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Abstract 

The goal of this study is to establish the dominant flow structure required to effectively 

accelerate the turbulent deflagration flame front to detonation velocity in the shortest possible 

distance while using a single Jet in Cross Flow (JICF). Jets in crossflow, depending on orientation 

and momentum ratio, can induce two types of flow structures that propagate downstream; vortex 

filaments and turbulent eddies. Vortex flow structures are coherent rotating columns that can 

persist for a considerable distance before diffusing. Turbulent eddies are characterized as random 

fluctuations in flow velocity or small pockets of rotation. The test rig used for this study consists 

of a valveless pulse detonation combustor operating at near-ambient conditions supplying air at a 

rate of (0.05-0.1) kg/s and equivalence ratios of 1.0 to 1.3 using Ethylene fuel. Experimental 

studies comprised of four phases of testing: full obstacle configurations, single orifice, fluidic jet, 

and hybrid. Overall, the initial fluidic tests reveal the primary effect is an increase in peak pressure 

(13%-120%) and a decrease in the ion detection time by up to 19% favoring upward facing jets 

while velocity displayed no discernable change from the baseline. A study was also conducted 

with physical transition geometry comparing both valve and valveless configurations. Findings 

indicate frequent obstacles leading the DDT section both improves flame acceleration and mitigate 

the backflow due to a porous thrust surface with insufficient supply pressures and furthermore 

verifies excessive obstacles are detrimental towards later flame acceleration and transition to 

detonation. 
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1 Motivation 

Pulse detonation if achieved successfully can lead to significant efficiency improvements over 

the Brayton cycle in air breathing engines. However, several difficulties exist in achieving 

detonations, refreshing reactants as well as thermal management.  

The method of using fluid impinging jets and air slots in recent studies has displayed 

admirable features in generating turbulence, which accelerates the flame front significantly 

compared to using physical blockages1-4. It can also be noted, that the drag penalty of using 

physical turbulence generators is not insignificant and can negate the benefit of the pressure rise 

combustion in hybrid engines1-3. In recent studies conducted by the Naval Post Graduate School 

investigation of low loss swept ramps that promote turbulence and strong stream-wise vortices has 

displayed its ability to promote DDT5, 6. The coherent vortex structure present in the flow tends to 

fold the flame’s contact surface more so than small scale turbulence due to the length scale. It may 

be of importance to explore this phenomena as a Jet in Crossflow can induce coherent vortices and 

turbulence with varying levels of intensity7. 

By using fluidic turbulence generators, such as planar and circumferential slot jets, several 

benefits exist over their physical orifice counterparts. Increased effectiveness in flame front 

acceleration4, significant reductions in pressure loss due to form drag1-3, improvements in cooling 

as no physical geometry is present, and the ability to actively adjust operation of the fluid jets. 

Previous research has focused on using fluid impingement slots for turbulence generators to 

accelerate the flame front to a critical value needed to achieve DDT; however, turbulence is not 

the only mechanism needed for transition. It may be a requirement to use a streamlined obstacle 

to reflect shocks in order to form a detonation kernel reliably while using air and hydrocarbon 

fuels. In the most recent studies conducted by McGarry at UCF the research has focused on using 
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methane air slot injection and correlating the flame front acceleration with turbulence and strain 

rate using visual studies24. In their findings they have observed the deflagrated flame’s acceleration 

by the fluidic jet in initially static air columns with and without turbulent eddies that increase the 

energy release rate and turbulence.  

The proposed research aimed to establish the dominant flow structure required to accelerate 

the deflagrated flame in the shortest possible distance using a single JICF as a baseline study. 
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2 Theory and Background 

2.1 Deflagration vs. Detonation 

Combustion occurs in two stable modes, Deflagration and Detonation. Deflagration is 

observed in many engines in current operation. The best example are those found in boilers, 

furnaces, automobiles and gas turbine engines where combustion can be approximated as isobaric8. 

The reaction rate of deflagration is driven by the diffusion of radicals, temperature, turbulent 

mixing, and chemical kenetics8. The average flame speed for laminar diffusion burning is on the 

order of a few meters per second whereas detonations can travel well beyond the speed of sound 

on the order of thousands of meters per second. The structure of a detonation wave is three 

dimensional and oscillatory; however, two simplified theories used to estimate the final state of 

detonation fairly accurately is the CJ Theory and the ZND model8-10. Chapman-Jouguet (CJ) 

theory balances the energy equations to obtain the final state of the products and simplifies the 

event to an infinitely thin and one dimensional event10, 14. The ZND model solves the Euler 

Equations and incorporates chemical kinetics. The structure of the ZND model is a strong shock 

followed by a thin induction region and a thicker chemical reaction region based upon chemical 

kinetics. The Von Neumann pressure spike is also captured by the ZND model unlike CJ which 

also predicts the same final state10-14.  
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Table 1. Detonation vs. Deflagration properties products/reactant8, 9 

  Usual magnitude of Ratio   

Ratio Detonation Deflagration 

Ur/Cr
a 5 to 10 0.0001 to 0.03 

Up/ur 0.4 to 0.7 4 to 16 

Pp/Pr 13 to 55 0.98 to 0.976 

Tp/Tr 8 to 21 4 to 16 

ρp/ρr 1.4 to 2.6 0.06 to 0.25 

Cr
a is the acoustic velocity in the unburned gasses. Ur/Cr is the 

Mach number of the wave. 

 

The differences between deflagrations and detonations are summarized in table 1. In essence 

the thermodynamic cycle of detonation is far more efficient than isobaric deflagration. Given the 

higher efficiency, energy density, and pressure gain; this cycle would significantly improve the 

performance of many engine architectures such as gas turbine engines9. 

 

Figure 1 Thermodynamic Cycles of the Brayton and Humphrey32 
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Comparing the thermodynamic cycles of the Brayton and Humphrey in figure 1, the Humphrey 

cycle produces far less entropy and the burning of the fuel provides an additional pressure gain. 

The Humphrey cycle is comparable to the actual Pulse Detonation Cycle as it is a quasi-constant 

volume combustion process. The Brayton cycle consist of compression 1-2, constant pressure heat 

addition 2-3, and power extraction 3-4. Humphrey cycle consists of Compression 1-2, constant 

volume combustion with a pressure rise 2-3H, and power extraction 3H-4. The ideal thermal 

efficiencies below for comparison are functions of temperature, fuel heating value, and the ratio 

of specific heats10, 32, 33.  

𝜂𝐵𝑟𝑎𝑦𝑡𝑜𝑛 = 1 −
𝑇1

𝑇2
 

𝜂𝐻𝑢𝑚𝑝ℎ𝑟𝑒𝑦 = 1 − 𝛾
𝑇1

𝑇2

[
 
 
 
 𝑇3

𝑇2

1
𝛾

− 1

𝑇3

𝑇2
− 1

]
 
 
 
 

 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦 1 −
1

𝑞̃
[(1 +

𝛾𝑞̃𝑇1

𝑇2
)
1/𝛾

− 1] 

𝜂𝐼𝑑𝑒𝑎𝑙 𝑃𝐷𝐸 = 1 −
1

𝑞̃
[

1

𝑀𝐶𝐽
2 (

1 + 𝛾𝑀𝐶𝐽
2

𝛾 + 1
)

(𝛾+1)/𝛾

− 1] 

2.2 Pulse Detonation Engine Cycle and Description 

Pulse detonation engines operate with a revolving cycle comprised of four general steps: 

Fill, Combustion, Blowdown, and Purge. During the filling stage fuel and air are brought into the 

combustion chamber. Combustion is the ignition which creates an expanding flame kernel that 

fills the diameter of the PDE tube and then accelerates to form a detonation wave consuming the 

remaining reactants. Blowdown is the expanding products expelling from the combustion chamber 

and is frequently modelled by the Taylor expansion fan. The fourth stage, Purging, is optional and 

used primarily to avoid ignition during refreshment of reactants and thermal management. 
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Typical PDE’s rely on valves for the fuel and oxidizer and prevents backflow during 

combustion and blowdown. Given the goal of achieving higher frequencies mechanical valves 

have displayed limitations in achieving higher frequency operation in a robust system; 

Furthermore, challenges of friction, cyclic wear and warping are concerns of sustained 

deployment28. 

 
Figure 2 Valveless PDE using a fluid diode16 

Valveless designs incorporate choke points to prevent the pressure waves from propagating 

upstream or the use of an attenuating “Fluid Diode”. In GE’s multi-tube test rig ensures the total 

pressure of the air supply is greater than the static pressure during blowdown; however, they have 

experienced problems with pressure wave interference during filling19. Other studies have focused 

on high frequency fuel delivery by using orifices directly exposed to the chamber. The size, shape, 

and supply pressure dictates the response to the pressure waves inside the PDE tube and have 

shown their ability to cut off fuel flow without active control11. 

The impact of combustion in moving mixtures studied by several including GE indicates 

several important trends that deviate from static mixtures12. Except for cases below 15 m/s in a 2” 

cross-section, the location of DDT is not sensitive to velocity while the blowdown and combustion 

time displays strong nonlinear trend as fill velocity increases12. The study also found that 70% of 
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the time and 20% of the length to achieve DDT is a function of the initial flame kernel growth to 

fill the diameter and could potentially be the rate limiting process of these engines12.  

2.3 Potential Benefits and Application Considerations 

The potential benefit of using pulse detonation instead of isobaric combustion in gas turbine 

engines shows a theoretical SFC reduction of 2 to 8% depending on pressure ratio and thermal 

management techniques13, 19. The other potential benefit is the ability of the detonation cycle to 

burn lean fuels that would normally not combust. This could in fact reduce emissions further in 

commercial engines, decrease the theoretical SFC as well as create another operating parameter 

for control13. 

The thermal load considerations for useful pulse detonation engines and combustors in a 

hybrid arrangement must be addressed. In analytical studies conducted by Paxson and Perkins, 

thermal loading must be controlled and managed to avoid mechanical failure due to the stresses 

and the thermal limits of materials. Their findings suggest that several schemes for stationary tube 

pulse detonation engines can be addressed with thermal barrier coatings, convective cooling, and 

in some the need for exemplary lean fuel air mixtures13. Two of the most feasible cases are fully 

purged with cool air, and using bypass air to provide convective cooling on the outside of the 

combustor. Their studies did not focus on the need to provide cooling for any DDT geometry 

present, which for the most part, has been the primary focus of research and displays susceptibility 

to damage. 
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Figure 3 Shchelkin Spiral after testing PDE Mark 1 for a few seconds14 and Naval Postgraduate Swept Ramp Obstacle6 

A common obstacle used for DDT is the Shchelkin Spiral that is in essence a helical wire. 

This form of geometry is very susceptible to the high temperature and pressure gradients as can be 

observed in the above image by the physical damage and signs of melting. Another obstacle 

investigated by the Naval Post Graduate School was the swept ramp used to generate vortices and 

turbulence. Both CFD and high speed imagery display high temperature and pressure gradients 

that could be of concern5, 6, 20. The use of physical DDT geometry necessitates the need for 

additional thermal management, and in most cases the short duration of testing has worked well 

for experimental test rigs. However, limiting the operating time in real applications is not a 

practical method for cooling, prompting active cooling methods and likely maintaining a certain 

level of purge within the cycle13.  

2.4 Deflagration to Detonation Transition 

Detonations can be initiated directly at a high cost using detonable mixtures or high initiation 

energy. For useful hydrocarbon fuels with air, the initiation energy required is on the order of 

several thousand Joules, given the cyclic nature of these devices the power consumed by ignition 

may outweigh the gains of detonation17. It is therefore of interest to focus on low energy initiation 

(10-250 mJ) techniques and achieve deflagration-to-detonation transition.  
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The initial stage of the flames’ turbulent growth and expansion is dominated by large scale 

vortices and eddies that stretch and fold the flame surface expanding the area and increase the 

reaction rate, unless excess mixing quenches the flame. In later stages the heat release rate is 

sufficiently high where quenching no longer retards the chemical reaction rate and small scale 

turbulence dominates. The role of the formed pressure wave serves to compress, heat and intensify 

the turbulence present in the flow field and adds to the fluid instabilities. The actual transition to 

detonation can involve several paths once a sufficient flame velocity and shock strength have been 

generated. The local unburned pockets of fuel and air in the products undergo local 

detonations/explosions forming blast waves that in essence further strengthens the leading shock 

and increases instabilities. At this point the shockwave has sufficient strength to autoignite the fuel 

air mixture immediately behind the wave, and is thus detonation. It is also important to note that 

within this final DDT transition, instabilities in the boundary layer adjacent to the wall and local 

explosions/detonations, there exist shock reflections and interactions leading to the formation of 

the triple point structure18. 
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Figure 4 Detonation Wave Structure14 

The above figure is a depiction of the detonation wave structure. Through each reflection 

and shock, the temperature and pressure increases leading to higher chemical reaction rates. The 

distance between the shock and chemical reaction region becomes increasingly small and a strong 

coupling is formed and becomes self-sustaining.  

2.5 The Fluidic Technique 

The concept of utilizing fluidic jets to simulate physical obstacles and cause flame deflection 

is fairly new in this application. Results at the Air Force Research Laboratory (AFRL) by Knox, 

Stevens, Hoke and Schauer show that fluidic impingement slots can decrease the DDT length and 

improve performance in DDT time and distance along with reductions in flow losses during 

blowdown1, 3. From their findings the most important parameters are: momentum ratio, effective 

blockage ratio, and the fluidic jet composition. These studies were conducted with Hydrogen-Air 
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mixtures and fluidic jets comprised of air, nitrogen and stoichiometric hydrogen-air mixtures for 

various tests1-3. In later studies conducted by Richter the deflagration wave front acceleration was 

shown to significantly increase due to the turbulence generated by the fluid obstacle in comparison 

to a physical counterpart displaying similar flame deflections4, 24. 

 
Figure 5 Effect of Varying Flame Equivalence Ratio on Obstacle Interaction. Left Fluidic MR 0.3 Φ 0.7, MR 0.3 Φ 1.0, Right 

Physical Blockage BR 0.2 Φ 0.7 and BR 0.2 Φ 1.024 

Figure 5 is a side by side comparison of the interaction between a planar slot jet and a 

comparable physical blockage with time increasing in the Y direction. The downstream flame 

profile in the fluidic case is significantly more turbulent in comparison to the physical blockage 

case by observing the plentiful wrinkles in the schlieren images, and furthermore, the flame surface 

is significantly larger. The mechanism responsible for the performance increase in the slot jets for 

both laminar and turbulent flame acceleration is the increase in turbulent intensity and fluidic strain 

rate24, 25. 

Other jet geometries display improved penetration, turbulence generation or coherent 

vortex structures. In studies conducted by Milanovic and Zaman the JICFs were angled and yawed 



12 

 

 

 

to improve the jet spread and create long lasting stream-wise vortices7. In several cases with pitch 

and yawed jets the vortex structure was a single filament, not the typical vortex pair expected from 

JICFs normal to the wall. With this observation, the vortex structure can be controlled and 

optimized for penetration, vorticity or mixing depending upon the desired parameters7. 

Furthermore, jet geometry also has merit. The previously studied circumferential slot jets by Knox 

displayed properties similar to their physical counterpart aside from an inability to reflect pressure 

waves. Different geometries and orientations can display contrasting features. The stream-wise 

slot jet is an excellent choice for penetration, a typical round jet tends to induce turbulence and a 

vortex pair whereas the previously tested slot jet displays a generous spread but limited 

penetration15. Depending what attributes are desired, other geometries and orientations can be used 

to improve the production of turbulence over the slot jet. In studies conducted by Myers5 the 

creation of stream wise vortices may be more valuable than the small scale turbulence produced 

by Knox2, 3 or those produced by using physical orifices for at least the initial stages of accelerating 

the flame front. However, the finer scale turbulence is highly beneficial in the later stages. 
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Figure 6 NPGS Swept Ramp Vortices5 

The swept ramped obstacles developed by the naval postgraduate program create strong 

streamwise vortices and have displayed the ability to accelerate and expand the flame front. 

Furthermore, in the later stages of flame development, consistent detonation kernels were formed 

in the wake of the obstacle due to the pressure and velocity profiles5. The interest presented with 

this finding in the initial stages leads to the concept of using a circular JICF to create a vortex pair 

as the examined obstacles. However, unlike the swept ramp, the JICF will not introduce geometry 

needed to reflect pressure waves.   
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3  Experiment and Design 

3.1 Objectives 

The first goal of the study is to test and compare the performance of physical DDT obstacles 

to the previously examined valved fuel and oxidizer studies by Tate and Gagnon8, 30. The 

information of interest is the pressure and flame history during combustion and flow losses during 

filling. Focus being placed on flame acceleration, post shock pressure, and flame detection time 

for the array sensor positions. The fluidic investigation is to determine the dominant flow structures 

required to effectively accelerate the flame using a single oriented JICF using additional air. Two 

basic flow structures can be generated; streamwise vortex filaments, and turbulent eddies. 

Negatives of the fluidic method employed will include leaning the fuel air mixture and quenching. 

Due to the nature of the study it will only narrow the region of interest for future studies. Given 

the goal of higher efficiencies, flow losses during filling and blowdown must be addressed. The 

losses during blowdown can decrease the specific impulse (normalized thrust) by as much as 50% 

and the use of excess obstacles can impede detonation waves28. A streamlined bluff body will be 

investigated leading the JICF and single orifice to quickly examine the benefit.   
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3.2 Experimental Plan and Structure 

3.2.1 Phase #1: Physical Obstacle Configurations  

Phase 1A of experimental testing was to verify the operation of the valveless pulse 

detonation combustor and compare the results to trials conducted by Chapmin, Tangirala and Dean 

in Detonation Initiation in moving Ethylene-air Mixtures at Elevated Temperatures and 

Pressures12. The physical obstacles consisted of blockage ratios of 44% separated by an axial 

spacing of 1 x/D and using stoichiometric fuel air mixture.   

Phase 1B examines several developed obstacle configurations developed by Christopher 

Tate’s and Nicole Gagnon’s studies at The Gas Turbine Lab8, 30. The information of interest is the 

performance with dynamic filling of varying equivalence ratios and pressure loss during filling. 

Fill velocities of 28 m/s will be used with equivalence ratios of 1.00 and 1.3.  

3.2.2 Phase #2: Single Orifice  

The physical reference for the fluidic trials is a single orifice, supplying a uniform 

blockage. The 3 blockage ratios selected for testing are 24%, 44% and 59%. The metrics of interest 

include the time histories of the pressure developments, ion sensing and pressure loss. It is 

important to note that several differences exist between the setups for the orifice cases and JICFs. 

These differences include the additional leaning of the fuel air mixtures supplied by the JICFs and 

the use of spacers to maintain orifice position. 

3.2.3 Phase #3: JICF Turbulence Generator 

The JICF’s ability to generate streamwise vortex and/or turbulent eddies is a function of 

jet strength and orientation. This study is examining the overall effect of the produced flow 

structure. Other studies have concentrated on the flow structures produced by angled and yawed 
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JICF’s; however, the physical boundaries of this study does not match due to the circular profile 

and likelihood of JICF interaction with the opposing wall. Therefore, this study is only useful for 

narrowing regions of interest as a concept screening.  

3.2.4 Phase #4: Bluff body and JICF 

 
Figure 7 Bluff Body 1.250" Throat 

It became apparent that the pressure development inside the combustor has a strong 

correlation with the effectiveness and location of a local pressure surface to increase the favorable 

pressure gradient. Fluid jets in crossflow are unable to act as a pressure surface or reflect shocks, 

leading to the need for a physical surface, especially since the static pressure during blowdown is 

greater than the total pressure supplied by the blower. This enables a generous backflow which is 

not favorable. The location of the upstream pressure surface has an impact on pressure 

development, and with sufficient chamber volume between fuel injection and the porous thrust 

surface, it still displayed a weak reflection; however, significantly favorable in comparison to the 

unrestricted flow path. The idea for inserting a bluff body into the flow is to impose a local pressure 

surface inside the DDT section. In observations of the single orifice tests at the same axial location 

of the JICF, the features of the flow field and flame front develop differently as to be discussed.  
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3.3 Pulse Detonation Combustor Design 

The proposed study requires the test section to contain a moving fuel and air column at a 

moderate range of mass flows in order to create the stream-wise flow structure of interest using 

the JICF technique. A valveless pulse detonation combustor was designed and assembled in house 

with the main airflow supplied by an industrial blower and valveless fuel injection manifold using 

a circular pattern of JICFs. This combination produced a test rig with an ability to supply a large 

range of flow rates with control of the mixture fraction under roughly ambient conditions. 

 
Figure 8 PDE Test Section 

The above figure is a section view of the test chamber. The Green plate is the porous thrust surface, 

and gold is the fuel injection manifold liner. The inner diameter is 49.3 mm with the exception of 

the flex hose reducer of 76.2 mm.  



18 

 

 

 

 
Figure 9 Dimensioned Test Section, Axial Positions in meters 

The above figure displays the axial positions in inches of all major components. The 

Diagnostic array comprises of ion sensors and dynamic pressure transducers. The porous thrust 

surface is the entry location for the bulk airflow supplied by an industrial blower and will be 

discussed more in detail. 

3.3.1 Fuel Injection Design 

The mixture in a pulse detonation combustor has an impact on performance and the 

likelihood of achieving consistent ignition and DDT. Several CFD studies were conducted for 

various fuel air mixture schemes using patterns of JICFs of pure fuel into the main air stream. To 

achieve the desired operating frequency, it was chosen to pursue a valveless air and fuel supply. 

The design of the fuel injector scheme was based upon studies conducted by Braun, Balcazar, 

Wilson and Lu from the University of Texas at Arlington on High Frequency Fluidic Valve Fuel 

Injectors11. Their study indicates the ability JICFs to be used for fuel addition in pulse detonation 

combustors. Detonation will reach post wave pressures of 6 to 10 atm whereas deflagration cases 

develop 1 to 3. The actuation of the fluidic fuel injector depends upon supply pressure and the 

geometry of the jet and plenum chamber. The actuation is driven by the pressure rise in the tube 
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due to the heat release and expansion in a confined chamber, as the static pressure increases the 

favorable pressure gradient across the jet decreases causing the flow to stagnate, and possibly 

affect a slight amount of backflow stopping the addition of fuel. Once the pressure subsides during 

blowdown the pressure gradient becomes favorable and fuel flow starts once more. By using 

supply pressures of 2-3 atm, the JICF fuel injection scheme will actuate without active control for 

deflagration cases. Once the pressure subsides in the PDE tube, the fuel flow will restart and deliver 

fresh reactants. 

For operation frequencies between 10-25Hz a 4 port fuel injector equally spaced and 

nozzles rotated 22.5o off normal, were found to achieve equivalence ratios between 1.0-1.3 while 

displaying favorable mixture distribution at the spark plug’s location of 11 inches downstream of 

the fuel manifold. The mixing distributions were analyzed by Fluent using steady state filling 

parameters as would be observed. It must be noted that the CFD studies were primarily used to 

screen jet configurations for mixing while information from previous studies15 was used to 

determine jet size and number based upon predicted penetration and spread. 
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Figure 8 Fuel Injection and turbulence kinetic energy, injection plane, 6 inches downstream and spark plane Mair 0.128kg/s 

As can be noted from the study, a 4 port angled 22.5o yawed 90o pattern displayed favorable 

mixing in the 11 inches required to ignite the mixture even at higher than tested flow rates as in 

the above figure. At 0.0540kg/s and target Φ 1.05 the range at the spark plug is between Φ 0.919 

Φ 1.000 

Φ 0.000 

Φ 1.000 

Φ 0.302 

Φ 1.264 

Φ 0.467 
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to 1.064. There is a component of rotation and higher levels of turbulent kinetic energy present 

that will help create a turbulent flame brush as the kernel expands. 

3.3.1.1 Fuel Manifold 

 
Figure 10 Fuel Injection Manifold 

The design of the fuel injection manifold allows for the replacement of the liners allowing 

for a multitude of uses and configurations as seen in the above figure. The uses include fuel 

injection as the current study, but could also be used for testing radial patterns of JICFs. The 

connections are standard 3/8 NPTF and 4x 3/8-16 SHCS for pre-assembly easing use.   
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Figure 11 Fuel Manifold Plenum Chamber with 4x α 22.5o β 90o 

The plenum cavity in the manifold is large allowing the static pressure strain gauge to read 

the total pressure as the velocity is relatively low even for the highest mass flow rates of fuel with 

plenum velocities well under 5 m/s. The gold colored object is the fuel injection liner while the 

blue is part of the clamp together manifold. The plenum chamber is roughly 31.8 mm wide with 

an annulus of 60.3 mm to 88.9 mm making for approximately 107 cm3 in volume.  
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Figure 12 Finalized Fuel Injection Setup 

Figure 12 displays the final mechanical configuration of fuel delivery. As the fuel supply 

cannot match the demanded flow rate, a small chamber leading the SV3503 Solenoid was 

maintained at a high pressure and the use of a needle valve, a ported Matheson LMF4375P, 

restricted the flow to create a plateau of fuel delivery to the manifold for a short period of time.  

3.3.1.2 Calibration 

 
Figure 13 Fuel Injection Calibration 

The fuel manifold pressure and corresponding steady state flow rates were established 

using a compressed air supply and a rotameter, Omega 6061L. The PX329 static pressure strain 

gauge being used in conjunction at the exit of the Rotameter and attached to the fuel injection 

PX329 Strain Gauge 

Rotameter Ω 6061L 

Needle Valve 
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manifold. Corrections were applied to account for the slight differences between air and the 

ethylene fuel used. The resultant calibration curves for mass flow rate were curve fitted to the static 

pressure measurements in the manifolds plenum chamber allowing computations during post 

processing to compute the equivalence ratios. 

Calibration with a rotameter was conducted using compressed air at 80 psi from the 

accumulator tank and using the needle valve to set CFM. The pressure was taken in two steps 

without adjustment of the rotameter or supply pressure. The first pressure measurement by the 

PX329 was taken at the Rotameter exit using 3/8 NPT Tee fittings and swapped to the manifold 

for a second static pressure measurement.  

 

Figure 14 Fuel Injection Calibration of Pressure vs. Volumetric Flow Rate 

As can be observed, there exists little difference between the static pressure in the line 

immediately following the rotameter and the manifold. The trend is also nonlinear as to be 

expected, and with known supply conditions the mass flow rate can be computed. 
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Figure 15 Fuel Manifold Calibration Curves 

The fuel injection curves are from results obtained using the 6061L Rotameter and PX329 

Static Pressure Strain Gauge. The relationship between the manifold pressure and mass flow rate 

is nonlinear as expected. The nozzle mass flow rate is a function of fuel temperature, combustion 

chamber pressure, and primarily manifold pressure. Chamber pressure during filling impacts the 

fuel flow rate and for the cases of physical DDT geometry it is significant.  

It is important to note, that 1D predictions failed to accurately compute the mass flow rate 

in comparison with the rotameter except within a narrow region of interest included in the subsonic 

region bellow tested values. This is primarily due to incorrect assumptions based on the flow 

properties through the small orifice and the fact that the throat is not circular in cross-section nor 

exits normal to the wall. The curve fit equations for the mass flow rate of fuel in kg/s. PF refers to 

the Manifold pressure while PPDE is the chamber pressure during filling. 
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𝑚̇𝑓𝑢𝑒𝑙 = 𝐶00 + 𝐶10𝑃𝑃𝐷𝐸 + 𝐶01𝑃𝐹 + 𝐶20𝑃𝑃𝐷𝐸
2 + 𝐶11𝑃𝑃𝐷𝐸𝑃𝐹 + 𝐶20𝑃𝐹

2 

Table 2Fuel Manifold Curve Fit Constants 

Coefficient Value 

C00 4.1770E-02 

C10 -7.5620E-03 

C01 9.5990E-05 

C20 3.7040E-04 

C11 9.6650E-05 

C02 -1.7970E-05 
Table 3 4 Port Fuel Injection Information 

Fuel Injection: 4 Port 22.5o Insert  

Drill:  5/64th, 7/32 Radius Countersink 

Angle 22.5o 

Yaw 90.0o 

Nozzle Throat Dia. Inch 

1 0.083 

2 0.081 

3 0.081 

4 0.079 

 

The above table displays the physical parameters of the injection insert. The throat 

diameters, not the hydraulic diameter, were found using pin gauges to accurately determine the 

size within 5/10ths. A trade size #2 Radius Countersink was used to drill the JICF nozzles into the 

tube followed by a 90 degree chamfer then polished to a mirror finish using a jewelers rouge and 

oil slurry.  
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3.3.2 Jet In Cross Flow 

 
Figure 16 Jet Orientation Definitions, α 25o, β 45o 

The JICF Turbulence generator technique employed uses a single jet that is pitched α with 

respect to the walls normal and yawed β from the downstream direction rotated about the surface 

normal. An array of 6 JICF’s were drilled into the DDT section for use with a clamp-on air 

manifold. This method was by far the simplest and cheapest alternative without disturbing the flow 

with a physical protrusion that could skew the result.  

 
Figure 17 JICF Clamp on Air Manifold in the aft position 

α 

β 
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The clamp on air manifold, as displayed in the above figure in the aft position, was 

fabricated using a steel pipe nipple and a milled shaft collar allowing for quick transitions between 

nozzles.  

 
Figure 18Jet Selection with Clamp-on Manifold 

The jet is selected by rotating the manifold to the desired nozzle and securing the manifold. 

Table 4 JICF Location and Orientation 

JICF Pitch 

α 

Yaw   

β 

Axial 13.0" 

Designation 

x/D 6.7 

Axial 24.4" 

Designation 

x/D 12.56 

Jet 1 0 0 JICF01 JICF10 

Jet 2 25 180 JICF02 JICF20 

Jet 3 25 135 JICF03 JICF30 

Jet 4 25 90 JICF04 JICF40 

Jet 5 25 45 JICF05 JICF50 

Jet 6 25 0 JICF06 JICF60 

Table 4 displays the JICF’s and their physical information in regards to orientation. All 

nozzles were pin gauged to 0.113” in diameter within 5/10ths. The axial distance is the separation 
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between ignition and the JICF’s. By using findings from GE the distance required for a flame 

kernel to expand to the full diameter is roughly 20% of the length to achieve DDT and was chosen 

to be the closest plane of injection, x/D of 6.712. The x/D 12.6 location is the DDT tube flipped 

180 degrees at the flanges to test axial spacing effects. The later portion, closer to the diagnostic 

section, allows for a closer look at the pressure and velocity developments near the jets; however, 

it must be noted that the flame front will be stronger and fully developed in that region. 

This series of tests requires consistent operation of the JICF throughout filling and into 

blowdown. The design of the modular air supply was to provide a consistent and repeatable supply 

throughout the cycle and is able to attenuate between cycles. 

Figure 19 JICF Air Supply 

This was accomplished with the use of an accumulator tank and pressure regulator. With 

the accumulator held at the wall supply of 78-80 psig and regulated to the desired supply pressure, 

it became possible to hold up to 70 psig for several seconds. It is important to note that the 

regulator, Nitra AR-443, was dynamically set to the desired pressure for every JICF.  
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Figure 20 JICF Supply Pressure Response 

Response of the JICF turbulence generator from 0 to 80 psi is displayed in the above figure. 

As can be easily observed, the response settles to near steady state before 200ms seconds and fuel 

is injected at 350ms in the cycle. 

The metric used to compare the effectiveness of the JICF is momentum ratio between the 

JICF and the bulk flow. Previous studies focused on impingement jets in crossflow often use 

momentum flux and momentum ratio1-4, 7, 11. Since this area of study is likely in the overblown 

region of operation, the momentum ratio will be utilized. Furthermore, the flow structures of 

interest are those propagated in the main flow and not the boundary layer along the wall. 

Jet velocity at the nozzle’s exit assuming chocked flow, isentropic and adiabatic. 

𝑈𝑗𝑒𝑡 = 𝑈∗ = √𝛾𝑅𝑇∗ 
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The Momentum Ratio between the JICF and bulk flow is below and used to categories the 

JICF interactions. Due to difficulties correlating theory to calibration the MR was modified to use 

mass flow rate and the jets chocked velocity. 

𝑀𝑅 = 
𝜌𝑗𝑒𝑡𝑈𝑗𝑒𝑡

2 𝐴𝑗𝑒𝑡

𝜌∞𝑈∞
2 𝐴𝑃𝐷𝐸

 =
𝑚̇𝑗𝑒𝑡𝑈𝑗𝑒𝑡

𝑚̇𝑝𝑑𝑒𝑈𝑝𝑑𝑒
 

Momentum Flux between the JICF and bulk flow is given bellow, and not used for this 

study. The usage for comparison is often studies within the boundary layer or those not in the 

overblown region where the flow structures no longer interacts with the surface. 

𝐽 =  
𝜌𝑗𝑒𝑡𝑈𝑗𝑒𝑡

2

𝜌∞𝑈∞
2

 

3.3.2.1 JICF Calibration 

The calibration method used the PX329 static pressure strain gauge and an Omega 6061L 

Rotameter with a constant air supply. With the use of a regulator, Nitra AR-443, and the 4.6 gallon 

accumulator tank at 80psi the supply air can hold a constant value for a considerable length of 

time. The rotameter indicates volumetric flow rate and with the known static temperature and 

pressure immediately after the meter, mass flow can be computed by the following equations. 

Mass flow rate of calibration air 

𝑚̇𝑎𝑖𝑟 = 𝑄̇
𝑃𝑠𝑡𝑎𝑡𝑖𝑐  𝑀𝑊𝑎𝑖𝑟

𝑅𝑢 𝑇𝑠𝑡𝑎𝑡𝑖𝑐
 

Mass flow rate of fuel from air calibration 

𝑚̇𝑓𝑢𝑒𝑙 = 𝑚̇𝑎𝑖𝑟

𝑀𝑊𝑓𝑢𝑒𝑙

𝑀𝑊𝑎𝑖𝑟
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Where the static pressure and temperature is of the gas immediately following the 

Rotameter. 𝑄̇ represents indicated volumetric flow rate on the meter. It must be noted that the 

6061L rotameter indicates flow rate in CFM and must be converted to the correct units. 

 

Figure 21 JICF Mass Flow Rate Callibration Curve 

The above plot of the supply pressure setting and static pressure at the clamp-on manifold 

connected to JICF5 indicates some moderate pressure drop through the line. The pressures were 

taken with the PX329 strain gauge at the 3/8 NPT connection. The highest predicted bulk velocity 

estimated to be 41 m/s in the line at 70 psi. This relatively low velocity leads to a few simplifying 

assumptions and avoids some flow losses.  
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Figure 22 JICF Flow Rate Calibrations 

The calibration curves for all JICF nozzles are displayed in the above plot. As can be 

observed, the flow characteristics for all cases agree fairly well until the highest pressure settings. 

The ability of the regulator to be set to a consistent value was found to deviate by up to 1.5 psi. 

This deviation adds uncertainty; however, given the nature of the test this is acceptable with the 

wide range of supply pressure tested. 
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3.3.3 Electrical System 

The electrical system utilized the National Instruments USB-6351 data acquisition system 

to control the three outputs and sample Analogue Inputs. The advertised gross sampling rate for 

the AI is 1.25 MHz; however, this specific DAQ is capable of sampling at a gross rate of 1.4MHz 

with little cross channel contamination with the exception of the PX329 static pressure strain 

gauge. 

  
Figure 23 National Instruments USB-6351 DAQ and accompanying busses and power distribution 

The outputs of the DAQ connected to standard 35mm DIN rail busses aided in the 

modularity of the system, thus simplifying additions to the test rig and allowing greater control of 

the power distribution and grounding leading to significant reductions in noise and interference 

with inputs. A further reduction in noise was the move from DC powered coils to using AC relays 

and coils for the Omega SV3506 solenoid valves. As a result, the only component that influences 

the analogue channels is the automotive ignition coil detected almost exclusively by the PX329 

static pressure strain gauge. The contamination in the dynamic pressure transducers and ion probes 

is minimal, displaying a 5mV rise across all channels without resonance and scatter even during 

arc discharge. The interference with the PX329 is primarily from the voltage drop in the DC power 

supply from the coil charging. 
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3.3.4 Data Acquisition 

  
Figure 24 Test Rig Analogue Inputs, Dynamic Pressure, Ion and Static Pressure 

The data input of the test rig comprises of three types of sensors: Static pressure strain 

gauge, dynamic pressure transducers, and conductivity “Ion” probes. The 7 pairs of dynamic 

pressure transducers and ion probes allow for the computations of flame and wave velocities and 

the detection of detonation events. It is important to note that the gross sampling rate of the DAQ 

is divided among the Analogue inputs. For this reason, various patterns were used in order to keep 

the sampling rate high enough per channel as to maintain a reasonable resolution. Configurations 

[1, 2, 4, 5, and 6] were scanned during sequential tests to gather data at all locations to develop the 

velocity trends per case. 

Table 5 Scan patterns and sample rate per configuration 

Pattern Input Location # Channel Sample 

Rate  

# Ion Pressure Hz 

1 PX,1,2,3,4,5,6,7  156250 

2  1,2,3,4,5,6,7 178571 

3 1,4,7 1,4,7 208333 

4 1,2,3 1,2,3 208333 

5 3,4,5 3,4,5 208333 

6 5,6,7 5,6,7 208333 

 

During preliminary testing it was deduced that cross channel interference existed between 

the PX329 Static Pressure strain gauge and the first two scanned channels of static pressure 
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transducers. The analogue range for all sensors was -5 to +5 VDC to help improve the settling 

time; however, the ambient reading from the strain gauge being ~0.74 VDC while the rest was ± 

2 mVDC. This offset displayed fairly significant cross channel buildup during sampling and lead 

to the removal of the PX329 sensor in all but one scan configuration. It is also important to note 

that sink resistors of 10KOhms were added in parallel to all AI’s and a 1KOhm was placed in the 

open channel following the PX329, even with the addition of an empty channel the contamination 

was still present in the first input following. Another method explored, to a degree, was reducing 

the sampling rate; however, even at a 500 kHz gross sampling rate the cross channel buildup was 

still present; however reduced, and deemed not worth the loss in resolution 

3.3.4.1 Ion Probes 

Ion probes or conductivity sensors, operate with an anode and cathode held at a potential 

difference and when a conductive event occurs it closes the circuit and produces a voltage drop. 

Conductivity probes work for flame front detection due to the chemical reactions releasing ions 

and free radicals. The conductivity of the gas is a function of many factors including temperature, 

pressure, chemical processes and equivalence ratio. Another physical parameter of importance is 

the shape and proximity of the flame front to the wall. For deflagrated flames the actual front may 

not have a planar profile and could be conical as found in many studies leading to errors in 

detection. Detonations, on the other hand, produce a very strong and thin chemical reaction region 

that is nearly a planar allowing for accurate detection.  

In previous studies held at ERAU Gas Turbine Lab, ion probes have consisted of Autolite 

25 and 26 resister spark plugs (8-10KOhm) connected to the PCB 482C amplifier in an open circuit 

with the ground connection being a common point on the PDE tube assembly. Noise due to EMF 

and other electrical interference was significant and in the cases of deflagrations can obscure the 
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relevant data as the signal response is weak and on the same order of magnitude as the standard 

deviations of the noise. The peaks during cycling AFS solenoid valves and the ignition coil also 

displayed larger magnitudes than the signals of interest. The two primary reasons for low signal 

strength and high noise ratio is the common ground with the spark ignition coil, and utilizing the 

amplifier in an open circuit configuration. The PCB 482C amplifier is designed to provide a 

constant current supply (2-20 mA, up to 26 VDC) while it amplifies differences in the driving 

voltage. A resister in parallel (4.7 KΩ, 4.00 mA) allowed the system to operate as designed and 

displayed a signal strength 4 orders of magnitude higher than the background noise. The local 

ground being attached to the ion probe itself closed the circuit with the coaxial shield. This method 

did not display a large decrease in background noise and interference from the valves and coil until 

all inputs to the PCB 482C were isolated from the test rig ground. The end result yielded a clean 

signal that is not affected by the cycling of valves and the ignition coil charge/discharge while 

maintaining a high signal response. 

3.3.4.2 Dynamic Pressure Transducers 

PCB 111A24 Dynamic Pressure transducers use fused quartz and an internal amplifier to 

measure pressure gradients and static pressure changes within limits. They are well suited for 

shock wave measurements and pressure trends within shock tubes. The pressure transducers are 

used in conjunction with the PCB 482C amplifier with a 4.00mA driving current. The minimum 

resonant frequency of the transducers is 400 KHz and sampling at 200 KHz per channel will 

generally not cause large fluctuation in readings; while multiple runs decrease the uncertainty. 

Additional information can be found in appendix B2. 
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3.3.4.3 PX329 

The static pressure strain gage, an Omega PX329, internally amplified with a 0-5 VDC 

output was used to record the fuel manifold pressure. The factory 5-point calibration can be found 

in Appendix B1. In order to help isolate and clean the signal a 10 VDC precision power supply 

was fabricated to supply the excitation voltage with a ripple of less than 1 mV.  

 
Figure 25 JICF20 at 60psi mass flow 0.0764 kg/s and an average Φ of 1.25, 4xPort 22.5o Injection 

Unfortunately, the unit was supplied power from the common 13.9 VDC power supply and 

during charge and discharge of the ignition coil would register a deviation marked in the green box 

(figure 24); however, no harmonic was induced. This was later used during post processing to help 

determine the time between ignition and ion detection. The location of the spark discharge is 

represented by a red line in the above figure.  



39 

 

 

 

3.3.5 Bulk Air Delivery 

 
Figure 26 Bulk Air Supply 

Due to the large volumetric flow required, the economic solution was an industrial blower, 

a Spencer Turbine 15Hp VB110B. The blower is able to supply 0.18 kg/s of air with a clean tube 

configuration of length 2.76 m. A reducing section, an ANSI 150 class flex hose connector 3” to 

2”, and a porous thrust surface to facilitate the required testing conditions.  
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Figure 22 VB110B Blower Performance with clean configuration 

The mass flow rate per power supplied by the Hitachi L300P 20Hp VFD is displayed in 

the above plot for the clean tube configuration with a porous thrust surface. The use of a VFD and 

differential manometer allowed for control of the mass flow rate without the use of a restrictor. It 

is also important to note that the exit temperature of the air rises with increased backpressure and 

VFD power as the blower/compressor is neither isentropic nor adiabatic process due to losses.  

  
Figure 27 Porous Pressure Surface 
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The porous pressure surface consists of 53 3/16” holes drilled using a radius center drill in 

a ¼” AL6063 plate located at the 3” flange of the flex hose reducer (80% Blockage with respect 

to reducer). This method allowed for an even distribution of flow rate across the surface and 

minimize some loss due to the smooth profile of the individual nozzles in the downstream 

direction. Since the location of the plate was 10” in front of the reducing nozzle, it was assumed 

that perturbations and flow inconsistencies had enough time to attenuate and compress through the 

nozzle, leading to a uniform flow field before fuel injection. 

With the porous thrust surface, mass flow is able to backflow during combustion and 

blowdown. The problem with a porous thrust surface is that it will impose a flow structure that 

will decrease the post shock pressure and possibly weaken the formation of the shock front, as 

studied by Cooper, Jewel and Shepherd in The Effect of a Porous Thrust Surface on Detonation 

Tube Impulse26. 

3.3.6 Venturi Flowmeter 

 
Figure 28 Venturi Flowmeter Installed 



42 

 

 

 

The venturi used for the study was manufactured out of AL2024 T6 stock with a 1.75” 

throat, internal diameter of 2.90” and an overall length of 10.00”, displayed in figure 27. A series 

of designs were evaluated using CFD, in order to check analytical predictions and estimate total 

pressure recovery. The 4th iteration displayed the best performance (in CFD) for pressure recovery 

while maintaining a moderately close differential pressure measurement to compressible 1D 

prediction. 

3.3.6.1 CFD Study 

The grid utilized for each trial consisted of a quarter cross-section containing 1.5M 

structured cells within the mesh. The boundary layer growth was started with a delta of 0.001” to 

capture the viscus effects along the wall and adaptive meshing at the surface was used to reduce 

the maximum Y+ to a value less than 1. On average, using the static wall pressure at the boundary 

yielded 7.3-8.1% higher differential pressures between CFD and compressible predictions for the 

same mass flow rate. 
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Figure 29 Venturi Flowmeter at 0.156 kg/s mass flow rate contour plots 

As can be observed, losses and some separation are present within the diffuser segment. 

The theoretical total pressure recovery being 99.6% at a flow rate of 0.156 kg/s. This does not take 

into account inlet losses or separation. Losses and separation are located after the throat tap and 

will relatively leave the differential pressure measurements intact.  
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Figure 30 Venturi Flowmeter 0.156 kg/s Y plus 

The above figure is a representation of the Y+ for the structured grid of ~1.5M cells after 

2 rounds of grid adaptation. The initial cell growth was started at 0.001” with a growth rate of 

10%.  
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Figure 31 Venturi Flowmeter 0.156 kg/s wall shear stress 

Inspection of the wall shear flow reveals a few interesting correlations with some of the 

localized pressure gradients and flow separation. The location of the high shear stress leading into 

the throat correlates well with the lower pressure regions and from the velocity contours the 

boundary layer thickness was reduced, causing the flow near the wall to accelerate.   
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Figure 32 Unstructured Mesh with a mass flow rate of 0.052 kg/s examining the pressure and velocity at the throat tap location 

A secondary mesh was generated to check the assumption that the wall static pressure is 

the same as the port going to the manometer while falling between the low pressure regions. An 

unstructured mesh with ports in place, once again, yielded the same results within 0.5% of the 

structured CFD studies and 7.3% higher differential pressure than the compressible predictions. 

Furthermore due to the port size being relatively small, having a diameter of 0.084”, significant 

losses or flow deviations were not observed. 

Due to limited resources and time constraints, the calibration of the venturi was primarily 

based off of the CFD predictions since it is grid independent, two models of turbulence agree and 
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the difference compared with the analytical compressible calculations was acceptable. The 

increase in differential pressure is expected to be higher in the real case and with CFD due to the 

boundary layer thickness decreasing the effective throat diameter.  

3.3.6.2 Analytical Compressible Equations 

The solution used to compute mass flow rate through the venturi during operation 

comprises of an iterative solution to a set of isentropic and adiabatic compressible equations. In 

order to help reduce the number of iterations the initial values are initialized with 1D 

incompressible calculations.  

3.3.6.2.1 1D Incompressible 

Step #1: Initialize values 

𝜌1𝑣1𝐴1 = 𝜌2𝑣2𝐴2 

𝑃1 +
1

2
𝜌1𝑣1

2 = 𝑃2 +
1

2
𝜌2𝑣2

2  

Note: density is assumed constant and v2 is substituted from the continuity equation in 

terms of areas and v1 leading to the following solution. Density is first assumed to be ambient 

based on the ideal gas law. With A1 and A2 being the known physical parameters of the venturi 

flow meter. 

𝑣1 = √𝑑𝑃
2

𝜌
[(

𝐴1

𝐴2
) − 1]

−1

 

𝑀1 =
𝑣1

𝑎1
= 𝑣1/√𝛾𝑅𝑇1 

3.3.6.2.2 1D Compressible Solution 

Step #2: A1 plane, inlet static pressure tap. 

𝑃𝑜1 = 𝑃𝑜𝑃𝑅1 
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𝑇𝑜1 = 𝑇𝑜 

𝜌𝑜1 =
𝑃01𝑀𝑊𝑎𝑖𝑟

𝑅𝑢 𝑇𝑜1
 

𝑇1 = 𝑇𝑜1 [1 + (
𝛾 − 1

2
)𝑀1

2]
−1

 

𝑃1 = 𝑃𝑜1 [1 + (
𝛾 − 1

2
)𝑀1

2]
−

𝛾
𝛾−1

 

𝜌1 =
𝑃1𝑀𝑊𝑎𝑖𝑟

𝑅𝑢 𝑇1
 

𝑎1 = √𝛾𝑅𝑇1 

𝑚1̇ = 𝜌1𝑀1𝑎1𝐴1 

Step #3: A2 plane, throat static pressure tap 

𝑃2 = 𝑃1 − 𝑑𝑃 

𝑃𝑜2 = 𝑃𝑜1𝑃𝑅2 

𝑇𝑜2 = 𝑇𝑜1 

𝑀2 = √
2

𝛾 − 1
[(

𝑃𝑜2

𝑃1
)
2

− 1] 

𝑇2 = 𝑇𝑜2 [1 + (
𝛾 − 1

2
)𝑀2

2]
−1

 

𝜌2 =
𝑃2𝑀𝑊𝑎𝑖𝑟

𝑅𝑢 𝑇2
 

𝑎2 = √𝛾𝑅𝑇2 

𝑚2̇ = 𝜌2𝑀2𝑎2𝐴2 

Step #4: Iterative comparison. Loop to step #2 and update M1 until the desired discrepancy 

between the mass flows is within 0.1 g/s. This usually takes 5-20 iterations for convergence. 
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𝑀1 𝑛𝑒𝑤 =
1

2

2𝑚2
̇ − 𝑚1̇

𝜌1𝑎1𝐴1
 

3.3.6.3 Corrections to Compressible 

 

Figure 33 Venturi Flowmeter Inlet Pressure Recovery 

Corrections for total pressure losses and measured differential pressure are below for 

reference. The PR1 function is a curve fit equation from measured data to compensate for the total 

pressure loss from the ambient room pressure to the total pressure located at the first tap. The 

second PR2 is derived from CFD and is the pressure loss at the throat of the venturi from the first 

tap and is already compensated for by shifting the differential pressure measurement based upon 

a curve fit equation to match the compressible predictions to the CFD results. 

𝑃𝑅1(𝑚1̇ ) = 1.000 − 0.3468𝑚̇1
2 − 0.00151𝑚̇1 

𝑃𝑅2(𝑚2̇ ) = 1 

The measured differential pressure was corrected to match it to the CFD results to 

compensate for boundary layer effects, allowing for improved accuracy of mass flow rate. It must 
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be noted, that this correction is from CFD studies and the result was found to be grid independent; 

the same was true for multiple turbulent dissipation models.  

𝑑𝑃 = 𝑑𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(1 − 0.04765𝑚̇−0.24023) 

 

Figure 34 Venturi Flowmeter mass flow rate predictions 

The above plot represents the various methods of acquiring the mass flow rate through the 

flow meter as a function of differential pressure. The first method plotted is incompressible, the 

method used for initialization which assumes isentropic, adiabatic and constant density. The 

compressible method displays a higher differential pressure, especially at higher flow rates as 

would be expected. CFD results display the highest differential pressure in comparison to the 1D 

idealized methods; however, results are within 8% for all models utilized. The primary reason for 

the higher pressure is boundary layer effects and localized pressure gradients near the throat. 
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4 Results and Discussion 

4.1 Phase 1: Physical Obstacle Testing 

Five configurations were successfully tested for two equivalence ratios. A representation of 

the configurations can be found below for visual comparison. 

 

 

 

 

 

 
Figure 35 Phase 1 Physical DDT Stacks, Cross Section of 0.0 is wall and 0.5 is centerline 
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4.1.1 Full Stack Representative Raw Data 

 
Figure 36 Representative Raw Data of Stacks 1, 4 at station #7 

The near Stoichiometric Stack 1 case is a deflagration flame front displaying some time 

separation between the pressure wave and flame front (green). The higher equivalence stack 1 is 

in the process of transitioning to detonation. It was not fully achieved due to the pressure not 

reaching CJ pressure of nearly 280 psi (blue). Stack 4 is a good example of a fully developed 

detonation wave. The max pressure attained is the Von Neumann pressure spike and the first small 

plateau of pressure corresponds to the CJ detonation wave pressure, also not the coincidence of 

the flame and shock detection near 6.7 ms. The falling of the pressure history is the result of the 

products expanding to the choked condition in the flow stream and the blowdown of products. 

CJ Pressure 

Von Neumann 
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4.1.2 Full Stack Condensed Information 

 
Figure 37 Nondiminsional Velocity of Physical DDT Stacks Mair 0.0539 kg/s 

Figure 36, Flame velocity attained within the Diagnostic test section. As from observation 

many cases did not reach the detonation was speed, cases under V/VCJ of 1.0. The best performing 

cases being Stack 3, 4 and 6. Stack 3 is a diverging obstacle case with a separation of 1.17 x/D, 

stack 4 is constant spacing constant blockage of BR 32.7 and 4.69 x/D and Stack 6 is a convergent 

divergent with variable spacing. The highest exit velocities belong to the cases with the least 

obstructive obstacles in the diagnostic section. For several cases and locations indicating velocities 

under theoretical, detonation success was achieved by further examining the time history of the 

flame and pressure response. In general, excessive obstacles can hinder flame and wave speed.  
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Figure 38 Nondiminsional Pressure of Physical DDT Stacks Mair 0.0539 kg/s 

The above plot of pressure ratio with respect to the Chapman-Jouguet pressure is a good 

indication if detonation was achieved for cases greater than 1. Noting that for Φ 1.23 and stacks 4, 

5 and 6, displaying average pressures well beyond the CJ value, indicates one of two items. First 

the possibility of an overdriven detonation wave which is unstable, or more than likely the 

detection of the Von Neumann pressure spike. In the above cases it is the Von Neumann pressure 

spike as the velocity is near VCJ. This pressure spike, not captured by CJ Theory is well 

approximated by applying the normal shock relations as in the ZND model and corresponds rather 

well. 
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Figure 39 Flame Detection Time of Physical DDT Stacks 0.0539kg/s 

The detection time between the configurations is rather interesting in figure 39. Stacks 1 

and 3 have the highest obstacle densities of all configurations with only a 1.17 x/D separation 

between each while the others vary greatly (bottom two data lines for the higher equivalence 

ratios). Overall it is expected that the higher fuel air mixtures display a reduction in time from their 

stoichiometric counterparts due to the heat release and chemical reaction rate being higher. 
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Figure 40 Flame Detection Improvement over Basline, Physical DDT Stacks Mair 0.0539 kg/s 

Observing the performance increase over the appropriate baselines in figure 40, it is clear 

that the flame accelerates quickly in the section leading to the diagnostic section while still 

maintaining in several cases comparable velocities in the diagnostic section overall. It can easily 

be stated that the high density of obstacles aids flame acceleration in the early stages; however, 

the configurations with fewer obstacles achieve higher exit velocities due to the unnecessary flow 

restriction slowing the flame and wave fronts. Observing the slopes after x/D of 32, Stacks 4, 5 

and 6 display the highest velocities. These configurations impose the least amount of flow 

obstruction in the DDT section.  
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Table 6 DDT Stack Pressure Loss 

 

Stack # 

Pressure Loss 

Pa Psig % 

Stack 0 2055 0.298 2.05 

Stack 1 26681 3.870 26.66 

Stack 3 17267 2.504 17.25 

Stack 4 6636 0.962 6.63 

Stack 5 5313 0.771 5.31 

Stack 6 9267 1.344 9.26 

 

The above table contains the required static head pressure required differential to drive a 

set mass flow rate of 0.0539kg/s of air through the obstacles with an ambient pressure of 14.514 

psi. Noting for the configuration with the highest number of obstacles, Stacks 1 and 3, they display 

the highest losses. Stack 1 contains uniformly spaced 44% BR obstacles while Stack 3 uses a 

diverging series beginning with 44% BR and reduces to 29% BR over the length. 
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Figure 41 Post Pressure of Physical DDT Stacks 0.0539kg/s 

The post shock static pressure was averaged over 0.70 ms after the products have expanded 

and accelerated to the sonic velocity in the product stream, displayed in figure 40. The importance 

of this metric is to quantify the effectiveness of the pressure rise in the combustion chamber; 

however, the products if subjected to additional flow restriction, as in some of the cases, will not 

be fully accelerated due to the choked conditions of the additional blockages and not the clean 

inner diameter. It must also be noted, that due to the porous thrust surface in a clean tube 

configuration with a 36% BR (respect to inner diameter of the spacer 1.707” and open area of the 

porous thrust surface), and it is not expected to reach the same post shock pressure plateau as the 

valve configuration26.  However, the successful stacks achieving DDT displayed pressures 

congruent to tests with no backflow and even exceeding it slightly. The implication strengthens 



59 

 

 

 

the case for localized pressure surfaces to help the favorable pressure gradient during blowdown; 

if the application uses a porous thrust surface with insufficient fuel and air total pressure needed 

for stagnation19, 28.  

A direct comparison being made for stacks 4 and 5 examining the impact of the fuel and 

air delivery scheme. The valve configuration used by Gagnon is the exact setup sharing the 

hardware of the DDT section and supplied in 3 locations with the use of 7 AFS GS60 gaseous fuel 

solenoid valves30. The estimated Φ of 1.30 was utilized for the valve configuration whereas the 

valveless utilized Φ 1.22. 

 

Figure 42 Refill Method Comparisons, Post Shock Pressure 

As can be observed the valveless case with a porous thrust surface is near the valve 

configuration post shock pressure in figure 42. The post shock plateau pressure is seemingly 

unaffected with the use of plentiful obstacles upstream, albeit a slight axial increase for stack 5.  
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Figure 43 Refill Method Comparisons, Wave Pressure 

The pressure trends between the injection schemes are also close in figure 43. The majority 

of the standard deviations are around 100psi. Given the spread, it is reasonable to draw several 

conclusions and state the pressure wave achieved is not affected by filling velocity or the porous 

thrust surface to a great extent with plentiful obstacles. The case with the fewest number of 

obstacles upstream, stack 5, displayed a meaningful reduction until the later transition section 

requiring an additional orifice.  
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Figure 44 Refill Method Comparisons, Flame Velocity 

Flame velocity for Stack 5, BR 32.7 and 7.03 X/D, the least densely packed case displaying 

velocity reductions in comparison to the valve scheme. In general, the valveless supply with a 

porous thrust surface serves to decrease multiple performance parameters; however, the use of 

frequent physical obstacles appears to significantly decrease the backflow, alleviating the expected 

reductions in post shock pressures and flame velocities.  
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Figure 45 DDT Success for Physical DDT Stacks 

Drawing trends from the DDT success and Post shock pressure, even without achieving 

detonation, the pressure gain is significant as long as fast deflagration is achieved. Another primary 

concern of not achieving detonation is the possibility of wasting the unburned reactants that 

exhaust before being consumed, i.e., emissions, wasted fuel, and possibility burning reactants in 

the turbine section.  

In general, the testing with moving mixtures for Stack 4 (CSCB.A.4) and Stack 5 

(CSCB.C.6) from Gagnon’s studies correlates remarkably well30, displaying similar trends and 

performance in attained pressure, ion velocity and detonation success. This in effect is a one to 

one comparison of verifying the rigs performance of using a valveless scheme to a valve 

configuration with the same test section.  
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4.1.3 General Electric Trial Reproduction 

The reproduction of General Electric’s trial displayed a failure to transition to detonation 

reliably for equivalence ratios of 1.00 and 1.23 in a comparable non-dimensional lengths. It must 

be noted that the geometry differs in several respects.  

Table 7 Physical Differences between GE and Reproduction Trial 

 GE ERAU 

Inner Diameter 51.0 mm 43.3 mm 

Spacing Between 50.8 mm 50.8 mm 

Blockage Ratio 43% 44% 

 

ERAU’s test rig was 27.9% smaller in cross-sectional area and the physical obstacles retard 

the transition, as the average flame velocity only reached 760 m/s, 40% of the Detonation Velocity, 

and few configurations achieved detonation pressure and VCJ. This was not wholly unexpected as 

similar trends were observed in Christopher Tate’s experiments in quasi static mixtures8. The cell 

size being near 22mm, approximately 53% of the inner tube diameter and 70% of the orifice, may 

be close enough to collapse the detonation wave structure and keep it from fully forming as 

observed.  
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4.2 Phase 2: Single Orifice Tests 

  
Figure 46 Phase 2 Testing Configurations 

The above figure displays a section cut of the single orifice configurations. The Left image 

is the single orifice trial, right is the combined single orifice with the low loss bluff body. The gold 

washer is the simple blockage inserted into the flow on the same plane of JICF0# injection, 24.5” 

downstream of the fuel injection port location. The spacers used to locate the orifice reduce the 

inner diameter from 1.939” to 1.707” and filled half the test section. The diagnostic array maintains 

the inner diameter of 1.939”.  
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4.2.1 Representative Raw Data 

 
Figure 47 Raw Data of Combined BR03 at Φ 1.2516 Mass Air 0.0539 kg/s 

The above figure is the raw data from pair 5, 6 and 7 towards the aft of the diagnostic 

section. The drop in voltage is the time of spark discharge and as observed does not excite 

harmonics in the system. The dominant feature of this configuration is a leading pressure wave 

traveling at 613 m/s or nearly Mach 1.77 with a pressure of 36-40psi agreeing fairly well with 

theory. The post shock pressure is less than expected by 30%, and likely due to the porous thrust 

surface allowing some backflow. The second slight rise in pressure, indicated by the red arrow, 

corresponds with the flame front and is a result of associated heating and expansion. The third is 

a reflection from the upstream perforated pressure plate, highlighted by the purple arrow. 

 

V Shock 613 m/s 
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4.2.2 Equivalence 2 Compiled Data 

 
Figure 48 Ion Velocity of Single and Combined BRs at Φ 1.25 Mass Air 0.0543 kg/s 

The velocity displayed in the above figure shows a few interesting trends. The first trend 

for all configurations is the U shaped velocity profile. The flame front acceleration is initially 

negative entering the diagnostic section before it rises at the end. This is most likely due to an area 

change of 29% leading into the diagnostic section from the front transition section due to the use 

of the retaining spacers. Furthermore, flame front velocity is a function of blockage ratio; however, 

this relation is nonlinear as the flame velocity drops at the highest blockage utilized. Lastly, the 

bluff body does not display the same acceleration as the BR03 blockage. This may be due to the 

location of the bluff body being 10” upstream of the JICF location where the flame kernel has most 

likely not fully developed. Overall it is important to note that the standard deviations range from 
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45m/s to 160 m/s so the uncertainty is roughly on the same order as the difference between the 

tests.  

  
Figure 49 Max Pressure of Single and Combined BRs at Φ 1.2516 Mass Air 0.0543 kg/s 

The pressure developed within the combustion chamber indicates a strong correlation to 

the blockage ratio, and the bluff body addition is not entirely favorable in figure 49. As the orifice 

blockage increasing to that of the bluff body, the attained pressure decreases. This is likely due to 

the bluff body’s proximity to the ignition location, which is too short a distance for flame kernel 

to growth to the full diameter of the chamber; however, it imposes additional turbulence that is 

favorable in comparison to its absence.  
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Figure 50 Flame Detection Time of Single and Combined BRs at Φ 1.2516 Mass Air 0.0543 kg/s 

It was found that an improved metric for comparison was using the blowdown time; time 

between spark discharge and ion sensing, to establish the overall performance. If Ion velocity was 

utilized only, i.e., the velocity between consecutive pairs in the diagnostic section, the overall 

trends would be lost. It is interesting to note that the higher blockage ratio begins to collapse onto 

each other while the velocity trend peaks at the BR03 (44%) and significantly decreases for the 

BR05 (59%) orifice possibly due to excessive mixing. It is apparent that the velocity spike occurs 

shortly after the blockage and then decreases to a moderate level.  
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Figure 51 Improvement of Flame Detection Time of Single and Combined BRs at Φ 1.2516 Mass Air 0.0543 kg/s. Referenced to 

BR00 

Using no blockage with spacers as the baseline, it becomes apparent that the bluff body 

significantly decreases the blowdown time as would be expected due to it acting as the first 

blockage in a series of two. 

 A very important consideration, neglected by many studies, is the associated flow losses 

due to the physical obstacles.  
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Table 8 Phase 2 Filling Losses for Each Configuration 

 Head Pressure during 

Steady State Filling 

Pressure Loss 

Mair 0.0539 kg/s Mair 0.0763 kg/s 

Configuration B.R. % Psi % Psi % 

Comb_BR00 46.4 | 00.0 0.263 1.813 0.432 2.977 

Comb_BR01 46.4 | 29.4 0.379 2.610 0.591 4.072 

Comb_BR03 46.4 | 44.0 0.534 3.682 0.927 6.390 

Comb_BR05 46.4 | 59.2 0.977 6.734 1.853 12.766 

Single_BR00      0 | 0.0 0.183 1.263 0.273 1.880 

Single_BR01      0 | 29.4 0.305 2.099 0.419 2.885 

Single_BR03      0 | 44.0 0.476 3.280 0.789 5.438 

Single_BR05      0 | 59.2 0.922 6.350 1.752 12.074 

 

Performance of the streamlined bluff body in comparison to a single orifice is noteworthy. 

This should highlight the need to intelligently design physical geometry for its intended purpose 

in order to reduce flow losses and improve survivability. In the case of the bluff body and BR03 a 

52% reduction in pressure loss was achieved with roughly the same blockage ratio as BR03.   
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4.3 Phase 3: JICF Testing 

4.3.1 Representative Raw Data 

 
Figure 52 JICF03 (α 25o β 135o) Mair 0.054kg/s Φ 1.2808|0.9877 Pressure Sweep 

The above figure is the pressure scan of all dynamic pressure transducers simultaneously. 

Two important observations; first, a weakly formed acoustic wave (blue arrow), and secondly a 

reflected shock (red arrow) followed by an increase in post shock pressure.  
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Figure 53 JICF03 (α 25o β 135o) Mair 0.0539kg/s Φ 1.2808|0.9886 Paired 567 

Looking closely at the paired pressure and ion sensors it becomes apparent that a reflection 

entered the diagnostic array after the flame front and continued through it. Station 5 (green lines) 

shows that the two fronts approximately coincide and by station 7 (black lines) the pressure wave 

has overtaken the flame front. 

VShock 939 m/s 
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Figure 54 JICF03 (α 25o β 135o) Mair 0.0539kg/s Φ 1.2808|0.9886 

Scatter in the study displayed a generous spread as can be observed in the above plot. To 

condense the data to a few figures of merit that represents the majority of the cases, only points 

between the 10th and 90th percentiles as well as within the outlying 30% of the raw standard 

deviation were used. This strips the representative value from the extreme outliers while 

maintaining a reasonable level of agreement. The two condensed metrics retained is the mean and 

standard deviation.  
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4.3.2 JICF Sweep Condensed Data 

In order to establish global trends for various JICF orientations and locations a sweep was 

conducted under the same operating conditions. Equivalence ratios examined were 0.98, and1.28, 

and air mass flow rates of 0.0539, and 0.0764 kg/s to determine consistency. 

 
Figure 55 Ion Velocity JICF Sweep, Φ 1.28, MR 3.855 

The first insight in the above figure is a slightly detrimental to negligible effect of the 

JICF’s on flame velocity. The standard deviation for many of the cases range between 50-100 m/s 

and is the same magnitude as the difference from the baseline. It must be stated that due to the 

high deviations, no strong conclusions can be drawn other than an ineffectiveness to accelerate the 

flame and more than likely a detriment to the chemical reaction rate. The detriment stems from 

multiple items; first the leaning of the fuel air mixture decreasing the chemical reaction rate by the 

introduction of diluting air, secondly poor mixing will impose locations with no chemical reactions 
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due to lack of fuel content, thirdly the additional of cool JICF air serves to cool the reactants, flame 

brush, and products. The addition alone increases the bulk flow rate by up to 28% during filling 

for MR 3.855 as displayed. The fact that the fluidic cases display velocities at or under the baseline 

case, with no JICF injection, indicates the effects of the negative attributes.  

 
Figure 56 Max Pressure JICF Sweep, Φ 1.28, MR 3.855 

Observations in figure 56 indicate 2 trends. First, jet orientation displays favorability 

towards Upward facing JICF’s (α 25o β 90o-180o) for the majority of the sensor locations. 

Secondly, axial position displays a large favorability to the leading location for all JICF’s, denoted 

by JICF0#.  
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Figure 57 Pressure Increase over Baseline JICF Sweep, Φ 1.28, MR 3.855 

In comparison to the baseline clean configuration, the pressure increases can clearly be 

observed and the best performing cases are JICF02 JICF03 α 25o and β 180o and 135o respectively. 

There are several other configurations with a lower the attained pressure. These detrimental flow 

structures are those that theoretically produce large and long lasting vortex pairs that mix poorly 

with the bulk flow. Take the two cases closely aligned with the flow and fall near or under the 

baseline case.   
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Figure 58 Ion Detection Time JICF Sweep, Mair 0.0539 kg/s, Φ 1.28, MR 3.855 

The detection times for the JICFs are located in the above figure. A clear difference is the 

separation of the aft and forward locations of JICF injection. This is logical as the leading location 

has a significantly longer length and time for its effect to influence the combustion process. Both 

locations also display a strong favorability to several JICF orientations.  
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Figure 59 Ion Detection Time Improvement JICF Sweep, Mair 0.0539 kg/s, Φ 1.28, MR 3.855 

The improvements in blowdown time in comparison to the baseline clean case is located 

in the above figure with negative values signifying a favorable reduction in time. The best 

performer was JICF03, α 25o β 135o, upward facing and 45o off, estimated to induce a biased paired 

streamwise vortex with small shedding filaments7.  

   
Figure 60 Visualization of Instantaneous flow field of a Normal JICF, MR 3.3, Re 2100, Bulk Flow M 0.2 31 
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Figure 60 is an example of the instantaneous flow field of a vortex shedding JICF normal 

to the wall. The first image to the left is a transparent scalar contour of vortex intensity while the 

other two to the right are solid contours at two different vorticity levels31. 

4.3.3 Effect of varying jet strength 

 
Figure 61 Ion Velocity JICF20 (α 25o β 135o and 180o) MR Sweep, initial Φ 0.98 

Varying jet strength in the above plot displays a fairly minimal impact on flame velocity 

regardless of the addition of oxidizer. First, the leaning of the fuel air mixture has no discernable 

impact on flame velocity. Secondly, there is likely a non-reactive pocket of gasses that is too lean 

to combust before mixing takes place and furthermore the temperature change and high shear likely 

results in localized quenching. The main takeaway from this is that a significant dilute (up to 28.7% 

for MR3.855) can be added to the mixture stream in an asymmetric fashion without effecting the 
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deflagration velocity achieved. The caveat to this trend is that the addition of oxidizer also 

increases the bulk flow rate and velocity that leads to a maximum steady state filling increase of 

approximately 7.37 m/s for the MR 3.855 case. 

 
Figure 62 Max Pressure JICF20 (α 25o β 180o) MR Sweep, initial Φ 0.98 

Achieved max pressure displays a strong correlation with increasing momentum Ratio even 

for cases with lower maximums such as the above figure. The Standard deviation of the data ranges 

from 1 to 5psi, the same order of magnitude as the difference above for some locations. To that 

extent only general trends are trusted. As for the dilution of the bulk flow, once again the pressure 

does not seem to degrade; however, there are several competing effects as previously discussed.  
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Figure 63 Ion Detection Time JICF20 and 30 (α 25o β 180o 135o) MR Sweep, initial Φ 0.98 

Ion detection time displays clear correlations with increasing momentum ratio in figure 63. 

The aft location, as displayed, produces a fundamentally smaller difference than the leading 

location. It must be noted that the change in velocity due to the addition of the JICF dilute does 

not in fact make up the differences in blowdown time. This implication suggest that another 

mechanism is the root cause of the trend and from previous studies for both fluidic and physical 

obstacles can display a localized velocity spike without an increase downstream.   
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4.3.4 Equivalence Ratio Influence 

 
Figure 64 JICF 02, 03, 04, 20, 30, 40 Mair 0.0539kg/s MR3.855 Φ 1.00 and 1.28 

The base fuel air mixture has a profound impact on the attained pressure. Rich mixtures 

yield a slightly lower final temperature; however, the chemical reaction rate and heat release is 

higher than its lean counterpart. Also of interest is the 3 cases that display a sharp increase in 

pressure represent the rich mixtures while the lean displays a fairly consistent increase throughout 

the diagnostic section. 
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Figure 65  JICF 02, 03, 04, 20, 30, 40 Mair 0.0539kg/s MR3.855 Φ 1.00 and 1.28 

Given the same addition of dilute for every JICF case, the impact of orientation and location 

can be easily observed in figure 65. The three best performing orientations at both locations are 

displayed, α 25o β 90o 135o and 180o for both axial locations and equivalence ratios. The largest 

impact of time reduction stems from equivalence ratio, followed by the axial injection location 

favoring rich mixtures and upstream JICF injection. 
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4.3.5 Bulk Flow Effects 

 
Figure 66 Effect of Flow Rate on JICF Flame Velocity 

A few correlations can be drawn in the above figure including a decrease in flame velocity 

with an increase in fill velocity. One could assume that it is due to a lower JICF MR; however, the 

clean configurations displayed the same trend. The flame velocity (150-450 m/s) is much larger 

than the filling of reactants (25.4-36.5 m/s). The difference between the two clean configurations 

is less than 120 m/s, just outside of the standard deviations and surprisingly contains many of the 

JICF data points within the two. In general, the higher bulk flow rate displays lower flame 

velocities, especially those interacting with the JICF’s.  
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Figure 67 Effect of Flow rate on JICF Max Pressure 

The achieved pressure displays a clear favorability to lower filling velocity; however, the 

MR of the JICF is not the same. Unlike the previous discussion of the effect of varying jet strength, 

the trend at the higher flow rate shows that the majority of the JICF’s negatively impact the ability 

to build pressure. Due to the likelihood of poor mixing, and non-reacting regions, the mixing in 

the flow may in fact be insufficient to disperse and spread the flame front to make up for the 

secondary oxidizer injection.  
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Figure 68 Bulk flow Variation on Blowdown Time 

The base time difference with no JICF injection is 1.184 ms for station #1, 21.4 x/D (Mair 

0.0539kg/s 9.437ms MR 3.855 | Mair 0.0764 kg/s 8.253ms MR 1.911). Filling velocity does reduce 

the blowdown time, figure 68; however, not as significant as the reduction during filling. It is of 

interest that the velocity and pressure of the higher flow rate case displayed many negative impacts; 

however, the ion detection time still displays a reduction. The JICF delivers a secondary oxidizer 

mass flow rate of 0.0165 kg/s, and makes up for a difference of 0.024 kg/s between the two baseline 

cases to roughly match the ion detection time. At least for the higher performing cases, the flame 

is accelerated.  

  

Mbulk ~0.0575 kg/s Vfill 26.2 | 33.9 m/s 

Mbulk ~0.0815 kg/s Vfill 37.1 | 44.7 m/s  
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4.4 Phase 4: Bluff Body and JICF 

4.4.1 Representative Raw Data   

 

 
Figure 69 Hybrid Trial JICF03 (α 25o β 135o) Mair 0.0539kg/s MR3.85 Φ 1.307|1.008 Station 567 paired 

Looking at the above plots, three distinct trends can be observed about the velocity and 

pressure history. First, attained pressure is less than what would be expected from the normal shock 

relations with the first velocity of 527 m/s, Mach 1.524, and should yield 22.6 psi gauge pressure. 

The post shock pressure varies between 16 and 20 psi roughly, lower than predicted. The reason 

behind this pressure reduction is the perforated pressure surface upstream, displaying a blockage 

of 50.44% (with respect to 1.939” inner diameter) that allows a small amount of backflow from 

V Shock 527 m/s 

V Reflection 941 m/s 

VIon 316 m/s 
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the control volume. This corresponds well with findings from Cooper, Jewel and Shepherd that 

indicates a post shock pressure increase with increased blockage at the PDE’s pressure surface26.  

4.4.2 Hybrid JICF Sweep 

 
Figure 70 Hybrid Trial Mair 0.0539kg/s MR3.85 Φ 1.28 Flame Velocity 

As observed in phase #3, the trends above figure indicate a discernable effect on 

accelerating the flame front velocity. It must also be noted that orientation plays a role; however, 

the standard deviation of the data scatter hinders the ability to draw trends.  
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Figure 71 Hybrid Max Pressure Mair 0.0539kg/s MR3.85 Φ 1.28 

The pressure trends indicate favorability to jet orientations of angle α 25o and yaw β 135o 

and 180o. A slight trend, noticeable in the early stations, is a higher pressure increase for the front 

location of injection. 
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Figure 72 Hybrid Trial Mair 0.0539kg/s Φ 1.28 Pressure Improvement over baseline 

Inspection of the increased pressure rise over the baseline helps to highlight the observed 

favorability. It is also interesting to note that the benefit falls off considerably as the front traverses 

down the tube even for the favorable orientations. Once again, the standard deviation is sufficiently 

large possibly skewing the results.  
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Figure 73 Hybrid Trial Mair 0.0539kg/s Φ 1.28 Ion Blowdown Time 

The blowdown time in figure 73 indicates very clear favorability towards angled α 25o and 

yawed β 90o to 180o jets in the forward injection location. 
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Figure 74 Hybrid Trial Mair 0.0539kg/s 1.28 Ion Blowdown Improvement 

The two most favorable cases JICF 03 and JICF 04, α 25o β 90o and 135o respectively, 

display the largest reductions in figure 74. The addition of the bluff body did not affect the 

favorability by much, and adjusted a slight bias from 90o to 135o; however, just outside of the 

deviations. 
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4.5 Comparisons of Selected Physical and Fluidic Cases 

 
Figure 75 Pressure and Ion Data from 4 comparable configurations in station 7, velocities from stations 5, 6 and 7 

The above figure displays the pressure and ion time history for station #7 with near 

stoichiometric fuel and air mixtures and time referenced to spark ignition. The Fluidic and Hybrid 

MR is 3.86 with a bulk air flow rate of 0.0539 kg/s for all cases. Several differences can easily be 

observed between the 4 configurations. 

The JICF and single orifice are roughly comparable and interesting to note that the 

reflection displays the same profile; however, the differences in velocity is significant (Red Circle). 

The first pressure rise of the fluidic case is the beginning of the acoustic waves coalescing into a 

shock traveling at M 1.27-1.4 in stations 5 through 7.  The time for the flame front to reach station 

7 is nearly 2.19 ms longer for the fluidic case as compared with the single orifice. With this stated, 

529 m/s 

550 m/s 

556m/s 

466 m/s 

864 m/s 

923 m/s 

923 m/s 
508 m/s 

316 m/s 226 m/s 192 m/s 304 m/s 
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a significant section of the single orifice case is 22.5% smaller in cross-sectional area until the 

diagnostic section accounting for some of the time reduction. 

Comparing the hybrid case and to the combine blockage the ion sensing of the hybrid lags 

behind by 1.126 ms; this is more a function of the area reduction for 50% of the DDT transition 

section as stated before. The initial peak pressure of the hybrid case is less than for its physical 

counterpart; however, the pressure rise of the secondary is significantly higher and yet precedes 

chemical reaction region which is not favorable. In general, both cases utilizing the bluff body 

display higher pressure and a reduction in time between the first detection of the pressure waves 

and ion sensing. 
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4.6 JICF Orientation Summary 

 

 

 
Figure 76 JICF Summarized Plots of Improvements by X/D 21.4, Mair 0.0539 kg/ 
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Figure 77 Hybrid Summarized Plots of Improvements by X/D 21.4, Mair 0.0539 kg/s 
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The importance of focusing on the first sensor station, station 1 X/D 21.4, is to observe the 

data without possible interference from the Ion Probes protrusion into the tube. From this 

information, the addition of a bluff body, as in the hybrid case does not result in a large shift of 

preference and further strengthens the previously drawn correlations. It is also important to note 

that the bluff body itself decreases the Ion Detection time by 28.06%, Increases Max Pressure by 

6.43% and Ion Velocity by 31.41% for Φ 1.28 in phase #3 and 4 while phase #2 displayed an ion 

detection time decrease of 15%, and max pressure increase of 16% and flame velocity decrease of 

7.5%. The overall effectiveness of the JICF degrades with the addition of the bluff body; however, 

this is in part due to the turbulence generation of the bluff body decreasing the difference from the 

baseline. 
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5 Conclusion 

Rig verification indicated the success of achieving detonations using configurations examined 

by Tate and Gagnon using a valve pulse detonation combustor8, 30. The impact of moving mixtures 

actually improved the attained ion velocities and pressures slightly while the porous thrust surface 

had little impact on performance. The greatest takeaway is that for cases with insufficient fuel and 

air supply total pressures, with a porous thrust surface, the use of frequent physical obstacles 

leading the DDT section serves to alleviate a significant amount of backflow during blowdown. 

Furthermore, frequent obstacles are effective at accelerating the deflagrated flame initially, but 

impede the later acceleration and transition to DDT. The later portions as examined, favor low 

blockage ratios and greater spacing. Paired with the development of biased streamlined bodies the 

performance can be significantly increased without imposing excess losses and reduce the supply 

pressures required. 

Overall, the use of a fluid jet in crossflow displays a small mixed ability to increase the 

performance of a deflagrated flame; additionally, under several conditions the influence can 

become negative. The orientation of the favorable cases being angled 25o and yawed between 90o 

and 135o improved the baselines pressure and ion detection times significantly. However, the 

amount of diluting JICF air necessary is impractical accounting for a bulk mass flow increase of 

up to 28%, leaning the fuel air mixture, thus increasing the initiation energy required to achieve 

detonation. In general, the circular jet in crossflow with off normal orientation has merits; however, 

the performance of a single port falls short of the physical orifice configuration in all categories 

aside from pressure loss reductions. Furthermore, there exists a need for localized pressure surface 

to generate favorable gradients that a fluidic technique is unable to provide.   
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6 Future Work 

6.1 Test Rig Improvements 

Integration of the bulk air supply with the DAQ for future studies will significantly improve 

the capabilities of the tests and the quality of data. With the addition of a differential pressure strain 

gauge on the venturi, thermocouple to monitor the bulk air temperature at the inlet and outlet and 

power feedback from the VFD, it will further refine the ability to set the mass flow rate and 

measure the outlet air temperature leading into the test apparatus. Furthermore, using the 

PWM/A.I. interface on the VFD, the DAQ can also control the mass flow rate of air delivered, 

increasing the accuracy of the supply and reduce setup time between trials. The final additional to 

the low pressure bulk air supply would an industrial resistive heater. This addition would allow 

active control of the bulk air supply temperature, leading to additional capabilities.  

The sampling rate of the current DAQ is 1.25 MHz and divided among active analogue 

inputs. Employing a dedicated input board with simultaneous analogue inputs and a digital trigger, 

would improve the resolution. Additional benefits to simultaneous sampling, if sufficient in 

quantity, could further reduce test iterations or be used to increase the sample size significantly. In 

this study the sensor measurements were sampled 20-30 times each, in a 60 replication trial.  

Fuel supply was only sufficient for mass flow rates of 0.08 kg/s and still transient. The use 

of a higher flow rate supply or an accumulator tank would increase the possibilities for more, short 

multicycle burst, higher bulk flow rates and further steady the fuel supply within the cycle. The 

drawback would be increased fuel usage as purging would be required or the addition of isolation 

valves. Utilizing liquid fuels driven by a fuel pump and actuated by a valve would be another 

solution and would expand capabilities.  
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The use of photo sensors instead of ion probes would improve the measurement accuracy of 

the test chamber as the probes rely on the chemical reaction to occur in the gap between the anode 

and cathode. Furthermore, the current ion probes are located on the sidewall of the combustion 

chamber and the flame front may not be planar and could bypass the sensor for several samples 

leading to decreased accuracy. This was observed in this study for many deflagration cases as the 

signal would come and go until sufficiently filled with the reaction region signifying a poor ability 

to locate the deflagration flame front.  

For the weaker pressure waves and acoustic response observed in the study, a different type 

of pressure sensor is required. The PCB 111A24 dynamic pressure transducers are designed for 

strong shocks and have a useful range of 0-1000 psi. The tests conducted with the exception of the 

full stacks were on the order of 5% of the full range. This causes susceptibility of cross channel 

interference and errors in the readings.  

Air supply in the cycle was found to be unfavorable to multicycle operation. The highest 

achieved cycle time was 18Hz in a 3 shot burst. This is in part due to the inadequate fuel supply 

and the response from the blower. During the combustion and blowdown phase of the cycle 

backflow was present. The perforated plate reduced the backflow significantly; however, further 

reductions are necessary. A properly designed air manifold would significantly improve backflow 

and shock attenuation. 

GE conducted a study investigating multiple points of ignition at the same axial location. 

The result was shortening the time and distance for the flame kernel(s) to cover, and expand to the 

full diameter. This method could be utilized to further insure proper ignition and reduce the cycle 

time.  
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6.2 Suggested Areas of Investigation 

The next successive study, aside from optimizing the addition of reactants and ignition, should 

focus on designing the required end flow structure, then how to use fluidics or physical obstacles 

to achieve it efficiently. This would be primarily an analytical study involving CFD and possible 

validation with visually-based measurements such as PIV or the use of a high speed camera. 

 1st: Fast Flame kernel Expansion 

 2nd: Deflagration Flame Acceleration 

 3rd: Optimize one of several DDT initiation events/mechanisms. 

 4th: Applied cooling schemes where needed 

Another suggestion is an investigation into shock reflecting obstacles for the later DDT section, 

optimizing the physical geometry for a more favorable pressure gradient. 

6.3 Fluid Jet Technique 

This study has displayed the poor ability of a normal JICF to accelerate the deflagrated flame; 

however, by using multiple JICFs in a pattern it could serve to break up the coherent vortex 

structure and further increase the fluid strain rate while decreasing the JICF MR. The additional 

air should be limited to a practical value, and used sparingly.  
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A. Hardware Information 

A.1 PX329 

Omega: PX329-100A5V 

SSN #: 082014I095 

Pressure Range: 0-100 psia 

Excitation: 9-30 Vdc 

Temperature Range: -20 to +85 C 

Connection: ¼-18 NPT Male 

Balance: 0.012 Vdc 

Sensitivity: 5.002 Vdc/100psia 

Static Accuracy: 0.25% Full Span, ~ 0.25 psi 

Table 9 PX329 Factory Calibration Information 

Pressure Unite Data 

psia Vdc 

0.00 0.012 

50.00 2.514 

100.00 5.014 

50.00 2.515 

0.00 0.012 

Excitation 28.000 
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A.2 PCB 111A24 
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A.3 PCB 482C05 
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A.4 10Vdc Precision Power Supply 

IC PMIC: AD582KNZ-ND 0.05% Tolerance 

Transistor: 2N6040GOS-ND 

Resistor: PPC200W-1CT-ND 

Supply Voltage Capacitor: 0.47µf 400V 3% Panasonic Polypropylene Film Capacitor. Connected 

in parallel between the GND and the +Vin 

 

Figure 78 AD587 10VDC Precision Power Supply, Information provided by Analogue Devices 
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B. Condensed Test Information 

B.1 Phase #1 

Table 10 DDT Configurations Mair 0.0539, RE 25455 fill air 

Case 

DDT 

% Ion Time ms Pmax Psi Post Psi 

Ion Velocity 

m/s Φ 

X/D 23-38 23.81 37.87 23.81 37.87 23.81 37.87 24.98 36.70 FI 
Stack0 0 10.277 13.175 7.27 12.45 7.27 12.71 145 325 0.935 

Stack1 0 5.272 6.049 199.22 79.72 65.70 28.61 779 684 1.058 

Stack3 15 5.773 6.377 210.44 353.78 60.74 47.55 1011 1109 0.964 

Stack4 0 7.392 8.071 90.48 337.06 41.30 50.22 617 1135 1.021 

Stack5 10 8.166 9.009 74.18 177.26 33.23 51.81 725 924 0.956 

Stack6 0 8.515 9.419 83.48 194.44 27.73 38.76 748 821 0.975 

Stack0 0 8.403 10.828 16.53 24.76 16.53 21.14 183 358 1.193 

Stack1 0 4.715 5.318 236.81 195.41 70.68 39.43 772 1078 1.212 

Stack3 96.667 4.765 5.144 285.11 328.83 68.30 62.26 1512 1542 1.233 

Stack4 100 6.332 6.805 151.92 615.23 60.61 64.85 906 2149 1.228 

Stack5 100 6.782 7.388 110.44 766.46 50.07 65.39 1057 1427 1.212 

Stack6 40 6.902 7.417 216.65 725.46 49.59 57.52 909 1981 1.190 

 

B.2 Phase #2 

Table 11 Phase 2 Orifice Mair 0.0539 kg/s 

Mair 0.0539 kg/s Ion Time ms 

Pmax Pressure 

Psi Ion Velocity m/s Φ 

 X/D  23.58 35.95 23.58 35.95 24.61 34.92 FI 
Comb BR01 7.985 10.653 12.28 14.79 286 282 0.940 

Comb BR03 7.594 10.019 17.83 22.63 384 269 0.931 

Comb BR05 7.463 10.138 23.92 30.64 317 291 0.902 

Single BR00 10.030 13.341 9.05 8.68 278 251 0.983 

Single BR01 9.041 11.892 13.44 14.73 307 258 0.964 

Single BR03 8.788 11.520 18.84 21.69 289 268 0.925 

Single BR05 9.030 11.820 22.25 27.39 313 266 0.885 

Comb BR00 6.839 9.125 17.21 20.98 337 372 1.264 

Comb BR01 6.560 8.159 20.21 34.41 422 417 1.258 

Comb BR03 5.989 7.612 35.16 39.62 500 372 1.252 

Comb BR05 5.929 7.820 52.98 51.69 459 308 1.201 

Single BR00 8.036 10.681 14.81 17.77 364 277 1.271 

Single BR01 7.181 8.857 20.50 29.92 415 393 1.274 

Single BR03 6.646 8.513 41.97 47.83 426 341 1.246 

Single BR05 6.803 8.643 57.39 55.96 401 338 1.216 
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Table 12 Phase 2 Orifice Mair 0.0763 kg/s 

Mair 0.0763 kg/s Ion Time ms Pmax Pressure Psi Ion Velocity m/s Φ 

 X/D  23.58 35.95 23.58 35.95 24.61 34.92 FI 
Comb BR01 7.034 9.725 11.91 13.76 280 265 1.030 

Comb BR03 6.755 9.017 14.23 16.82 418 297 1.010 

Comb BR05 6.239 8.472 19.80 23.90 301 355 1.003 

Single BR00 6.587 9.081 21.22 26.51 355 323 0.948 

Single BR01 8.617 11.541 10.49 10.92 298 236 1.044 

Single BR03 7.752 10.239 14.24 15.77 381 350 1.025 

Single BR05 7.199 9.702 20.22 22.66 334 302 1.007 

Comb BR00 7.672 10.178 21.58 24.93 299 292 0.959 

Comb BR01 5.887 7.677 18.70 24.27 393 468 1.308 

Comb BR03 5.027 6.700 39.77 42.30 446 358 1.292 

Comb BR05 5.008 6.755 51.48 52.97 472 342 1.265 

Single BR00 7.044 9.212 17.63 21.18 418 284 1.311 

Single BR01 6.220 7.863 24.77 34.21 502 462 1.310 

Single BR03 5.759 7.465 47.25 49.60 436 358 1.300 

Single BR05 5.868 7.531 54.54 53.56 439 351 1.280 

The above table displays pertinent information of interest for comparisons. Station 1, X/D = 23.6, 

is most beneficial in determine the blowdown time reduction from the transition geometry as it is 

the shortest length and furthermore interference from upstream perturbations will be minimized 

such as additional protrusion of ion probes. 

B.3 Phase #3 

Table 13 JICF Mair 0.0539 kg/s, Re 25400 fill air 

Case MR Ion Time ms Pmax Psi Ion Velocity m/s Φ 

X/D  21.40 33.78 21.40 33.78 22.43 32.75 FI Diluted 
JICF00 0.000 12.353 15.390 6.24 8.19 119 370 0.940 0.940 

JICF00 0.000 9.131 11.206 13.39 22.68 227 619 1.277 1.277 

JICF00 0.000 9.496 12.274 14.02 18.42 134 428 1.233 1.233 

JICF10 0.824 11.775 14.761 7.72 9.68 125 386 0.955 0.898 

JICF10 1.301 11.596 14.411 7.86 10.15 138 439 0.967 0.880 

JICF10 1.843 11.280 14.304 8.98 11.32 115 394 0.973 0.852 

JICF10 2.449 11.049 14.017 9.05 11.80 127 425 0.979 0.825 

JICF10 3.855 10.768 13.789 10.25 12.84 117 440 0.985 0.760 

JICF20 0.824 11.309 14.063 8.87 11.23 145 381 0.971 0.913 

JICF20 1.301 11.125 13.878 9.23 12.08 138 394 0.976 0.888 

JICF20 1.843 10.802 13.541 10.29 13.45 140 411 0.979 0.858 

JICF20 2.449 10.549 13.428 10.77 14.05 133 396 0.980 0.825 

JICF20 3.855 10.396 13.240 12.72 16.77 143 378 0.982 0.758 

JICF20 5.518 10.144 12.902 13.70 18.29 147 409 0.986 0.693 

JICF30 1.301 11.069 13.920 9.16 12.24 143 408 0.985 0.895 

JICF30 2.449 10.684 13.541 10.98 15.15 147 342 0.989 0.833 
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JICF30 3.855 10.410 13.186 12.47 16.68 144 417 0.994 0.767 

JICF40 0.824 12.050 14.925 7.04 8.83 157 382 0.961 0.904 

JICF40 1.301 11.692 14.497 7.74 10.16 150 408 0.972 0.884 

JICF40 1.843 11.519 14.317 8.53 11.28 156 388 0.975 0.854 

JICF40 2.449 11.355 14.302 8.17 10.29 143 455 0.966 0.814 

JICF40 3.855 11.210 14.165 8.68 11.61 135 437 0.965 0.745 

JICF50 3.855 11.354 14.463 8.27 10.92 149 440 0.978 0.755 

JICF60 0.824 12.195 15.492 6.53 8.01 117 429 0.952 0.896 

JICF60 1.301 12.201 15.445 6.58 8.64 124 415 0.952 0.866 

JICF60 1.843 12.093 15.306 6.69 7.87 133 458 0.953 0.835 

JICF60 2.449 12.123 15.384 6.80 8.45 136 557 0.954 0.803 

JICF60 3.855 12.104 15.431 7.29 8.12 133 415 0.954 0.737 

JICF10 3.855 9.031 11.753 16.31 23.73 163 420 1.275 0.984 

JICF20 3.855 8.954 11.532 19.39 24.06 180 429 1.243 0.960 

JICF30 3.855 8.971 11.562 18.48 27.12 172 499 1.249 0.964 

JICF40 3.855 9.112 11.664 17.04 21.19 194 428 1.263 0.975 
 

 

Table 14 JICF Mair 0.0764 kg/s, Re 35756 fill air 

Case MR Ion Time ms Pmax Psi Ion Velocity m/s Φ 

X/D  21.40 33.78 21.40 33.78 22.43 32.75 FI Diluted 

JICF00 0.000 10.343 13.541 8.43 11.51 182 371 1.012 1.012 

JICF10 0.408 10.106 13.244 8.47 11.89 177 307 1.020 0.976 

JICF10 0.645 10.199 13.415 8.44 11.79 168 357 1.019 0.952 

JICF10 0.914 10.006 13.180 8.70 12.11 196 291 1.024 0.931 

JICF10 1.215 9.871 13.149 9.19 12.61 168 411 1.026 0.906 

JICF10 1.911 9.614 12.983 9.48 13.33 148 438 1.029 0.851 

JICF20 0.408 9.759 12.901 9.02 11.67 188 316 1.041 0.996 

JICF20 0.645 9.807 12.859 9.40 13.08 231 332 1.042 0.973 

JICF20 0.914 9.615 12.688 9.44 13.21 203 310 1.043 0.949 

JICF20 1.215 9.376 12.510 9.71 13.80 210 314 1.044 0.922 

JICF20 1.911 9.325 12.366 10.82 15.03 226 349 1.048 0.867 

JICF20 2.736 9.052 12.090 11.52 15.71 223 334 1.047 0.806 

JICF40 0.408 9.904 13.082 8.91 12.27 184 392 1.040 0.996 

JICF40 0.645 9.982 13.028 9.06 12.16 238 352 1.041 0.972 

JICF40 0.914 9.980 12.929 9.13 12.62 232 359 1.043 0.949 

JICF40 1.215 9.746 12.777 9.39 12.99 213 350 1.044 0.922 

JICF40 1.911 9.523 12.687 9.97 13.49 208 290 1.046 0.865 

JICF60 0.408 10.163 13.420 8.53 11.44 219 424 1.031 0.987 

JICF60 0.645 10.193 13.271 8.89 12.06 196 378 1.032 0.964 

JICF60 0.914 10.091 13.240 8.72 11.64 222 361 1.034 0.940 

JICF60 1.215 9.909 13.264 8.85 11.81 198 348 1.035 0.913 

JICF60 1.911 10.095 13.329 9.00 11.86 188 301 1.035 0.856 
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Table 15 JICF Mair 0.0539 kg/s, Re 25400 fill air 

Case MR Ion Time ms Pmax Psi Ion Velocity m/s Φ 

X/D  21.40 33.78 21.40 33.78 22.43 32.75 FI Diluted 
JICF00 0 12.353 15.390 6.24 8.19 119 370 0.940 0.940 

JICF00 0 9.437 12.044 15.29 21.03 178 451 1.277 1.277 

JICF01 3.855 10.682 14.143 10.59 10.63 120 355 0.966 0.746 

JICF02 3.855 9.892 12.783 12.70 13.72 153 389 0.994 0.767 

JICF03 3.855 10.040 13.068 13.80 13.80 135 413 0.980 0.756 

JICF04 3.855 10.914 13.594 11.90 13.86 167 348 0.977 0.754 

JICF05 3.855 16.093 14.413 9.61 10.89 101 379 0.972 0.750 

JICF06 3.855 10.949 14.523 8.75 9.54 114 458 0.969 0.748 

JICF10 3.855 11.466 14.650 8.50 11.64 123 473 0.955 0.737 

JICF20 3.855 10.578 13.425 11.67 16.24 142 394 0.989 0.763 

JICF30 3.855 10.724 13.449 11.21 15.45 150 400 1.002 0.774 

JICF40 3.855 11.055 14.102 8.85 12.07 155 436 0.986 0.761 

JICF50 3.855 11.580 14.742 7.65 10.18 134 436 0.981 0.757 

JICF60 3.855 11.694 14.949 7.97 9.98 141 469 0.987 0.762 

JICF01 3.855 8.422 11.143 13.17 26.86 190 452 1.280 0.988 

JICF02 3.855 8.484 10.882 17.04 31.28 204 446 1.285 0.992 

JICF03 3.855 8.115 10.863 17.58 29.68 200 379 1.281 0.989 

JICF04 3.855 8.194 11.012 13.19 30.68 179 390 1.272 0.982 

JICF05 3.855 8.535 11.256 11.69 32.79 180 512 1.272 0.981 

JICF06 3.855 8.421 11.450 12.82 24.81 185 402 1.265 0.977 

JICF10 3.855 8.856 11.603 16.70 22.50 145 397 1.267 0.978 

JICF20 3.855 8.798 11.383 19.50 23.70 187 410 1.276 0.985 

JICF30 3.855 8.934 11.454 18.88 25.28 187 422 1.274 0.983 

JICF40 3.855 9.095 11.711 16.51 21.01 188 413 1.264 0.976 

JICF50 3.855 9.209 11.927 15.53 19.80 229 395 1.263 0.975 

JICF60 3.855 9.292 12.240 14.13 18.71 167 416 1.256 0.969 
Table 16 JICF Mair 0.0764 kg/s, Re 35756 fill air 

Case MRjet Ion Time ms Pmax Psi Ion Velocity m/s Φ 

X/D  21.40 33.78 21.40 33.78 22.43 32.75 FI Diluted 
JICF00 0.000 8.253 11.066 14.18 20.05 252 358 1.293 1.293 

JICF01 1.911 7.542 10.259 9.82 13.39 223 305 1.299 1.075 

JICF02 1.911 7.353 9.838 9.91 16.53 278 317 1.302 1.077 

JICF03 1.911 7.244 9.987 9.57 15.49 244 266 1.301 1.077 

JICF04 1.911 7.359 9.966 11.63 13.17 223 269 1.303 1.077 

JICF05 1.911 7.475 10.308 9.68 14.64 219 330 1.302 1.077 

JICF06 1.911 7.451 10.178 11.48 13.11 231 278 1.293 1.070 

JICF10 1.911 7.760 10.614 13.35 17.87 227 291 1.310 1.083 

JICF20 1.911 7.637 10.306 13.40 21.31 272 260 1.314 1.087 

JICF30 1.911 7.663 10.341 14.10 23.60 309 271 1.310 1.084 

JICF40 1.911 7.922 10.526 13.68 19.98 304 270 1.309 1.083 

JICF50 1.911 8.000 10.737 11.75 18.71 300 312 1.298 1.074 

JICF60 1.911 7.927 10.788 14.37 18.25 231 334 1.314 1.087 
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B.4 Phase #4 

Table 17 Hybrid Mair 0.0539 kg/s, Re 25344 fill air 

Case MR Ion Time ms Pmax Psi 

Ion Velocity 

m/s Φ 

X/D  21.40 33.78 21.40 33.78 22.43 32.75 FI Diluted 
JICF00 0.000 8.161 11.196 12.49 14.44 187 313 1.000 1.000 

JICF00 0.000 6.788 9.220 16.27 27.74 234 332 1.279 1.279 

JICF01 2.452 7.719 10.934 13.90 20.46 161 317 1.015 0.854 

JICF01 3.859 7.938 11.426 13.62 20.83 148 294 0.980 0.757 

JICF02 2.452 7.673 10.630 14.47 26.49 205 310 1.016 0.856 

JICF02 3.859 7.637 10.533 16.52 29.79 184 347 1.006 0.776 

JICF03 2.452 7.640 10.683 14.69 26.75 166 411 1.015 0.854 

JICF03 3.859 7.456 10.349 15.74 31.08 196 388 1.011 0.780 

JICF04 2.452 7.707 10.799 14.65 24.89 165 265 1.011 0.851 

JICF04 3.859 7.653 10.673 15.30 25.86 196 323 1.000 0.772 

JICF05 2.452 8.187 11.314 13.23 17.31 151 307 1.006 0.847 

JICF05 3.859 8.231 11.197 13.79 20.31 160 313 0.999 0.771 

JICF06 2.452 7.822 11.254 12.66 18.40 159 242 0.999 0.841 

JICF06 3.859 7.879 11.384 13.16 15.91 153 283 0.993 0.766 

JICF10 2.452 8.057 11.186 13.00 15.02 203 243 0.993 0.836 

JICF10 3.859 7.839 10.921 13.70 15.99 208 281 1.015 0.784 

JICF20 2.452 7.852 10.874 13.26 17.24 226 259 0.987 0.831 

JICF20 3.859 7.772 10.672 13.87 18.66 236 276 0.996 0.769 

JICF30 2.452 7.988 11.088 12.73 16.81 247 262 0.988 0.832 

JICF30 3.859 7.876 10.887 14.14 18.32 243 281 0.992 0.766 

JICF40 2.452 8.129 11.101 12.54 15.64 283 244 0.982 0.827 

JICF40 3.859 7.939 11.060 12.99 16.58 263 253 0.990 0.764 

JICF50 2.452 7.770 10.830 12.85 17.67 217 276 1.041 0.876 

JICF50 3.859 7.769 10.869 13.36 17.91 226 253 1.045 0.806 

JICF60 2.452 8.050 11.222 12.24 14.62 208 290 1.024 0.862 

JICF60 3.859 7.938 11.120 12.84 14.60 225 267 1.035 0.799 

JICF01 2.452 6.529 8.975 18.65 32.45 240 313 1.279 1.076 

JICF01 3.859 6.484 8.886 20.24 25.93 226 353 1.282 0.989 

JICF02 2.452 6.633 9.027 20.81 29.26 254 304 1.286 1.083 

JICF02 3.859 6.512 8.800 21.01 30.22 252 330 1.290 0.996 

JICF03 2.452 6.529 9.024 19.44 29.08 229 343 1.289 1.085 

JICF03 3.859 6.389 8.524 22.09 26.20 295 374 1.293 0.998 

JICF04 2.452 6.430 8.849 19.64 25.75 223 332 1.276 1.074 

JICF04 3.859 6.299 8.590 21.23 25.18 260 349 1.281 0.988 

JICF05 2.452 6.663 9.167 18.04 27.11 222 293 1.273 1.072 

JICF05 3.859 6.643 8.934 19.32 24.68 216 313 1.278 0.986 

JICF06 2.452 6.540 9.110 17.26 31.29 224 251 1.269 1.069 

JICF06 3.859 6.454 9.082 18.64 27.80 206 315 1.271 0.981 

JICF10 2.452 6.551 8.927 17.90 24.88 252 282 1.305 1.099 

JICF10 3.859 6.466 8.811 18.52 24.90 250 337 1.310 1.011 

JICF20 2.452 6.565 8.908 19.53 26.14 252 291 1.301 1.095 

JICF20 3.859 6.572 8.896 20.39 28.95 288 283 1.317 1.017 

JICF30 2.452 6.659 8.981 18.86 26.63 288 284 1.297 1.092 

JICF30 3.859 6.604 9.057 19.37 28.54 279 372 1.307 1.008 
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JICF40 2.452 6.556 8.931 18.30 24.53 266 271 1.296 1.091 

JICF40 3.859 6.548 8.944 18.41 24.68 236 306 1.303 1.006 

JICF50 2.452 6.628 9.053 17.36 24.91 282 268 1.298 1.093 

JICF50 3.859 6.609 9.098 17.64 26.69 273 251 1.300 1.003 

JICF60 2.452 6.702 9.159 17.18 24.47 260 284 1.299 1.093 

JICF60 3.859 6.651 9.171 17.42 23.16 251 271 1.302 1.004 
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C. Part Drawings 
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