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Abstract 

Researcher: Hasnaa Khalifi 
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Degree: Master of Science in Mechanical Engineering 

Year: 2015 

Battery models can be developed from first principles or from empirical methods. 

The work presented in this thesis is semi-empirical, the model was validated using test 

data through parameter optimization. Simulink Parameter Estimation toolbox was used to 

identify the battery parameters and validate the battery model with test data. 

Experimental data was obtained by discharging the battery of a modified 2013 Chevrolet 

Malibu hybrid electric vehicle. The resulting battery model provided accurate simulation 

results over the validation data. For the constant current discharge, the mean squared 

error between measured and simulated data was 0.26 volts for the terminal voltage, and 

6.07e-4 (%) for state of charge. For the extended variable current discharge, the mean 

squared error between measured and simulated data was 0.21 volts for terminal voltage 

and 9.25e-4 (%) for state of charge. The validated battery model was implemented in the 

hybrid electric vehicle model and an optimization routine was conducted in Simulink to 

validate a launch control strategy. The vehicle model was subject to two maximum 

acceleration tests from 0-60mph. Test 1 corresponded to a maximum acceleration in EV-

only mode and test 2 corresponded to a maximum acceleration in HEV mode or launch 

control mode. In both tests, the simulated data matched the experimental data with a root 

mean square error below 0.45 mph for vehicle speed and 3.5 volts for bus voltage. 
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Chapter I 

Introduction 

1.1 Background and Motivation 

The EcoCAR 2 program is an advanced vehicle competition challenging 15 

schools from the United States and Canada to design and implement the most efficient 

hybrid electric vehicle architecture. It is run by Argonne National Lab and sponsored by 

General Motors and the United States department of Energy [1].The program completed 

years 1, 2, and 3. Year 1 focused on design and simulation of the hybrid vehicle. Year 2 

focused on design integration and assembly. During year 3, the vehicle provided an ideal 

research platform for data collection and experimentation at the component and system 

level. Increased use of hybrid electric vehicles reduces fuel consumption, greenhouse 

gases and other regulated emissions. The studied vehicle was a modified 2013 Chevrolet 

Malibu hybrid electric vehicle. 

 This thesis presents experimental data collection, physical system modeling, and 

optimization methods for the energy storage system (ESS) and vehicle’s 0-60mph 

acceleration tests. This work is motivated by a need to validate physical system models 

with the hardware’s experimental data. Figure 1 shows an example model validation 

process flow diagram. Another goal of this thesis is to provide EcoCAR 3 with an ESS 

model to implement in the vehicle power system model. ESS physical system modeling 

allows to evaluate and predict the performance of battery operated electric power 

systems. It can be developed from first principles or empirical methods. 
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Figure 1: Model Validation Process Flow Diagram 

 

 

The main contribution of this thesis is shown in Figure 1. First, an ESS model for 

the hybrid electric vehicle was developed. With the help of the EcoCAR team, chassis 

dynamometer testing were conducted in order to collect discharge battery data. The 

optimization problem for model validation was formulated. Once the battery model was 

validated, it was implemented in a physical system model of the vehicle. Finally, system 

level parameter estimation was conducted in order to validate a launch control strategy. 

The contribution does not include vehicle system level modeling nor to the vehicle 

maximum acceleration testing and data collection. 
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1.2 Physical System 

Hybrid electric vehicles combine the advantages of a combustion engine, an electric 

motor and the energy storage system (ESS) to obtain improved fuel economy, reduced 

emissions and increased power output.  

Hybrid electric vehicles have the advantage of operating in different modes. At low 

speeds, the vehicle may be propelled solely from the ESS; this is called pure electric 

traction mode. When the ESS is depleted, the vehicle is set to pure engine traction mode, 

where the engine or generator supplies the traction power. The vehicle may also operate 

in hybrid traction mode where the engine generator and the ESS supply the tractive 

power. During regenerative braking mode, the traction motor operates as a generator 

powered by the vehicle’s kinetic or potential energy; the power generated charges the 

ESS [2]. 

The three most common hybrid vehicle architectures are series hybrid, parallel hybrid 

and series-parallel hybrid. A series hybrid drive train combines the power from the 

engine generator and electric machine to propel the vehicle. The electric motor is the only 

means to power the wheels. A parallel hybrid uses the power from the internal 

combustion engine (ICE) and the electric machine individually or in combination to 

propel the vehicle. The electric motor and the ICE are mechanically coupled to the 

wheels [3]. A series-parallel hybrid combines the advantages of the series and parallel 

configurations at some cost in complexity. It employs two power couplers: mechanical 

and electrical [2].  

Rechargeable batteries are an essential part of a hybrid electrical vehicle. When the 

vehicle is operating on electric mode only, the total vehicle emissions are reduced and the 
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energy efficiency is increased. This reduces petroleum consumption and the vehicle’s 

operating costs [4].  

 Battery models play a significant role in evaluating and predicting the performance 

of battery operated electric power systems. Increased use of electric vehicles reduces fuel 

consumption, greenhouse gasses and other regulated emissions. Battery models can be 

developed from first principles or from empirical methods. 

1.3 Optimization 

Model validation using parameter optimization is an essential tool to accurately 

predict the behavior of dynamic systems [5].The key parameters for hybrid electric 

vehicle power systems are usually found in manufacturer datasheets. These values are not 

always accurate or complete. Datasheets usually provide the rated values under specific 

conditions, which are not always representative of the power system behavior during a 

drive cycle. Parameter optimization can be conducted through the Simulink optimization 

toolbox for component or system level validation. It uses experimental data and state-of-

the-art optimization methods to compute the model parameters [6]. This eliminates the 

need to change parameters by hand through trial and error or develop a complex 

parameter optimization routine especially when there is a large number of unknown 

parameters. The Simulink optimization toolbox is also able to optimize multiple model 

outputs of equal or different quality. Weight factors, 𝑤𝑗 may be specified for each output 

depending on the degree of importance. 
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Thesis Statement 

A Lithium-Ion battery model was developed and validated for Embry-Riddle 

Ecocar2 Diesel Series plugin hybrid electric vehicle. Chassis dynamometer testing was 

performed and the data used for component validation of the battery. The validated ESS 

model was integrated into a hybrid vehicle power system model. Parameter optimization 

was then used to estimate uncertain system level model parameters to validate vehicle 

performance with high acceleration test data. 

 

Organization 

 

  Chapter 1 presents the introduction, which includes the background, motivation 

and the thesis statement. Chapter 2 presents the literature review on parameter 

optimization for model validation and hybrid electric vehicle battery modeling. Chapter 3 

presents the methodology for optimization and vehicle component modeling. Chapter 4 

presents the validated model results compared to the measured data. Chapter 5 presents 

the discussions, conclusions and recommendations. 

 

 

 

Figure 2: Embry-Riddle EcoCAR 2 Diesel Series PHEV 
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List of Acronyms 

PHEV plugin hybrid electric vehicle 

EV Electric Vehicle 

HEV Hybrid Electric Vehicle 

ESS  Energy Storage System 

ICE Internal Combustion Engine 

SOC State of Charge 

SSE The Sum of the Square of the Errors 

OCV Open Circuit Voltage 

SCU Supervisory Control Unit 
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Chapter II 

Review of the Relevant Literature 

This chapter presents a critical literature review of optimization methods for model 

validation, battery modeling methods, and hybrid power system model validation. 

Section 2.1 reviews theory for using parameter optimization during model validation. 

Section 2.2 provides a complete example of model validation at the component level with 

test data for a hybrid battery system. Section 2.3 provides a second example of model 

validation for system-level validation for a complete vehicle. 

2.1 Optimization Methods for Model Validation 

The primary goal of optimization is to minimize a cost function under constraints. In 

Simulink parameter estimation, the cost function is the error between the simulated and 

measured output. Multiple optimization methods and algorithms are available to choose 

from. The default optimization method is the nonlinear least square method which 

minimizes the cost function by changing the parameter values [7]. 

Simulink Design Optimization toolbox can be used to calibrate the model data, by 

modifying key parameters, in order to match the measured output. In Simulink, this is 

called parameter estimation. The toolbox also comprises of other optimization options 

such as response optimization. It optimizes the model response to satisfy design 

requirement and system robustness. A sensitivity analysis can be conducted to analyze 

how parameters and states of a model affect the cost function; these parameters can be 

ranked in order of influence [8]. The optimization method and algorithm can be specified 

in the parameter estimation toolbox. Some of the available optimization methods are the 

Gauss-newton Method and the gradient Descent Method.  
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Gauss-Newton is a basic method for optimization and consists of forward, backward or 

central differential numerical derivative, shown respectively in (9). 

 

𝑑𝑦

𝑑𝑥
=
𝑦(𝑥 + ∆𝑥) − 𝑦(𝑥)

∆𝑥
𝑑𝑦

 𝑑𝑥
=
𝑦(𝑥) − 𝑦(𝑥 + ∆𝑥)

∆𝑥

        
𝑑𝑦

𝑑𝑥
=
𝑦(𝑥 + ∆𝑥) − 𝑦(𝑥 − ∆𝑥)

2∆𝑥

 

 

(9) 

  

Another Simulink optimization method is the Gradient Descent [9]. It uses fmincon 

function to optimize the response signal subject to constraints. Its default algorithm is the 

Sequential Quadratic Programming (sqp). The sqp algorithm uses sets of linear algebra 

routines to solve the optimization problem. It takes iterative steps in the constrained 

region, the steps respect the constrained bounds and can be as far as exactly on the 

boundary. 

A Mathworks article [10] describes a workflow for creating a high-fidelity model of 

an electric motor using Matlab and Simulink. Model parameters were identified from test 

data and verified through simulation using Simulink Design Optimization toolbox. 

Parameter values were verified by comparing simulation results with measured data. It 

was found that the simulation matched the hardware results with a normalized mean 

square deviation below 2% for key signals such as rotor velocity and motor phase 

currents. 

Advanced optimal control textbooks [11-13] discuss the optimization problem as an 

estimator or ‘observer’ and it is cast within a control theoretic framework. An observer is 

used in control system design to take live signal inputs and generate a model online, in 
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real-time, which is useful for control purposes. The parameter estimation conducted in 

this thesis is offline, and assumes full signal availability for offline use and recall. 

2.2 Battery Modeling and Parameter Estimation 

The two most common battery models are the electrochemical models and the electric 

circuit models. The electrochemical models are based on chemical reactions inside the 

battery. They are the most accurate because of their ability to simulate the cells at a 

molecular level. Electrochemical simulations may take hours or days of time and 

therefore are not the best candidates for system level simulations. The electrical circuit 

models are the most commonly used for electrical and electro-mechanical engineering 

simulations because of their electrical nature and the straight forward interface to other 

electrical component [14]. 

The simplest battery model consists of one constant internal resistance in series with a 

voltage source, as shown in Figure 3. While this model is popular because of its 

simplicity, it does not take into consideration the variation of the internal impedance of 

the battery with the varying SOC. This model is best used in simulations where the 

energy drawn out of the battery is assumed to be infinite and the SOC is of little 

importance. It would not be appropriate for hybrid and electric vehicle simulations [15]. 

 

 
Figure 3: A simple battery model 
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Another commonly used battery model is the Thevenin equivalent circuit model [16]. 

The Thevenin model uses an open circuit voltage in series with a resistor and a parallel 

RC block to track the battery response to transient loads [17]. Increasing the number of 

parallel RC blocks may increase the accuracy of the model.  

 

 
 

Figure 4: Thevenin battery model 

 

 

A lead acid battery equivalent circuit model was analyzed in [18]. It consists of 𝑛RC-

blocks connected in series with a terminal resistance and a voltage source, where 𝑛 is a 

positive number. The authors presents the dynamic equations for the model and describe 

in detail the parameter identification procedure by using lab tests data and manufacturer’s 

data. 

Similarly, [19] uses an electrical circuit consisting of one RC branch in series with a 

resistance to model a lead acid battery. The battery’s outputs were a function of state of 

charge and temperature. The model uses the same dynamic equations of [18]. The battery 

parameters were estimated from laboratory data using the Simulink optimization toolbox.  

An equivalent circuit model for a Lithium (LiNiCoMnO2) battery, consisting of one 

voltage source, one series resistor, and a single RC block was presented in [20].The 

parameter estimation used pulse current discharge tests on lithium cells and showed 
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circuit elements dependence on SOC, average current and temperature. For Lithium cells, 

the most common equivalent circuit consists of one or two RC. The parameter estimation 

was run for a range of discharge experiments at different temperatures. The results 

provided 2D lookup tables for each of the four circuit elements: 𝑅0 = 𝑅0(𝑆𝑂𝐶, 𝑇), 𝑅1 =

 𝑅1(𝑆𝑂𝐶, 𝑇), 𝑉𝑜𝑐 = 𝑉𝑜𝑐(𝑆𝑂𝐶, 𝑇). In the experimental setup, Lithium ion cells were 

tested at three different temperatures: 5C, 20C and 40C. The cell was initially charged 

and then subjected to partial discharge-rest phase cycles. The voltage at the end of each 

one-hour rest period was stable enough to be considered as a good estimate for OCV. 

SOC was derived using Coulomb counting of the current drawn at each step [20]. For the 

parameter estimation, each temperature was considered independent.  

A three RC model was chosen for the battery in [21]. Increasing the number of RC 

branches, causes increased parameter estimation complexity. The authors propose a way 

to solve the complex parameter estimation by reducing the size of the problem and 

breaking the data using a layered approach. The data was split into separate estimation 

tasks for each pulse or SOC level. In task 1, all the data exercised the 100% and 99% 

SOC breakpoints. These two columns were optimized only in Task1. After Task1 was 

complete, the exact SOC was recorded at the location where Task 2 starts. Task 2 began 

when the battery was near steady state right before the second pulse. The authors also 

presents a step by step parameter estimation procedure for the 3 RC branch configuration. 

2.3 Hybrid Electric Power System Model Validation 

A launch control strategy for improving maximum acceleration in a series hybrid 

electric vehicle is presented in [20]. The tested vehicle is a modified 2013 Chevrolet 

Malibu. The vehicle was accelerated from 0-60mph and tested under two power system 
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modes: EV-only mode (test 1) and HEV performance mode (test 2). In test 1, the ESS 

was the sole source of power and mobility, the driver applied maximum throttle until the 

vehicle slightly exceeded 60mph. In test 2, the driver engaged launch control mode by 

pressing a dashboard button, shifting into neutral, applying full throttle and then shifting 

the lever from neutral to drive; this allowed the engine-generator to enter charge 

sustaining mode. Both tests were performed on the same road, in the same direction and 

with the same driver and passenger to ensure uniformity. The experimental data shows 

that the HEV mode presents a 0.59 sec time reduction compared to the EV-only mode. 

This is primarily due to the engine generator’s additional power supply to the high 

voltage DC bus and the ability to apply maximum torque quickly.  

This thesis validates the systems level vehicle model against measured hardware test data 

in [22]. Simulink optimization toolbox was used to identify key parameters for the 

vehicle model. 
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Chapter III 

Methodology 

This chapter presents the parameter identification theory and methods using 

Simulink Parameter Estimation toolbox. It also presents the procedures for battery and 

vehicle power system modeling. 

Simulink Parameter Estimation toolbox was used to identify the battery 

parameters and validate the battery model. Experimental data was obtained by 

discharging the battery of a modified 2013 Chevrolet Malibu hybrid electric vehicle. The 

validated battery model was implemented in the hybrid electric vehicle model and an 

optimization was conducted in Simulink to validate a launch control strategy. 

3.1 Parameter Identification 

The objective of the offline parameter optimization problem is to minimize a cost 

function J by finding the design parameter 𝑏 subject to differential constraint �̇�, equality 

constraint 𝑐, and inequality constraint 𝑑 to produce the output 𝑦 [11], 

 

 �̇� = 𝑓(𝑥, 𝑡, 𝑢, 𝑏),

𝑐(𝑥) = 0,
𝑑(𝑥) ≥ 0,

𝑦 = ℎ(𝑥, 𝑡, 𝑏).

 

 

(1) 

 

The cost function is defined as, 

 

 
𝐽 =∑𝑤𝑗 (𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 
 

(2) 
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where 𝑤𝑗  is a weight factor, 𝑦𝑖 is the experimental data and �̂�𝑖 is the modeled data. The 

subscript i denotes the time series for the jth measured signal. The parameters  𝑏𝑖 are 

changed until the stopping criterion is reached: if two successive parameter or function 

values change by less than the chosen parameter or function tolerance,  |𝑏𝑖+1 − 𝑏𝑖| < 𝜀1  

or |𝐽𝑖+1 − 𝐽𝑖| < 𝜀2, respectively or when the maximum number of iterations is reached. 

3.2 Simulink Approach to Parameter Identification 

In Simulink Parameter Estimation, the simulation uses an iterative approach, it 

runs from [0 – tf] and the model parameters are found such that the modeling error 𝑟𝑖 is 

minimized. 

 

 
Figure 5: Parameter estimation strategy using Simulink 

 

Simulink parameter estimation toolbox was used to determine key parameters to 

match the simulation results with the measured data. First, the desired output signal was 

specified as an output in Simulink before running the simulation then the test data signal 

was imported into the parameter estimation toolbox. The model parameters and initial 



 

15 

 

conditions were selected and finally the estimation method and algorithm options were 

specified to define the optimization. The optimization stopping criterion is decided by a 

number of factors: if two successive parameter or function values change by less the 

chosen parameter or function tolerance, |𝑏𝑖+1 − 𝑏𝑖| < 𝜀1  or |𝐽𝑖+1 − 𝐽𝑖| < 𝜀2, 

respectively, or if the maximum number of iterations is reached. By modifying these 

parameters, the optimization can continue searching for a more accurate solution. 

Other sources of error in the parameter optimization process include the error 

associated with the numerical integration such as a fixed step search versus a variable 

step and the solver order. The optimization routine termination based on parameter or 

function tolerances and the interpolation error caused by the experimental data and output 

data comprising of different numbers of data points. 

3.3 Simulink Implementation 

In Simulink Parameter Estimation [23], the default estimation method is the 

nonlinear least square. It uses the nonlinear least squares function lsqnonlin and its 

algorithm options are the Trust-Region-Reflective Least Squares Algorithm (default) or 

the Levenberg-Marquardt Method. The optimization method used in this work is the 

nonlinear least square with the Trust-Region-Reflective algorithm. 

The least square method minimizes the sum square of residuals when estimating 

parameters. Consider an ith data point with a residual ri,  

 

                                                              𝑟𝑖 =  𝑦𝑖 − �̂�𝑖 (3) 
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where  𝑦𝑖 is the experimental data and �̂�𝑖 is the modeled data, as shown in Figure 6. The 

sum of the square of the residuals is given by, 

𝑆𝑆𝐸 = 𝐽 =∑𝑟𝑖

𝑛

𝑖=1

=∑𝑤𝑗 (𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

 
 

(4) 

 

where n is the number of data points. When parameter estimation depends on the 

optimization of multiple data sets of unequal certainty, a weight scale factor 𝑤𝑗 can be 

used to bias the error presented to the solver. 

 

 
Figure 6: Measured data Y versus simulated data �̂� showing the residual 𝒓𝒊 

 

The nonlinear least square method fits a nonlinear model to the data and has nonlinear 

parameters or a combination of linear and nonlinear parameters. It has the form, 
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𝑦 = 𝑓(𝑋, 𝑏) + 𝜀 (5) 

where y is the response vector, 𝑓 is a function of the parameter vector 𝑏 and a predictor 

variable matrix 𝑋 treated as coefficients and 𝜀 is the errors vector. The nonlinear 

approach starts with initial estimates for each parameter and creates a fitted curve �̂� for 

the available sets of parameters, where �̂� = 𝑓(𝑋, 𝑏).  Then a Jacobian calculation of 

𝑓(𝑋, 𝑏) is performed. The Jacobian matrix is defined as the partial derivative of cost 

function 𝐽 = 𝜙(𝑥) with respect to x, 

 

𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 = 𝜙𝑥 =
𝜕𝜙

𝜕𝑥
=

(

 
 

𝜕𝜙1
𝜕𝑥1

⋯
𝜕𝜙1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝜙𝑛
𝜕𝑥1

⋯
𝜕𝜙𝑛
𝜕𝑥𝑛)

 
 

 

 

(6) 

 

Simulink evaluates the Jacobian numerically. The parameters are adjusted to improve the 

fit based on the fitting algorithm.  

3.3.1. Trust-Region Reflective Algorithm 

The default algorithm is the Trust-Region-Reflective, unlike the Levenberg-

Marquardt algorithm, the parameter constraints must be specified [23].The trust region 

reflective algorithm approximates the model in a region near the iterate. This region is 

called the trust region and is updated for each iteration. For example, suppose there is a 

point 𝑥𝑖 in an n-space and we want to move to a point with a lower function value than 

the current point 𝑥𝑖, the function can be approximated by a quadratic, from its Taylor 

Expansion around 𝑥𝑖, in the neighborhood N around 𝑥𝑖. The improved point 𝑥𝑖+1 is also 

in this region. The trial step 𝑠𝑖 = 𝑥𝑖+1 − 𝑥𝑖 is found by minimizing over N. The 
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neighborhood N is usually spherical or ellipsoidal in shape. The problem statement is as 

follows, 

𝑚𝑖𝑛 {𝑞(𝑠) , 𝑠 𝜖 𝑁}, (7) 

 

where, 

𝑞(𝑠) =
1

2
𝑠𝑇𝐻𝑠 + 𝑠𝑇𝑔   such that ‖𝐷𝑠‖ ≤ ∆ (8) 

 

where g is the gradient evaluated at 𝑥𝑖, H is the Hessian matrix defined as the symmetric 

matrix of second derivatives, D is the scaling matrix and ∆ is a positive trust region size. 

The trust reflective region algorithm is more efficient in solving nonlinear problems 

compared to other algorithms such as Levenberg-Marquardt or Gauss Newton [24].  

3.2 Model Development 

This section presents the modeled circuit for the battery along with a vehicle 

subsystem description and empirical equations. 

3.2.1 Battery Model  

The equivalent battery model chosen for a 16kW-hr lithium iron phosphate 

battery consists of one RC-block connected in series with a terminal resistance and a 

voltage source, as shown in Figure 7. 

 

 

Figure 7: Circuit diagram of the battery model  
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In the circuit above, Em represents the open circuit voltage, the resistance R1 

represents the branch resistance, the capacitance C1 represents the time delay in the 

branch and R2 represents the resistance at the battery terminals. The battery was modeled 

in Simulink. The model input is current and the outputs are voltage and state of charge, as 

shown in Figure 8. 

 

 
Figure 8: Battery Simulink model showing the inputs and outputs 

 

 

The open circuit voltage Em, resistances R1 an R2 and total capacity varied with the state 

of charge and temperature. The input current was divided by three, which is the number 

of cells in parallel, in order to model the characteristics of one cell. The output voltage 

was multiplied by ninety, which is the number of cells in series, in order to model the 

characteristics of the Chevrolet Malibu’s battery pack. Equations (10) to (16) describe the 

modeled circuit. 

The open circuit voltage is found from equation (10), where 𝐸𝑚0 is the open circuit 

voltage in volts at full charge, T is the electrolyte temperature in °C, SOC is the state of 

charge and 𝐾𝐸 a constant in volts/°C. 

 

𝐸𝑚 = 𝐸𝑚0 − 𝐾𝐸(273 + 𝑇)(1 − 𝑆𝑂𝐶)                                           (10) 
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The resistance 𝑅1 is a function of state of charge and a constant 𝑅10 in ohms. 

 

𝑅1 = −𝑅10 ln(𝑆𝑂𝐶)                                                                          (11) 

  

The Capacitance 𝐶1 is a function of the resistance 𝑅1 in ohms and a time delay tau in 

seconds. 

 

𝐶1 = 𝜏 𝑅1⁄                                                                                             (12) 

 

The terminal resistance 𝑅2 is a function of state of charge and constants 𝑅00 in ohms and 

A. 

𝑅2 = 𝑅00[1 + 𝐴0(1 − 𝑆𝑂𝐶)]                                                               (13) 

 

The battery’s total capacity is calculated from the discharge current I in Amps, the 

electrolyte temperature in °C, the battery’s nominal current I* in Amps, the no-load 

capacity C0 in Amp-seconds and constants Kc and 𝛿. 

 

𝐶(𝐼, 𝑇) =
𝐾𝑐 𝐶0 𝐾𝑡

1+(𝐾𝑐−1)(𝐼 𝐼∗)𝛿⁄
                                                                      (14) 

 

The state of charge measures the remaining charge in the battery, ranging from 0 to 

100%. It is a function of the battery’s charge in Amp-seconds and battery’s capacity in 

Amps-seconds. 
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𝑆𝑂𝐶 = 1 −
𝑄𝑒

𝐶(0,𝑇)
                                                                                   (15) 

 

The battery’s extracted charge 𝑄𝑒 is an integration of the current flowing through at time 

t. 

𝑄𝑒(𝑡) = 𝑄𝑒_𝑖𝑛𝑖𝑡 + ∫ −𝐼(𝑡)𝑑𝑡
𝑡

0
                                                              (16) 

 

The battery’s electrolyte temperature can be computed by solving the heat equation of a 

homogeneous body exchanging heat with the environment. The battery’s thermal 

parameters are: the internal resistive losses estimated from 𝑃𝑠 = 𝐼
2𝑅, the ambient 

temperature, the battery’s thermal resistance 𝑅𝑇 in °C/Watts and the battery’s thermal 

capacitance in Joules/ °C. 

 

𝑇(𝑡) = 𝑇𝑖𝑛𝑖𝑡 + ∫
𝑃𝑠−

(𝑇−𝑇𝑎)

𝑅𝑇

𝐶𝑇
 𝑑𝑡

𝑡

0
                                                              

(17) 

 

The evaluated battery characteristics are shown in Table 1. 

 

 

Table 1: Battery specifications 

Characteristic                 Value 

Battery Chemistry                                 Lithium Iron Phosphate 

Battery Pack                                           6 x 15s 3p 

Cell Capacity (minimum)                     19.6 Amp-hr 

Cell Voltage (nominal)                          3.24 volts 

Pack Voltage (nominal)                         292 volts 

Pack Energy (minimum)                       16.2 kW-hr 

Operating Temperatures                     -30°C - 60°C 
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3.2.2 ESS Parameter Estimation Process 

The ESS model was developed in Matlab and Simulink using (10-16). Parameter 

optimization was conducted using Simulink Parameter Estimation Toolbox in order to 

validate model output with experimental data. The experimental discharge current data 

was input to the Simulink model and the calculated bus voltage was compared with the 

experimental bus voltage, as shown in Figure 9. In Simulink Parameter Estimation 

Toolbox, the sum of squared errors for measured and simulated voltage is calculated, the 

uncertain model parameters are changed until the stopping criterion is reached. 

 

 
       

           Figure 9: Simulink Parameter Estimation Process 

 

 

It was necessary to specify the voltage as the highest level output in Simulink in 

order to appear in the parameter estimation dialog box. Under the Analysis tab in 
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Simulink 2014a, parameter estimation option was chosen and the voltage experimental 

data was imported under Transient Data as shown in Figure 10.  

 

 

The estimated variables were 𝑅00 and 𝐴0 in (13), 𝑅10 in (11) and the open circuit 

voltage OCV which is a lookup table in Simulink varying with the state of charge. The 

parameters initial guess and constraints were specified under variables default settings as 

shown in Figure 11. 

 

Figure 10: Data Import in Simulink 2014a Parameter Estimation Toolbox 
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       Figure 11: Variables designation in Simulink 2014a Parameter Estimation Toolbox 
 

The optimization routine and tolerances were specified under Estimation Options, 

as shown in Figure 12. The method used was the nonlinear least squares with the Trust-

Region-Reflective Algorithm. The parameter and function tolerances were both chosen to 

be 1e-4, the maximum number of function evaluations was chosen to be 700 and the 

maximum number of iterations was chosen to be 100. The function is evaluated 700 

times for every iteration. 
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      Figure 12: Estimation Routine in Simulink 2014a Parameter Estimation Toolbox 

 

 

Acceptable results were obtained after proper dialogue box settings. Choosing 

logical bounds for the estimated parameters, as well as changing the parameter tolerance, 

the function tolerance and the maximum function evaluations were key to the system 

validation. 

3.2.3 Vehicle Power System Model 

 The vehicle model can be described in three sections. The driver model consists 

of a ramp with a slope matching the experimental data. The ESS is described in detail in 

the previous section. The power system is a diesel series PHEV with a traction motor, 

ICE, generator and mobility model. 

 A 1.7 Liter diesel engine is connected to a three phase inverter and an interior 

permanent magnet motor delivering a continuous rated power of 42kW and a peak 

generating power of 71kW. The energy storage system (ESS) uses a 16 kW-hr Lithium-
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Ion battery with a nominal bus voltage of 292V. The battery pack is connected to a 

2.2kW DC-DC converter auxiliary power unit that provides 12V to the vehicle. The three 

phase inverter is connected to the electric motor and they both have a rated peak power of 

145kW at a bus voltage of 320V. The electric motor is coupled with a single speed 

transmission with a final drive gear ratio of 9.59:1 providing power to the wheels. 

 

 
 

Figure 13: High Voltage Power System Components [22] 

 

3.2.3.1 Traction Motor Model 

The traction motor is modeled as a four quadrant electric machine. There are 

constant torque and constant power regions, below and above the break speed, 

respectively. Operating in forward motoring mode results in positive voltage and current 

and operating in regeneration mode results in positive voltage and negative current. The 

torque speed map was initially a static motor torque as a function of 𝑇𝑚𝑎𝑥 and 

constant 𝑃𝑚𝑎𝑥. This provided good agreement with experimental data below the break 

speed 𝑤𝑏, but the simulated vehicle speed deviated significantly from experimental data 

above the break speed in the constant power region. Changing 𝑃𝑚𝑎𝑥 allowed good 

agreement for the EV-only mode but not the hybrid performance mode, or vice-versa. 

Electric
Motor and

Inverter
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Allowing the 𝑃𝑚𝑎𝑥 value to change as a function of bus voltage and current caused the 

modeled results to match for both EV-only and HEV performance mode. 

 

 
 

Figure 14: Remy HVH250-090P torque as a function of DC bus voltage 

             Remy International Inc. datasheet figure reproduced with  

                             Permission [22] 

 

 

The model provides a variable torque output as a function of efficiency, bus voltage and 

maximum motor current. The inputs and outputs of the model are shown in Figure 15. 

 

 
 

Figure 15: Simulink motor model provides torque as a function of 

                      throttle, speed and bus voltage 
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where 𝑤 is the motor speed, 𝑇𝑚𝑎𝑥 is the maximum motor torque and 𝑃𝑚𝑎𝑥 is the 

maximum mechanical power found from, 

 

𝑃𝑚𝑎𝑥 = 𝑉𝑏𝑢𝑠 × 𝑖𝑚𝑎𝑥 × ƞ𝑚𝑜𝑡𝑜𝑟𝑖𝑛𝑔 (19) 

  

The motor model inputs are the motor speed and battery voltage and the outputs are 

motor torque and motor current. During motoring and generating, the current is found 

from equations (20) and (21) respectively, 

 

𝑖𝑚𝑜𝑡𝑜𝑟 = (1 ƞ𝑚𝑜𝑡𝑜𝑟𝑖𝑛𝑔).⁄ (𝑃𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 ⁄ 𝑉𝑏𝑢𝑠) 

𝑖𝑚𝑜𝑡𝑜𝑟 = (1 ƞ𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔).⁄ (𝑃𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 ⁄ 𝑉𝑏𝑢𝑠) 

(20) 

(21) 

 

where 𝑃 is the mechanical power 𝑇𝑚 ∗ 𝑤𝑚 , 𝑉𝑏𝑢𝑠 is the bus voltage, and ƞ is the 

efficiency which accounts for the energy loss during motoring or generating. 

3.2.3.2 Engine / Generator 

 The simulated engine spins a generator to achieve a commanded power output 

and charge the battery with this power. The maximum engine torque 𝑇𝑒,𝑚𝑎𝑥 is a mean 

value model from a torque speed map. The inputs and outputs of the ICE are shown in 

Figure 16.  

 

 

𝑇𝑚 = {
𝑇𝑚𝑎𝑥 × 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒   ,           |𝑤| < 𝑤𝑚𝑎𝑥
(𝑃𝑚𝑎𝑥 |𝑤|⁄ ) × 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒, |𝑤| ≥ 𝑤𝑚𝑎𝑥

  
(18) 
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Figure 16: Engine Simulink model showing engine speed as a   

              function of commanded torque and the motor’s  

                         reaction torque 

 

 

 

Engine speed 𝑤𝑒 is the integral of the sum of torques from commanded torque 𝑇𝑒,𝑐𝑚𝑑, 

reaction torque 𝑇𝑚, and a Coulombic resistive torque 𝑇𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒. 

The generator is modeled in the same way as the motor in 3.2.3.1. 

3.2.3.3 Mobility Model 

The mobility model determines the vehicle’s velocity as a function of tractive 

effort, rolling resistance, aerodynamic drag and slope [25]. The vehicle acceleration is 

computed from, 

 

ax =
∑F

(𝑚 +𝑚𝑟)
=
𝐹𝑥 − 𝐹𝑟𝑟 − 𝐹𝑎𝑒𝑟𝑜 − 𝐹𝑠𝑙𝑜𝑝𝑒

(𝑚 +𝑚𝑟)
 

(24) 

 

where 𝐹𝑥 is the tractive force, 𝐹𝑟𝑟 is the tire rolling resistance force, 𝐹𝑎𝑒𝑟𝑜 is the 

aerodynamic drag, 𝐹𝑠𝑙𝑜𝑝𝑒 is the grade force caused by a vehicle going uphill or downhill, 

   𝑇𝑒 = 𝑇𝑒,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑇𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑇𝑚 

where,             𝑇𝑒,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑇𝑒,𝑚𝑎𝑥 ∗ 𝑢𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒  

(22) 

(23) 
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𝑚 is the vehicle mass and 𝑚𝑟 is the equivalent rotational mass  . The vehicle velocity is 

found by integrating the acceleration (24). 

3.3 Experimental Apparatus  

3.3.1 Battery Test Procedure 

Two discharge tests were conducted at Embry-Riddle Aeronautical University’s 

chassis dynamometer. ESS data was collected during vehicle chassis dynamometer 

operation in electric-only, or charge depleting mode.  First, the battery of a modified 

2013 Chevrolet Malibu hybrid vehicle was fully charged and the battery cells were 

balanced prior to vehicle operation. Cell balancing ensures that all cells in the battery 

pack have an identical voltage. The battery management system uses resistors to bleed 

power out of higher voltage cells to achieve voltage uniformity across the pack. The 

battery’s SOC was at 99% before the start of each test. 

 To ensure complete voltage stabilization, the vehicle was at rest for a period of 24 

hours. The vehicle’s wheels were placed on the Dynamometer drum and the parking 

brake was turned on. The vehicle was tightly tied down using the Dynamometer straps 

and the Dynamometer strap points on the ground. The lab’s garage door was open and the 

cooling fan was turned on and placed in front of the vehicle with the air blowing on the 

front grill, as shown in Figure 17. In the Dynamometer controller, the electric motor’s 

angular velocity was set to a constant 5000rpm with the torque changing with the applied 

throttle.  

In the first discharge test, the battery was discharged at a constant current of 100Amps 

by applying a constant throttle in coordination with the dynamometer’s resistive load. 

The Vector Data Logger recorded all the experiment outputs including battery current 
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voltage, state of charge and temperature. The Battery’s SOC was at 94% at the start of the 

test and was discharged down to 30% instead of 0% to avoid battery deterioration. 

In the second discharge test, the battery was discharged in an extended test with eight 

sequential discharge rates: 20Amps, 40Amps, 60Amps, 80Amps, 100Amps, 120Amps, 

140Amps and 50Amps. Finally, the Vector Data Logger recorded all the outputs. 

The battery’s temperature was set to hold a constant temperature of 31°C, when the 

temperature goes over this value, the coolant kicks in. Typically, the cells on the on the 

outer part of the pack have a lower temperature while the cells in the middle part have a 

hotter more uniform temperature of 31°C. 

 

 

 
 

Figure 17: Vehicle on dynamometer drum 

 

 

3.3.2 Maximum Acceleration 0-60mph Vehicle Tests 

A modified 2013 Chevrolet Malibu hybrid electric vehicle was subject to two 

maximum acceleration tests from 0-60mph. Both tests were performed on the same stretch 

of dry, flat pavement with the same driver and passenger on board and in the same direction 

of travel to ensure uniformity. Test #1 was a maximum acceleration test from 0-60mph in 
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EV-only mode, where the ESS was the sole power source. The driver applied full throttle 

until the vehicle speed slightly exceeded 60mph. Test #2 was a maximum acceleration from 

0-60mph in HEV mode or launch control mode. The driver pressed a dashboard button, 

shifted into neutral, applied full throttle, and then switched the shift lever from Neutral to 

Drive. In Test #2 the engine generator operated in charge sustaining mode providing power 

to the ESS through the high voltage bus. Shifting from Neutral to Drive allowed the SCU 

to command maximum torque to the traction motor and inverter. Detailed test results are 

presented in [22]. 
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Chapter IV 

Results 

This chapter presents the results of the validated battery model and the validated 

vehicle launch control model. The values of the estimated parameters are shown and the 

simulated output is compared against the measured data. 

4.1 Battery Model 

Two discharge tests were conducted and simulated in order to compare the 

measured and simulated data. Simulink Parameter Estimation Toolbox was used to 

identify the uncertain parameters 𝑅00 and 𝐴0 in (13), 𝑅10 in (11) and the open circuit 

voltage OCV which is a lookup table in Simulink varying with the state of charge. The 

parameter trajectories are shown in Figure 18 and the parameter values are shown in 

Table 2. Figure 16, shows that the optimized parameters converged after 7 iterations, 

which means that the specified parameter or function tolerance was reached. The OCV 

has a different value at every state of charge breakpoint, which explains the multiple 

signal trajectories in Figure 18. 

The parameter estimation toolbox successfully output a monotonically increasing 

OCV which was not monotonically increasing initially.  Notice R10 changed sign 

because of uncertainty in the initial guess. Both of these changes are realistic according to 

the physical system. 
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Figure 18. Parameter trajectories showing convergence 
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Table 2: Estimated battery parameters using Simulink Design Optimization 

               Toolbox 2014a 

 

 

A0 (unit less) -1.1976 

𝑅00 (Ohms) 0.0033 

𝑅10 (Ohms) 0.0025 
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4.1.1. Discharge Test 1 

The experimental discharge current of 100 Amps was input to the battery model. 

Figure 19 shows the simulated and measured terminal voltage along with the applied 

discharge current. The mean squared error between measured and simulated data is 0.26 

volts. 
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      Figure 19: Measured and simulated voltage for a discharge current of 100 Amps 

 

Figure 20 shows the simulated and measured SOC at a discharge current of 100 

Amps. The mean squared error between measured and simulated data is 6.07e-4 (%). 
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Figure 20: Measured and simulated SOC for a discharge current of 100 Amps 

 

 

4.1.2. Discharge Test 2 

A variable discharge current was input to the battery model for discharge test 2. Figure 

21 shows the simulated and measured terminal voltage along with the variable discharge 

current applied. The voltage changes at every discharge rate: the higher is the discharge 

current applied, the lower is the voltage. The mean squared error between measured and 

simulated data is 0.21 volts. 
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        Figure 21: Measured and simulated voltage for a variable discharge current 

 

 

Figure 22 shows the simulated and measured SOC. The mean squared error 

between measured and simulated data is 9.25e-4 (%). Notice a dip in SOC below 30%, 

this is due to the discharge current change from 140 Amps to 50 Amps then to 0 Amps. 
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     Figure 22: Measured and simulated SOC for a variable discharge current 

 

 

4.2 Vehicle Model 0-60mph Acceleration Tests 

A hybrid electric vehicle was subject to two maximum acceleration tests. Test 1 

represents a 0-60mph acceleration in EV-mode and test 2 represents a 0-60mph in HEV 

mode. Simulink Parameter Estimation toolbox was used to identify uncertain parameters 

in order to validate the simulated vehicle speed with test data. These parameters are the 

tire rolling resistance coefficient 𝜇𝑟𝑟, the maximum current 𝑖𝑚𝑎𝑥 and the maximum 

torque 𝑇𝑚𝑎𝑥. The values of the maximum current and torque are usually available in 

manufacturer datasheet but these are only estimates pertaining to specific conditions. For 

example the maximum torque and power for the Remy HVH250-090P motor were 

318Nm and145kW peak, respectively, for a bus voltage of 320V while testing used a 
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292V bus voltage. Derating or scaling manufacturer datasheet was necessary to portray 

the test conditions. The estimated parameters values are shown in Table 3. 

 

Table 3. Estimated Vehicle parameters using Simulink 2014a Optimization toolbox 

Estimated Parameters Values 

𝜇𝑟𝑟 (unit less) .015 

𝑖𝑚𝑎𝑥 (Amps) 512 

𝑇𝑚𝑎𝑥 (Nm) 290 

 

 

4.2.1. Vehicle Test 1 and Test 2 

All vehicle data was collected via 100Hz CANbus messages from on-board 

vehicle sensors and subsystem components. The starting time for both tests was selected 

in the data logs as the first non-zero torque value reported by the traction motor inverter. 

The stopping time was selected as the first logged speed value to exceed the 60mph 

threshold. A torque-based starting time and speed based stopping criteria ensures 

uniformity in comparing 0-60mph times by eliminating driver response time [22].  
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   Figure 23: Maximum Acceleration from 0-60mph validation in EV-mode 
 

 

In test 1, the vehicle was simulated under maximum acceleration from 0-60mph 

in EV-mode. The ESS was the only source of power and mobility. Figure 23 shows 

measured vehicle speed against simulated speed. The maximum speed of 60 mph is 

reached at t=9.9sec. The measured vehicle speed is a straightforward measurement 

therefore has a high accuracy level. The vehicle speed during [0 4] sec characterize the 

torque limited region and the simulated curve was highly influenced by the maximum 

torque value. The remaining time history represents the power limited region. Bus 

voltage was measured during the test so the parameter varied was an assumed constant 

maximum current 𝑖𝑚𝑎𝑥, as in (19). The simulated curve was highly influenced by the 
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maximum current value. A variable break speed motor was necessary to match the data 

due to the variation in bus voltage. 

 

 

    Figure 24: Maximum Acceleration from 0-60mph validation in HEV-mode 
 

 

In test 2, the vehicle was simulated under maximum acceleration from 0-60mph 

in HEV-mode. The engine generator was placed in charge sustaining mode which 

provided additional power to the traction motor. Figure 24 shows measured vehicle speed 

against simulated speed. The maximum speed of 60 mph is reached at t=9.31sec. The 

torque limited region is represented from [0 4]sec, the maximum torque value highly 

influenced the validation of the simulated speed in this region. The remaining time 

history represents the power limited region where the maximum current influenced the 

speed validation. Notice in Figures 21 and 22, a time delay prior to t=0.30s between 
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measured and simulated vehicle speed. This is due to driveline compliance in rotating 

components between the traction motor and the tires. 

 

 

Figure 25: Bus Voltage validation in EV- mode 
 

 

Figure 26: Bus Voltage validation in HEV- mode 
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Figure 25 and Figure 26 show the bus voltage validation in EV and HEV modes 

respectively. In the power-limited region, the mean bus voltage is 258 volts in EV-mode 

and 277 volts in HEV mode. The increase in bus voltage is due to the power system being 

in charge sustaining mode prior to the vehicle launch. The bus voltage sensors provide 

high accuracy measurements. 

 

 

         Figure 27: Measured and simulated battery current in EV-mode 
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Figure 28: Measured and simulated battery and Generator current in HEV-

mode 
 

 

Figure 27 shows the battery current validation in EV-mode. The maximum 
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Figure 28 shows the battery and generator current validation in HEV mode. These figures 

show that both tests were performed with the same current draw. The current estimate is 

low fidelity because it does not account for inverter losses, so the actual current would be 

slightly higher. 
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Figure 29: Measured and simulated traction motor torque in EV-mode 
 

 

Figure 30: Measured and simulated traction motor torque in HEV-mode 
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by a power-limited region. The reported and simulated torques have the same break speed 

slightly after t=4sec. There is a 16% error between simulated and reported torque. The 

reported motor torque is a low accuracy measurement. The torque estimate relies on 

sensor measurements combined with offline finite element analysis under static 

conditions. Other causes of torque low fidelity are motor-to-motor variations and 

temperature variations. Further detailed discussion is presented in [22]. 
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Chapter V 

Discussion, Conclusions, and Recommendations 

This chapter presents discussions and conclusions on Parameter Optimization for 

the ESS and vehicle model and recommendations for future work. 

5.1. Parameter Optimization Theory 

Parameter optimization is a powerful and effective method for validating physical 

system models with experimental test data. The formal optimization problem statement as 

presented in this thesis has not been found in a textbook. Similar problem statements are 

available for optimal control but not for model validation. Simulink Design Optimization 

toolbox was a convenient tool for model validation. 

5.2 ESS Parameter Optimization 

A battery model has been created and validated for the EcoCAR2 Chevrolet 

Malibu. Parameter estimation was conducted using Simulink to determine the constants 

in (11) and (13).The simulated voltage and state of charge match the experimental 

outputs. For the constant current discharge, the mean square error between measured and 

simulated data was 0.26 volts for the terminal voltage, and 6.07e-4 (%) for the state of 

charge. For the extended variable current discharge, the mean square error between 

measured and simulated data was 0.21 volts for the voltage and 9.25e-4 for the state of 

charge. The battery model was implemented in a hybrid electric vehicle model.  

5.3 Vehicle Parameter Optimization 

Parameter estimation was conducted to validate a launch control strategy 

presented in [22]. The vehicle was modeled for two maximum acceleration tests from 0-

60mph. Test 1 represents the maximum acceleration in EV-only mode, where the ESS 
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was the sole source of power, and test 2 represents the maximum acceleration in HEV 

mode or launch control mode. The 0-60mph time was found to be 9.9sec in test 1 and 

9.31sec in test 2, which validates the experimental results. In test 1, the root mean square 

error between measured and simulated data is 0.52 mph for vehicle speed and 2.68V for 

voltage. In test 2, the root mean square error between measured and simulated data is 

0.43 mph for vehicle speed and 3.50V for voltage. The estimated parameters were 

maximum torque, maximum current and tire rolling resistance. 

Parameter estimation was necessary in order to match and validate the model with 

the measured data. Parameters representing the electric drive components are provided in 

manufacturer datasheets that did not match the experiment operating conditions. The 

parameter optimization toolbox helped estimate these unknown parameters better to 

allow the models to match experimental data. The motor speed and bus voltage 

measurements were assumed of high accuracy, while motor torque and current have a 

lower accuracy level because they are estimated from sensor measurements and offline 

finite element analysis which is subject to modelling error along with temperature and 

manufacturing variations.  The parameter optimization toolbox provided a convenient 

framework to prioritize different sensor measurements based on these confidence levels. 

5.2. Recommendations 

The parameter optimization routine searches for an optimal solution to match 

modeled and measured data with respect to chosen parameter and function tolerances. 

Changing the tolerances would allow the optimization to find more accurate results. The 

battery model does not account for changes in performance due to temperature variations, 

therefore developing a thermal model could be of high advantage. Finally, 
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manufacturer’s data is rated under specific conditions that do not match the test 

conditions. Using these specific values in vehicle performance simulations would not 

lead to accurate simulation results. Therefore, developing a derating or scaling strategy to 

match the test conditions would be highly beneficial.  
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Appendix B 

Simulink Optimization Toolbox 
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Appendix C 

Battery Simulink Model 
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Battery m-file 

 

%% Test data 
cells_in_parallel =3; 
cells_in_series=15*6; 

  

  
%% assumed data 
%Em block 
    theta = 31+273; %Temperature in Kelvin 
    Em0=301.102; % (volt) Sure from discharge test 
    v1=301; % (volt) 
    ke=.001; %(volt/degreeCelcius) 

  
%R0 block 
    A0=-1.1976; %Constant 
    R00=0.0033; %Value of R0 at SOC=1 

  
% R1 block 
    R10= 0.0025; %Constant in ohms 

  
% C1 calculation 
    Tau1= 10; %time lag appoximately 10 sec 

  
% R2 block % Insignificant for discharge currents 
    I_star=20; 

  
% Charge and Capacity block 
    thetaf=-30+273;  %sure from manufacturer 
    eps =0.001; % guessed, from a paper 
    kc =1.01; % guessed, from paper 
    kt=(1+(theta./thetaf)).^eps;  
    C0=69200; %  No load capacity in Amp.sec equivalent to 19 Amp.hr  
    delt = 0.9; % guessed, from paper 

  
% SOC  
    capacity_0= 20*3600; 
    SOC_0=.94; 
    OCV=[2.25 
        3.2 
        3.1934 
        3.2196 
        3.2416 
        3.2571 
        3.2688 
        3.2803 
        3.2941 
        3.3109 
        3.3526 

  ] 
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%% Plots 
 

figure(1) 
    plot (bcm_soc./100, 'MarkerSize',2,'Marker','o','Color',[0 1 0],... 
    'DisplayName',' Measured SOC '); 
hold on 
plot (SOC, 'MarkerSize',3,'LineWidth',2,'LineStyle','--',... 
    'DisplayName','Simulated SOC',... 
    'Color',[0 0 0]); 
    xlabel('time (s)');... 
    ylabel('SOC at I= 100Amps') 
legend('Measured SOC','Simulated SOC') 
grid on 

  

  
figure (2) 
subplot(2,1,1); plot 

(bcm_vbat,'MarkerSize',3,'Marker','o','LineWidth',2,'Color',[0 1 0],... 
    'DisplayName','Measured Voltage'); 
hold on 
plot (vt, 'LineStyle','--','DisplayName','Simulated Voltage',... 
    'Color',[0 0 0]); 
    xlabel('time (s)');... 
    ylabel('Output Voltage (v)') 
grid on 
legend('Measured Voltage','Simulated Voltage') 
subplot(2,1,2); plot(I.signals.values, 'r'); xlabel('time (s)'); 

ylabel('Current (Amps)'); %title(' Constant Current Disharge') 
grid on 
legend('Current') 
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