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Abstract

We study the Magnus expansion (ME) approximation scheme for the interaction be-

tween an atom and a single quantized cavity mode (Jaynes-Cumming model) in a

closed quantum system in resonance or near resonance for a time-dependent cou-

pling coefficient g(t) in both the interaction and rotating picture by implementing

a novel numerical method called MG4 and compare our results to the Runge-Kutta

4th (RK4) order solution to demonstrate the conservation of unitary evolution of the

ME. A cursory study of open quantum system is given to encourage the study of ME

for dissipative systems. Furthermore, we assume that our time-dependent coupling

coefficient g(t) can take on two forms, Gaussian and sinusoidal, which are introduced

as pulses to study the behavior and response of the cavity. Our results show that ME

is a sufficient approximation scheme in our study of closed quantum systems which

may have applications in quantum control.
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1
Introduction

As technology continues to evolve towards smaller devices the need for control of

such systems becomes evermore pressing as the system moves towards the quantum

realm. To begin controlling such systems one must begin with a set of differen-

tial equations. Analytical methods with exact solutions are often the preferred and

long-sought method in solving differential equations that determine the evolution of

physical systems. However, these types of solutions are often impossible to obtain and

the physicist must resort to approximations and numerical solutions. In this study

we will explore the Magnus Expansion (ME) and use the Jaynes-Cumming Model

in a closed quantum system in two different pictures (the interaction picture an the

rotating picture) and compare these results to a numerical solution using the 4th

Order Rung-Kutta method. We will see how the ME can be used for applications

in quantum control theory. We will also implement a method of the ME for linear

differential equations called MG4. A brief discussion on open and closed quantum

systems will also be given.
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Chapter 1. Introduction

A popular approximation scheme in quantum mechanics is perturbation theory

which has been used in many applications. In quantum physics, the principle of

unitary evolution is an important feature in allowing us to use statistical interpre-

tation of quantum experiments. Wilhelm Magnus in 1954 proposed an alternative

to the standard perturbation theory that maintains this principle of unitarity. This

new field is often called exponential perturbation theory but we will adopt the name

Magnus expansion (ME) in this study. We will show that the Magnus expansion

provides an adequate approximation to a complete quantum description of the inter-

action between a two level system and an electromagnetic field. Hence, we study the

resonant or near resonant interaction between a two level atom in a single quantized

cavity mode which is commonly known as the Jaynes-Cumming Model (JCM). How-

ever, in our model the coupling between the atom and the cavity is time dependent.

If the coupling coefficient as a function of time can be control, our work will have

applications in quantum control.

The order of this thesis is as follows: we will first give a brief review of quantum

mechanics and some important postulates necessary to use quantum mechanics in

Chapter 2 [20]. Chapter 2 will also include a discussion on the different ”pictures” one

can utilize to ease further calculations. We will include a discussion on open quantum

systems for real world applications in Chapter 2. A study of open quantum systems

is important due the inherent interaction between the atom and the environment[21].

Though we have equations that govern the state of a system deterministic-ally, these

equations only hold for ideal cases where we consider the system isolated from its

2



Chapter 1. Introduction

environment, devoid from any interaction that could cause it to lose energy. In

real world applications, however, we must introduce the system to the possibility

of energy dissipation and model our system accordingly. Density Matrix formalism

and the Master Equation must be introduced to encompass these new fields of study

[6, 16, 21]. The study of the density matrix formalism will prove to be a useful tool

under the Markovian and Born approximations.

Chapter 3 will delve into the Quantum interaction of light with a two-level atom.

Here we will briefly discuss the two level atom and the quantization of the electro-

magnetic field. With these two concepts at hand we will derive the JCM that we will

use in our study of the ME [6, 19, 22].

Chapter 4 will begin our study of ME [5, 15]. We will provide two proofs to the

approximations and discuss our applications of ME in the interaction picture. Figures

will show a comparison of our approximate solution to a numerical RK4 solution.

Chapter 5 will discuss the application of the ME in the rotating picture for a two-

level atom-photon system that is subject to ”periodic injections” of atoms. For this

study, a method for the Magnus expansion introduced by Iresles et al [12] will be

implemented. In contrast to the previous chapter where we introduced the constant

coupling coefficient g(t)→ V0, we will introduce coupling functions that can take on

any form. For our study, we will focus on Gaussian and sinusoidal functions.

Lastly, Chapter 6 will serve as our conclusion and will include any discussion for

future work in ME for open quantum systems.

3



2
Quantum Mechanics Fundamentals

In this chapter we review the fundamental postulates of quantum mechanics necessary

for later discussions and introduce two new concepts not covered in undergraduate

physics courses (the interaction picture and open quantum systems). The first concept

is a combination of two well known pictures or representation of quantum systems,

Schrodinger’s picture and Heseinberg’s picture. The interaction picture is convenient

for analyzing quantum systems that includes interactions with external entities, per-

turbing the system from a well known dynamics. The interaction picture is commonly

used in approximation schemes that assumes this type of interaction between a well

known system and a perturbing system. The second concept, open quantum systems,

is an extension of Schrodinger’s equation for isolated quantum systems that interact

with an environment.

4



Chapter 2. Quantum Mechanics Fundamentals

2.1 Review of Quantum Mechanics of an Isolated

System

Quantum mechanics can be summarized by 4 main postulates [20]:

1. The state of the particle living in an n-dimensional Hilbert space is completely

specified and represented by a column vector |Ψ(t)〉 in a Hilbert space in a given

eigenbases (|Ψ1〉 , |Ψ2〉 , .., |Ψn〉),

2. Independent variable x of classical mechanics (observable) is represented by

Hermitian operators X,

3. If a particle is in a state |Ψ(t)〉, measurement of the variable corresponding to

an operator A will yield one of its eigenvalues a with probability | 〈a|Ψ〉 |2 where

|a〉 is the eigenvector. The system then changes from state |Ψ(t)〉 to state |a)〉.

Following the Copenhagen iterpretation, the wave function |Ψ(t)〉 collapses to

state |a〉, and

4. The state vector |Ψ(t)〉 obeys Schrodinger’s equation:

i~
d

dt
|Ψ〉 = H |Ψ〉 . (2.1)

Recall that a Hilbert space contains vectors that are normalized, allowing one to

invoke probabilistic interpretations of quantum mechanics. In addition to these 4

postulate, another important axiom is the expectation value:

〈A〉 = 〈Ψ(t)|A |Ψ(t)〉 (2.2)

5



Chapter 2. Quantum Mechanics Fundamentals

which represents the average value of the observable.

2.2 Schrodinger’s Picture, Heisenberg’s Picture and

Interaction Picture

Schrodinger’s picture of quantum mechanics has the state carry the time dependence

[21]. In this picture, the state evolves with time while the observable 2.2 remains time-

independent[10, 20, 18]. Heseinberg’s picture, on the other hand, has the operator

carry the time dependence while the state of the system remains time-independent.

In this picture, the expectation value is:

〈Ψ|AH(t) |Ψ〉

Note that to represent any state or operator in Schrodinger’s picture we will adopt the

formalism of the absense of a subscript while to represent an operator in Heseinberg’s

picture we shall use the subscript H . If U(t) is a unitary time operator that transforms

the state vector from its initial state to its final state |Ψ(t)〉 = U(t) |Ψ(0)〉, then a

simple transformation law can be derived from the Schrodinger picture to Heseinberg’s

picture:

〈Ψ(t)|A |Ψ(t)〉

〈Ψ(0)|U †(t)AU(t) |Ψ(0)〉

AH(t) = U †(t)AU(t). (2.3)

6



Chapter 2. Quantum Mechanics Fundamentals

Since the operator is time-dependent in Heseinberg’s picture, we have to construct an

equation of motion for Heseinberg operators. If we differentiate equation (2.3), then

we get:

dAH(t)

dt
= ∂t

(
U †(t)AU(t)

)
= ∂t

(
U †(t)

)
AU(t) + U †(t)A∂t (U(t)) .

Now, since U(t) is a unitary operator that transforms |Ψ(t)〉 = U(t) |Ψ(0)〉, we can

derive an differential equation for the evolution operator [21] that obeys:

∂tU(t, t0) = − i
~
HU(t, t0). (2.4)

Therefore, our equation of motion for Heseinberg operators becomes:

=
i

~
U †(t)HAU(t)− i

~
U †(t)AHU(t)

=
i

~
U †(t)HUU †(t)AU(t)− i

~
U †(t)AUU †(t)HU(t).

but because we assume H to be time-independent, [H,U(t)] = 0, which leads us to:

i~
dAH(t)

dt
= [AH , H]. (2.5)

The interaction picture is a hybrid of both pictures. Instead of having the state

or the observable carry the time dependence, both carry the time dependence in the

interaction picture. The interaction picture a useful representation when dealing with

any external systems. In the interaction picture, the hamiltonian is assumed to be of

the form

H = H0 + V (2.6)

where H0 is the Hamiltonian with respect to the Heseinberg picture and V is the

Hamiltonian with respect to the Schrodinger picture.H0 is assumed to be the Hamil-

7



Chapter 2. Quantum Mechanics Fundamentals

tonian of a system whose dynamics are well known, while the Hamiltonian V is

assumed to be due to the external system that perturbs the system slightly. In this

picture, it can be interpreted that the state evolves with respect to V while the op-

erators evolve with respect to H0. To find the state in the interaction picture, we

assume that H0 is time-independent. The transformation from Schrodinger’s picture

to the interaction picture is then defined as:

|ΨI(t)〉 ≡ e
iH0t
~ |Ψ(t)〉 . (2.7)

From this definition we can derive a transformation law from Schrodinger’s picture

to the interaction picture. Starting from the definition of expectation value, we have

(for the interaction picture):

〈ΨI(t)|AI(t) |ΨI(t)〉 . (2.8)

From eq. (2.7), we have:

〈Ψ(t)| e
−iH0t

~ AI(t)e
iH0t
~ |Ψ(t)〉 (2.9)

which is equivalent to:

〈Ψ(t)|A |Ψ(t)〉 . (2.10)

Hence, our transformation for any operator from Schrodinger’s picture to the inter-

action picture is:

AI(t) = e
iH0t
~ Ae

−iH0t
~ (2.11)

whose evolution obeys

i~∂tAI(t) = [AI(t), H0]. (2.12)

which is derived from eq. (2.5). It is simple to show that by applying equation eq.

8



Chapter 2. Quantum Mechanics Fundamentals

(2.7) to Schrodinger’s equation, we obtain the following equation of motion for the

interaction picture:

i~∂t |Ψ(t)〉I = V |Ψ(t)〉I . (2.13)

It is clear from eq. (2.12) that the evolution of the operator is dependent on H0

while eq. (2.13) shows that the evolution of the state is dependent on V , which is in

agreement with our assumption from eq. (2.6). This is a key feature of the intearction

picture.

2.3 Open Quantum Systems

All quantum systems that only deal with system that do not interaction with its envi-

ronment called closed quantum systems. Quantum systems that includes interactions

with its surroundings are called open quantum system. Most practical applications in

quantum optics require an understanding of these open quantum systems. To begin

with we shall discuss the density operator formalism that will be used in derivation

of the Master equation (ME). The ME takes into account any form of damping of

the quantum system in terms of spontaneous and stimulated emissions. To derive the

ME we must make some necessary assumptions about the behavior of the system. We

will discuss the Born-Markov approximations and their corresponding consequences.

9



Chapter 2. Quantum Mechanics Fundamentals

2.3.1 Density Matrix Formalism

The density matrix formalism has several applications in quantum mechanics. The

density matrix formalism can be used to keep track of several closed quantum systems

that are subject to a classical stochastic process. For our purpose the density matrix

formalism will be used to keep track of the dissipative energy losses from the quan-

tum system in question to its environment. Since the density matrix represents an

ensemble of quantum systems, we call this representation of states mixed states. Each

state in this ensemble of quantum systems is a pure state. Hence, a mixed state is

composed of pure states. Given a set of states |Ψ0〉 , |Ψ1〉 , ..., |Ψn〉, the density matrix

is defined to be:

ρ ≡
n∑
i=0

Pi |Ψi(t)〉 〈Ψi(t)| (2.14)

where Pi is the probabilty for |Ψi〉. It follows that
∑

i Pi = 1. From now on we

will utilize Einstein notation for summation. The density matrix obeys the following

properties:

1. Tr(ρ) = 1

2. Tr(ρ2) 6 1

3. ρ† = ρ (hermiticity)

For an ensemble of system where Tr(ρ2) = 1, we have a pure state. If Tr(ρ2) < 1,

we have a mixed state. The evolution of the density matrix is governed by Liouville’s

10



Chapter 2. Quantum Mechanics Fundamentals

equation:

i~
∂ρ

∂t
= [Ĥ, ρ] (2.15)

where [Â, B̂] = ÂB̂ − B̂Â is the commutator relation and Ĥ is the energy operator.

Some important properties of the density matrix is the trace of a tensor product

space. We will define the trace to be:

Tr(A) ≡
∑
β

〈β|A |β〉 . (2.16)

where |βi〉 are the basis in the Schrodinger picture in any Hilbert space. It is given

that:

Tr(A⊗B) = Tr(A)Tr(B). (2.17)

The cycylic property of traces will also play an important role in our derivation of

the master equation. It states that operators commute in a cyclic fashion when taken

under a trace. In other words:

tr(ABC) = Tr(CAB) = Tr(BCA). (2.18)

Lastly, another important property is the partial trace which is defined to be a map-

ping of V and W, which are finite-dimensional vector spaces over a field, to V:

TεL(V ⊗W )→ TrW (T )εL(V ).

In other words, if we take the partial trace of V ⊗W over W , we should have Tr(V ):

TrW (V ⊗W ) = Tr(V ). (2.19)

11



Chapter 2. Quantum Mechanics Fundamentals

The density matrix also obeys the transformation into the interaction picture:

ρI = e
iH0t
~ ρS(t)e−

iH0t
~ . (2.20)

Note, however, that the density operator in the interaction picture is not necessary

time independent. Once the states and operators have been defined in the interaction

picture, the evolution of the state in the interaction pictures becomes:

i~∂t |ΨI(t)〉 = VI |ΨI(t)〉 (2.21)

i~∂tρI = [VI , ρI ] (2.22)

where VI = e−
iH0t
~ V e

iH0t
~ . H0 is viewed as a Hamiltonian which is well understood,

while V is viewed as a more complicated Hamiltonian due to interactions.

If we define U(t) = e−
iH0t
~ , then the table below summarizes the three different

pictures and their respective transformations from the Schrodinger picture:

Schrodinger’s Heseinberg Interaction

ket state |Ψ(t)〉 |Ψ(0)〉 |ΨI(t)〉 = U †(t) |Ψ(t)〉
observable A AH(t) AI = U †AU

density matrix ρS(t) = Eq.(2.14) constant ρ̃ = U †(t)ρS(t)U(t)
expectation value 〈Ψ(t)|A |Ψ(t)〉 〈Ψ(0)|AH(t) |Ψ(0)〉 〈Ψ(0)|AI(t) |Ψ(0)〉

Evolution i~∂t |Ψ(t)〉 = H |Ψ(t)〉 i~∂tAH(t) = [AH(t), H] Eqs. (2.12) and (2.13)

Table 2.1: Summary of transformations commonly used in quantum mechanics.

2.3.2 Derivation of The Master Equation

By utilizing the interaction picture and the density matrix formalism, we can derive

an equation (the Master Equation) for the non-unitary evolution of the density matrix

of an open quantum system subject to an external bath. In this formalism, the state

12



Chapter 2. Quantum Mechanics Fundamentals

of the total system is ρSB and the total Hamiltonian of this system is:

H = HS +HB +HSB (2.23)

where HS, HR and HSB are the Hamiltonians for the system, bath and system-bath

interaction respectively. From equation (2.15), we have:

i~∂tρSB = [H, ρSB] (2.24)

Here, the evolution of the total system (ρSB) is unitary. We shall introduce the reduce

density matrix which is defined as:

ρS ≡ TrB[ρSB]. (2.25)

Using our interaction picture, we assign the following relation HS + HB → H0 and

HSB → V (note that we used the overhead tilde to indicate in the interaction picture

instead of the subsript I). Hence,

ρ̃SB = ei(HS+HB)t/~ρSB(t)e−i(HS+HB)t/~

H̃SB = ei(HS+HB)t/~HSB(t)e−i(HS+HB)t/~.

According to equation (2.22), we have:

i~∂tρ̃SB(t) = [H̃SB(t), ρ̃SB(t)]. (2.26)

Integrating this equation from t to t+ ∆t,

ρ̃SB(t+ ∆t)− ρ̃SB(t) = − i
~

∫ t+∆t

t

dt′[H̃SB(t′), ρ̃SB(t′)]

iterating once more from t to t′,

ρ̃SB(t′) = ρ̃SB(t)− i

~

∫ t′

t

dt′′[H̃SB(t′′), ρ̃SB(t′′)]

13



Chapter 2. Quantum Mechanics Fundamentals

and using this for ρ̃SB(t) in the previous equation, we get:

ρ̃SB(t+ ∆t)− ρ̃SB(t) =

− i

~

∫ t+∆t

t

dt′[H̃SB(t′), ρ̃SB(t)]− 1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′[H̃SB(t′), [H̃SB(t′′), ρ̃SB(t′′)]].

(2.27)

2.3.2.1 Born Approximation

The Born Approximation takes advantage of the assumption that the bath is infinite

dimensional and is not affected by the coupling between the system and bath [8, 21,

16]. Hence, the coupling between the system and the bath are ”weak”. It assumes that

the perturbative effects of the system on the bath is negligible and results in a short

correlation time between the system and the bath. In other words, any effects done

onto the bath due to the system quickly fades away and the inequality ∆t >> τc

must be true. We shall call this correlation time τc. This is equivalent to saying that

the system-bath state factorizes

ρ̃SB(t) ≈ ρ̃S(t)⊗ ρ̃B

throughout its evolution because the system and bath are uncorrelated and hence its

tensor product can be factorized. We further assume that

TrB[H̃SB(t′), ρ̃B] = 0.

This follows from the assumption that the initial state of the bath doesn’t change

with time. This assumption thus implies that

TrB[H̃SB(t′), ρ̃SB(t)] = 0.

14
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Thus, after taking the partial trace over the bath of equation (2.27) and together

with the cyclic property of traces, the first term cancels out. We are left with:

∆ρ̃S(t) ≈ − 1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′TrB[H̃SB(t′), [H̃SB(t′′), ρ̃SB(t′′)]]. (2.28)

where ∆ρS(t) = ρS(t+ ∆t)− ρS(t).

2.3.2.2 Markov Approximation

While Born’s approximation allows us to assume that the effects of the perturbation

on the bath are ”short-lived”, and thus decays very quickly, Markov’s approximation

allows us to assume that the evolution of system ρ̃(t) depends on its current state, not

on past history [8, 21, 16]. This amounts to saying that ρSB(t′′) = ρSB(t) in equation

(2.28). This approximation can further be shown by Taylor series expansion of ρ(t′′):

ρ(t′′) = ρ(t) + O(∆t) which holds true when ∆t → 0. However, we still require that

∆t >> τc due Born’s approximation. Hence, from eq. (2.28), we obtain:

∆ρ̃S(t) ≈ − 1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′TrB[H̃SB(t′), [H̃SB(t′′), ρ̃SB(t)]]. (2.29)

2.3.2.3 Interaction Hamiltionian (HSB)

It can be shown, due to the partial trace over the bath shown in eq. (2.29), that the

rapid decay of the system is dependent on τ = t′ − t′′. We shall call τ the relaxation

time of the system due to its interation with the bath. To show this we assume H̃SB

to be a sum of products of observable [8, 21]:

H̃SB = ~S̃αB̃α

15



Chapter 2. Quantum Mechanics Fundamentals

where we assume the Einstein notation for summation. Because the partial trace

over the bath ”picks-out” B̃α and ρ̃B, leaving S̃α and ρ̃S unaffected, the result-

ings terms in eq. (2.29) will result in terms containing TrB

(
ρ̃BB̃α(t′)B̃β(t′′)

)
and

TrB

(
ρ̃BB̃β(t′′)B̃α(t′)

)
due to the cyclic property and the tensor space property of

the trace operator. We further make the following change of integration variable to

take advantage of the dependence on τ :∫ t+∆t

t

dt′
∫ t′

t

dt′′ =

∫ ∆t

0

dτ

∫ t+∆t

t+τ

dt′

≈
∫ ∞

0

dτ

∫ t+∆t

t

dt′. (2.30)

By switching back to Schrodinger’s picture by making the further assumption that:

S̃α = ei(HS)tSαe
−i(HS)t = Sαe

iωαt

and by making the following substitutions:∫ ∞
0

dτe−iωβτTrB

(
ρ̃B̃α(t′)B̃α(t′′)

)
= ω+.∫ ∞

0

dτe−iωβτTrB

(
ρ̃BB̃β(t′′)B̃α(t′)

)
= ω−.

eq. (2.29) reduces to (note that ρs(t)→ ρ(t)):

∂tρ(t) = − i
~

[H, ρ(t)]

+
∑
α

{
[Sαρ(t)S†α − S†αSαρ(t)]ω+ + [Sαρ(t)S†α − ρS(t)S†αSα]ω−

}
. (2.31)

The above equation is called the Master equation and can be further simplified to

another form often called the Linblad [6] form which utilizes the superoperator nota-

tion:

∂tρ(t) = − i
~

[H +Heff , ρ(t)] +
∑
α

καD[Sα]ρ(t) (2.32)

16



Chapter 2. Quantum Mechanics Fundamentals

where

Heff = ~
∑
α

Im[ω+
α ]S†αSα (2.33)

and

D[c]ρ(t) = cρ(t)c† − 1

2
[c†cρ+ ρc†c] (2.34)

is our superoperator. Other forms of the master equations can be derive, such as [1].

17



3
Interactions of Light with a Two-Level

Atom

In this chapter, we will look into the behavior of the two-level atom. Due to its

simplicity, it is the quintessential example used in quantum physics textbooks to il-

lustrate the behavior of a quantum system in a finite Hilbert space. We will discuss

the interaction of a two level atom with light. In the quantum mechanical descrip-

tion the electromagnetic field can be viewed as an infinite set of quantum harmonic

oscillators.

Coherent light may also be treated classically when studying its interaction with a

two level atom. The resonant interaction of light with a two level atom is characterized

by the Rabi frequency g (often called the coupling coefficient in the literature) which

describes the strength of the interaction between the atom and the light. By making

this coupling coefficient time-dependent g → g(t) we see some new behavior and

18



Chapter 3. Interactions of Light with a Two-Level Atom

model this coupling ”function” as our control function for future studies. In this

study we will focus on approximate solutions and in this chapter we will only be

studying the Jaynes-Cumming Model (JCM). Therefore, this chapter will discuss the

two-level quantum system and define any necessary operators. Next we will briefly

describe the quanitization of light and conclude this chapter with a quick derivation

of the Jaynes-Cumming Model.

3.1 Two-Level Atom

The two level atom is an approximation of our atom where only two energy eigenstates

are relevant. For a two level atom there are only two basis states. We shall label these

states |e〉 = (1 0)T for the excited state and |g〉 = (0 1)T for the ground state. If

an atom is in the ground (excited) state, the necessary energy to bring this state to

the excited (ground) state is ~ω0. If we assume that the halfway between these two

states the energy is zero, the Hamiltonian of this two level atom is:

Hatom =
1

2
~ω0σz (3.1)

where σz = |e〉 〈e|−|g〉 〈g| =

1 0

0 −1

 is the atomic inversion operator, reminiscent

of the Pauli spin matrices. It is useful to define the following operators:
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Chapter 3. Interactions of Light with a Two-Level Atom

σ = |g〉 〈e| =

0 0

1 0

 (3.2)

σ† = |e〉 〈g| =

0 1

0 0

 (3.3)

where σ is the lowering operator for the two level atom and σ† to be the raising

operator. Then, the following commutation relation holds: [σ, σ†] = −σz.

3.2 Quantum Description of Light in an Optical

Cavity

An optical cavity is an arrangement of mirrors that forms a standing wave cavity

resonator for electromagnetic waves. A parameter of optical cavity (called the Q

factor) characterizes the reflectivity of the mirrors. A high Q factor indicates a lower

rate of energy loss. A diagram of a simple Fabry-Perot cavity is shown below,

Figure 3.1: Visual schematic of optical cavity [2].
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Chapter 3. Interactions of Light with a Two-Level Atom

The Hamiltonian for an electromagnetic field mode can be derived from the quanti-

zation of the electromagnetic field common in the study of Quantum Electrodynamics

[3, 21]. The derivation is beyond the scope of this thesis but its results are the nec-

essary components for understanding the JCM. The quantization of EM fields result

in a harmonic oscillator Hamiltonian for each mode,

HEM =
∞∑
i=1

~ωi
(
a†iai +

1

2

)
(3.4)

which represents a mode of the EM field. These modes are similar to modes gener-

ated by the superposition of standing waves on a string with both ends fixed. The

frequency ωi is frequency of oscillation of the quantized electromagnetic fields (EMF).

The operators a†i and ai are the creation and annihilation operators for each mode,

represented by a harmonic oscillator. The operator a†iai is the mode number operator

whose eigenvalues represent the total number of photons in that mode. The eigen-

states of
∑∞

i=1 a
daggeriai are called Fock States and they represent the number of

excitations of each EMF mode with characteristic energy ~ωi. Only one mode res-

onantly interacts with the atom and will be used to represent the Jaynes-Cumming

Model. The system Hamiltonian we wish to observe is the sum of two level Hamilto-

nian and the quantized EMF Hamiltonian:

H0 = Hatom +HEM =
1

2
~ω0σz + ~ω

(
a†a+

1

2

)
. (3.5)

Note that because we are treating both atom and field systems as separate quantum
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Chapter 3. Interactions of Light with a Two-Level Atom

system, we use the tensor product notation

|Ψ〉 =
∑
i,j

|Ψi〉atom ⊗ |Ψj〉photon .

Similar to how a state of a two level system can be either represented as its ground

state or its excited (or a linear combination of both), the state of a quantized light

can be represented as a linear superposition of number states (Fock states). For our

study, the number of photons produced in the optical cavity due to its interaction

with a generic two level atom inside a Fabry-Perot cavity.

3.3 The Janyes-Cumming Model (JCM)

In this section we summarize the derivation of the JCM. For more information about

JCM, the reader is encouraged to read [22, 19]. The JCM describes a two-level quan-

tum system interacting with a quantized electromagnetic mode of an optical cavity.

JCM is the simplest quantum description of the two-level atom and its interaction

with light.

In the dipole approximation, the interaction between the atom and field is given

by the potential energy between a dipole and the electric field:

U = −d · E

where the electric field is

E(r) = −
√

~ω
2ε0

f(r)a+H.c.

where f(r) is the mode profile. Classically, the dipole vector is the separation between
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Chapter 3. Interactions of Light with a Two-Level Atom

two oppositely charged particles that are bound to each other. For a many-body

system, the dipole operator is represented by the following equation:

d = 〈g|
∞∑
i=1

eri |e〉
(
σ + σ†

)
where the operators (σ) and (σ†) are the raising and lowering operators acting on the

two-level atom, similar to the creation and annihilation operators acting on the Fock

state of the photons. By defining the coupling coefficient:

g(r) = −
√

ω

2~ε0
〈g|d |e〉 · f(r) = g

to be real for a given location r, we end up with the interaction Hamiltonian to be:

V = ~g
(
σ + σ†

) (
a+ a†

)
. (3.6)

In the rotating wave approximation we must transform into the interaction picture.

The following properties commonly used in operator algebra will be used to make the

transformation:

eiBλAe−iBλ = A+ iλ[B,A] +
i2λ2

2!
[B, [B,A]] + ... (3.7)

and

[AB,CD] = A[B,CD] + [A,CD]B. (3.8)

Together with the commutation relation [a, a†] = 1, we can use the above properties

to show that

eiω(a†a+ 1
2

)ta†e−iω(a†a+ 1
2

)t = a†eiωt

eiω(a†a+ 1
2

)tae−iω(a†a+ 1
2

)t = ae−iωt

ei
1
2
ω0σztσ†e−

1
2
iω0σzt = σ†eiω0t

ei
1
2
ω0σztσe−

1
2
iω0σzt = σe−iω0t
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Chapter 3. Interactions of Light with a Two-Level Atom

which leaves us with an interaction Hamiltonian of the form:

V (t) = ~g
(
σae−i(ω0+ω)t + σa†e−i(ω0−ω)t + σ†aei(ω0−ω)t + σ†a†ei(ω0+ω)t

)
Under the rotating wave approximation |ω0 − ω| � ω0 + ω, the fast oscillating terms

are neglected, and we are thus left with:

V (t) = ~g
(
σa†e−i(ω0−ω)t + σ†aei(ω0−ω)t

)
.

A transformation back to the Schrodinger picture would yield the us the final form

of the JCM for the total Hamiltonian:

H =
1

2
~ω0σz + ~ω

(
a†a+

1

2

)
+ ~g

(
σa† + σ†a

)
. (3.9)
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4
The Magnus Expansion Approximations

A large part of the study of physics involves solving differential equations of mo-

tion that dictate the behavior of the system in question.Some O.D.E can be solved

analytically. However an exact solution to the differential equation is often not achiev-

able, leading to numerical schemes invoking numerical methods and to a large extent,

approximation methods. A popular approximation scheme used in physics is pertur-

bation theory, which assumes that a system with a well known behavior (an exact

solution) experiences a small disturbance (perturbation) caused by it’s interaction

with another system that we wish to include in our study of the system’s differen-

tial equation. However, most perturbation theory methods run into a problem with

conserving the unitary evolution of the system. The consequence of the statistical

interpretation of quantum mechanics necessitates that the normalization of the quan-

tum system remains preserved throughout its evolution in order for the system to

make any physical sense, implying that the total probability of the quantum system

must be preserved.
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Chapter 4. The Magnus Expansion Approximations

This chapter is subdivided into 2 sections. The first introduces a solution that

maintains the unitary evolution, proposed by Wilhelm Magnus in his seminal paper

of 1954 [15] and as subsequently been known as Magnus expansion approxiation

or exponential perturbation theory [4, 5]. We will show that this approximation

scheme will preserve unitary evolution of a quantum system by taking advantage of

the group structure of quantum systems. Lastly, we will apply the Magnus expansion

to the JCM in the interaction picture while taking advantage of the rotating wave

approximation (RWA) to eliminate any fast oscillating terms. This method will be

compared to a numerical solution using the Runk-Kutta 4th order method.

4.1 The Magnus Expansion

For a first order differential equation of the following form:

dY

dt
= A(t)Y (4.1)

the general solution is

Y = e
∫ t
t0
A(t)dt

when A(t) is a scalar function. However, for differential equations where A(t) is a

matrix function, the above solution doesn’t hold because in general, matrices do not

commute with itself at a later time. Some approximation schemes have been applied

to eq. (4.1), but at the expense of losing some physical feature. An alternative

approximation was proposed by Magnus in his theorem [15]:
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Chapter 4. The Magnus Expansion Approximations

Theorem 1 (Magnus 1954). Let A(t) be a known function of t (in general, in an

associative ring), and let Y (t) be an unknown function satisfying eq. ?(4.1) with

Y (0) = I. Then, if certain unspecified conditions of convergence are satisfied, Y (t)

can be written in the form

Y (t) = eΩ(t)Y0 (4.2)

where

dΩ

dt
=
∞∑
j=0

Bj

j!
adnΩA, (4.3)

and Bi are the Bernoulli numbers. Integration by iteration leads to an infinite series

of Ω(t):

Ω(t) =
∞∑
k=1

Ωk(t). (4.4)

In addition, we have the following lemma:

Lemma 2 The derivative of a matrix exponential can be written alternatively as:

d

dt
eΩ(t) = dexpΩ(t)Ω

′(t)eΩ(t), (4.5)

where

dexpΩ(t)Ω
′(t) =

∞∑
k=0

1

(k + 1)!
adkΩ(Ω′(t)) =

eadΩ − I
adΩ

(Ω′(t)). (4.6)

The equations shown in Theorem 1 will be further elaborated in the following section

with its proof. For a more comprehensible form of the Magnus expansion we shall

explore eqs. (4.3) and (4.4). It must be noted that the matrix function A(t) must

be a skew-Hermitian matrix in the context of quantum mechanics due to its consruc-

tion from commutators (skew-Hermitian:A† = −A). Taken together, these equations
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imply that each term in the Magnus expansion can be calculated using the following

iterative equation:

Ω1(t) =

∫ t

0

A(t1)dt1 (4.7)

Ωn(t) =
n−1∑
j=1

Bi

j!

∫ t

0

S(j)
n (tn)dtn (4.8)

where

S1
n = [Ωn−1, A] (4.9)

Sjn =

n−j∑
m=1

[Ωm, S
j−1
n−m] 2 ≤ j ≤ n− 1 (4.10)

The first four Bernoulli numbers are given as B0 = 1, B1 = −1
2
, B2 = 1

6
, B3 = 0 and

B4 = − 1
30

. Following the above equations, we have the first 3 terms of the Magnus

expansion:

Ω1(t) =

∫ t

0

A(t1)dt1

Ω2(t) =
1

2

∫ t

0

∫ t1

0

[A(t1), A(t2)]dt1dt2 (4.11)

Ω3(t) =
1

6

∫ t

0

∫ t1

0

∫ t2

0

[[A(t1), [A(t2), A(t3)]] + [[A(t1), A(t2)], A(t3)]]dt1dt2dt3

Eq.(4.11) coupled with eq. (4.2) gives us a structured set of procedures to follow to

obtain an approximation to eq. (4.1) that conserves the unitary behavior necessary for

any quantum system. In its simplest form of interpretation, we commute, integrate,

and repeat. It is quite common for most systems to truncate the Magnus expansion to

2nd order. For our study we will show that the application of the Magnus expansion

to 2nd order will be sufficient. In the following section we will give a cursory proof

to the Magnus Expansion.
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4.1.1 Proof of Magnus Expansion

The reader is encouraged to peruse [5] for a comprehensive proof of the Magnus

Expansion. A cursory proof of the approximation will be given to highlight its key-

points. The proof for the Magnus expansion is twofold: the first utilizes the power

series expansion of the Bernoulli number that was seen then in Theorem 1, and second

from the derivative of a matrix exponential. The Bernoulli numbers is a sequence of

rational number whose power series expansion is shown below:

x

ex − 1
=
∞∑
n=0

Bn

n!
xn (4.12)

whose inverse is also given as

ex − 1

x
=
∞∑
n=0

1

(n+ 1)!
xn. (4.13)

We shall return to eq. (4.12) and (4.13) momentarily. The derivative of the matrix

exponential is first shown in eq. (4.5) (Lemma 2). Notice that by taking the time

derivative of 4.2, we have:

dY

dt
=

d

dt
(eΩ(t))Y0 = dexpΩΩ′(t)eΩ(t)Y0

which follows from Lemma 2. Notice that when compared to eq. (4.1), we obtain

A(t) = dexpΩΩ′(t)

since Y = eΩ(t)Y0. Due to the group structure of the system, we are allowed to apply

the inverse operator dexp−1
Ω . We then obtain

Ω′(t) = dexp−1
Ω (A(t)). (4.14)

Notice its similarity with eq. (4.3). The proof, therefore, for Theorem 1 requires

us to show that dexp−1
Ω =

∑∞
j=0

Bj
j!
adnΩ. The first step is to assume that Ω(t) is a
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matrix-valued differentiable function and to set

Y (σ, t) =
∂

∂t
(eσΩ(t))e−σΩ(t) (4.15)

for σ, t ∃ R. Differentiating with respect to σ yield ,

∂Y (σ, t)

∂σ
=

∂

∂t
(eσΩ(t)Ω)e−σΩ(t) +

∂

∂t
(eσΩ(t)Ω)(−Ω)e−σΩ(t)

= (eσΩ(t)Ω′ +
∂

∂t
eσΩ(t)Ω)e−σΩ(t) − ∂

∂t
eσΩ(t)Ωe−σΩ(t)

= eσΩ(t)Ω′e−σΩ(t)

= eadσΩ(Ω′)

=
∞∑
k=0

σk

k!
adkΩ(Ω′). (4.16)

If we integrate eq. (4.16) from 0 to 1, we obtain:

d

dt
exp(Ω)exp(−Ω) = Y (1, t) =

∫ 1

0

∂

∂σ
Y (σ, t)dσ

=

∫ 1

0

∞∑
k=0

σk

k!
adkΩ(Ω′)dσ

=
∞∑
k=0

1

(k + 1)!
adkΩ(Ω′)

d

dt
exp(Ω) =

∞∑
k=0

1

(k + 1)!
adkΩ(Ω′)exp(Ω) (4.17)

Notice that eq. (4.17) is equivalent to Lemma 2 (eq. (4.5)). When compared to our

power series representation of the Bernoulli number (eqs. (4.12) and eq. (4.13)), it

follows that:

dexp−1
Ω =

∞∑
j=0

Bj

j!
adnΩ. (4.18)

30



Chapter 4. The Magnus Expansion Approximations

4.1.2 Alternative Proof

A more subtle alternative proof to the Mangus expansion follows by utilizing the

Baker-Campbell-Hausdorf formula for the product of two exponentials and the group

property of the evolution of operators. The first states that

eXeY = exp(X + Y +
1

2
[X, Y ] +

1

12
([X, [X, Y ]] + [Y, [Y,X]]) + ...) (4.19)

which can be compactly expressed as [14]

eXeY = exp(Y +
∞∑
j=0

Bj

k!
adjY (X) +O(X2)) (4.20)

while the second states that any evolution operator obeys the following:

U(t2, t0) = U(t2, t1)U(t1, t0). (4.21)

We will consider a narrow time interval δt and use the exponential form of the evo-

lution operator:

exp(Ω(t+ δt, t0) = exp(Ω(t+ δt, t)exp(Ω(t, t0))

If we assume that during a narrow time interval δt the Hamiltonian of the system

is constant, Schrodinger’s equation ˙|Ψ〉 = H(t) |Ψ〉 tells us that exp(Ω(t + δt, t) ≈

exp(H(t)δt). Hence,

exp(Ω(t+ δt, t0) = exp(H(t)δt)exp(Ω(t, t0)).

Invoking eq. (4.20), we obtain:

exp(Ω(t+ δt, t0) = exp(Ω(t, t0) +
∞∑
j=0

Bj

k!
adjΩ(t,t0)(H(t)) +O(X2) (4.22)

Taking the limit as δt→ 0, we have

Ω′(t, t0) =
∞∑
j=0

Bj

k!
adjΩ(t,t0)(H(t)). (4.23)
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4.2 ME in Interaction Picture

For our system, the first order differential equation in question is Schrodinger’s equa-

tion:

∂ |Ψ〉
∂t

= H̃(t) |Ψ〉

where we define H̃(t) = −iH
~ to represent a skew Hermitian matrix. For the JCM

with time dependent coupling coefficient in the interaction picture,

H̃I(t) = −ig(t)
(
σa†e−i∆t + σ+aei∆t

)
(4.24)

where we introduce the detuning ∆ = ω0−ω. We start by assuming the weak coupling

regime ω0 >> g and set ω0 = 100g and assumed our coupling coefficient is in the

order of GHz. From eq. (4.11), the terms in the ME are:

Ω1(t) =

∫ t

0

H̃I(t)dt1

Ω2(t) =
1

2

∫ t

0

∫ t1

0

[H̃I(t1), H̃I(t2)]dt1dt2

Making the following substitutions:

f(t) = ei∆t

f ∗(t) = e−i∆t

leads to:

Ω1(t) = −i
(
σa†

∫ t

0

g(t1)f(t1)dt1 + h.c.

)
(4.25)

Ω2(t) =
1

2
(u1(t)− u2(t))

(
σ†σ + σza

†a
)

(4.26)
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where:

u1(t) =

∫ t

0

∫ t1

0

f(t1)g(t1)f ∗(t2)g(t2)dt1dt2 (4.27)

u2(t) =

∫ t

0

∫ t1

0

f ∗(t1)g(t1)f(t2)g(t2)dt1dt2. (4.28)

Furthermore, we initially consider the simplest case where g(t) = V0. Hence,

Ω1(t) = −V0

∆

[
(ei∆t − 1)σa† − (e−i∆t − 1)σ†a

]
(4.29)

Ω2(t) = −V
2

0

i∆

(
t− sin∆t

∆

)(
σ†σ + σza

†a
)
. (4.30)

An issue with this method is the exponential term containing our control input ∆,

which we may vary with time and model as a possible control function. But as our

control functions show, we must integrate them first, which could prove difficult.

We compute the excited population of an atom initially in its excited state with

the initial state of the photon in a coherent state and plot with respect to time. We

set the number of timesteps to 10,000 with our timescale to be ∆t = 1.0001× 10−14s.

For figure 4.1 and 4.2, we set our detuning to 2π × 109 1
s

and 2π × 107 1
s
, respectively,

and compare our approximation to a numerical RK4 solution. Clearly, ME upto

2nd order is more accurate, but as we decrease our detuning ME upto 1st order is

sufficient since a smaller detuning represents a stronger resonance between our atom

and cavity.
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Figure 4.1: RK4 and Magnus Expansion (1st and 2nd order). Initial coherent state.
Large detuning (∆ = 2π × 109 1

s
).

Figure 4.2: RK4 and Magnus Expansion (1st and 2nd order). Initial coherent state.
Small detuning (∆ = 2π × 107 1

s
).
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An interesting feature called the collapse and revival occurs when one increases

the time from 2× 10−10s to 100× 10−10s (figure 4.3). This feature as been observed

experimentally [17]. The key observation to note is that ME upto 2nd order is only

more accurate at the beginning of the excited population’s evolution; ME upto 2nd

order is less accurate later in time. However, despite this inaccuracy the ME upto

2nd order still maintains the unitary evolution.

Figure 4.3: RK4 and Magnus Expansion (1st and 2nd order). Initial coherent state.
Small detuning (∆ = 2π × 107 1

s
) from 0 to 100× 10−10s.
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5
Pulse Cavity

If we introduce atoms at different time intervals and observe the cavity response,

we may model the coupling coefficient as a coupling function and have it take any

shape we wish. In this chapter we take the case where ∆(t) → ∆0 is still constant

while exploring two different shapes for g(t), a Gaussian function and a sinusoidal

function. This will all take place under the rotating picture. Physically, each time an

atom is introduced to our atom-cavity system corresponds to a single Gaussian/sinu-

soidal pulse. A sequence of Gaussian/sinusoidal pulses would therefore represent the

periodic introduction of atoms.

5.1 ME in Rotating Picture

The rotating picture is another transformation commonly used for time-dependent

unitary transformation. Remember that we’ve decomposed our Hamiltonian into
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Chapter 5. Pulse Cavity

two parts: H = H0 + V , both of which were assumed to be time-independent. If,

however, we assume V to be time-dependent V → V (t), then we may apply a form

of perturbation theory to obtain a differential equation that may be amendable to

control. We begin with JCM Hamiltonian and and make the following substitution

ω(t) = ω0 + ∆(t) where we maintain the following interpretation that ∆(t) is the

detuning between the atom and light natural frequencies. We assume that we are

able to control the frequency of light by modifying the cavity, thus converting our

detuning to a time-dependent frequency. Our modified JCM in Schrodinger’s picture

becomes:

∂t |Ψ(t)〉 = −i
(

1

2
ω0σz + ω0a

†a+ ∆(t)a†a+ g(t)(σa† + σ†a)

)
|Ψ(t)〉 (5.1)

where we have neglected the ground photon level a†a+ 1
2
→ a†a. We may now make

the following transformation, substituting:

|Ψ(t)〉 = e−iH0t |ΨR(t)〉 (5.2)

where we have separated the Hamiltonian of eq. (5.1) into:

H0 =
1

2
ω0σz + ω0a

†a (5.3)

and

H1(t) = ∆(t)a†a+ g(t)(σa† + σ†a). (5.4)

We have also adopted the notational subscript R to indicate the rotating frame. By

taking the time derivative of eq. (5.2) and substituting eq. (5.1) and eq. (5.2) while
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using our notation for the Hamiltonian, we obtain:

−i[H0 +H1(t)] |Ψ(t)〉 = e−iH0t∂t |ΨR(t)〉 − iH0 |Ψ(t)〉

−iH1(t) |Ψ(t)〉 = e−1H0t∂t |ΨR(t)〉

∂t |ΨR(t)〉 = −ieiH0t
[
∆(t)a†a+ g(t)(σa† + σ†a)

]
e−iH0t (5.5)

By invoking eq. (3.7) we obtain our final form for the JCM under the rotating picture:

∂ |ΨR(t)〉
∂t

= −i
[
∆(t)a†a+ g(t)(σa† + σ†a)

]
|ΨR(t)〉 . (5.6)

In this section we shall be including terms of the Magnus expansion upto 4th order.

Making the following substitutions:

N = a†a

R = σ+a+ σa†

S = σ+a− σa†

M = a†a+ σ+σ

Q = σzM (5.7)

the following commutation relations hold:

[R,N ] = S

[S,N ] = R

[R, S] = −2Q

[Q,N ] = 0

[R,Q] = −2MS

[S,Q] = −2MR. (5.8)
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Hence, our goal now is to solve the following:

Ω(t) = u1(t)N + u2(t)R + u3(t)S + u4(t)Q+ u5(t)MS (5.9)

where

u1(t) = −i
∫ t

0

∆1dt1

u2(t) = −i
∫ t

0

g1dt1 + i

∫ t

0

∫ t1

0

∫ t2

0

(∆1∆2g3 + g1∆2∆3 − 2∆1g2∆3)dt1dt2dt3

u3(t) =

∫ t

0

∫ t1

0

(∆1g2 − g1∆2)dt1dt2 +

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0

(∆1∆2g3∆4 −∆1g2∆3∆4)dt1dt2dt3dt4

u4(t) = 2i

∫ t

0

∫ t1

0

∫ t2

0

(2g1∆2g3 − g1g2∆3 −∆1g2g3)dt1dt2dt3

u5(t) = 8

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0

(g1∆2g3g4 − g1g2∆3g4)dt1dt2dt3dt4 (5.10)

where we adopt the notation A(t1) = A1. The set of eq. (5.10) proves quite difficult

to implement computationally due to the exponential matrix function used in Matlab

using a time-dependent coupling coefficient. Fortunately, a method introduced by

Iserles in his paper [12] provides a more computationally friendly method in imple-

menting the ME. We shall apply this method in the rotating picture in the following

section.

5.2 MG4: Implementing ME for Linear Differen-

tial Equations

The method introduced by Iserles et al. [12] is fairly straightforward if one is familiar

with numerical techniques in solving differential equations. Its implementation is
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similar to how one implements RK4 in solving differential equations. We shall adopt

the same name that Iserles et al gives their new method, MG4. The method states

that the solution to the linear differential equation is:

yn+1 = eΩnyn (5.11)

where

a1(t) = a(tn + (
1

2
−
√

3

6
h)

a2(t) = a(tn + (
1

2
+

√
3

6
h) (5.12)

Ωn =
1

2
h(a1(t) + a2(t)) +

√
3

12
h2[a2(t), a1(t)]

and h is the timestep of our numerical scheme. Using eq. (5.11) proves to be compu-

tationally efficient especially when one deals with coupling functions. For our JCM

in the rotating picture (eq. (3.7)), a(t)→ H(t).

5.3 Pulsed Gaussian Coupling Function

We shall model g(t) as a Gaussian function in this section. We begin by substituting

the following equation for g(t):

g(t) = V0

(
A+Be−

(b−t)2

2c2

)
(5.13)

where A is a constant that determines the lower limit of the Gaussian function, B is

a constant that determines its peak and V0 is the constant coupling coefficient. From

the usual definition of a Gaussian function, the coefficients b and c determines the

location and standard deviation of the Gaussian function respectively. If we introduce
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the Gaussian functions periodically as a sequence of pulses, we have to split our use of

the ME into several pieces corresponding to the number of pulses we wish to introduce

to our system.

For the figures shown below we used 5 and 15 Gaussian pulses to show the behavior

of the average number of photons in the cavity as well as its uncertainty. In fig. 5.1

and fig. 5.2, we notice two points in the uncertainty that dips, but not to the desired

value. The main goal of quantum control is to drive the uncertainty of the sought

out expectation value to zero. Hence, it’s of scientific interest to study the effects

of changing the coupling functions at these points to observe how the uncertainty

behaves.

Figure 5.1: Gaussian Coupling (5 pulses). Average photon number vs. time
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Figure 5.2: Gaussian Coupling (15 pulses). Average photon number vs. time

5.4 Pulsed Sinusoidal Coupling Function

We begin by substituting the following equation for g(t):

g(t) = V0 (sin(ωt) + 1) (5.14)

where ω is the frequency of pulses for our time interval. The results of our test-bed

using the sinusoidal coupling function for 5 and 15 pulses are shown below:
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Figure 5.3: Sinusoidal Coupling (5 pulses). Average photon number vs. time.

Figure 5.4: Sinusoidal Coupling (15 pulses). Average photon number vs. time.

It is evident that different coupling functions exhibit different behaviors in uncer-
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tainty. If one compares figure 5.4 to figure 5.2, it would appear that large number of

pulses encourages early dips in the uncertainty for the sinusoidal function as compared

to the Gaussian function. An interesting feature of figure 5.4 shows a recurrence of

the collapse and revival of the JCM when one continues to increase in pulse number.
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6
Conclusions and Future Work

We have shown that the Magnus expansion is a useful tool for studying the Janyes-

Cumming Model in both the interaction picture and the rotating picture when com-

pared to the RK4 numerical solution. Furthermore, we have shown that Schrodinger’s

equation in the rotating picture is a more appealing picture than the interaction pic-

ture due to the absence of the exponential term which would be useful for future

studies in quantum control. Our study has also shown that the ME is only useful

for the case when 1/ω0 << t, that is to say when the interaction time between the

atom and cavity is much smaller than the interaction time t. This is evident in our

plots where the approximations increases in error over time. We have also shown

that characteristic features are maintained, such as the collapse and revival for initial

coherent states of photons and the unitary evolution of the system.

It should be noted we have addressed the possible applications of the Magnus

expansion to control problems but haven’t executed them. Control theorists prefer
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the following form for first order differential equations:

Ẋ(t) =
∑
k

uk(t)L̂kX(t)

where XεCn and L̂ εCnxn. In chapter 4 and 5 we have shown that the ME provides

such forms for Schrodinger’s equation.

Some Matlab codes have been create to incorporate any effects on the system given

different shapes of our coupling function g(t) (such as a Gaussian and sinusoidal

shapes). However, due to time constraints of writing a Master’s thesis, we haven’t

been able to include any effects of the detuning ∆(t). Future work could address our

control functions discussed in Chapter 4 and 5 and study which functions could drive

the system to a desired state. The field of quantum control is steadily increasing and

the reader is encouraged to read the following articles [7, 9, 11, 13].

Another path for future study of the ME is in its use of open quantum system. This

thesis introduced and discussed the necessary tools to begin the study of ME for open

quantum system but was restricted due to time constraint. Application on how to

apply the ME to superoperators of the Master Equation in Lindblad form could prove

useful for real world applications of quantum systems. However, an initial glance of

the study of ME in terms of the Lindblad form and superoperators would require large

computation time due to the nature of open quantum systems in using the density

matrix formalism. None-the-less, it is an attractive field for active research.
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Matlab Codes

A.1 MG4 and RK4 codes

function [Y_PRIME] = MG4 (H,psi_0,t0,N,dt,atom_dim,photon_dim)

% initialize output arrays

S_p_time = zeros(photon_dim*atom_dim, N); % for S_p as a function of time

t = zeros(1,N);

t (1,1) = t0;

% assign initial conditions

S_p_time (:,1) = psi_0; % total space in time.

S_p = psi_0;

for ii =1:N-1

% updates counter for rung kutta 4 to keep track of previous solution

S_p_counter = S_p;
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mg4_1 = H(t(1,ii)+(0.5-(sqrt(3)/6))*dt);

mg4_2 = H(t(1,ii)+(0.5+(sqrt(3)/6))*dt);

mg4 = 0.5*dt*(mg4_1 + mg4_2)+(sqrt(3)/12)*dt^2*(mg4_2*mg4_1 - mg4_1*mg4_2);

% updates State

S_p = expm(mg4)*S_p_counter;

% update S_p in time

S_p_time (:,ii+1) = S_p_counter;

t(ii+1) = t0 + ii*dt;

end

Y_PRIME = S_p_time;

end

function [P_PRIME,t] = RK4_coupled_gps (H,psi_0,t0,N,dt,atom_dim,photon_dim)

% initialize output arrays

S_p_time = zeros(photon_dim*atom_dim, N); % for S_p as a function of time

t = zeros(1,N);

t (1,1) = t0;

% assign initial conditions

S_p_time (:,1) = psi_0; % total space in time.

S_p = psi_0;

for ii=1:N-1

% updates counter for rung kutta 4 to keep track of previous solution

S_p_counter = S_p;

49



Appendix A. Matlab Codes

k1 = H(t(1,ii))*S_p_counter;

k2 = H(t(1,ii)+dt/2)*(S_p_counter+0.5*dt*k1);

k3 = H(t(1,ii)+dt/2)*(S_p_counter+0.5*dt*k2);

k4 = H(t(1,ii)+dt)*(S_p_counter+dt*k3);

% updates State

S_p = S_p_counter + dt*(k1+2*k2+2*k3+k4)/6;

% update S_p in time

S_p_time (:,ii+1) = S_p_counter;

t(ii+1) = t0 + ii*dt;

end

P_PRIME = S_p_time;

end

50



Bibliography

[1] Charis Anastopoulos and BL Hu. Two-level atom-field interaction: Exact master

equations for non-markovian dynamics, decoherence, and relaxation. Physical

Review A, 62(3):033821, 2000.

[2] Aranya B Bhattacherjee. Influence of virtual photon process on the generation

of squeezed light from atoms in an optical cavity. Atoms, 3(3):339–347, 2015.

[3] Iwo Bia lynicki-Birula and Zofia Bia lynicka-Birula. Quantum electrodynamics,

volume 70. Elsevier, 2013.

[4] S Blanes, Fernando Casas, JA Oteo, and J Ros. A pedagogical approach to the

magnus expansion. European Journal of Physics, 31(4):907, 2010.

[5] Sergio Blanes, Fernando Casas, JA Oteo, and José Ros. The magnus expansion
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