Gibbons, 1999)
- Twin-engine helicopters: 40% of interviewed pilots admitted moving the throttle of a working engine in emergency in real life/simulator (Wildzunas et al., 1999; as cited in Aviation Safety Council, 2016)
Dangers of twin-engine propeller aircraft operations

- Failed engine creates drag due to the windmilling propeller
- Asymmetric thrust follows, resulting in a significant yaw
- Climb performance loss of up to 80% (Federal Aviation Administration, 2016)
Identify-Verify-Feather

- Identify: “Dead leg – dead engine”
 - Compensate for the yaw by applying rudder
 - Dead leg (not pushing the rudder pedal) is on the side of dead (failed) engine

- Verify: Confirm correct identification
 - Pull back the throttle of the identified engine
 - Expect no change in the direction of flight and engine sound

- Feather the propeller of the failed engine

Source: (Gardner, Schiff, & Bringloe, 2011)
Purpose of the study

• Current method is believed to be too resource-demanding
 • An alternative method was proposed and tested
• The alternative method was based on the visual sensory channel
• Participants flew three flights with simulated engine failures
• Response times and accuracy of identification were measured and compared between two groups (Traditional vs Alternative)
Hypotheses

• H01: There is no difference in accuracy of engine identification between participants using the traditional and the alternative method.
• H02: There is no difference in response time across the three flights between participants using the traditional and the alternative method.
• H03: There is no difference in average response time for all three flights between participants using the traditional and the alternative method.
Lit. Review
Human Capabilities and Limitations

• Stress
 • Stress can affect operator’s judgment and assessment of the situation
 • Evidence that conflicts with expectations may be explained away or ignored (Kontogiannis & Malakis, 2009)

• Workload
 • Increase in workload can impair performance (Casto & Casali, 2013) and lead to problems with task prioritization (Morris & Leung, 2007)
 • Pilot error can become the source of increased workload (Morris & Leung, 2007)
 • Planning for the increase in workload helps avoid detriments to performance (Andre & Heers, 1995)
Human Capabilities and Limitations

• Attention
 • Human brain can handle up to four tasks concurrently without decrease in performance (Fisher, 1984; Julesz, 1981; James, 1980; as cited in Strayer & Drews, 2007)
 • Attention can be influenced by anxiety, making pilot’s gaze behavior more chaotic (Allsop & Gray, 2014)
Haptic vs Visual Sensory Channels

• 80% of information we perceive is visual (Gerushchat & Smith, 2010)
• People are more likely to notice visual cues (Hecht & Reiner, 2008) over haptic or auditory
• Information coming through the visual channel gets priority even if an operator knows that it is less reliable than the haptic channel (Xu, O’Keefe, Suzuki, & Franconeri, 2012)
Method
Materials and Apparatus

• X-Plane 11 flight simulation software
• Engine Status Panel
 • Indicates which engine has failed based on the fuel flow value
• Training video
 • Explained basic concepts and the method of identification of a failed engine
• Pre- and post-flight questionnaires
 • Demographics
 • Confidence in correct engine identification
• Three simulated takeoffs
 • Flight 1: Left engine failure 30 sec after rotation
 • Flight 2: Right engine failure 20 sec after rotation
 • Flight 3: Right engine failure 45 sec after rotation
Procedure

- 50 student pilots who did not have multi-engine rating (MEL) and had not started their training were sampled
 - Students received $20 for participation
- Participants were assigned to two groups
 - Traditional Group
 - Alternative Group
- Participants watched a training video
- Participants flew a practice flight
 - Engine failure was demonstrated
 - Participants were given an opportunity to practice the procedure
- Participants performed three takeoffs
 - Engine failure was simulated by failing fuel pumps on the corresponding engine
 - Participants were asked to announce verbally which engine had failed and comment aloud their actions after the failure
Results
Results: Demographics

- 42 Males & 8 Females
- Mean age $M = 20.22$ years ($SD = 2.67$ years)
- Mode age 18 years
- Average flight experience $M = 145.90$ hours ($SD = 75.45$ hours)
Result: Hypotheses testing

- **H01**: Difference in accuracy of identification between group
 - All participants feathered the correct engine
 - H01 retained

- **H02**: Difference in response time across flights and between groups
 - 2x3 mixed ANOVA within-subject variable test was not significant
 - H02 retained

<table>
<thead>
<tr>
<th>Group</th>
<th>Flight</th>
<th>Mean</th>
<th>Std. Error</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>1</td>
<td>5.231</td>
<td>.649</td>
<td>3.927</td>
<td>6.535</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.830</td>
<td>.441</td>
<td>3.943</td>
<td>5.718</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.224</td>
<td>.576</td>
<td>4.067</td>
<td>6.381</td>
</tr>
<tr>
<td>Alternative</td>
<td>1</td>
<td>3.984</td>
<td>.649</td>
<td>2.680</td>
<td>5.288</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.693</td>
<td>.441</td>
<td>1.806</td>
<td>3.580</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.586</td>
<td>.576</td>
<td>1.429</td>
<td>3.744</td>
</tr>
</tbody>
</table>
Result: Hypotheses testing

• H03: Difference in response time between groups
 • 2x3 mixed ANOVA between-subjects variable was significant at $F(1,48) = 10.83, p = 0.002$
 • Alternative Group ($M = 3.09$ seconds, $SD = 1.84$ seconds) was faster at identification than Traditional Group ($M = 5.09$ seconds, $SD = 2.43$ seconds)
 • H03 rejected
Result: Qualitative data

Participants’ assessment of identification of a failed engine

<table>
<thead>
<tr>
<th>Do you feel that you identified a failed engine correctly for each of the three flights?</th>
<th>Flight 1</th>
<th>Flight 2</th>
<th>Flight 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Traditional Group</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Alternative Group</td>
<td>25</td>
<td>0</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Do you feel that you identified a failed engine in adequate amount of time during each of the three flights?</th>
<th>Flight 1</th>
<th>Flight 2</th>
<th>Flight 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Traditional Group</td>
<td>23</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Alternative Group</td>
<td>24</td>
<td>1</td>
<td>24</td>
</tr>
</tbody>
</table>
Results: Suggestions for improvement

- Audio: 40%
- Instruments: 27%
- Other: 20%
- Other (ESP): 13%
Discussion
Discussion

• Alternative Group was significantly faster at identifying a failed engine than Traditional Group

• Some Traditional Group participants reported using visual cues for identification

• Alternative Group participants were generally more confident in correct identification

• Alternative Group participants reported being generally less confused in regard to which engine was failing
 • Traditional Group: $M = 2.28, SD = 1.27$. Alternative Group: $M = 1.84, SD = 1.03$.
Limitations

• The response time was reducing from Flight 1 to Flight 3 for Alternative Group
 • With more power, there could be a significant difference

• 8 participants (6 in Traditional Group and 2 in Alternative Group) moved the wrong throttle initially, but feathered the correct engine propeller
 • Increased response time
 • Might have hastily moved the throttle
 • Possible confusion due to no experience in multi-engine aircraft
 • Observing participant actions could help avoiding the issue in future research

• Participant behavior was not consistent
 • Did not retract landing gear
 • Did not power up
Further research

• Perform similar experiment with multi-engine-rated pilots
 • Determine how past experience affects the ability to use the new method for identification
 • Possibly make further changes to the method

• Identify engine parameters most indicative of the failure
 • Fuel flow was used, but is not enough
 • Several parameters might need to be used
 • Examples: Fuel Flow + Exhaust Gas Temperature
Suggestions

• Particular benefit to General Aviation
 • Reason: Lack of sophisticated systems in GA aircraft
 • Reduce risk of human error in emergency situations
 • Engine Status Panel can be installed aside from other instruments (to avoid clutter)
 • Newly-built aircraft are equipped with glass cockpits, hence the panel can be shown on a display
Conclusion
Conclusion

• Currently recommended method of identification might be too confusing and resource-demanding
 • This is dangerous in case if an engine fails on takeoff (high-workload)

• Using a method based on the visual sensory channel requires less time for identification of a failed engine

• A panel with a visual indicator is recommended to be installed in GA aircraft to reduce the risk of engine misidentification
References

THANK YOU