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Abstract

Thermoacoustic instabilities can occur in thermal devices when unsteady heat release is

coupled with pressure perturbations. This effect results in excitation of eigen-acoustic

modes of the system. These instabilities can lead to unpredictable behavior of the sys-

tem. Gas-turbine combustion systems are especially prone to this phenomenon reducing

their overall efficiency. Additionally, due to the nature of the combustion, the turbines end

up releasing undesired amounts of harmful chemicals to the atmosphere, such as Nitrous

Oxide (NOX).

A Rijke tube, representing a resonator with a mean flow and a concentrated heat source,

is a convenient system to study the thermoacoustic phenomena. Under certain conditions

of the main system, a loud sound is generated through a process similar to that in devices

prone to thermoacoustic instabilities. Rijke devices have been extensively studied and sev-

eral models which provide accurate representation of the system, already exist. These

models often assume that the system is compromised of a single heat source which drives

the instability. This may not be the case as combustors which use more than one flame

are common for engines and industrial burners. By using the aforementioned models, a

nonlinear feedback control scheme is developed for a Rijke-type combustion system with

vi



n actuators and m heat sources.

The performance of the controller is tested under different scenarios, assuring that it

is capable to exponentially stabilize the system despite any nonlinearities present in the

heat release. Additionally, active control is studied in detail by analyzing the impact of the

control parameters under different positioning of heat sources. The effect of the location

for the actuators is also studied.
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Chapter 1

INTRODUCTION

With the demand for higher efficiency machines for production of electricity, gas turbines

have replaced other forms of combustion engines in various types of vehicles. In addition,

the development of mini gas turbine technology has become a solution for heat and power

in many households and businesses. These turbine engines offer a high efficiency (60%)

along with low maintenance requirements [Annaswamy (2000)]. It is known however,

that at higher temperatures (1500oC), these combustion engines begin to emit pollutants

harmful to the human health, particularly Nitrous Oxide (NOX).

Following the threshold of 1500oC, any rise in temperature causes a rapid increase of

thermal NOX creation rate [Schefer (2003)]. This problem is often prevented by reducing

the maximum flame temperature or preventing hot spots with the use of coolants or lean

premixed air and fuel streams. The use of coolants simply complicates the design of the

already complex gas turbine engine; and lean premixed combustion is known to have other

serious issues, such as flow reversal [Culick (1988)].

A type of combustion reaction is classified depending on where the fuel and air are
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CHAPTER 1. INTRODUCTION 2

mixed (either before the combustion chamber, or in the chamber itself). While premixed

combustion offers certain advantages, it may be dangerous if certain conditions are vi-

olated. Often, these types of combustion systems are prone to high amplitude pressure

perturbations, which can damage the turbine and may cause it to fail [Correa (1988)].

Gas turbines usually use a partially premixed approach instead. These premixed flames

normally have a high response time, which causes them to couple with a low acoustic fre-

quencies. Nevertheless pressure perturbations are eventually significant. These pressure

perturbations and coupling can result in thermoacoustic instabilities.

1.1 Thermoacoustic Instability

Thermoacoustic instabilities refer to the appearance of pressure and velocity oscillations

within a fluid coupled with some unsteady heat release. These kinds of instabilities are of-

ten found in systems whose heat release is coupled with pressure or velocity disturbances.

Combustion systems are often associated with these instabilities due to favorable acoustic

properties combined with a relatively high heat release. Figure 1.1 provides a representa-

tion of the positive feedback loop that destabilizes the system.

Figure 1.1: Feedback loop of a thermoacoustic instability [Matveev (2003)].

Essentially, the instabilities are self-sustained large amplitude oscillations of pressure
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and velocity with the flame acting as an acoustic actuator and the combustions chamber

as an acoustic resonator. The occurrence of combustion instability depends on the phase

between the heat release and pressure fluctuations at the heat source.

The first known study of this phenomena was performed by Rijke during the 19th cen-

tury. However, there were several reports of sound interaction with flames, sound being

generated by glass workers as they blew molten glass bulbs or other forms of sound-heat

release interaction.

1.2 Rijke Tube

Studying thermoacoustic instabilities requires a complex analysis of an already compli-

cated phenomenon. In 1859, Petrus Rijke, a Dutch physicist, discovered a way to produce

sound using heat through a simple device. This mechanism was named the Rijke tube: it

consisted of a vertical pipe with a gauze located in the lower half of the tube. If the gauze

was heated to a high enough temperature, the pipe would generate a high-intensity tone.

This was one of the earliest studies of thermoacoustic instabilities. Figure 1.2 shows a

diagram of the mechanism.

The most important component is the heat source and its positioning. If the heat gauze

has a high enough temperature, its location is on the bottom half of the tube, and a mean

flow is present due to natural convection; the device is able to create standing pressure

waves. This type of thermoacoustic instability creates a frequency of sound related to the

acoustic eigenmodes of the tube [Juniper (2010)].

The process was thoroughly explained by Lord Rayleigh. During the first half of the
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Figure 1.2: Rijke tube and the approximate velocity and pressure distributions [Matveev
(2003)].

perturbation, the combined effect of mean flow and the acoustic velocity pushes the cold gas

through the gauze. When the gas is heated, its density changes and it becomes an acoustic

source. When the velocity is reversed, the hot gas passes through the gauze again which

reduces the temperature difference and lowers the heat transfer. This lowered heat transfer

cools the fluid located higher than the gauze, and the process repeats itself indefinitely

[Yang et al. (2015)].

1.3 Motivation

As mentioned before, Rijke tubes are not the only source of thermoacoustic oscillations.

These instabilities are often observed in rocket engines, furnaces, and previously men-

tioned, gas turbines.

Thermoacoustic instability plays important roles in technical applications. Uncon-

trolled large amplitude oscillation created by the combustion system may lead to larger

pressure load, unexpected or uncontrolled heat transfer, undesired chemical reactions, or in

the worst case, failure of the system. Designers often go through great lengths to prevent
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the appearance of said instabilities, to ultimately avoid its possible negative effects.

A common and simple approach is the iterative design of a stable combustion through

the use of empirical data. These tests are often expensive and time consuming. The data is

also only applicable to a single type of system. The characterization of small or medium

scale laboratory flames is generally more accessible. This approach is often used to create

flame models for industrial burners.

The most common approach for modeling these kinds of systems uses a combination of

1D fluid equations coupled with heat release; normally represented in the energy balance

equation. Due to the complexity, these equations are often reduced to a simplified model

fit for the system. This simplification allows for a numerical model to be developed as well

as an approximate analytical solution. These models tend to be specific to the problem,

although some generalization can be applied to simple systems.

Following the simplification of the system, several control techniques can be attempted

to prevent these instabilities. Passive solutions are often used through the installation of

Helmholtz resonators or cavities in the combustion chamber. Multiple injection ports for

fuel is a more advanced method as it requires clever positioning and timing. Nevertheless,

sometimes these passive solutions are not enough and active control theory may be required

to prevent the growth of pressure oscillations.

Through the use of sensors and actuators, a control mechanism can be installed in the

combustion chamber. Through the use of actuators, the controller can modulate several

properties of the system based on sensor readings. Modulating the pressure waves or the

fuel flow can be done to prevent any transient growth. An example of active control can be

seen in Figure 1.3.
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xa1

xa2
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xf2Heat Sources
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Mean Flow u0

∆xa1 ∆xa2

Controller

W

D0

Figure 1.3: A Rijke-like system with two actuators and two heat sources.

1.4 Objective

The main objectives of this thesis are stated as follows:

• To derive a mathematical model that incorporates heat transfer analysis, appropri-

ate boundary conditions, multiple heat sources, and is capable of showing nonlinear

transient growth characteristic of a Rijke system.

• Simplify said model, such that it can be expressed in a non-dimensional form.

• Show the evolution of an uncontrolled thermoacoustic system.

• Investigate the effect of the placement of different heat sources.

• Develop a nonlinear control technique that reduces aforementioned transient growth.

Furthermore, the nonlinear control parameters must be valid for a realistic scenario.

The outline of the thesis is shown as follows: Chapter 2 is dedicated to the development

of the mathematical model. The assumptions are listed and explained in detail, along with
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the initial and boundary conditions of the system. This continues with the derivation of

the acoustic equations based on our initial fluid conservation equations. Different control

techniques are explored in Chapter 3. Finally, the last portion of the chapter is dedicated

to the development of the nonlinear control model. Chapter 4 explores the results from

simulations with control techniques applied to the mathematical model. Different scenarios

are considered and throughly analyzed. Any apparent inconsistency is explored in detail.

Chapter 5 concludes all the work done and offers suggestions for future work.



Chapter 2

MATHEMATICAL MODEL

2.1 Objectives and Assumptions

The main objective of this chapter is to develop a mathematical model that approximately

describes the natural behavior of a Rijke tube. The development of a controller based on

the model is later studied Chapter 3. There have been several studies on thermoacoustic

instabilities in Rijke system. The models are constructed following the objectives of the

authors, simplifying the dynamic model to a more convenient form; while still retaining

retaining the concept of a Rijke system. For the system studied in this thesis, a general set

of guidelines can be followed from the work found in [Matveev (2003)]. The following are

the assumptions used for the derivation of the mathematical model:

(a) All time-averaged properties of an airflow are treated as constants along the duct.

(b) All heat release is transmitted to the air flow from the heat sources. Heat conduction

to structural elements and thermal radiation are ignored.

8
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(c) The system is a one-dimensional horizontal Rijke-like thermoacoustic duct. Thus,

all waves are planar and any viscous or thermal boundary layer is ignored.

(d) Any variation of the system is assumed to be a small disturbance. Any second order

terms are then assumed to be small and can be neglected.

(e) Gravity and other body forces are ignored.

(f) Mean gas flow speed is small compared to the speed of sound.

(g) The thickness of the heat sources is small compared to the acoustic wavelength, such

that it can be represented as a dirac delta function.

(h) The actuators can be treated as point sources, such that their effect is at a specific

point in the tube.

Assumption (a) refers to values such as temperature of the system, specific heat, thermal

diffusivity, etc. These values are not directly affected by the governing equations and are

treated as constants through the tube. Assumption (c) indicates the absence of boundary

layers, the system does not have a way to dissipate energy (Through the derivation we learn

that boundary conditions do not permit acoustic dissipation to surroundings). This is solved

by adding a damping parameter studied later in this chapter.

2.2 Deriving a Thermoacoustic Model

As with any perfect gas, the analysis can start from the fluid conservation equations. As

shown in [Landau and Lifshitz (1959)], the fluid mass, momentum and energy equations
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are given by:

∂ρ

∂ t̃
+5· (ρ~u) = ρΩ, (2.1)

∂ρ~u
∂ t̃

+5· (ρ~u ·~u) =−5 p+ρ~B+5· τ, (2.2)

∂ p
∂ t̃

+~u ·5p =−γ p5·~u+(γ−1)Q̇+ρa2
Ω+ γQ̇a (2.3)

where~u is the velocity vector of the fluid, ρ is the density of the fluid, and p is the pressure.

Additionally, γ represents the specific heat ratio; B is the specific body force; τ is the

viscous stress tensor; Q̇ is the heat addition rate per unit volume. This heat source will be

defined later in the chapter, it is left as a general heat source for the main derivation. Ω

is the volumetric source intensity per unit volume. Q̇a is the actuation signal; this term is

added as shown in [Fleifil (2007)]. The energy equation (2.3) is written in such a way that

it neglects heat conduction and thermal radiation.

We can further reduce the equations by considering the gas to be inside the duct beyond

the outer edge of the boundary layers formed at the duct walls so that viscous stress can

be ignored. Volumetric source intensity is assumed to be zero. As explained in Section

2.1, body forces are also ignored. To create a homogeneous and one-dimensional velocity

profile, we apply the assumption that the boundary layer is significantly smaller than the

diameter of our tube. We then formulate our problem with respect to the x-axis, aligned

with our mean flow and such that our velocity vector u simplifies to its x component. Given
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these assumptions, equations (2.1)-(2.3) become:

∂ρ

∂ t̃
+

∂

∂ x̃
(ρu) = 0, (2.4)

∂ρu
∂ t̃

+
∂

∂ x̃
(ρu2) =−∂ p

∂ x̃
, (2.5)

∂ p
∂ t̃

+u
∂ p
∂ x̃

+ γ p
∂u
∂ x̃

= (γ−1)Q̇+ γQ̇a (2.6)

Here, t̃ and x̃ represent the dimensional time and space respectively. To further reduce

our equations, pressure, heat addition, the actuation signal, density and velocity can be

represented as sums of a constant in time (denoted by subscript 0), and a small amplitude

wave or a small disturbance (denoted by a tilde):

ρ(x̃, t̃) = ρo + ρ̃(x̃, t̃) (2.7)

p(x̃, t̃) = po + p̃(x̃, t̃) (2.8)

u(x̃, t̃) = uo + ũ(x̃, t̃) (2.9)

Q̇(x̃, t̃) = ˙̃Q(x̃, t̃) (2.10)

Q̇a(x̃, t̃) =
˙̃Qa(x̃, t̃) (2.11)

Applying a small amplitude approximation: any second order term or product between

disturbances can be considered zero. By substituting equations (2.7)-(2.11) into equations
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(2.4)-(2.6) a simplified set of fluid conservation equations can be obtained:

∂ ρ̃

∂ t̃
+uo

∂ ρ̃

∂ x̃
+ρo

∂ ũ
∂ x̃

= 0, (2.12)

ρ0
∂ ũ
∂ t̃

+
∂ p̃
∂ x̃

= 0 (2.13)

∂ p̃
∂ t̃

+ζ
c0

L0
p̃+ γ p0

∂ ũ
∂ x̃

= (γ−1) ˙̃Q+ γ
˙̃Qa (2.14)

Due to the nature of our problem, equation (2.12) can be ignored. It provides information

of the density of the fluid, based on the velocity. It is reassuring to know the problem is not

ignoring any density fluctuations; however the velocity and pressure can be independently

calculated through the use of equations (2.13)-(2.14) without solving for density.

For the system examined, the boundary conditions do not allow the dissipation of acous-

tic energy by doing work to the surroundings. Normally, the system is able to dissipate

energy through the viscous and thermal boundary layer. However, the waves are approxi-

mated to be planar, which dismisses the interaction of the fluid with the tube walls. Because

of this, an additional damping term is added to equation (2.14). This term is dependent on

the pressure fluctuations of the system and is accompanied by the damping parameter ζ .

Further explanation of this can be found in [Juniper (2010)] derived from correlations be-

tween [Matveev (2003)] and [Landau and Lifshitz (1959)].

With equation (2.13) there is a direct relation between the time derivative of velocity

and spatial derivative of pressure; this is called the acoustic momentum equation. Equation



CHAPTER 2. MATHEMATICAL MODEL 13

(2.14) refers to the energy balance of the system, this is called the acoustic energy equation.

Furthermore, we can define our heat transfer and actuation signal as follows:

˙̃Q =
G

∑
g=1

˙̃Qsgδ̃ (x̃− x̃ f g) (2.15)

˙̃Qa =
K

∑
k=1

αakν̃akδ̃ (x̃− x̃ak) (2.16)

For equation (2.16), αak represents the ratio between the cross-sectional area of the kth

actuator (Sk) to the cross-sectional area of the tube (S). Both the gth heat sources and kth

actuator are located at x f g and xak respectively. They are treated as point sources, as shown

by the presence of the delta function.

As stated in 2.1, the heat sources can be assumed to be small enough to be represented

as delta functions. Additionally, it is modeled after King’s law [Yang et al. (2015)]:

˙̃Qsg = Kg

[√∣∣∣u0

3
+ ũ f

(
t̃− τ̃g

)∣∣∣−√u0

3

]
(2.17)

The time delay is represented by τ̃g and is different for each flame. The step function is

used to simulate the processes of heat transfer and thermal diffusion between the heated

wire and the gas. Note that the subscript g denotes a different heater. The Kg coefficient is

dependent on the qualities of the heater and can be calculated with the following formula:

Kg =
2Lwg (Twg−T0)√

3S

√
πλcvρ0

dwg

2
(2.18)



CHAPTER 2. MATHEMATICAL MODEL 14

where dwg, Lwg and Twg denote the diameter, length and temperature of the heated wire.

The different actuators are denoted by the subscript k, αak describes the ratio of the cross-

sectional area Sak of the kth actuator to the area of the duct S. As explained in [Fleifil

(2007)], the acoustic dynamics and energy transfer of a monopole-like sound source can be

modeled as:

ν̃ak = Rk
ũ(x̃ak)

u0
+Sk

p̃(x̃ak)

γM0 p0
(2.19)

where Rk and Sk are our dimensional control parameters. M0 is the Mach number which

is assumed to be low.

2.3 Formulation of Nondimensional Thermoacoustic Sys-

tem

In order to further simplify our control problem, our equations can be put in a nondimen-

sional form. Any variable with a tilde can be replaced by one of the following:

u =
ũ
u0

, p =
p̃

γM0 p0
, Q̇s =

˙̃Qs

γ p0u0

x =
x̃

Lw
, t =

t̃c0

Lw
, δ (x− x f ) =

δ̃ (x̃− x̃ f )

L0
(2.20)

Constants used to nondimensionalize the system include: the mean flow u0, the mach num-

ber M0, mean pressure p0, the length of the duct L0, and speed of sound c0. As such,
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equations (2.13)-(2.14) are reduced to their respective non-dimensional forms following:

∂u
∂ t

+
∂ p
∂x

= 0 (2.21)

∂ p
∂ t

+ζ p+
∂u
∂x

= (γ−1)
G

∑
g=1

Q̇sgδ (x− x f g)+ γ

K

∑
k=1

αakνakδ (x− xak) (2.22)

Note that the heat transfer parameter and the actuation signal have changed to the following:

Q̇sg = Kg

[√∣∣∣∣13 +u f g (t− τg)

∣∣∣∣−
√

1
3

]
(2.23)

Kg =
2Lwg (Twg−T0)√

3u0Sγ p0

√
πλcvρ0

dwg

2
(2.24)

νak = Rku(xak)+Sk p(xak) (2.25)

Following the work of [Culick (1988)], a Galerkin approximation can be used to trans-

form the partial differential equations into a set of coupled ordinary differential equations

(ODEs). This method implies that the final result for pressure and velocity is a superpo-

sition of waves. The amplitude of the modes are represented by the product of a time-

dependent function η j(t) and a spatially dependent trigonometric function ν j(x) [Wang

(1972)].

The solution for the velocity u can be expressed as:

u(x, t) =
N

∑
j=1

ν j(x)η j(t) (2.26)

This solution has to satisfy the previously stated boundary conditions (∂u
∂x = 0). As such,
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ν j(x) can be written as a trigonometric function, whose frequency is ω j =
jπ
L0

. Note how-

ever, that our system is nondimensional, so L0 = 1:

u(x, t) =
N

∑
j=1

cos( jπx)η j(t) (2.27)

Using equation (2.13), we can obtain a relationship for the pressure:

p(x, t) =−
N

∑
j=1

sin( jπx)
jπ

η̇ j(t) (2.28)

Empirical proof of existence of the waves described by Equations (2.27)-(2.28) can be

found in [Epperlein et al. (2014)]. Applying the solutions for pressure and velocity to

equation (2.14), allows us to obtain the following ODE:

η̈ j

jπ
+ jπη j +ζ j

η̇ j

jπ
=−2(γ−1)

G

∑
g=1

Q̇sg(x f g, t− τg)sin( jπx f g)

−2γ

K

∑
k=1

αakνa(xak, t)sin( jπxak)

(2.29)

In this form, a specific value for the damping parameter ζ j can obtained for each mode

[Rubio-Hervas et al. (2015)]. This coefficient is referred as the thermo-viscous damping

coefficient, [Landau and Lifshitz (1959)] and its value is dependent on the natural mode of

the wave, such that:

ζ j = c1 j2 + c2 j0.5 (2.30)

With the constants c1 and c2 being the same for each mode. The value of these are derived
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experimentally [Juniper (2010)].

One of the main objectives of the controller is to prevent triggering [Fleifil (2007)] or

initial growth of the instability. This triggering can be observed with the acoustical energy

per cross-sectional area of the system. This energy has two components given by the kinetic

energy and potential energy, expressed in terms of the velocity and the pressure of the fluid

respectively. The integral over the acoustic length, will give the total acoustical energy of

the fluid such that E(t) is given by:

E(t) =
1
2

∫ 1

0

(
p2(x, t)+u2(x, t)

)
dx (2.31)

Substituting the solutions given by equations (2.27)-(2.28), we can obtain the following:

E(t) =
1
2

∫ 1

0

(− N

∑
j=1

sin( jπx)
jπ

η̇ j(t)

)2

+

(
N

∑
j=1

cos( jπx)η j(t)

)2
dx (2.32)

We can use orthogonality to indicate that
∫ 1

0 (sin(iπx)sin( jπx))dx = 0 if i 6= j which al-

lows us to cancel any cross terms that originate from squaring the sum. Additionally,∫ 1
0 (sin(iπx)sin( jπx))dx = 1 if i = j, which further simplifies the integral to:

E(t) =
1
2

[
N

∑
j=1

(
η̇ j(t)

jπ

)2

+
N

∑
j=1

(
η j(t)

)2

]
(2.33)

Furthermore, we can represent an energy ratio written in terms of the initial energy of the

system:

G(t) = max
E(0)

E(t)
E(0)

(2.34)
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The initial value is always 1 such that any growth after t = 0 can be generally attributed to

the triggering of the system, such that when maxt G(t)> 1 a transient growth is occurring,

and if maxt G(t)< 1, the system is exponentially decaying.

2.4 Results from the Model

For this section, an uncontrolled case is studied in the presence of two heat sources. The

purpose of this section is to determine whether or not the model is accurate enough. The

parameters shown in Table 2.1 were used for the simulation. The triggering disturbance is

a low frequency wave in the velocity profile. The initial pressure of the system does not

contain a disturbance.

Table 2.1: Parameters for testing the mathematical model.

List of Parameters
Parameter Value Parameter Value
ρ 1.025 kg

m3 λ 0.0328m2

s
cv 719 J

kgK γ 0.4
L0 1m Tb 295K
c 344.64m

s u0 2.5m
s

Lw 2.5m
dw1 0.5×10−3m dw2 0.5×10−3m
Tw1 1800K Tw2 1800K
x f 1 0.625m x f 2 1m
τ1 100ms τ2 500ms
P0 8.69×104Pa Sc 1.56×10−3m2

c1 0.04 c2 0.004

From the works of [Fleifil (2007)], we expect to see a transient growth followed by an

energy ceiling. This ceiling is given by a balance between the energy dissipation caused by

the thermo-viscous damping, and the energy gained from the heaters. Additionally, King’s



CHAPTER 2. MATHEMATICAL MODEL 19

law is not approximated to a linear function, as it is in [Juniper (2013)]; therefore, there

should not be any decay after a large time has passed.

Figure 2.1: Contour plot of velocities along the Rijke-tube.

Figure 2.1 shows the evolution of the velocity along the tube. A wave pattern can

clearly be seen along the contour. These waves start with a low amplitude and continue

to increase. A snapshot of the velocity can be seen in Figure 2.2. The amplitude for each

wave can be seen increasing, with the lower frequencies dominating for the first portion

of the time interval. The wave then becomes irregular due to the third and fourth mode

gaining strength.

The evolution of the aforementioned modes can be seen in Figures 2.3-2.4. Important
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Figure 2.2: Time evolution of velocity along the Rijke tube.

facts about the development of the upper modes can be seen in said figures. The first two

modes start gaining a large amplitude within a small amount of time, the third natural mode

does so at around 10s, and the fourth at approximately 15s. This is due to our damping

parameter being large for the upper modes, something that our control scheme will exploit.

The evolution for the velocity and pressure disturbances at the heater location can be

seen in Figures 2.5-2.6. Due to the derivation of our approximate mathematical model,

we cannot obtain an accurate representation of a fully developed instability, due to the

higher frequencies carrying relevant information about the system. However, during the

transitional energy growth, which can be seen in Figure 2.7 between 0s and 20s, it can be
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Figure 2.3: Nondimensional amplitude of the two lower modes.

seen that the lower frequencies are dominating in the pressure and velocity disturbances.

Similar results from this energy ratio can be found in [Zhao and Reyhanoglu (2014)].
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Figure 2.4: Upper modes of the system.
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Figure 2.5: Evolution of velocity at one of the heaters’ locations.
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Figure 2.6: Evolution of pressure at one of the heaters’ location.
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Figure 2.7: Evolution of the nondimensional energy ratio for an uncontrolled system.



Chapter 3

NONLINEAR FEEDBACK CONTROL

Following the formulation of equation (2.29) and its verification in Section 2.4, this chapter

expands on the stability of said equation and explores different techniques to prevent the

triggering of transient growth with a nonlinear controller and passive control.

Examples of linear controllers can be found in [Fleifil (2007)], [J. Rubio-Hervas (2015)],

and [J. Rubio-Hervas (2014b)]. In one case the authors approach the problem with an Lin-

ear Quadratic Regulator (LQR). While the controller manages to minimize the linear por-

tion, it fails to prevent the eventual transient growth. The trigger for such growth is due

to the low-amplitude perturbations that can lead to a nonlinear cycle produced by the heat

source. As such, nonlinear effects must be considered in the design of the controller.

26
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3.1 Controller Design

In this section, a control algorithm is proposed for the system described in equation (2.29).

Previous studies found in [Fleifil (2007)] create a linear expression from the nondimen-

sional transformation of equation (2.17) to approximate the nonlinear portion, such that:

Q̇sg = Kg

[√∣∣∣∣13 +u f g (t− τg)

∣∣∣∣−
√

1
3

]
≈Kg

√
3

2
u f g(t− τg) (3.1)

Equation (4.1) is only valid only certain conditions, specifically if
∣∣u f g (t− τg)

∣∣ << 1.

The linearization will not be used in the controller development; however, will provide

some insight on the eigenvalues of our ODE and some control design further studied in

Section 4.1. Additional information can also be found in [Juniper (2013)].

To explore the capacity the actuators have to control the system, we write the actuator

signal in terms of the Galerkin approximation. The heat release must also be written in this

form. Equations (2.25) and (2.23) become:

νak = Rk

N

∑
i=1

cos(iπxak)ηi−Sk

N

∑
i=1

sin(iπxak)

iπ
η̇i(t) (3.2)

Furthermore, combining equations (2.29) and (3.2) we can obtain the following system:

η̈ j +( jπ)2
η j +ζ jη̇ j =−2(γ−1) jπ

G

∑
g=1

Q̇sg(x f g, t− τg)sin( jπx f g)

−2γ jπ
K

∑
k=1

αak

[
Rk

N

∑
i=1

cos(iπxak)ηi−Sk

N

∑
i=1

sin(iπxak)

iπ
η̇i(t)

]
sin( jπxak)

(3.3)
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This is the full representation of the thermoacoustic system with the nonlinear control pa-

rameters Rk and Sk. Defining the following variables:

˙̂Qsg j =−2(γ−1) jπQ̇sg(x f g, t− τg)sin( jπx f g), R̂k =−2γπαakRk,

Ŝk = 2γαakSk, Ai jk = cos(iπxak)sin( jπxak), Bi jk =
1
i

sin(iπxak)sin( jπxak)

reduces equation (3.3) to:

η̈ j +( jπ)2
η j +ζ jη̇ j =

G

∑
g=1

˙̂Qsg j +
K

∑
k=1

(
jR̂k

N

∑
i=1

Ai jkηi + jŜk

N

∑
i=1

Bi jkη̇i

)
(3.4)

Define the control input in terms of the control parameters:

jR̂k

N

∑
i=1

Ai jkηi + jŜk

N

∑
i=1

Bi jkη̇i = β jkUk (3.5)

This ensures that equation 3.4 may be further simplified as:

η̈ j +ζ jη̇ j +( jπ)2
η j−

G

∑
g=1

˙̂Qsg j =
K

∑
k=1

β jkUk (3.6)
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Doing so allows the system to be expressed in matrix notation, such that all the superim-

posed modes are expressed with a single matrix equation.



η̈1 +(π)2η1 +ζ1η̇1−∑
G
g=1

˙̂Qsg1

η̈2 +(2π)2η2 +ζ2η̇2−∑
G
g=1

˙̂Qsg2

...

η̈N +(Nπ)2ηn +ζNη̇N−∑
G
g=1

˙̂QsgN


=



β11 β12 · · · β1K

β21 β22 · · · β2K

...
... . . . ...

βN1 βN2 · · · βNK





U1

U2

...

UK


(3.7)

The matrix β has K columns and N rows. β must also be invertible; to guarantee this

we must make sure that: det(β ) 6= 0, and the number of actuators must be equal or greater

than the number of modes considered in the Galerkin approximation. For convenience, we

will assume that β is squared (K = N).

We will design a nonlinear control law such that the closed loop system takes the fol-

lowing form:

η̈ j + k j2η̇ j + k j1η j = 0 (3.8)

with the respective values k j2 and k j1 so that the solution is not an exponential increase.

Recall that the solution for equation (3.8) can be written as:

η j = A je−
k j2+

√
k2

j2−4k j1
2 +B je−

k j2−
√

k2
j2−4k j1

2 (3.9)

It can be seen with equation (3.9) that to achieve exponential decay, the condition k j2 >√
k2

j2−4k j1 has to be met. Additionally, to prevent any oscillations, Im
(√

k2
j2−4k j1

)
=
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0. The correct values for k j2 and k j1 must be chosen such that they meet said conditions.

These conditions can be satisfied by setting k j2 > 0 and
k2

j2
4 > k j1 > 0. The solution for the

control vector U can be written as:



U1

U2

...

UN


=



β11 β12 · · · β1N

β21 β22 · · · β2N

...
... . . . ...

βN1 βN2 · · · βNN



−1

×



((π)2− k12)η1 +(ζ1− k11)η̇1−∑
G
g=1

˙̂Qsg1

((2π)2− k22)η2 +(ζ2− k21)η̇2−∑
G
g=1

˙̂Qsg2

...

((Nπ)2− kN2)ηN +(ζN− kN1)η̇N−∑
G
g=1

˙̂QsgN



(3.10)

We now need to build the β matrix and assign a value to Uk based on the actuation

signal. Choose:

β1k = 1 ∀k (3.11)

and

Ai1k = jφ jkAi jk ∀i, j,k, j 6= 1 (3.12)

which implies

Bi1k = jφ jkBi jk ∀i, j,k, j 6= 1 (3.13)
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The control transformation in equation (3.6) would then become:

R̂k

N

∑
i=1

Ai1kηi + Ŝk

N

∑
i=1

Bi1kη̇i =Uk ∀k (3.14)

where φ jk is a parameter dependent on the location of the kth actuator. The matrix β can

then be written as:

β =



1 1 · · · 1

1
φ21

1
φ22

· · · 1
φ2N

...
... . . . ...

1
φN1

1
φN2

· · · 1
φNN


(3.15)

The control parameters can then be recovered through the following equations:

R̂k =
∑

N
i=1 Ai1kηi(

∑
N
i=1 Ai1kηi

)2
+
(
∑

N
i=1 Bi1kη̇i

)2Uk (3.16)

Ŝk =
∑

N
i=1 Bi1kη̇i(

∑
N
i=1 Ai1kηi

)2
+
(
∑

N
i=1 Bi1kη̇i

)2Uk (3.17)

Using the value for Uk obtained through the matrix equation (3.10) allows to calculate the

control parameters for each actuator. These will change over time and eventually converge

to a final value.

3.1.1 Actuator Location

The value of the elements of the β matrix affects the control input Uk which also affects

the control parameters Rk and Sk. The values in the matrix can then be tuned by changing

the location of the actuators.
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From the relations in equations (3.12)-(3.13), the value of φ jk can be obtained with the

following equation:

φ jk =
1

j2 cos(xakπ)
(3.18)

Due to the conditions imposed on the β matrix, the position of the actuators is restricted.

Actuator locations should be chosen such that the system is controllable.

3.2 Testing the Performance of the Controller

This section is dedicated to test the performance of the controller under a specific scenario.

The control parameters are used to see if the actuators can perform the necessary tasks

while using a reasonable magnitude of the actuation signal.

For the initial conditions, only the velocity is assumed to have a disturbance, with a

low frequency wave. For the initial conditions, only the velocity is assumed to have a

disturbance, with a low frequency wave. The same parameters found in Table 2.1 are used

in the performance test with the addition of the actuators at locations x f 1 and x f 2.
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Table 3.1: List of parameters for performance testing.

List of Parameters
Parameter Value Parameter Value
ρ 1.025 kg

m3 λ 0.0328m2

s
cv 719 J

kgK γ 0.4
L0 1m Tb 295K
c 344.64m

s u0 2.5m
s

Lw 2.5m
dw1 0.5×10−3m dw2 0.5×10−3m
Tw1 1800K Tw2 1800K
x f 1 0.625m x f 2 1m
xa1 0.98m xa2 1.52m
τ1 1000ms τ2 500ms
P0 8.69×104Pa Sc 1.56×10−3m2

c1 0.04 c2 0.004

3.2.1 Controller with Two Actuators

For this test case, the controller is assumed to have two actuators at its disposal. Due to

our conditions for our β matrix, only the two lower modes will be able to be controlled. In

Figure 3.1 we can see the evolution of velocity along the length of the tube. As it can be

seen, it successfully stabilizes to u = 2.5m
s , which is the value of the mean flow of the fluid.

This can be seen better in Figure 3.2.

In figure 3.3, the combined acoustic energy of the disturbances in the two lower modes

successfully converges to zero. The system does not experience any triggering as G(t)< 1

at all times.

The value of the control parameters for each actuator can be seen in Figures (3.4)-(3.5).

The value of these parameters converge to a constant, despite the fact that our control Uk

is dependent on the product between the velocity disturbance and Rk, and the pressure

disturbance and Sk. This indicates that our control input will also converge to zero.
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Figure 3.1: Contour plot of fully controlled system.
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Figure 3.2: Snapshot of velocity at time t = 0s, t = 10s and t = 70s.
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Figure 3.3: Acoustic energy of the low frequency waves.
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Figure 3.4: Control parameters for actuator 1.
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Figure 3.5: Control parameters for actuator 2.
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3.2.2 Effect on Higher Frequency Modes

The heat release is highly dependent on disturbances on the velocity. If these are present

in the higher frequencies, it could indirectly affect the converging value of the control

parameters.

With Figure 3.6 we see an a small initial growth, coming from the higher modes. This

is the transient growth being triggered by the thermoacoustic instability in the high fre-

quency modes. The controller cannot prevent this directly, but it is able to dissipate the

energy being transfered to the lower frequency waves, eventually stabilizing the system.

The behavior for the amplitude of the waves can be seen in Figures 3.7 and 3.8.
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Figure 3.6: Acoustic energy of the system.
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Figure 3.7: Evolution of the amplitude of low frequency modes.

Following, the evolution of the velocity and pressure disturbances can be seen under

Figures 3.9 and 3.10. One of the most striking factors is the presence of jitter in the velocity

disturbance. This correlates to the "unstable" period the that can be seen in the uncontrolled

modes in Figure 3.8. The pressure disturbance experiences a similar behavior, though it is

less apparent due to the derivative initial conditions being set to zero.
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Figure 3.8: Evolution of the amplitude of high frequency modes.
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Figure 3.9: Velocity for heat source 1 and 2 (x f 1 and x f 2 respectively)
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Figure 3.10: Pressure for heat source 1 and 2 (x f 1 and x f 2 respectively)



Chapter 4

EFFECT OF MULTIPLE HEAT

SOURCES

4.1 Passive Control with Multiple Heat Sources

There are several factors that can affect the "cost" of the control parameters. Positioning

of the heat sources is known to affect the heat release and the rate at which the instabilities

grow. There have been models that have shown to stabilize the system by the addition of a

careful placed second heater [Ji (2014)]. However, the presence of this "passive" controller

does not eliminate the disturbances in the system; it simply prevents the triggering of the

transient growth. By using equation (3.1) we linearize the heat release shown as:

Q̇sg ≈Kg

√
3

2

N

∑
j=1

cos( jπx f g)η j(t− τg) (4.1)

By substituting into equation (3.3), we can obtain a linearized system described by the
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following ODE:

η̈ j +( jπ)2
η j +ζ jη̇ j =−2(γ−1) jπ

G

∑
g=1

sin( jπx f g)Kg

√
3

2

N

∑
j=1

cos( jπx f g)η j(t− τg)

−2γ jπ
K

∑
k=1

αak

[
Rk

N

∑
i=1

cos(iπxak)ηi +Sk

N

∑
i=1

sin(iπxak)

iπ
η̇i(t)

]
sin( jπxak)

(4.2)

For convenience, let us assume that there is one predominant mode, no time delay

τg, and no actuators are acting on the system. It was shown in equation (2.4) that any

instability in the upper modes is dependent on the growth of the lower modes, therefore we

can assume that any triggering in the low frequency range will be transmitted to the high

frequency components. The following is the simplified equation:

η̈1 +π
2
η1 +ζ1η̇1 =−(γ−1)π

G

∑
g=1

Kg
√

3sin(πx f g)cos(πx f g)η1(t− τg)

As it can be seen, it is a simple second order ODE. It can be rearranged to obtain the

following:

η̈1 + ζ1︸︷︷︸
b

η̇1 +

(
π

2 +(γ−1)π
G

∑
g=1

Kg
√

3sin(πx f g)cos(πx f g)

)
︸ ︷︷ ︸

c

η1 = 0 (4.3)

A solution for this type of equation can be found in Section 3 with equations (3.8)-(3.9). In

order for the system to be exponentially stable, the eigenvalues, λ1 and λ2, must be positive
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and real. As such they have to meet the following conditions:

−b±
√

b2−4c
2

≤ 0

b2−4c≥ 0

which imply the following

c≤ b2

2

for negative eigenvalues and

c≤ b2

4

for real eigenvalues.

Let us now assume that we can control the positioning of heat sources g = 1 such that

it is our "passive" controller. For an equation with the form of (4.3), it is know that the

following condition will make it exponentially stable.

π
2 +(γ−1)π

√
3

(
K1 sin(πx f 1)cos(πx f 1)+

G

∑
g=2

Kg sin(πx f g)cos(πx f g)

)
≤

ζ 2
1
4

(4.4)

This results in a domain solution for x f 1 given as:

−sin−1
(

ζ 2
1−4π2−4(γ−1)π

√
3∑

G
g=2 Kg sin(πx f g)cos(πx f g)

(γ−1)2π
√

3K1

)
+2πn−π

2π
≤ x f 1 ≤

sin−1
(

ζ 2
1−4π2−4(γ−1)π

√
3∑

G
g=2 Kg sin(πx f g)cos(πx f g)

(γ−1)2π
√

3K1

)
+2πn

2π

(4.5)
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Where ζ1 ≥ 0; and K1 >
ζ 2

1−4π2−4(γ−1)π
√

3∑
G
g=2 Kg sin(πx f g)cos(πx f g)

2π
√

3(γ−1)
. The acoustic length of

the system is 1. n = 0 would give a trivial solution for x f 1 and n = 2 would take the upper

limit outside of our acoustic length; therefore, n = 1.

An interesting note is that trivializing the problem (No damping on the system and no

additional heat sources) for n = 1 gives the following solution for the flame location

1
2
≤ x f 1 ≤ 1

Recall that 1 is the acoustic length of the system. This indicates that any position

between the upper half of the tube will cause a decay of any perturbation and will not allow

for any instabilities. This was observed experimentally by Rijke, and was found in his

earliest notes regarding this phenomenon.

Additionally, equation (4.5) gives as a condition a minimum value for K1 which indi-

cates two things. First of all, K1 may be negative or positive, which means that a heat sink

or a heat source can be used, while affecting the domain for x f 1. Second of all, there is no

maximum value for K1, which means the flame can be set at any temperature above the

mean temperature of the fluid. Note that increasing this, will drastically reduce the domain

of the system. Nevertheless, combustion system cannot afford to put heat sinks inside their

chambers without reducing their overall efficiency, an additional heat source is more viable.
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4.1.1 Effect of Heater Location

In order to test our initial hypothesis we can offer a simplified case for equation (4.5).

Any damping in the system will simply increase the domain where for our control flame

location; so we can set it to zero. Additionally, we can simply describe a system with two

heaters, the first one (g = 1) we can set the position and flame temperature. The second one

(g = 2) is uncontrolled. The heat coefficients are such that K1 = K2. This gives that our

domain given by:

−sin−1 (−2sin(πx f 2)cos(πx f 2)
)
+2πn−π

2π
≤ x f 1 ≤

sin−1 (−2sin(πx f 2)cos(πx f 2)
)
+2πn

2π

Which can be further simplified:

sin(2πx f 2)+2πn−π

2π
≤ x f 1 ≤

−sin(2πx f 2)+2πn
2π

(4.6)

A graphical representation of the domain can be found in Figure 4.1:
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Figure 4.1: Graphs representation of domain for equation (4.6).

Note that this is only for the linear portion of the heat release. Placing the controlled

heater inside the domain, will cause system to be stable, provided that any nonlinearity is

not dominating. After a long time, it is expected that the system will become unstable in

one of the modes. Following is a simulation of a system without actuators, and two heat

sources. One of these sources has been placed inside the domain described in Figure 4.1.
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Table 4.1: Parameters used for testing passive control.

List of Parameters
Parameter Value Parameter Value
ρ 1.025 kg

m3 λ 0.0328m2

s
cv 719 J

kgK γ 0.4
L0 1m Tb 295K
c 344.64m

s u0 2.5m
s

Lw 2.5m
dw1 0.5×10−3m dw2 0.5×10−3m
Tw1 1800K Tw2 1800K
x f 1 1.875m x f 2 0.625m
τ1 500ms τ2 100ms
P0 8.69×104Pa Sc 1.56×10−3m2

c1 0.04 c2 0.004

The evolution of the modes can be seen in Figures (4.2)-(4.3). It is not exactly an

exponential decay as there are obvious oscillations for all of the modes. Despite the ap-

proximation, the second heater is able to reduce the modes to a value close to zero. It is

worth nothing that the 4th mode experiences a growth after some time, and begin to os-

cillate between 10−6 and −10−6. The low value of the amplitude, makes the growth of

little concern. However, due to the nature of the duct, any kind of small disturbance could

provoke an unstable growth of energy. Nevertheless, in figure 4.4, a clear decay can be

seen. The initial growth is due to the delay of the second heat source; after which the sys-

tem stabilizes. The development of the velocity and pressure disturbances can be found in

Figures 4.5-4.6.
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Figure 4.2: Uncontrolled lower modes.
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Figure 4.3: Uncontrolled upper modes.
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Figure 4.4: Energy of an uncontrolled system.
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Figure 4.5: Pressure disturbance at location of heat source 1.
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Figure 4.6: Velocity disturbance at location of heat source 1.
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CONCLUSIONS AND FUTURE

WORK

A thermoacoustic model was constructed based on a Galerkin approximation. The four

lower modes ( j = 1,2,3,4), were used to simulate the behaviour of the velocity and pres-

sure disturbances, and a thermoacoustic instability was successfully simulated. While the

model is incapable of providing a full representation of the instabilities once these have

reached their maximum energy, it is able to show the initial triggering of the lower modes,

which later propagate the instabilities to the higher frequencies. The main purpose of the

model is to provide an accurate representation during the triggering and stable periods;

which is when the controller is expected to operate. The mathematical model can then be

considered valid under these circumstances.

The development of the controller allowed us to determine the placement of the actu-

ator. These locations have to meet conditions specified in Section 3.1. Additionally, the

converging value of the control parameters Rk and Sk was shown to be sensitive to the
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location of the actuators, increasing or decreasing performance.

An example of a controller with two actuators was analyzed in detail. The control

scheme made the control input Uk limited to the two lower modes. Despite this, the con-

troller proved effective and was partially successful. The triggering in the higher frequency

modes is unavoidable in our problem, but stabilizing low frequency disturbances, enough

energy is dissipated by natural damping and the controller such that the system becomes

stable.

A form of passive control was also studied. We were able to show the impact of the

placement of a second heater on the linear term of the heat release. Because our initial dis-

turbance is small, the nonlinear term takes some time to evolve, and any energy exchanged

between this term and the linear portion is effectively canceled. Nonetheless, small dis-

turbances in all the frequencies were still present, any deviation on the parameters of the

system could effectively lead to triggering. This demands the use of an active nonlinear

controller to assure stability.

Currently, the problem does not have an observer. The feedback is provided by the

values calculated in the simulation itself. Work regarding the observability of such systems

has been previously studied in [Morgans and Dowling (2005)] and [Dowling and Morgans

(2005)] and observer designs in a linear system can be found in [J. Rubio-Hervas (2014a)].

Where the heat release is assumed to be known and the heat coefficient Kg to be constant.

In a real-world application this can cause issues due to the unpredictability of convection

systems and the variance of the fluid temperature around the heat source; this is specially

true when the heater is placed in a node of the natural frequencies of the system. This

requires a more complex analysis of the fluid continuity equations.



Appendix A - Simulink Diagram

In order to test the controller on the thermoacoustic system, a Matlab script was used with

a simulink code. The script defined the parameters of the environment, while the Simulink

code applied the controller. The block diagram can be seen in Figure 5.1.

For the simulink solver, a fixed-step ode4 or Runge-Kutta (RK4) was selected.

58



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 59

Figure 5.1: Simulink block diagram for nonlinear controller.
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