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ABSTRACT 

 

 

Krishnappa, Sanjay MSAE, Embry-Riddle Aeronautical University, May 2016. An 

Experimental Study of Synthetic Jet Actuators with Application in Airfoil LCO Control. 

 

An experimental study on the development and implementation of Synthetic Jet 

Actuators (SJAs) is conducted for eliminating aeroelastic phenomenon such as Limit Cycle 

Oscillations (LCO). One of the biggest challenges involved in the design of UAVs 

operating in unsteady atmospheric conditions is the susceptibility of the airframe to 

aeroelastic instabilities, such as flutter or LCO. Suppression of such instabilities can be 

achieved through the implementation of Active Flow Control (AFC) techniques, however 

to this day, a limited amount of experimental studies exist. Thus, the focus of this work is 

to develop a new AFC method consisting of an actuator that is directly instrumented in the 

internal volume of the airfoil. Due to the complex geometry of airfoil/actuator integration, 

advanced manufacturing technique has been employed for rapid manufacturing of these 

complex parts. In addition, a newly designed experimental test facility is fabricated to study 

the effect of the developed actuator on aerodynamic performance. Parametric analysis are 

conducted to investigate the effect of actuator location along the airfoil surface, Reynolds 

number, and angle of attack. Results of this study demonstrated the actuator effectiveness 

on overall aerodynamic performance and show consistent trends with high-order 

Computational Fluid Dynamics (CFD).
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1. Introduction 

There has been a surge of interest in the design and application of UAV in the recent 

years. The applications of these aerial vehicles range from civilian application to military 

operation in harsh operating environment. One of the biggest challenges involved in the 

design of operation of UAV’s is the flight tracking controller for the UAV’s operating in 

uncertain environment conditions. UAV’s operating in such uncertain environmental 

conditions the airframe is susceptible to experience certain aeroelastic instabilities, such as 

flutter or Limit Cycle Oscillations (LCOs). Due to inherent structural and aerodynamic 

nonlinearities, the flutter behavior often appears in the form of stable constant amplitude 

oscillations; LCOs. Depending on the nonlinearities of the system and flight operating 

conditions LCOs can show a wide range of amplitudes and frequencies (Keegan et al., 

2007). Large research activity has focused on aeroelastic active control and flutter 

suppression of flight vehicles have been associated with using physical actuators, such as 

control flaps for flutter and post flutter suppression. These systems include bulky hydraulic 

actuators. Hence there is a need for lighter, smaller and low power flow control device. By 

using flow control devices their mass flow displaces the fluid streamlines and thus changes 

the aerodynamic forces and moments on a lifting surface and is so called virtual 

aerodynamic shaping phenomenon. If the lifting force and aerodynamic moments can be 

influenced using flow control actuators, these devices have the potential to be used for 

aeroelastic control. The development of closed-loop strategies for extending the flight 

envelop of flight vehicles and achieving dynamic maneuvering without moving control 

surfaces using aerodynamic flow control has received substantial interest in recent years. 

Flow control is a fast growing multi-disciplinary field in science and technology, aimed at 
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altering nature of flow state. Flow control research dates back to the discovery of the 

boundary layer by Prandtl. In the period leading up to and during World War  , as well as 

in the cold war era, flow control was extensively studied and applied, primarily to military-

related flow systems. In the recent years there has been a growing interest in small active 

flow control devices that affect the flow field and modify forces and moments over lifting 

surface, particularly for low-Reynolds number applications such as UAVs (Lopez & Omar 

et al., 2010).1 

Flow control technology can be integrated with the flight control to yield 

improvements in the aerodynamic performance and increase endurance. In addition, it may 

also reduce the risk of detection by the enemy because of its inherent stealth capability. For 

purpose of stealth, reduced vehicle weight, increased robustness and damage tolerance as 

well as compactness, hinge-less methodology is quite attractive (Zeigerm et al., 2004).2        

1.1. Flow Control 

Flow control may be used to control/promote the boundary layer transition, limit 

flow separation, augment lift and reduce drag, either passively or actively. It can also be 

used for the dynamic modification of the pressure distribution over a wing surface. The 

resulting benefits include drag reduction, lift enhancement, mixing augmentation and 

flow–induced noise suppression.
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Classification of flow control is based on the energy expenditure and the control 

loop involved as illustrated in Figure 1.1. The control techniques involve passive or active 

methods that modify the flow field. Active control schemes can be divided into 

predetermined or interactive methods. 

Predetermined method of control involves the introduction of steady or unsteady 

energy inputs without consideration for the state of the flow field. An interactive method 

of flow control, the power input to the actuator is continuously adjusted based on some 

form of measurement from a sensor. The control loop for interactive control can be either 

a feedforward or feedback loop. In the feedforward control loop, the sensor is placed 

upstream of the actuators and the actuator controlled according to predefined control laws. 

In feedback systems a sensor directly measures the controlled variable downstream of the 

actuator.  

 

Figure 1.1 Classification of flow control.   
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1.2. Passive Flow Control 

Passive modes of flow control are aimed at controlling high lift flight scenarios, 

such as in the case of take-off, landing, and fast maneuvering, e.g distributed roughness 

over a surface, vortex generators and self-excited rods, augment the boundary layer 

momentum through enhanced mixing or by introducing velocity fluctuations in the 

transverse direction to control flow separation without any addition of energy (Agarwal, 

2007).3Passive techniques include geometric shaping to manipulate the pressure gradient, 

the use of vortex generators as shown in Figure 1.2 for separation control, and placement 

of longitudinal grooves or riblets on a surface to reduce drag.  

 

 

Figure 1.2 Passive flow control using vortex generators. 4 
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1.3. Active Flow Control 

Active flow control techniques can be implemented using various methods, e.g. 

continuous blowing, continuous suction, pulsed blowing, oscillatory blowing and suction, 

vibrating ribbons, wall oscillations, and zero-net mass flux actuators. Desired results can 

be achieved by removing the low momentum carrying fluid from the boundary layer or by 

increasing the boundary layer momentum. Zero-net mass flux actuation or pulsed blowing 

additionally introduce vortex instability structures into the flow, which influence the 

mixing of the slow moving boundary layer with the free stream. Intense experimental work 

has demonstrated that SJAs are an effective way to modify the aerodynamic properties of 

a lifting surface. The SJA involves the introduction of periodic perturbations into the flow 

by generating vortices through an instability mechanism that get amplified downstream. 

By the transportation of momentum from the main freestream into areas of lower 

momentum enhances the mixing and reduce the wake size. This concept can be traced back 

to the work of D.Oster, who demonstrated that by forcing a mixing layer, the spreading 

rate increased and large coherent structures enhancing the entrainment capacity of the flow 

through momentum transfer across the shear layer (Priyanka 2003).5 

Seifert et al, performed testing on a hollow, flapped NACA 0015 that was equipped 

with a two-dimensional slot over the flap. (Seifert et al., 1993),6(Seifert & Darabi, 

1996).7The airfoil was subjected to steady and modulated blowing, and it was determined 

that the latter was a major factor for improving performance at lower momentum inputs. 

They observed a significant increase in lift, as well as concomitant reduction of form drag 

at reduced frequencies based on the flap chord for Reynolds number considered. In addition 
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to lift enhancement, the pulsating jet effectively eliminated the large wake area for the 

majority of the post-stall region. Greenblatt and Wygnanski subjected an airfoil to periodic 

excitation at typical Micro Air Vehicle (MAV) Reynolds numbers of 50,000. Under the 

effects of oscillations, the flow was able to withstand an adverse pressure gradient of much 

higher magnitude before separation, thus transforming a non-lifting airfoil into one that 

approached performance of that of conventional airfoils (Greenblatt & Wygnanski, 2001).8  

Due to the following advantages, the active flow control technique has been 

chooses for further investigation in development of an active flow control based SJAs. A 

test bed is built to evaluate the feasibility of simulating aeroelastic phenomenon in 

windtunnel conditions. Further actuator effectiveness is measured in the experimental 

setup to validate the numerical simulation. 

1.4. Aeroelasticity Challenge 

Aeroelasticity is the study of inertial, aerodynamic and structural forces that act 

simultaneously on a structure. The aeroelastic phenomenon can be categorized into two 

dynamic or static. The static aeroelasticity is the study of structural forces interacting with 

aerodynamic forces. A common phenomenon of static aeroelasticity is called wing 

divergence and is caused by the lifting force applied at the aerodynamic center, with the 

flexural axis or elastic center, often lying a certain amount aft of the aerodynamic center. 

This lift force creates a moment which tends to twist the wing. As the torsional stiffness of 

the wing is constant and the lifting force is proportional to the square of the airspeed, there 

can be a critical speed at which the wing could structurally fail. The critical speed is called 

the wing divergence speed (Julien, 2011).9The two most common are the LCO’s and 

flutter. LCO’s are a sort of non-linear aeroelastic phenomenon. These non-linearities can 
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be structural and/or aerodynamical. This non-linear problem is a lot harder to tackle than 

the static aeroelastic problem. The LCO’s will in most cases not lead to immediate failure, 

but could become a fatigue problem or lead to a loss of lift in certain scenarios. The 

variation in amplitude and frequency of LCO’s are functions of aerodynamic and structural 

parameters. The characteristics of this phenomenon can be reduced to a simplified two 

degree-of-freedom pitching and plunging model. Hence an aeroelastic test apparatus was 

designed to accommodate the parameters defined by the aeroelastic characteristics of the 

prescribed wing section. This system has been designed for ease of use and adaptability for 

future installation of active flow control devices. The details are described in the next 

subsection. 

1.4.1. Aeroelasticity Testbed 

The aeroelastic setup features independent pitch and plunge movement that will 

allow the wing to exhibit plunging and pitching flutter and LCO’s at certain frequency and 

dynamic pressure. This aeroelastic structure built is strong enough to sustain the dynamic 

forces working on it. Aluminium extrusion profiles were used and they have better 

advantage over a welded steel frame. This aluminium integrates T-slots in the profiles 

allowing quick setup and adjustment and the profile is massive than thin steel square 

sections, and thus better in damping vibrations. Also, the frontal surface of the setup is 

small as possible to avoid blocking of airflow in the windtunnel as much as possible. 

Standard tension springs were used and their stiffness have an influence on the flutter onset 

speed. The setup had a ball bearing running on flat milled square rails fitted in grooves of 

the extrusion profiles. On aligning the rails and adjusting the distance between the bearings 

the free play was neutralized. The guides which hold the wing and run along the flat milled 
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square rails were 3D printed to reduce the machining time and weight of the setup. The 

guides were designed to slide smoothly in the milled surface and have low damping ratio 

for the plunging motion. The wing was free to pitch about the bearing axis and this pitching 

rotation is restricted by the rotational springs/torque springs as shown in Figure 1.3. The 

wing was manufactured using balsa wood with the intension of keeping the damping of the 

system as low as possible so as to allow good excitation of the structure at low wind speed. 

The natural undamped frequency is depended on the stiffness and mass of the system. The 

stiffness can be lowered or raised. However mass can only be added. Subtracting mass 

from an already existing structure is very difficult. For that reason it was tried to keep the 

mass of the wing as low as possible. To record the oscillations of the wing an accelerometer 

was used which measures the degree of pitch angle as show in Figure 1.4. This setup was 

designed to have a flexibility to investigate the influence when changing either of both 

pitch or plunge modes. By complete separate construction one has to change only the 

springs of the mode one wishes to change. 

 

Figure 1.3 The 2-DOF traverse mechanism showing pitch and plunge components. 
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The Arduino open source hardware was used for data acquisition and the 

accelerometer is linked to it as show in Figure 1.4. The accelerometer will only measure 

pitch angle variations of the airfoil. While testing the current NACA0012 airfoil in the 

windtunnel, using this equipment with, small increment of windtunnel speed at zero angles 

of attack did not produce significant oscillation. This might be because the symmetric 

airfoil being at zero angles of attack and hence zero lift. Furthermore there was so any 

external source of disturbance induced to the wing. For the airfoil to achieve oscillation 

there should be an unbalanced force or mass in the wing, which will magnify the oscillation 

due to the elasticity feature of the wing. Now due to the unbalance nature of the wing it 

started oscillating (pitching and plunging) at a velocity of about 12 m/s. The accelerometer 

picked up the signals and displayed in a notepad file. This data was post processed and 

plotted for pitch rate Vs time in Figure 1.5. The graph shows the pitch oscillation of the 

wing at certain period of time (20s) as it achieves the flutter velocity. Further it reduces in 

amplitude as the tunnel velocity was reduced. The flutter velocity was recorded using a 

digital anemometer connected to the windtunnel. Hence it was experimentally identified 

that the system was able to achieve LCO at a velocity of 12 m/s for a spring stiffness of 

about hk  = 1200 N/m and k = 10 Nm/rad. Figure 1.6 (a-c) shows the surface being excited 

to LCO with the amplitude of oscillation increasing momentarily during the initial 

condition. Further the amplitudes of oscillation increases and remains constant and is 

observed in Figure 1.6 (d-h). Hence, the setup built was capable of undergoing LCO in a 

controllable, repetitive way. This setup is versatile and can be easily adjusted to one’s needs 

and can be used as a test bed for further research on suppressing the LCO using flow control 

actuators. 
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Figure 1.4 Data acquisition using arduino. 

 

 

Figure 1.5 Plot of pitch angle amplitude versus time. 
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Figure 1.6 Wing undergoing LCO at various instances of time. 

 



12  

2. Thesis Objectives and Organization 

The goal of the present dissertation is to demonstrate aerodynamic flow control and 

its effect on forces and moments using a modified symmetric Glauert airfoil model, for 

LCO suppression in future work on an existing aeroelastic test bed. This study will explain 

the effects of synthetic jet actuation located at the most effective slit location from the 

preliminary studies using micro jet by pulsed blowing. This study will also evaluate its 

effectiveness over a wide range of angle of attack, pC , and Reynolds number. Several 

supporting data sets will be obtained through several pressure ports embedded in the wing 

as a change in lift distribution should affect the induced drag. Several things need to be 

completed to perform this study. This is accomplished through the following objectives. 

a) Design and development of SJA suitable for active flow control.  

b) Design and manufacturing of symmetric Glauert airfoil model containing SJAs that can 

provide effective suction surface. 

c) Conducting two dimensional smoke visualization tests to determine the location of 

flow separation and investigating effective flow reattachment location. 

d) Investigation of a airfoil in windtunnel to investigate the fundamental interaction 

mechanism in flow control actuation and flow over a static airfoil, and characterization 

of the ensuring aerodynamic forces and moments. 

The remainder of the present chapter includes a literature survey of synthetic jet 

flow control. This is followed with a description of the experimental setup and procedure. 

The flow visualization results commence in Section 3.3 followed by characterization of 

static performance of the actuators over a range of angle of attack, actuator position and 
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actuator strength. The conclusions of this thesis work are summarized in Chapter 5. 

2.1. Synthetic Jets for Flow Control 

SJAs are compact fluid devices consisting of an oscillating diaphragm embedded 

in a cavity that can energize a boundary layer. They provide periodic addition of energy in 

the flow. The jets are formed entirely from the working fluid of the flow system in which 

they are deployed and, thus, can transfer linear momentum to the flow system without net 

mass injection across the flow boundary. These vortices are formed by alternate suction 

and blowing of the ambient fluid through an orifice in the flow boundary by the motion of 

a diaphragm built into one of the walls of a sealed cavity below the surface. The most 

common SJA assemblies are piston cylinder, voice-coil magnet, or piezoelectric disk type 

actuators. A piston cylinder type actuator is shown in Figure 2.1. 

 

Figure 2.17 Schematic of multi-piston SJA (Rediniotis, 2005).10 

 

A piston cylinder type actuator can attain a large volumetric displacement for 

frequencies up to 200 Hz and generate large cavity pressures. This also allows for 

supersonic velocities in both the ingestion and expulsion phase. These actuators are 

advantageous in applications that involve high control authority but operate at relatively 
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low frequencies and occupy large space. Another concept involves voice coil type actuator. 

This actuator is essentially a speaker attached to a cavity and is capable of high frequency 

actuation is shown in Figure 2.2. 

 

Figure 2.28 Schematic of a voice coil SJA (Sudak & Peter, 2014).11 

 

A schematic of a piezoelectric SJA is the simplest manifestation possible of such a 

device. It is shown in Figure 2.3. It consists of a piezoelectric disk and a cavity with a small 

orifice. The terminals of the piezo disk are attached to an amplified A/C current that makes 

the disk oscillate forcing air in and out of the orifice. Although SJAs have the lowest control 

authority in the flow control, it is the easiest to build and is very compact. 

 
 

Figure 2.39 Schematic of a piezoelectric synthetic jet (Pedroza, 2014).12 
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These attributes of synthetic jets coupled with the development of actuators that 

can be integrated into the flow surface without the need for complex piping and fluid 

packing makes them attractive fluid actuators for a broad range of flow control 

applications. These advantages make them an attractive solution for controlling the 

separation on aerodynamic bodies and control induced rolling moments. Hence they have 

been applied to small UAV (UAV’s). Although the induced velocities and forces are 

comparatively low, they act near the wall where the boundary layer is most sensitive. The 

absence of mechanical parts provide an almost instantaneous response, making them 

especially interesting for fast control schemes. Although synthetic jets have shown 

significant promise in low-speed flows, they do not provide the moment coefficients 

needed for flow control at higher flight speeds. Further, the need for the open cavity to be 

exposed to the external flow field makes this device susceptible to clogging by dust or 

debris. The actuation of diaphragm demands high amplified voltage supply. On operating 

close to resonance frequency the actuator emits high noise. In spite of these disadvantages 

the research activity in the field of SJAs is thriving. Most of studies are conducted with the 

help of windtunnel experiments or numerical simulations, only few have been 

demonstrated in flight experiments. Studies conducted at Georgia Tech and other 

institutions have successfully used SJA to illustrate that flight control can be achieved by 

controlling the flow physics in the vicinity of trailing edge of the wing of a Dragon Eye 

UAV shown in Figure 2.4. 
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Figure 2.410Modified dragon eye test bed aircraft (left) and SJA array installed at wing tip 

(right) (Johnson et al., 2011).13 

 

The flight maneuvers demonstrations of the fluid based flow control actuators 

included a figure-eight maneuver using synthetic jet-based roll control, and pitch-up to 

powered stall (Glezer & Ari, 2010).14Another significant demonstration of flow control 

application in flight control was performed by Tel-Aviv University. The study 

demonstrated active flow control technology in flight and, specifically, to create roll 

motion without moving control surfaces. This chosen method was to manage the massive 

flow separation at the aft upper region of a Glauert type airfoil. This was done by installing 

an array of piezo fluid actuators slightly upstream of the baseline separation region of each 

wing is shown in Figure 2.5.

 
 

Figure 2.511The airplane as installed at IAI LSWT (Seifert et al., 2010).13 
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A closed-loop feedback control to effect commanded 2-DOF maneuvers (pitch and 

plunge) of a free airfoil without moving control surfaces has been demonstrated by Glezer 

et al, as show in Figure 2.6. The control is affected by bi-directional changes in the pitching 

moment over a range of angle of attack are by inducing nominally-symmetric trapped 

vortices concentrations on both the suction and pressure surfaces near the trailing edge 

(Jonathan et al., 2008).15 

 

Figure 2.612The 3-DOF traverse mechanism showing the pitch and plunge components 

(Glezer et a., 2010).161 

 

Flight experiments are of particular importance. In windtunnel experiments, just as 

in numerical simulations, it is not possible to reproduce realistic flight conditions. The 

turbulence intensity and its spectrum, as wind tunnel specific errors, results in a different 

flow field. However, the ultimate objective of the current research is to perform a realistic 

static windtunnel test for a full scale wing with embedded array of piezo fluid actuators for 

separation control.  
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3. Experimental Approach 

This section describes the experimental methods employed and the associated 

apparatus used for the research. First the development of fluid actuators are described and 

the development of airfoil. Followed by a brief overview of the airfoil design with 

embedded SJA. The chapter concludes with development of full scale wing design and 

manufacturing for windtunnel study. 

3.1. Fluid Actuators Components 

In the present work the requirement was to develop an array of SJAs for effective 

flow control in a wind tunnel model. The key challenge was to develop a SJA that would 

meet reduced volume installation constraints in the model envelop without a loss in peak 

jet velocity. Before discussing the details of the SJA design a brief discussion of the 

associated components is essential. 

The SJA consists of the following components: a driver (piezoelectric membrane), 

a cavity, and an orifice or slot. The most general design of a SJA is shown in Figure 2.3. 

The driver in SJA displaces large volumes of fluid at desired frequencies, which then forces 

the fluid in and out of the cavity through an opening. The most commonly employed drivers 

are the piezoelectric diaphragms. Advancement in smart materials such as piezoceramics 

has enabled to use a compact and efficient method of adding energy to the flow. The 

piezoceramic material is one in which on application of voltage changes the material stress 

of the material producing a deflection. The effect was first discovered by Jaques and Pierre 

Curie in 1880. The change in stress can be with either stretching or squeezing depending 

on the direction of the applied electric field. A disk of such material would contract and 

expand under various electrical conditions. This material can also be used to convert 
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mechanical strain of the material to electric charge. 

Dielectric materials deform in the presence of an external electric field. This 

dielectric material comprises of cations and anions connected by interionic chemical bonds. 

On the application of external electric field, the cations get displaced in the direction of the 

applied field and the anions get displaced in an opposite direction, deforming the material. 

There are two forms of piezoelectric ceramics, unimorphs and bimorphs. A unimorph is 

comprised of an active piezoelectric ceramic layer and a separate passive metal layer. The 

metal layer is clamped or pinned as illustrated in Figure 3.1 depending on the application 

and design. Clamping has an influence on the resonance frequency of the diaphragm and 

also its mechanical properties. In a clamped boundary, there is no transverse or radial 

displacement. This boundary condition is achieved by machining a metal with a recessed 

portion. The piezoelectric disk is seated in this position and a clamping plate is then flush 

mounted to create a fixed boundary. In a pinned boundary condition there is no transverse 

or radial displacement and zero moment at the pinned boundary (Mohseni & Rajat, 

2014).17In this condition the piezo electric diaphragm is fixed in place by two O-rings one 

on either side of the diaphragm. The pinned boundary condition will generate more 

displacement per unit applied voltage when compared to clamped boundary. 

 

Figure 3.13 Illustration of (a) clamped and (b) a pinned boundary condition (Mohseni & 

Rajat, 2014). 
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When the active layer is charged, it deforms and causes motion in the actuator. In 

a flat disc actuator, the contraction will cause the device to bend and resemble a dome, 

since the passive layer is not changing size. A bimorph has two piezoelectric ceramic layers 

with a passive metal layer sandwiched between. This allows each side of the disc to be 

actuated individually, allowing for a greater range of deflection.  

These piezoelectric discs are prone to failures due to the large voltages and large 

displacements and also the clamped boundary condition that would cause stress 

concentration and lead to failure. These discs are brittle in nature and are prone to cracking. 

The stress concentrations can induce crack initiation and lead to crack growth and result in 

complete failure. This particular diaphragm shown in Figure 3.2 was driven at 1000 Hz, 

300 ppV  and a crack developed due to impedance from the 3D printed cavity. 

 

Figure 3.214Failure in piezoelectric composite diaphragm. 
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3.1.1. Synthetic Jet Actuator Design 

The synthetic jet forms a train of central mass propagating from the orifice 

surrounded by vortices. The flow field propagation near and far field away from the orifice 

is highly dependent on the orifice geometry. The orifice geometry of the synthetic jet is 

based on the application and the constraints i.e., aspect ratio of the orifice. The aspect ratio 

is defined as the ration of the orifice width (b) to the orifice length (l). The orifice geometry 

can be of three types: 

a) Circular (aspect ratio 1) 

b) Elliptical (small to high aspect ratio) 

c) Rectangular (small to high aspect ratio) 

 

The rectangular orifice has the character to generate a flow that is 2D dimensional 

in nature up to a certain vicinity of the orifice as shown in Figure 3.3. This vicinity range 

depends on the aspect ratio of rectangular orifice and is generally for aspect ratios of about 

20 up to a height of about 20 orifice widths (Hasnain et al., 2013).18Hence due to these 

advantages the rectangular high aspect ratio was chosen.  

 

Figure 3.315Schematic of evolution of a rectangular orifice synthetic jet (Krishnan & 

Kamran, 2009).19 
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Based on the requirements for our flow control application, a rectangular metallic 

actuator design developed by NASA Synthetic Jet Workshop and University of Maryland 

was selected for modification. Their design was modified to match our requirements. The 

first modification was the piezo-ceramic brass disc employed in the current design was 50 

mm dia. The diameter of the cavity was further constrained by this dimension. The 

constrained parameters were the depth of the cavity, the aspect ratio and cavity wall 

thickness. The external and internal dimensions are shown in Figure 3.4.  

 

Figure 3.416 External dimensions of the SJA. 

 

The unimorph piezo-ceramic brass disc used as the driver was manufactured by 

PUI audio as show in Figure 3.5. It consisted of a piezo ceramic element bonded to a brass 

disc. The diameter of the element was 25 mm. The diameter of the brass disc was 50 mm. 

The thickness of the brass disc was 0.2 mm. whereas that of the piezo element was 0.21 

mm.  
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Figure 3.517Piezo ceramic disc used as driver for SJA. 

 

This particular driver was chosen due to its low cost and extended life cycle. The 

driver is commonly used in audible alarms and can be driven for extended period of time 

at voltage in excess of 300 V. The resonance frequency of the disc under free condition is 

around 2700 Hz. At resonance the electrical impedance of disc is 500 ohm for free 

condition. Typical current drawn by the actuators when operating under these conditions 

was in the range of 20W-30W. The disc was installed with the piezo facing the opposite 

direction of the cavity. The disc was inserted between two abrasions resistant O-rings to 

provide a pinned boundary condition as opposed to a clamped one. This allowed greater 

deflection towards the circumference and therefore higher velocities. A 1.5mm thick 

aluminium plate was used to seal the other end of the cavity. The cavity was modeled using 

CATIA and is shown in Figure 3.6. A layer of PTFE (Poly Tetra Fluoro Ethylene) film was 

applied to ensure a proper seal on both ends of the cavity. The assembly was held together 

using 4 nuts and screw, one at each ends of the cavity. The material selection is summarized 

in Table 3.1 Actuator materials. The actuator was driven through a wave generator that 

outputs the wave signal to a voltage amplifier. This amplified voltage signal was monitored 

using oscilloscope to ensure that there was not any phase lag/lead to the signal. The 

amplified voltage was then used to drive the disc. 
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Table 3.1 Actuator materials 

Part Material 

Casing Aluminium 

Actuator PUI Audio, Inc. Part number 

AB5027B-3-LW100-R 

Gasket 0.103” In width 2.005” OD 1.799” 

Abrasion-Resistant O-Ring 

Machine Screw 3/42-56, Stainless Steel 

 

 
 

Figure 3.618Assembled SJA (left) and exploded view of SJA (right). 

3.1.2. Frequency and Voltage Characteristics of Synthetic jets 

The frequency aspect of characterization for SJA is important as it determines the 

strength of the jet produced. The cavity of the synthetic jet is an acoustic chamber that is 

connected to an exit orifice. This acoustic chamber is being excited by the driver. When 

being excited at the Helmholtz frequency of the cavity, the velocity response will achieve 

its maximum value for a fixed excitation voltage. Hence it is desired to operate close to, 

but not exactly at this frequency. The piezo driver that is responsible for actuating the fluid 

inside the cavity has structural characteristics similar to that of a thin plate. When actuated 
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its response has characteristics similar to that of thin plate. This includes resonance at 

various frequencies corresponding to each excited mode. If the cavity is designed such that 

the Helmholtz frequency associated with it is close to one of the excitation modes of the 

disc, the output velocity magnitude is amplified significantly. Since the cavity has a fixed 

geometry the Helmholtz frequency cannot be altered. However the resonance frequency of 

the driver is dependent of the boundary conditions it is subjected to which were dependent 

on the torque value to which the screws tightened resulting in a varied value of velocity 

output. Three different configurations of the actuators were developed as show in Figure 

3.16 and were studied to characterize for their frequency response for fixed voltage value 

of 300 V. Hot wire measurements were made at the actuator orifice exit and the maximum 

exit velocity was measured for every 50 Hz increment in actuator operation. Figure 3.7 

shows the frequency response of the three types of actuator configuration. The metallic and 

the adjacent actuators have the same actuator configuration and internal cavity dimension, 

but vary by their cavity material. As the adjacent SJA and the opposing SJA are 3D printed. 

The frequency response of these two actuators have a similar trend by exhibiting two peaks. 

With one peak corresponding to the diaphragm frequency and the second peak corresponds 

to the cavity frequency for which the output from the actuator is maximum. The metallic 

actuator produces a maximum output of 15 m/s when compared to the adjacent actuator 

generating ~11 m/s operating at 900 Hz. This is associated with the density of the cavity 

material. For tests beyond 900 Hz for adjacent SJA configuration the vibrations caused the 

ceramic diaphragm to crack. In case of opposite SJA configuration, manufactured by 3D 

printing process exhibits a marginal increase in velocity with increase in operating 

frequency from 400 to 900 Hz. With the maximum velocity measured at 700 Hz. A detailed 
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investigation has been made to understand the behavior of the diaphragm deflection and 

velocity profiles of the actuators operating close to resonance frequency and in explained 

in the following section. 

 

Figure 3.719 Frequency response of varied configurations of SJA. 
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3.2.  Experimental Apparatus 

The experimental apparatus consists of driver circuit, traverse, plexiglass enclosure 

and hot wire anemometer. Components of each category will be explained in this section. 

A block diagram of the experimental apparatus is shown in Figure 3.8. 

 
 

Figure 3.820Schematic of experimental apparatus. 

3.2.1. Driver Circuit Equipment 

The driver circuit includes a signal generator to generate the sinusoidal signal. This 

system has a signal generator rate of 20,000,000 signal data points per second. This signal 

generator is capable of generating waveforms with frequencies between 0.1 Hz to 20 MHz, 

at up to 10 V. The signal type is chosen to be sinusoidal with 2 volt peak to peak amplitude. 

The only parameter that is varied is signal frequency in this research. The signal 

frequencies were varied from 400 to 900 Hz in steps of 100 Hz. The piezo diaphragm 

provides maximum displacements at voltage above 200 volts. The output from function 

generator is amplified to 300V using an audio amplifier. This audio amplifier is able to 
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produce  400 V. The maximum input voltage is  10 V, and the output is controlled using 

a gain knob that goes up to 40 times. An oscilloscope is connected to voltage amplifier 

output to measure signal amplitude and observe the signal shape. 

3.2.2. Traverse Equipment 

A Velmex two-dimensional hand traverse is used to accommodate specific 

positions for the equipment measurements as show in   Figure 3.9. The probe can traverse 

in the X and Y direction. A dial gauge is used to measure each step size estimating 200 

steps in 1 mm. Resolution is calculated to be 0.005mm. 

 
 

Figure 3.921Manual traverse with probe holder. 

3.2.3. Plexiglass Enclosure 

The experimental setup for measuring the external flow field is shown in Figure 3.8 

and it consists a SJA, manual traverse and a hot-wire anemometer, all of which are placed 
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in an enclosure to isolate any external disturbances and to establish a stationary flow state 

(Krishnan, 2009).16 

3.2.4. Hot-wire Anemometer 

The velocity measurements were made using a single hot wire probe operating in 

constant-temperature anemometry phase. A film type TSI Model 1210-T1.5x hotwire 

sensor, shown in Figure 3.10 was used for this experiment. It has a tungsten platinum 

coated wire with a diameter of 0.00381 mm and a length of 0.27 mm which changes 

resistance on exposure to the flow. The film type is more rugged and tends to retain its 

calibration better than wire type. 

 
 

Figure 3.1022Model 1210 general purpose probe. 

 

Table 3.2 Hotwire sensor specifications 

 

Sensor 

No. 

Probe 

type 

Probe 

Resistance at 

00C ( ) 

Recommended 

Operating 

Resistance ( ) 

Recommended 

Operating 

Temperature 0C 

Internal 

Probe 

Resistance

   

1 Film 6.19 9.49 250 0.20 
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The hotwire sensor used in the current research is capable of one-dimensional flow 

measurement and can be used in air up to 1500 C. The specifications are shown in the Table 

3.2. The prongs were aligned parallel to jet axis. A single straight hot-wire anemometer 

system (TSI brand, IFA 300) with a Constant Temperature Anemometer (CTA) operating 

bridge was used in obtaining velocity measurements. It was selected due to the high 

frequency response, fine spatial resolution and wide velocity range. A CTA utilizes a film 

which is heated to a temperature above the ambient by an electrical current. This film is 

located in one arm of a four arm Wheatstone bridge. A servo amplifier is usually used to 

balance the circuit by controlling the current which is imposed on the film to keep the 

resistance and hence temperature constant. The voltage output from CTA is proportional 

to the current required to be passed through the film to balance the Wheatstone bridge 

circuit. Operation of the hot-wire is based on the forced convection heat transfer rate from 

the probe to the fluid. The forced convection heat transfer rate depends on the velocity 

changes of the fluid. In other words, velocity changes cause the heat transfer coefficients 

to change and hence results in a change in temperature. The control system then, adjusts 

the amount of current passing through the hot-wire to maintain the hot wire temperature 

constant. The hot wire probe was fixed at a holder positioned on a hand traverse. To 

characterize the synthetic jet flow field the probe was moved in the vertical plane of the 

orifice, in which the flow at each discrete location was sampled for 120 s. The stream wise 

x/d extends over which the measurements were made as show in Figure 3.11 were 

dependent on the strength of the issuing jet and the orifice length of the actuator (Krishnan, 

2009).20Detailed measurements were made until semi width of the nozzle, since the flow 

exhibited by the rectangular orifice was symmetric in nature and was also evident during 



31  

preliminary full span measurements. 

 
 

Figure 3.1123Schematic of evolution of rectangular SJA and data points for measurement. 

3.2.5. Calibration System 

A calibration of the hotwire must be performed before being used to find the 

velocity distribution on the jet. A standard method of calibration is to open a jet flow at a 

set velocity past the sensor as it is held in a fixed location as show in Figure 3.12. The 

calibration method uses a pressure transducer to find the reference velocity. Calibration 

provides a relation between output voltage and effective velocity in the form of an equation 

using King’s law using Eqn (3.1) or a fourth or higher order polynomial (in the 5th order 

polynomial is chosen for the calibration curve fit).  

 
 

   (3.1) 

To perform the calibration, the hot wire circuit must be complete and connected to 

the probe holder. An air hose is connected to a building compressor air supply. The air 

from the compressor air supply travels through another pressure regulator before 

connecting to the calibration stand. The maximum expected velocity is defined in the 

2 nE A Bu 
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ThermalPro software and it generates a table of the test points to achieve the greatest 

accuracy in the calibration curve. These test points define the desired velocity, which is 

measured using the pressure transducer. The two knobs on the calibration are adjusted until 

the velocities match, then the voltage is read from the hotwire. Once all the data is extracted 

for the defined number of data points a kings law curve is created. The resulting fit is shown 

in Figure 3.13 using Kings’s law Eqn (3.1). Where, 𝐸 is the voltage across the wire, 𝑢 is 

the velocity of flow, A, B and n are the calibration constants. For this case the maximum 

velocity of the calibration was 30 m/s. 

 
 

Figure 3.1224Hot wire calibration unit. 

 

 
Figure 3.1325Calibration curve. 
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3.2.6. Diaphragm Deflection 

A laser sensor as show in Figure 3.14 was used to measure the centerline deflection 

of the piezoelectric membrane. The laser sensor works on the following principle: A small 

reflective surface is fixed to the center of the piezoelectric membrane while it is housed in 

the actuator. A laser beam is focused on the reflective surface and the reflected beam 

translates on the photodiode surface from which this translation is corrected to the motion 

of the target through calibration. The output voltage from the photodiode is interpreted as 

a centerline deflection of the diaphragm. 

The synthetic jet with a cavity-diaphragm setup is a coupled system consisting of 

an electromechanical domain in the form of the diaphragm and a fluidic/acoustic domain 

in the form of the resonant cavity (Krishnan, 2009). 

This system contains two fundamental frequencies: one is the resonant frequency 

of the diaphragm and the Helmholtz frequency of the cavity. To investigate the 

fundamental frequencies of the system, the driving voltage was fixed at 300 Volts peak to 

peak and the frequency was swept in intervals of 100 Hz over the range of 400-900 Hz, 

with the laser sensor measuring the central dynamic response of the membrane. The larger 

displacement of the membrane corresponds to maximum inhalation and expulsion of the 

surrounding fluid and hence stronger the jet produced that can travel further downstream 

from the orifice of SJA. 
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Figure 3.1426Laser sensor. 

3.2.7. 3D Printed Synthetic Jet Actuator 

For a realistic and full scale application of flow control technology in UAV, the 

SJA should be modular and lightweight, compact and should have high power to weight 

ratio so that they can be embedded inside a control surface. Hence 3D printing the actuator 

was considered because of its light weigh material and easy to manufacture in less time in 

comparison to traditional manufacturing process. A 3D model was designed that is used to 

3D print the SJA. 3D printing allowed for a quick prototype at an accuracy of 0.1mm to be 

developed that would be lighter, thinner and less parts. The synthetic jet is printed with a 

slot face plate, cavity plate, and a clamp plate. The parts were printed individually then 

fused together as shown in Figure 3.15. 

The 3D printed SJA has the same internal volume as that of metallic synthetic jet. 

Depending on the arrangement of the fixed and oscillating boundaries of the chamber with 

respect to each other, two SJA configurations can be defined: the ‘opposite’ SJA in which 

the orifice plate is located opposite or parallel to the orifice boundary and the ‘adjacent’ 
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SJA in which the orifice plate is located adjacent or perpendicular to the oscillating 

boundary (Jabbal & Mark et al., 2011).21Hence two forms of 3D printed SJA were 

developed, one with the actuator orifice opposite and adjacent to the diaphragm shown in 

Figure 3.15. 

 

Figure 3.15273D printed actuator. 

3.2.8. Performance Comparison of Metallic and 3D Printed Synthetic Jet 

Actuators 

The objective of developing the 3D printed SJA is its light weight and easy to 

manufacture and easy to integrate in the airfoil. A comparative study is made to understand 

the performance of the 3D printed SJA with the metallic SJA, Figure 3.16 shows 

configuration comparison used in the current research. Preliminary comparison was made 

on the dynamic behavior of the diaphragm using a laser sensor followed by hot wire 

measurements. 
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Figure 3.1628Various SJA actuator types. 

3.2.9. Performance of Metallic Synthetic Jet Actuator 

In this section the dynamic response of the piezoelectric membrane are presented 

first and followed by the external flow field study of the emerging jet. The synthetic jet 

cavity diaphragm setup is a coupled system consisting of an electromechanical domain in 

the form of the diaphragm, and a fluid/acoustic domain in the form of the resonant cavity. 

(Krishnan, 2009). This system contains two frequencies, one associated with the resonant 

frequency of the diaphragm and the other with Helmholtz frequency of the cavity. To 

determine the right frequency at which the actuator would give best performance voltage 

was fixed at 300 Volts peak to peak and frequency was swept in intervals of 100 Hz over 

a range of 400 – 900 Hz. The laser measurement was performed to measure the central 

dynamic response of the membrane. The following Equation (3.2) presents a simple 

formula for the fundamental frequency of the circular diaphragm given by the stiffness, k  

and mass, m . 
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The cavity frequency is defined by the Helmholtz frequency as  
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Where a  the speed of sound, S  is the planar area at the slot exit, V is the cavity volume,  

and L is the neck length of the slot. 

The Helmoltz frequency of a cavity determined by the Equation (3.3). The location 

of a peak at 900 Hz may be a result of the coupled nature of the diaphragm-cavity system. 

Hence 900 Hz was selected as the frequency to subsequently operate the actuator as it 

maximized both the membrane and exit velocity.  Measurements of the metallic actuator 

are tabulate. Table 3 shows frequency response for metallic SJA operating at 300 Volts 

peak to peak and the corresponding Figure 3.17 shows two peaks. The first peak may be 

associated with the diaphragm resonance frequency and the second peak is associated with 

the acoustic resonance frequency of the cavity.  

Table 3.3 Frequency response of metallic SJA 

Frequency, Hz Deflection in meters, m Maximum Velocity, m/s 

900 0.00024 15.494 

800 0.00015 6.65 

700 0.0001 6.594 

600 0.00008 6.981 

500 0.00004 6.643 

400 0.000036 3.995 

 

The external flow field characteristics are studied using hot wire anemometry. The 

different regions that comprise the synthetic jet are identified for 900 Hz and 600 Hz, as 
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these two frequencies are the peaks having first and second maximum exit velocities.  

Measurement of the external flow fields at 900 Hz and 600 Hz are discussed here. 

The streamwise velocity profiles for 900 Hz and 600 Hz are shown in Figure 3.18 along 

the downstream distance for a sharp edge orifice nozzle. The different regions that 

constitute the flow field are identified. The first region is a potential core region and this 

region is closest to the nozzle surface, in this region the velocity increases and reaching a 

maximum and then starts to decrease. A distinct peak is noticed away from the center in 

the far downstream of the jet, the location of which moves toward the centerline is the 

downstream direction and disappears far downstream. This saddle back profile has been 

observed both in synthetic and continuous rectangular jets.  It has been suggested that the 

centrifugal forces developed result in a pressure distribution that cause fluid to move away 

from the center of the jet and toward the peaks (Ollard & Marsters, 1983).22In synthetic 

jets it has been observed that the edge induced counter-rotating vortex structures migrate 

inwards on account of their mutual attraction (Amitary & Michael, 2006).23  

 

Figure 3.1729Frequency response of metallic SJA. 
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Figure 3.1830Velocity profile along the major axis at different axial locations operating at 

900 Hz (top) and 600 Hz (bottom). 
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3.2.10. Performance of Opposite and Adjacent type 3D Printed Synthetic 

Jet Actuator 

In this section the performance of two different configurations of 3D printed SJA 

is studied. The Opposite SJA was fixed at 300 Vpp and frequency was swept in intervals 

of 100 Hz over a range of 400 – 900 Hz. The laser measurement was performed to measure 

the central dynamic response of the membrane. It was observed that the maximum dynamic 

deflection was observed at 700 Hz. Measurement of the external flow fields was performed 

using hot wire at various operating frequencies in intervals of 100 Hz over a range of 400-

900 Hz to determine the peak velocity output from the SJA and the data is tabulated in the 

Table 3.4. It was observed from Figure 3.19 that the maximum velocity was displaced at 

700 Hz and is corresponding to maximum diaphragm deflection of the SJA .The flow field 

measurement at 700 Hz is shown in the Figure 3.20. The potential core region has a steady 

velocity profile and is the one that is closest to the nozzle and this steady velocity profile 

exists until certain vicinity of the nozzle this may be due to the diaphragm being at a close 

proximity to the nozzle. Further at downstream the jet exhibits the saddle back profile that 

tends to converge towards the central axis as the flow goes downstream. A similar trend is 

observed for Adjacent SJA operating at 500 Hz and 900 Hz. The data is tabulated in Table 

3.5 and on observing from Figure 3.21 and the flow field, there exists two peaks that follow 

a closely similar trend of metallic actuator and is shown in Figure 3.22. But on comparing 

the velocity profile of all the three types of actuators it can be observed that metallic SJA 

produces maximum output in comparison to the others. The velocity profile exhibited by 

3D printed actuators have a very prominent saddle back velocity profile and spreading rate. 

These velocity profiles have a strong saddle back profile and will be beneficial in adding 

perturbations into the flow. This prominent feature may be associated with the density of 
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3D printed chamber. The 3D printed camber is manufactured using ABS material having 

a material density of 1.422 gr/cc in comparison to aluminium cavity density of 2.702 gr/cc. 

This low density of the cavity might be associated with the flexural deflection of the 

chamber. Though the velocity output from the 3D printed SJA is relatively low in 

comparison to the metallic the 3D printed SJA is light weight and compact for unmanned 

aerial vehicle application. 

Table 3.4 Frequency response of 3D printed opposite SJA 

Frequency, Hz Deflection in meters, m Maximum Velocity, m/s 

900 0.00009 6.937 

800 0.00011 7.115 

700 0.00018 8.142 

600 0.000123 7.202 

500 0.00005 6.304 

400 0.000021 4.884 

 

 
Figure 3.1931Frequency response of opposite SJA. 
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Figure 3.2032Velocity profile along the major axis operating at 700 Hz for opposite SJA. 

 

Table 3.5 Frequency response of 3D printed adjacent SJA 

 

Frequency, Hz Deflection in meters, m Maximum Velocity, m/s 

900 0.00009 10.126 

800 0.000072 8.132 

700 0.000078 8.09 

600 0.000123 8.425 

500 0.00017 9.012 

400 0.0002 4.981 

 

 
 

Figure 3.2133Frequency response of 3D printed adjacent SJA. 
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Figure 3.2234Velocity profile along the major axis at different axial locations operating at 

900 Hz (top) and 500 Hz (bottom). 
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3.3. Airfoil Development 

3.3.1. Historical Summary of Glauert Airfoil Section 

M.B.Glauert developed the Glauert airfoil using the Lighthill’s exact method of 

airfoil design theory for a high lifting suction airfoil (Walker, 1948).24This airfoil was 

designed with a maximum thickness to chord ratio of 31.5%, to operate using massive 

suction through a slot located at 69.3% of chord. Glauert created an airfoil that had 

favorable pressure gradient over most of the upper and lower lofts while maintaining 

laminar flow until reaching the location of suction slot. Thick suction wings enable 

favorable pressure gradients over a large surface of the airfoil chord. This was achieved by 

Glauert by creating one or more points on the airfoil surface where the velocity distribution 

raised discontinuously or steeply. At these locations the separation was prevented by using 

suction techniques. The thickness of the airfoil, in addition to its asymmetry, generated a 

large lC without the use of flaps. Suction through the 69.3% chord slot provided a pressure 

discontinuity across the slot that created a favorable pressure gradient along the entire 

concave recovery ramp, which resulted in the flow over the ramp to reattach in a turbulent 

manner. The possible applications of the Glauert airfoil were immediately recognized, and 

following its introduction there were several publications introducing and exploring the 

potential uses of the airfoil (Wesley, 2007).25 

There were certain drawbacks associated with it and that involved decreased 

minimal pressure as a result of its thickness and hence the pressure had to be recovered 

early.  Liebeck addressed that the difficulty with a thick airfoil is that the minimum pressure 

is decreased due to its thickness. This results in a severe pressure gradient and has to be 

recovered. The thickest possible section has a boundary layer just on the verge of 
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separation. This was Glauert’s aim when he designed the suction airfoil with its distinct 

recovery ramp design. The L/D for the Glauert was measured for a variety of operating 

conditions. With adequate suction through the 69% chord slot, the measured L/D varied 

from 250 to 550, for lC >1 and Re~1000K. In absence of suction L/D was 12 for the same 

Re, with lC  being reduced to lC ~0.6. The L/D increased to approximately 30 at 

Re~3000K. It appeared that the flow was intermittently reattached to the ramp just 

upstream of the trailing edge resulting in large drag oscillations. Blowing through the same 

slot location appeared to be less effective than suction since it required a large mass-flux 

to force the flow to reattach. For blowing, the required to keep the flow attached was in 

excess 20% and for suction in excess of 4%. The Glauert’s performance was staggering 

because it presented a high lifting airfoil with a possible L/D of 550, which exceeded 

conventional airfoil today by an order of magnitude (Benjamin, 2007).26If C  could be 

reduced at similar L/D, by using ZMF actuation, it would lay the foundation for a new era 

in aviation.  

3.3.2. Airfoil Design and Manufacturing for Flow Visualization 

To incorporate the SJA’s in the airfoil a thick airfoil such as the Glauert was used. 

The airfoil was designed by mirroring Glauert airfoil’s upper surface profile to the lower 

surface to obtain a symmetric airfoil referred to in this work as the Symmetric Glauert 

airfoil. The design philosophy was to design for manufacturability. Because of the steep 

curvature of the airfoil it is difficult to manufacture using the standard machining process. 

Hence the Stratasys uPrint 3D printer was chosen to print the model using Fused 

Deposition Modeling (FDM) technique. This printer has a build volume of 8 x 6 x 6 inch 
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and prints a model with a layer thickness of 0.010 in. The first step in the design was to 

figure out the size of the model to be printed that would be able to fit in the tunnel and 

feasible to print on the build volume. The span of the model needed to be as small as 2.4 

inch to fit in the two dimensional smoke tunnel test section. After some initial CATIA 

design, a chord of 9 inch with sufficient internal volume to house the micro blower actuator 

was manufactured as shown in Figure 3.23. Thick airfoils such as the Glauert airfoil are 

desirable for optimized structure, large internal volume, and light weight.  

 
 

Figure 3.23353D printed airfoil for flow visualization. 

3.3.3. Two Dimensional Smoke Tunnel for Flow Visualization 

Micro aerial vehicles operate at low Reynolds number and at such conditions the 

boundary layer is thick and laminar separation exists. Micro aerial vehicles operating at 

such slow flight require less thrust, hence active flow control methods can be employed to 

exert on the flow become appealing. Active flow control can modify the flow as required 

to perform all functions to sustain and control flight at low Reynolds numbers (Jonathan, 

2005).27The flow control actuator has to be located at an effective location on the airfoil 

where the velocity rises discontinuously and to determine the effective reattachment 
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location flow visualization technique was adopted. This preliminary flow visualization 

studies such as the smoke tunnel technique was conducted to evaluate the effective location 

of jet on the Glauert airfoil. These tests were carried out in the two dimensional smoke 

tunnel at ERAU. The smoke tunnel has a test section of 2.5 inch wide and 60 inch long as 

shown in Figure 3.24. The symmetric Glauert airfoil used for the preliminary study here 

had a chord length of 9 inch and span of 2.4 inch. In this preliminary study of determining 

the optimal location of actuator, blowing technique was employed. A commercially 

available micro blower from Murata as shown in Figure 3.25 was used. This microblower 

is a piezoceramic drive actuator and operates at ultrasonic frequencies. The details of the 

micro blower are addressed in the flowing section.  

 
 

Figure 3.2436Smoke tunnel. 



48  

3.3.4. Microblower 

This micro blower is piezoceramic based driver system and it is extremely compact 

and thin unit. The blower functions as an air pump discharging unit using ultrasonic 

vibration of piezoelectric material. The microblower dimensions about 20 mm by 20 mm 

and a height of 1.85 mm. It discharges air at 1900 Pa and 1 liter per minute and operates at 

about 15 Vp-p. This unit consists of an internal pumping chamber actuated by piezo 

ceramic material as the pumping chamber is actuated it draws air from beneath and expels 

out thorough the nozzle above. 

 
 

Figure 3.2537Microblower.       

3.3.5. Actuator Location and Flow Visualization 

The use of suction and blowing slots to remove the boundary layer at points where 

the air velocity has a discontinuity opens up wide new fields in aerofoil design (Glauert, 

1945).28Based on the studies conducted by M.B.Glauert the slot location was located at 69 

percent of chord and Seifert proposed the actuator location at 67 percent of chord for his 

modified airfoil. It was essential to determine the optimal location for our application. 

Hence various slot locations were tried ranging from 65%, 67%, 71% and 75% of chord 

on the upper surface of the wing as shown in the Figure 3.26. 
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Figure 3.2638Actuator location on the airfoil. 

 

The visulization technique revealed the flow phenomenon on the airfoil surface. 

With no actuation in the baseline it is evident that the flow separated from the upper surface 

downstream of the trailing edge actuator slot. The streaklines leaving the lower surface are 

curved up, indicating a negative lift. With actuation at 65% of the chord the wake region 

diminished significantly and the flow separation was partially prevented as shown in Figure 

3.27. Upon moving the actuator location further downstream at 67% percent of the chord 

and when excitation was applied, the smoke pattern indicated a complete reattachment to 

the entire upper surface as shown in Figure 3.28. Aim for a better reattachment the actuator 

location was moved futher downstream at 71% of the chord and results revealed that flow 

was partially reattached as show in Figure 3.29 and moving the actuator loaction further 

downstream did not improve the results as show in Figure 3.30. Hence it was significant 

that the optimal location of the jet woud be at 67% of the chord and upon replacing the 

micro blower with the SJA at that location.  The effect would be much more prominent as 
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it would involve steady blowing and suction. The numerical studies performed by (Lap et 

al., 2015)29results predicted the separation point located at approximately 64% chord. It is 

further revealed that placing the SJA directly at the separation region does not provide the 

desired results. To this end, the SJA location was varied until the optimal location was 

found. A numerical parametric investigation reveals that the optimized location exists at 

around 68% chord for the symmetric Glauert airfoil design as show in Figure 3.31. 

 

 
 

Figure 3.2739Actuator at 65% of chord. 
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Figure 3.2840Actuator at 67% of chord. 

 

 

 

 

 
 

Figure 3.2941Actuator at 71% of chord. 
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Figure 3.3042Actuator at 75% of chord. 

 

 
 

Figure 3.3143 Time-averaged U-velocity contours of non-optimized SJA location, and 

optimized SJA location (left to right), ( Lap et al., 2015). 
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3.4. Symmetric Glauert Airfoil with SJA’s 

Since the effective location was determined to be at 67% of the chord through flow 

visualization studies the airfoil with actuators had to be manufactured for full scale 

windtunnel testing. The 3D printing was preferred over machining or fiber glass because it 

is more flexible, easy to integrate segments of Synthetic Jets and fast to manufacture. A 

540 mm span is selected based on negligible distortions caused by wall effects, blockage 

and 3D distortions. Using the Stratasys Uprint, segments of airfoil was printed using Fused 

Deposition Modeling technique. With each segment measuring 60 mm in width. Each 

airfoil segment includes two guide slots and four positioning aids that not only help to align 

the airfoil in position but also hold them together with close tolerances as shown in Figure 

3.32. Two threaded rods were used to run down through the guided slots and lock the 

segments firmly together. The CAD model shown in Figure 3.33 shows the integrated 

cavity space designed for holding the SJAs in place. The internal cavity of the airfoil 

segment is designed to integrate the SJAs in a effective manner and also provide stiffness 

to the segment. With each segment housing four actuators; two upstream and two 

downstream of the airfoil.  

The purpose of locating actuator in the upstream location was to verify that the 

developed synthetic jet system is aerodynamically efficient for use as a design model of 

real flight. In order to invesitigate the control capability on the abrupt flow separation, the 

leading-edge stall of an airfoil was focused. The leading edge stall shows discontinuities 

in flow when the angle of attack for maximum lift exceeded. Based on the researches the 

flow separation abruptly initiates near the leading edge at stall angle-of-attack,  , and 

progresses downstream with increasing  (Lee, 2013). In general the proper location of 
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hydrodynamic oscillation for separation control is at or close to the separation point. 

Studies on various airfoils reported that x/c < 10% marks an effective loaction for flow 

separation control (Greenblatt, 2000). Hence an actuator was located in the upstream 

loaction at x/c 28% of chord based on the design constrains. The exit slot of the orifice was 

curved in order to permit the jet to exit tangentially to the surface of the airfoil, taking 

advantage of the Conda effect (Traub, 2004). The other actuator was loacted downstream 

at 67% of the chord. The actuators for the leading and trailing edges are designed in a way 

that they are easy to integrate as segments and can be removed easily in case of diaphragm 

failure. Using CATIA these features were implemented during the design phase with 

upmost tolerances and in a way that fit accurately inside the wing and their exit slots flush 

smootly with the airfoil contour. The actuators were printed with slot plate, base plate, 

cavity plate and a clamp plate. The parts were printed individually then fused together with 

small metric screws and locknut. The actuator array is shown in Figure 3.34. The spacing 

between adjacent actuators is about 35.5 mm. The details of the upstream and downstream 

actuators are discussed in the next section followed by a pressure port location and surface 

smoothness. 
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Figure 3.3244Segments secure design. 

 

 

 
 

Figure 3.3345Integrated cavity design inside the airfoil. 
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Figure 3.3446Assembled actuator array. 

3.4.1. Upstream Synthetic Jet Actuator 

The upstream SJA is located closest to the separation point for the chosen flow 

conditions and was aimed at reattaching the flow at stall angles of attack. The synthetic jet 

was designed with its diaphragm oscillating perpendicular to the exit nozzle. This 

configuration was used considering the available internal volume at the upstream. 

Preliminary bench top studies were made on the upstream SJA for their frequency and 

amplitude resonance (peak slot exit velocity) using hot-wire positioned at actuator exit slot. 

The exit slot for the upstream jet was designed with decreasing passage width sweeping 

along the surface of the airfoil, (Coanda, 1936) with the slot inclined approximately 20 

degree from the surface over the span. On the in-stroke of the neck velocity, vertical 

momentum is imparted to the flow causing the neck to preferentially ingest approaching 

low axial momentum of the incoming boundary layer (without external flow, the in stroke 
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would pull in flow from all directions). On the outstroke due to curved neck, the fluid 

particles are re-accelerated and injected with positive axial momentum into wall region of 

the boundary layer. Hence, both the in-stoke and out-stroke of the cycle increase the ability 

of the boundary layer to resist separation (McCormick, 2000).30 

Coanda (Coanda, 1936) stated that the flow will naturally want to flow in the 

direction of maximum resistance. This related in addition of energy in the boundary layer.  

3.4.2. Downstream Synthetic Jet Actuator 

The downstream Synthetic jet configuration is designed with its diaphragm located 

parallel to the exit slot axis. This configuration was chosen so as to orient the jet at 67% of 

chord of airfoil and normal to the airfoil profile in contact. Traditional manufacturing 

techniques would take more machining time and difficult to manufacture. With the use of 

3D printing, it is convenient to manufacture such complex profiles and integrate it into the 

airfoil. The combined effect with the leading and trailing actuator would produce a flow 

control meachanism as shown in Figure 3.35. 

 

Figure 3.3547 Flow control mechanism. 
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3.4.3. Pressure Port Location 

The pressure port layout is show in Figure 3.36. The placement of the pressure ports 

was effected by a few factors. The manufacturing constrains made it so that a certain 

number of pressure ports could be fit in a given area and the trailing edge of the airfoil 

being very thin it was impossible to locate any pressure port along the trailing region. These 

pressure ports were needed to sense separation. 

 

Figure 3.3648Pressure port location. 

3.4.4. Surface Treatment of the Wing 

The 3D printed parts manufactured using FDM (Fused Deposition Modeling) have 

a corrugated surface finish and this surface finish would create a turbulent boundary layer 

flow during aerodynamic testing. The effective method to conceal the layering a surface 

roughness that accompanies 3D printing process is by sanding the surface and applying a 

protective coating for smoothing the surface. This coating self-levels and wets out 

uniformly without leaving brush strokes as shown in Figure 3.37. 
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Figure 3.3749Surface treatment, before (left) and after treatment (right). 

3.4.5. Two-Dimensional Airfoil Experiment on Symmetric Glauert airfoil 

The purpose of this phase was to determine the aerodynamic characteristics of the 

model and compare to CFD predictions. The 30 x 40 inches open channel subsonic 

windtunnel at Embry-Riddle was employed. The collected data are compared to the CFD 

data. The force model was employed to extract the aerodynamic data. The force model 

were recorded through a single strut or spindle. The tested model is show in Figure 3.38. 

 
 

Figure 3.3850Test model on force balance. 
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3.4.6. Windtunnel 

The windtunnel is shown in Figure 3.39 - 3.40, is an open circuit, closed test section 

of 30 x 40 inches. This tunnel is powered by a 50 horsepower motor that drives an 8 bladed 

fan, it can reach maximum test section speed of about 58 m/s. The tunnel is made out of 

plywood, with Plexiglas on both the sides of the test section. The test section velocity was 

not stationary, and under normal conditions, had a dispersion of ±1 m/s. Also as the intake 

of the tunnel is open to the atmosphere, it is very sensitive to the weather. In addition, the 

test section air velocity becomes reduced at higher angles of attack, as the model itself 

imposed an obstruction to the windtunnel flow. To solve this problem, at higher angles of 

attack the RPM of the fan was increased to maintain a constant velocity. 

To conduct a 2D experiment, the model should be designed to fit the span of a wind 

tunnel. End wall induces 3D effects that affect the 2D flow. If the model extends uniformly 

from one end to the other end of the test section, and the 3D interaction is considered 

negligible then the analysis becomes 2D. Since in the current experiment the airfoil had a 

limited span, artificial end plates were added to minimize the span but an aspect ratio of 

2.2 is sustained so that the flow remains 2D. 
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Figure 3.3951Open loop windtunnel (author). 

 
 

Figure 3.4052Schematic of the wind tunnel (Eastlake, 2007).31 
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3.4.7. Force Balance 

The balance employed for the test is the pyramidal strain gauge balance mounted 

under the floor of the test section and it is shown in Figure 3.41. It is designed to support a 

model at an angle of attack range of 50° and angle of yaw with 360° range. The six force 

components are separated mechanically and measures through individual strain gauge load 

cells. Due to the pyramidal linkage the central spindle is supported on four diagonal struts 

which meet at the “balance center”. The pyramidal balance was calibrated and is discussed 

in the next section. The balance center is the point in the spindle where the pitch, roll and 

yaw moment axes intersect, located at 12 ¾ inches above the top of the spindle mounting 

socket. The load cells are equipped with strain gauge bridges energized by DC power. A 

Wheatstone bridge circuit is used to determine the magnitude of the unbalanced voltage 

which is proportional to the applied load. The voltage is amplified by a factor of 1000 

before output to the data acquisition board. The angle of attack and sideslip angle are 

controlled by servomotors, which are designed to stall when they reach angular limits. 

Angular position is provided by rotor potentiometer. 

 
 

Figure 3.4153Pyramidal strain gauge balance. 
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3.4.8. Balance Calibration 

A complete calibration of lift, drag and moment was done to obtain updated 

calibration values. To do this the balance was loaded under several weights and the output 

voltage was recorded. Each time the tare value was also measured, so the net value could 

be obtained. Standard weights were applied with nylon line to the spindle. According to 

the setup, ball bearing pulley was used. The voltage output under each load was recorded. 

The net voltage was then plotted versus the known load, as a linear interpolation could be 

one following theV a F b  , where is the load in pounds or pounds. Inch and is the net 

voltage ( )fin tareV V in Volts. This straight line was obtained for each load (lift, drag and 

pitch). As a result, a and b , the calibration coefficients were obtained. The drag force was 

calibrated using the setup as shown in Figure 3.42. The line was attached to the spindle and 

through the pulley it was directed towards a hole in the bottom of the windtunnel. The force 

was applied in horizontal axis to obtain drag. Weights from 1 kg to 5 kg were applied. The 

results are shown in Figure 3.44. 

The lift and pitch load calibration were done using the setup as shown in Figure 

3.43. The load was applied in a positive upward direction, one inch away from the balance 

reference point and hence producing a positive pitching moment.  Figure 3.45 and Figure 

3.46 shows the graphs for the lift and pitch calibration. All the calibration values have been 

gathered in Table 3.6. 
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Figure 3.4254Drag calibration. 

 

Figure 3.4355Lift and pitch calibration. 
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Figure 3.4456Calibration curve for drag force. 

 

 

Figure 3.4557Calibration curve for lift force. 

 



66  

 

Figure 3.4658Calibration curve for pitch force. 

 

Table 3.6 Calibration constants 

Load Slope, 2016 Unit 

Lift 0.0658 V/lb 

Drag -0.1321 V/lb 

Pitch -0.0301 V/lb-in 
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4. Results 

The results of the wind tunnel investigation of a symmetric Glauert airfoil 

integrated with synthetic jets are presented in this chapter. Wind tunnel testing of the 

baseline airfoil and airfoil with actuation at various locations were conducted for a full 

range of angles until stall as shown in Figure 4.1. In section 4.2 the baseline experiment of 

an airfoil without actuation at various Reynolds number are compared with XFLR 

predictions. In section 4.4 the airfoil with and without actuation are compared. The CFD 

data is validated against experimental data in section 4.5. Finally in the section 4.6 the 

experimental pressure data is presented.  

 

Figure 4.159Experimental configuration. 

4.1. Baseline Flow 

The baseline flow studies are performed on the symmetric Glauert airfoil to 

determine the airfoil with no actuation. To determine the baseline characteristics, force 

balancer is used to obtain the complete aerodynamic data for the airfoil at various Reynolds 

number and angle of attacks. Data is taken staring at lowest Reynolds number of 180,000 
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sweeping up incrementally to mid Reynolds number of 320,000 and up to higher Reynolds 

number of 440,000. These Reynolds number corresponds to the typical operation of a 

midsized UAV. Fluctuations in the flow, airfoil oscillations and uncertainty in the 

equipment introduce a variance in the loads that are measured. To find the average lC , 

multiple sample were recorded to determine the variation in the force balance system and 

interaction of the airfoil with it.  

For all the Reynolds number tested, the maximum lift coefficient, maxlC  is at 𝛼 =

16 − 20°, with the value of  maxlC  being dependent on Reynolds number as expected and 

is show in Figure 4.2. The post-stall lift curve strongly depends on Reynolds number due 

to the variation in leading edge separation location. It can been seen that the different flow 

regimes require different control strategies depending on Reynolds number and . 

 

Figure 4.260 lC vs  at varied Reynolds number for the baseline case. 
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4.2. 2D Validation Against XFLR 

The extracted experimental data was used to validated XFLR predictions. The 

XFLR is a program for the analysis of subsonic airfoils. The software uses panel methods 

with fully-coupled viscous/inviscid methods to generate non-dimensional lift and drag 

polars. The generated polars are 2D results that do not take into account skin friction, and 

3D interaction losses. Using XFLR software the theoretical results were compared to the 

baseline experimental results at three different Reynolds number. A comparison of the non-

dimensional lift versus   results between XFLR and experiments are plotted in Figure 4.3. 

The baseline results are different as compared to XFLR results by as much as 0.3lC  . This 

might be due to the blockages at higher angles of attack and due to the gap between the 

endplates and the wing in the tunnel.  

 

Figure 4.361 lC vs   for varied baseline Reynolds numbers in comparision with XFLR 

case. 
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4.3. Finite Wing  

With the wing being tested with endplates to create a 2D flow there appeared to be 

a small gap between the wing and the wall. This small gap is maintained so that the forces 

acting on the airfoil, are not transferred to the tunnel wall degrading the reliability of the 

measurement. This gap is essential because any physical contact between the model and 

the side walls may transfer forces on the model and it would be extremely difficult to isolate 

and measure the forces acting only on the model. No matter how small the gap is, there is 

always a possibility of air moving towards the upper surface causing a leakage effect. This 

flow from the lower surface to upper surface through the gap helps the flow to remain 

attached to the upper surface at higher angles of attack. This can change the stalling angle 

for the airfoil being tested and can shift the lift curve slope. Hence experimental 

investigation is done on a finite span wing without any side walls as shown in Figure 4.4 

to measure the shift in lift curve slope. It can be observed form the Figure 4.5 that for the 

baseline experimental plot with endplates deviates from the ideal infinite symmetric airfoil 

lift curve and this is clearly due to the presence of a small gap between the wing and the 

endplates. The experimental finite wing plot matches closely with the theoretical finite 

wing lift curve, until 10° angle of attack and beyond this range the experimental lift curves 

drops below theoretical curve. This is because of the large thickness of the airfoil and the 

large flow separation at the cusped region in the trailing location of the airfoil. 
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Figure 4.462Test model on force balancer without endplates (left) and with endplates 

(right). 

 

Figure 4.563 lC vs   for at Reynolds numbers 320,000 in comparision with and without 

endplates. 
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4.4. Airfoil with Integrated Synthetic Jet Actuators 

This section will provide the force balance results of the airfoil with integrated SJAs 

with and without actuation. The actuation is provided at resonance frequency of 900 Hz. 

The effect of actuation at various location of the airfoil is also investigated to understand 

the effect of location based actuation on aerodynamic performance. Testing for this study 

is broken down into six different cases: The first three cases study the effect of trailing 

edge actuation at various Reynolds number. The next three cases examine the effect of both 

leading and trailing actuation. For each case data was taken between 0 to 26° AOA. 

4.4.1. Trailing Actuation 

In this section lC  vs   at varied Reynolds number is presented in comparison to 

trailing edge actuation. When operating the trailing actuator in pure sine wave excitation 

at10 /m s , Re=180,000, results in increase of lC  in the range 13° <  < 20° are plotted 

in Figure 4.6. The Figure 4.7 shows an equivalent flap deflection that is achieved during 

trailing actuator operated at Reynolds number of 180,000. It can be observed that the 

actuator is effective at higher angles of attack 18° <  < 24°. And produces a maximum 

flap deflection of 15°. 

A similar increase in lift is observed in the range 13° <  < 20° for trailing 

actuator excitation at18 /m s , Re=320,000 and are plotted in Figure 4.8. The Figure 4.9 

shows an equivalent flap deflection that is achieved during trailing actuator operated at 

Reynolds number of 320,000. It can be observed that the actuator is effective at higher 

angles of attack 20° <  < 24°. And produces a maximum flap deflection of 16°. 

 



73  

 

Figure 4.664 lC  vs  at Re=180,000 with integrated trailing synthetic jet actuation at 300 

Vpp, on at 900 Hz. 

 

 

Figure 4.765 f  vs   at Re=180,000 with integrated trailing synthetic jet actuation at 300 

Vpp, on at 900 Hz. 
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Figure 4.866 lC vs   at Re=320,000 with integrated trailing synthetic jet actuation at 300 

Vpp, on at 900 Hz. 

 

 

Figure 4.967 f  vs  at Re=320,000 with integrated trailing synthetic jet actuation at 300 

Vpp, on at 900 Hz. 
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Figure 4.1068 lC  vs   at Re=440,000 with integrated trailing synthetic jet actuation at 300 

Vpp, on at 900 Hz. 

 

Figure 4.1169 f  vs   at Re=440,000 with integrated trailing synthetic jet actuation at 300 

Vpp, on at 900 Hz. 

 

On operating the trailing actuator at 25 /m s , Re=440,000 the performance 

degeneration is observed around 24° and is shown in Figure 4.10. The Figure 4.11 shows 

an equivalent flap deflection that is achieved during trailing actuator operated at Reynolds 

number of 440,000. It can be observed that the actuator is effective at lower angles of 

attack 6° <  < 13°. And produces a maximum flap deflection of 6°. Hence it is evident 

that the actuator is less effective at higher Reynolds number. 
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4.4.2. Leading and Trailing Actuation 

The lift resulting from a combination of the Leading and trailing actuators is shown 

in Figure 4.12 and is discussed below. Operating the Leading edge and Trailing actuator in 

sine mode, at 10 /m s , Re=180,000, results in increase of lC  produces additional lift benefit 

when compared to the operation of trailing actuator with the leading actuator operating 

alone. The equivalent flap deflection at varied actuation condition is show in Figure 4.13. 

It can be observed that during the combined actuation of leading and trailing actuator 

produces larger increase in lift coefficient at higher angles of attack 20° <  < 24°. And 

produces a maximum flap deflection of 20°. On operating at 18 /m s , Re=320,000 the 

result from a combination of the leading and trailing actuator couldn’t be presented here 

due to data loss, operation of trailing actuator produces marginal lift benefit when 

compared to the operation of leading actuator alone as show in Figure 4.14. The 

corresponding flap deflection is show in Figure 4.15. With the operating conditions set at 

25 /m s , Re=440,000 operation of trailing and leading actuator at pure sine wave, produce 

no addition benefit when compared to the operation of trailing actuator alone for the range 

15° <  < 20° and leading actuator alone for the range 18° <  < 23° as shown in  

Figure 4.16. From the equivalent flap deflection Figure 4.17 it can be observed that with 

the operation of both leading and trailing actuator reduces the lift coefficient. 
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Figure 4.1270 lC vs   at Re=180,000 with integrated varied synthetic jet actuation at 300 

Vpp, on at 900 Hz. 

 

Figure 4.1371 f  vs   at Re=180,000 with integrated varied synthetic jet actuation at 300 

Vpp, on at 900 Hz. 
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Figure 4.1472 lC vs  at Re=320,000 with integrated trailing synthetic jet actuation at 300 

Vpp, on at 900 Hz. 

 

Figure 4.1573 f  vs   at Re=320,000 with integrated varied synthetic jet actuation at 300 

Vpp, on at 900 Hz. 
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Figure 4.1674 lC vs   at Re=440,000 with integrated trailing synthetic jet actuation at 300 

Vpp, on at 900 Hz. 

 

 

Figure 4.1775 f  vs   at Re=320,000 with integrated varied synthetic jet actuation at 300 

Vpp, on at 900 Hz. 
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The effect of varied actuation possibilities on the pitching moment is show in Figure 

4.18. The trailing edge excitation renders a Cm that is more negative. The combination of 

leading and trailing actuation, have a strong positive contribution to the pitching moment 

at incidences lower than 15°. It is evident that at lower lift coefficients and lower angles of 

attack, the baseline pitching moment can be altered both more positive and to a lesser extent 

more negative, just by activating both the leading and trailing actuators. 

 

Figure 4.1876 25mC vs at Re=320,000 with integrated trailing synthetic jet actuation at 300 

Vpp, on at 900 Hz. 
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4.5. CFD Comparison 

The experimental baseline and trailing actuation data at Reynolds number of 

320,000 was compared against numerical simulation performed using FDL3DI code. A 

consistent trend is observed between the numerical and the experimental data during the 

actuation conditions with the forcing velocity of the actuator being set to 10 m/s. The drop 

in the experimental lift curve slope is associated to the gap effect between the wing and the 

endplates resulting in shift of lift curve. It can also be observed that by forcing the actuator 

at high velocity of 40 m/s the lift coefficient increases to 1.1 at 12° angle of attack as shown 

in Figure 4.19. 

 

Figure 4.1977 lC  vs   at Re=320,000 with integrated trailing synthetic jet actuation at 300 

Vpp, on at 900 Hz. 
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4.6. Pressure Distribution 

The following comparisons show the pressure distribution for the top and bottom 

rows of pressure ports. The preliminary comparison of pressure was made against XFLR 

pressure data at angle of attack ranging from 0, 4, 8, 12, 16 and 20°. Further the pressure 

data was extracted for “open slit” cases during which the slits were open to the flow, and 

the “covered slit” cases are the cases with the leading actuator slits covered with tape.  All 

these tests were to confirm that the presence of the slit itself was not causing attachment in 

the flow. The final comparison was made with the actuation case only with the trailing 

actuator on the upper surface being turned on. 

4.6.1.  XFLR Comparison

The baseline flow studies are performed on the airfoil to determine the flow 

characteristics of the airfoil with no actuation and slots covered. To determine the baseline 

characteristics a complete pC  profile for the airfoil is obtained at Re - 320,000 and various 

angle of attack (𝛼’s) ranging from 0, 4, 8, 12, 16 & 20°. Efforts are made to compare the 

baseline pressure plots to the results of XFLR to ensure the experiment performed here are 

comparable.  Figure 4.20 displays the results at  = 0°, where the baseline closely flows 

the predicted XFLR solution. However here a bubble has formed in the baseline 

experimental distribution at the trailing upper surface. 
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Figure 4.2078Pressure distributions comparison for experimental baseline and XFLR case 

at 0° AOA, Re-320,000. 

The pressure distribution of  = 4°, offered in Figure 4.21 shows the separation 

bubble at x/c~0.3. Which is not observed in the XFLR solution. 

 

Figure 4.2179 Pressure distributions comparison for experimental baseline and XFLR case 

at 4° AOA, Re-320,000. 
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Pressure distribution for  = 8° shows a turbulent separation point and is moving 

forward as the angle increases. The bubble formed at trailing edge surface get diminished 

partially and is show in Figure 4.22. 

 

Figure 4.2280 Pressure distributions comparison for experimental baseline and XFLR case 

at 8° AOA, Re-320,000. 

Pressure distribution for  = 12° and 16° give a similar trend however the turbulent 

separation point moved forward with increase in angle. The leading edge separation point 

has been over predicted by XFLR and is show in Figure 4.23 and Figure 4.24. 

 

Figure 4.2381 Pressure distributions comparison for experimental baseline and XFLR case 

at 12° AOA, Re-320,000. 
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Figure 4.2482 Pressure distributions comparison for experimental baseline and XFLR case 

at 16° AOA, Re-320,000. 

 

Figure 4.2583 Pressure distributions comparison for experimental baseline and XFLR case 

at 20° AOA, Re-320,000. 

At   = 20° the XFLR values are over predicted when compared to the experimental 

pressure distribution as show in Figure 4.25. 
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4.6.2. Slit Comparison 

The presence of open slit would have an adverse effect on the pressure distribution 

and hence a following comparison was made to show the pressure distribution for top and 

bottom surface with pressure ports. The “open slit” cases are the cases with the slits open 

to the flow and the “closed slit” cases are with slit covered with tape. All these tests were 

to confirm that the presence of the slit itself was not causing attachment. Results of  = 0° 

case are shown in Figure 4.26, in this case the flow shows a significant difference in pC  

distribution between the slit configurations at x/c~0.38. This test confirms that the presence 

of the slit has an adverse effect on the flow without actuation at lower angles of attack. As 

shown in Figure 4.27 - 4.31 the open slit causes an attachment of the flow at the midchord 

and this effect is diminished with increase of angle-of-attack 0° <  < 12° the leading 

edge separation. 

 

 

Figure 4.2684 Effects of slit configurations with no actuation at 0° AOA, Re-320,000. 
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Figure 4.2785 Effects of slit configurations with no actuation at 4° AOA, Re-320,000. 

 

 

 

Figure 4.2886 Effects of slit configurations with no actuation at 8° AOA, Re-320,000. 

 

 

 



88  

 

Figure 4.2987 Effects of slit configurations with no actuation at 12° AOA, Re-320,000. 

 

Figure 4.3088 Effects of slit configurations with no actuation at 16° AOA, Re-320,000. 
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Figure 4.3189 Effects of slit configurations with no actuation at 20° AOA, Re-320,000. 

 

4.6.3. Trailing Edge Actuation 

Figure 4.31 – 4.36 shows the results of cases for trailing actuation on the upper surface 

while holding the actuator moment coefficient constant. The actuator appears to have no 

effect until stall angles and the actuator appears to have no effect on the pressure 

distribution. At stall angle of 𝛼 = 20° there in an increment on pressure drop at the leading 

edge of the airfoil and hence corresponding lift increment has been observed in the 

aerodynamic load data as show in Figure 4.8. 
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Figure 4.3190 Effects of trailing actuation at 0° AOA, Re-320,000. 

 

 

 

Figure 4.3291 Effects of trailing actuation at 4° AOA, Re-320,000. 
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Figure 4.3392 Effects of trailing actuation at 8° AOA, Re-320,000. 

 

 

 

Figure 4.3493 Effects of trailing actuation at 12° AOA, Re-320,000. 
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Figure 4.3594 Effects of trailing actuation at 16° AOA, Re-320,000. 

 

 

Figure 4.3695 Effects of trailing actuation at 20° AOA, Re-320,000. 
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5. Conclusion and Recommendations 

An experimental setup to study the transient behavior of the pitching and plunging 

airfoil was built and used to simulate LCO conditions. This setup will be used as an 

aeroelastic test bed for future tests involving elimination of LCO using synthetic jets. 

This research has been focused on development of lightweight SJA with rectangular 

orifice integrated as part of an airfoil and has been designed and manufactured using 3D 

printing. The actuator has a dimension of 60mm, 15mm and is integrated in the internal 

volume of symmetric Glauert airfoil with a 60 mm width, 540 mm chord with orifice at 

28% c  from the leading and 67% c . The baseline design of the actuator is based on a design 

by NASA Synthetic Jet Workshop and University of Maryland. The diaphragm size was 

increased from 40 to 50 mm. The performance studies of the 3D printed SJA is determined 

from the baseline studies of standard metallic synthetic jet. By conducting hot wire study 

the performance of the 3D printed actuator is compared against the metallic. Though the 

performance of the 3D printed actuator is not comparable to the baseline metallic actuator, 

but the overall weight can be reduced to a great extent employing 3D printed SJAs. 

 To evaluate the effect of the actuator for effective virtual aero shaping application 

the 3D printed airfoil was designed and manufactured. The design of the airfoil was based 

on the design of Glauert, M. B and Seifert, A., et al was used for lift enhancement. Nine 

SJAs were integrated in each row along the leading and trailing locations of the airfoil. 

Windtunnel experiments are performed and force balance results have shown, for the given 

integrated synthetic jet airfoil, the increase in lift is dependent on the Reynolds number, 

angle of attack and actuator jet strength. Baseline experimental results are compared to 

XFLR. For actuation at various locations of the airfoil the actuator is observed to increase 
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lift at stall angles when actuated only along the trailing location. Better effect has been 

observed during a combined actuation of leading and trailing actuators. It can be concluded 

that the lift increment measured using the current configuration is insufficient for virtual 

aero shaping applications. As the ultimate goal is to be able to use SJAs for LCO control 

and this requires a larger change in pitching moment to suppress LCO. 

Based on the experiments conducted and results found during the current research 

the following recommendations are made. Regarding the SJA design it is recommended to 

improve the performance of the actuator by improving the design features, such as: 

1. Manufacturing the cavity material with denser material to improve rigidity 

2. Use of bimorph piezo diaphragm for larger amplitude of deflections 

3. Designing actuator with dual acting diaphragms for high jet velocities 

4. Using low fidelity tool such as LEM for better design of actuator 

Regarding windtunnel testing it is recommended to investigate the effect of 

different frequencies at increasing Reynolds number and also to investigate the effect of 

operation of the actuator during different signal input conditions such as burst mode, square 

wave signal types. Further investigations could lead to actuators tested on the aeroelastic 

test apparatus and using feedback system depending on the operational frequency and 

performance of the actuator by integrating sensors to measure the attitude of the airfoil and 

generate a compensating response for efficiently improving the overall aeroelastic 

performance of the system. A more robust aeroelastic test bed has to be built to investigate 

the effect of aeroelasticity and provision for PIV (Particle Image Velocimetry), would help 

to investigate the flow phenomenon during dynamic conditions.
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