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ABSTRACT

Priyanka Pagadala MSAE, Embry-Riddle Aeronautical University, June 2015. Design

of Synthetic Jet Actuator for Flight Control of Small UAV.

The main idea of this project is to develop a prototype SJA - Synthetic Jet Actu-
ator to embed into a small UAV with modified Glauert wing cross-section for Active
Flow Control. Apart from lift enhancement, drag reduction, or separation control,
etc; LCO suppression might be possible by modifying the boundary layer through
the use of these actuators. For initial investigation, a wing section with span of 12.4
cm and chord of 14 cm was fabricated and tests were conducted in the subsonic wind
tunnel at the free stream velocities of 5 and 10 m/s. From these experiments, lift
curves for two different cases (with and without the actuator) were compared.

Two models of actuators, one with circular orifice and the other with rectangular
slot, were developed using Gallas LEM tool. Effect of orifice shapes on the perfor-
mance of the actuator is also investigated. Numerical analysis of 3D model was done
in Ansys Fluent with k-ε turbulence model. Hot Wire Anemometer experiments were
conducted to obtain frequency response plots to be validated with the similar plots
obtained from the LEM tool. Due to the time consuming nature of CFD simulations,
high accuracy reduced order models play a prominent role in quickly understanding
the performance parameters that affect the jet. Further research is recommended for
building or improving the current mathematical model and numerical tool to allow
more sophisticated design configurations and optimization procedures.
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1. Flow Control using Synthetic Jets

The idea of using Synthetic Jet Actuators has been the focus of flow control research

for many years as they have the potential to influence the flow characteristics and

aerodynamic performance of an airfoil. Before getting into the details of synthetic

jet actuators, it is important to understand the purpose of flow control and which

category these actuators fall into. Flow control involves active or passive devices which

affect the desired or beneficial changes to the flow. Whether the task is to suppress or

enhance the turbulence, prevent or provoke the separation, or to delay or advance the

transition; useful end results include mixing augmentation, lift enhancement, flow-

induced noise separation, reduction of drag, controlling moments, etc. All of this can

lead to controlling more desired maneuvers if possible.

The ability to manipulate a flow field to get a desired change has gained more

practical importance in the past century.

1.1 Evolution of Flow Control

Initial contributions to the science of flow control were done by introducing the

boundary layer theory in 1904 by Prandtl, which laid the foundation of the scientific

era. This explained the physics behind the separation phenomenon and also described

several experiments in which a boundary layer was controlled.



2

Flow control has played a major role during the second world war, which led to

the development of faster, more powerful, and highly maneuverable efficient aircraft,

missiles, submarines, and ships, etc.

Later many industrialized countries invested in a search for methods of conserving

energy. Drag reduction was given special importance during this period. Due to the

availability of fast and inexpensive computers, the ability of recreating complex flow

fields numerically opened new possibilities in areas where research had been difficult

to approach analytically.

Most of the research on control devices was concentrated toward manipulating

the coherent structures in transition and turbulent regimes. During this ongoing

modern era, the ability to achieve large scale changes in the behavior of the flow with

low level energy inputs is explored with theoretical advancements in deterministic

chaos using MEMS - Micro Electro-Mechanical Systems and neural networks. With

advancements in high performance computing power, more detailed DNS models are

being researched (Gad-El-Hak, 2000).

1.1.1 Passive Flow Control

Passive flow control is related to the static structural modifications on the wing

surface that can dictate the flow over it. These techniques include geometric shaping

to manipulate the pressure gradient (Gad-El-Hak, 2000), e.g., fixed vortex generators

for separation control or riblets on the surface to reduce drag.
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1.1.2 Active Flow Control

Active control methods, in which energy inputs are introduced into the flow, have

been emphasized in the past decade. Active control schemes can be divided into pre-

determined or reactive methods (Kral, 2000). Predetermined control methods involve

giving steady and unsteady inputs that include jet vectoring using piezoelectric actu-

ators (Smith & Glezer, 1997) and oscillatory blowing (Seifert & Pack, 1999). On the

other hand, in reactive control methods, the power input to the actuator is contin-

uously adjusted based on some sort of measurement element, such as a sensor. The

control loop for reactive control can be either feed-forward, which is an open loop, or

feed-back, which is a closed loop.

1.1.3 Reactive Control Loops

The sensor is placed upstream of the actuator in the feed-forward control loop. As

flow structures pass through stationary sensors and actuators, the measured and the

controlled flow field parameter will differ. The control must interact with turbulent

fluctuations which are already present in the flow field. Manipulating these small

scale turbulent fluctuations is a challenging problem.

With the feed-back control loop, to measure the flow parameters, a sensor is placed

downstream of the actuator. The controlled variable is compared with the upstream

reference variable. A feedback control law is utilized to control the energy introduced

at the actuator (Moin & Bewley, 1994). Interactive feedback controls are classified
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into four schemes based on the extent to which they are based on the governing flow

equations: adaptive control, physical model-based, dynamical systems, and optimal

control. Different types of active control strategies are shown in the below flow chart.

Figure 1.1.. Flow control strategies (Gad-El-Hak, 2000)

The future of feedback flow control as discussed by (Bewley, 1999) stated that

research must be conducted at the intersection of the traditional fields of fluid me-

chanics, mathematics, and control theory for successful application of feedback control

schemes.
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1.1.4 Applied AFC Device

In aerospace applications, even though passive flow controls have useful features

in improving aerodynamic performance, they can substantially increase the weight of

the body, but not necessarily in every case. Thus it is important to choose passive

control devices that will have good trade-offs between weight and performance, which

is just as well true for active flow control devices.

Every control device has its own set of parameters to work with and unique features

that need to be researched. Combination of some of these methods could also be

possible, especially with a device like a synthetic jet actuator. Synthetic jets might be

a combination of acoustic streaming and oscillatory blowing and suction. The devices

that produce these type of jets for this research are known as Synthetic Jet Actuators

or ZNMF - Zero-Net-Mass-Flux actuators, requiring no external fluid source. These

devices are also suitable for feedback control and the peak velocities are limited to low

to moderate subsonic speeds (Cattafesta & Sheplak, 2011). The following chapters

give more detailed information on the synthetic jet advantages and challenges in the

flow control application.
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1.2 Synthetic Jet Actuators

Synthetic jets in flow control are characterized by their ability to perturb the flow

from the orifice/slot. Proper characterization and understanding of the device and

actuator operation is crucial for successful implementation.

Figure 1.2.. Inflow and outflow vortex generation (Mohseni & Mittal,
2014)

The developing vorticity from the jet imparts non-zero momentum even though

these devices are considered as ZNMF. By adjusting pressure using piezoelectric di-

aphragm vibration, pulsed jets release energy from the opening to manipulate the

boundary layer on the body. These pulsing jets might induce energy near to the

surface, thus affecting the local as well as the global characteristics of the flow.
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When exposed to a moving boundary produced from the SJA, some unstable

frequencies might be triggered on the free stream boundary layer and significantly

affect the dynamics of the flow. Changes in velocity profiles and pressure gradients

could lead to amplifying instabilities such as Kelvin-Helmholtz, Rayleigh-Taylor, or

streamwise T-S instabilities.

Figure 1.3.. Formation of synthetic jets based on the Reynolds number
(Holman, 2006)

With internal flow from the cavity on one side and the ambient external flow on

the other side, an inherent asymmetry develops, and so it is important to study the

development of the flow over multiple cycles (Glezer & Amitay, 2002).

As discrete vortex pairs ultimately undergo transition to turbulence, the evolution

of the synthetic jet flow can be divided into two distinct domains:

1. Near the jet exit plane, flow is dominated by the time periodic vortex formation.

2. Fully developed turbulent flow.
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These two distinct domains are very important to keep in mind when the SJA is

interacting with the external flow. Vortex formation near the jet exit plane depends on

every design parameter. Each vortex pair from the jet develops a spanwise instability

and ultimately undergoes transition to turbulence, slows down, or loses its coherence

and becomes indistinguishable from the mean flow. Therefore, it is vital to idealize

the synthetic jet actuator from the mean flow and study it independently for better

performance of the actuator (Smith & Glezer, 1997).

Spatial time average exit velocities Vj are very important flow parameters to take

into account and these can be used to characterize the jet flows from the orifice (Glezer

& Amitay, 2002).

The main advantage of these devices over other Active Flow Control devices is

that these work on the surrounding fluid and do not require any extra fluid storage

or source.

Decades of research had been carried out in understanding the jet criteria, inter-

actions with the mean flow, numerical studies, and design implementation. A brief

summary of this history is given in the literature review.

1.2.1 Literature Review

Much research had been done to characterize and study the behavior of synthetic

jet actuators experimentally and numerically. (James, Jacobs, & Glezer, 1996) in-

vestigated the behavior of the jet by submerging the oscillating diaphragm model in

water. Experimental investigation by (Smith & Glezer, 1997) showed that synthetic
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jets are dominated by the time periodic formation of the vortical structures near

the exit plane of the jet. They investigated the dynamics of the actuator. (Golmes,

Crowther, & Wood, 2006) experimentally investigated the effect of geometry and the

actuation variables on the peak jet velocities of the actuator.

Low fidelity analysis tool was first developed by (Rathnasingham & Breuer, 1997).

Their tool can predict the magnitude of the jet peak velocity Vj for a given input of

power. (Carpenter & Lockerby, 2004) developed an SC - Static Compressible model

that can predict the optimal cavity and orifice heights {hC , hN}. (Gallas, 2002) devel-

oped a lumped element model into a low fidelity analysis tool where different energy

domains were coupled and the equivalent electric circuit was represented to get the

frequency response profile. Most of his work was concerned with the design opti-

mization of synthetic jet actuators. (Holman, 2006) worked on the the experimental

investigation of flow through ZNMF actuators. Cavity effects on the jet exit velocity

of the piezoelectric actuator was investigated by (Mane, Mossi, Rostami, Bryant, &

Castro, 2007). Later, by incorporating different equations for orifice shapes (circular

and rectangular) for the actuator, the LEM technique has been refined by (Gallas,

Holman, & Cattafesta, 2005).

(Ugrina & Flatau, 2004) investigated the jet actuator design parameters by study-

ing different shapes and types of diaphragms, as well as investigating nozzle and orifice

shapes. Evolution of the jet and the jet criterion of synthetic jets was investigated

by (Glezer & Amitay, 2002), giving insight on the global effects of the flow in the

near field and the far-field region. Acoustic streaming for flow control applications
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and Micro propulsion using Navier-Stokes simulations and a preliminary study on

SJA towards a complete control of MAV was done by (Golubev & Mankbadi, 2009)

and (Golubev, Mankbadi, & Nakhla, 2009). Instead of moving control surfaces, syn-

thetic jets were mounted on the leading and trailing edges of the modified NACA

652−215 swept wing section, taking note of the drag and lift coefficients and showing

substantial lift increments using lift curve plots (Sefcovic & Smith, 2010).

1.2.2 Current Research

In this thesis, single diaphragm actuators Model-C (prototype with circular orifice)

and Model-R (prototype with rectangular slot) were designed and developed using

the Gallas LEM analysis tool and their frequency responses are validated against

Hot Wire Anemometer experiment results. Shape effects of these two models were

investigated using 3D models in Ansys Fluent. Later, a modified Glauert small scale

wing section was developed and the actuator was placed inside it. Lift curve plots

of the clean case without the actuator as well as cases with the SJA embedded were

compared to each other.
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2. Lumped Element Modeling

Low fidelity analysis tools are important for the process of selecting the actuator’s

parameters. In order to gain an overview of large parametric space without time con-

suming simulations or developing prototypes, parameters need to be studied. Lumped

Element Modeling uses circuit analogy to couple between electrical, mechanical, and

acoustic domains. In an electroacoustic system, differential pressure and voltage are

effort variables, while current and volumetric flow rate are flow variables.

When electrical input Eδ is given to the diaphragm of the actuator, it starts to

displace the air from the cavity ∆∀δ. The diaphragm system is similar to a coupled

spring-mass-damping system. There are mainly two Fundamental frequencies for the

synthetic jet actuators:

1. Diaphragm fundamental mechanical frequency ωD

2. Helmholtz acoustic resonance frequency ωH

2.1 Gallas LEM

Currently, the model used is the Gallas LEM model for synthetic jet actuators,

which operates under certain assumptions.
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2.1.1 Assumptions

(Gallas, Holman, & Cattafesta, 2005) makes the assumption in their LEM model

that the wavelength λδ of the pressure oscillation will be much greater than the

dimension of the device, as visualized in figure 2.1.

Figure 2.1.. LEM λδ assumption (Mohseni & Mittal, 2014)

If this assumption holds, the spatial and the temporal domains are independent

of each other and the center-line exit velocity of the jet Vj can be obtained as output

impedance in the circuit analogy. Section 2.1.2 below explains this LEM model in

detail. This model is also hypothesized assuming fully developed Poiseuille or pipe

flow (Gallas, Holman, & Cattafesta, 2005).
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2.1.2 Circuit Details

The acoustic domain is also modeled in electrical domain with variables associated

by D-diaphragm, C-cavity, N -neck, and O-orifice as subscripts for components.

Figure 2.2.. Circuit representation components (Gallas, Sheplak, &
Cattafesta, 2005)

The circuit in figure 2.2 is reduced down to the below circuit in figure 2.3 with

impedances. The derivation can be found in the (Gallas, Holman, & Cattafesta, 2005)

paper on dynamics of isolated Zero-Net Mass-Flux actuators.

With the same units as resistance, Impedance is represented as a complex quantity

where the real part is the resistance and the imaginary part is the reactance, which is
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Figure 2.3.. Circuit representation impedances (Mohseni & Mittal, 2014)

obtained from capacitance and inductance. As shown in the figure, each component

is related to a certain impedance.

2.1.3 Refined LEM

The refined LEM has additional parameters that are taken into consideration,

mainly concerned with improving the component of the acoustic impedance of the

orifice ZaO. In figure 2.4 the flow chart of the LEM technique explains the method to

compute the frequency response and the jet exit velocity Vj of the isolated synthetic

jet actuator.
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Figure 2.4.. Refined LEM technique to obtain {ωδ, Vj} frequency response
plot for jet exit velocities (Gallas, Holman, & Cattafesta, 2005)
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2.1.4 Orifice Physics

The detailed control volume analysis of the orifice flow physics was provided in

(Gallas, Holman, & Cattafesta, 2005) and the final output is shown here in figure 2.5:

Figure 2.5.. Comparison between control volume terms and the impedance
of orifice (Gallas, Holman, & Cattafesta, 2005)

Acoustic impedance of the orifice ZaO is a combination linear and nonlinear resis-

tances and reactances relating to the pressure variation ∆P and the output volumetric

flow rate Qj.

ZaO = (RaO,nl +RaO,l) + jωδ(MaO,l +MaO,nl) =
∆P

Qj

(2.1)

The analytical terms from the control volume analysis represent the linear resis-

tance term, RaO,l = RaCf
+RaN , as a combination of linear resistance due to starting
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developing viscous flow RaCf
and the resistance due to fully developed viscous flow

RaN . However, RaCf
is neglected in the Gallas LEM and the resultant simplifies to:

RaO,l = RaN (2.2)

Linear reactance, MaO,l = MaCf
+ MaN , is a combination of reactance due to

starting developing viscous flow MaCf
, which is neglected, and the reactance due to

unsteadiness of the flow MaN . The nonlinear reactance MaO,nl is due to the velocity

momentum.

Nonlinear acoustic resistance for the orifice RaO,nl represents the nonlinear losses

taking orifice shapes through Kd into account, and is given by

RaO,nl =
ρKdQj

2S2
(2.3)

This term, RaO,nl, is a function of the volume flow rate Qj and corresponds to the

nonlinear entrance and exit region effects. These are approximated by modeling the

nonlinear resistance of the orifice as a generalized flow meter. (McCormick, 2000).

At higher frequencies, the velocity profile in the orifice is modeled as a circular duct

driven by the oscillating pressure diaphragm, where the velocity is proportional to

the pressure gradient (Mohseni & Mittal, 2014).

∆cp =
2∆PC

ρVj
2 (2.4)
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The equation between the orifice loss coefficient Kd and nonlinear part on ∆cp

makes everything interrelated:

Kd = ∆cp,nl
4

π2
(2.5)

Kd is the steady pipe flow nonlinear dump loss coefficient for the orifice nozzle.

ZaO,nl = RaO,nl + jωδMaO,nl (2.6)

ZaO,nl cannot be solved for both resistance and reactance. The phase lag from

the nonlinear term or the reactance due to velocity momentum is neglected. (Gallas,

Holman, & Cattafesta, 2005).

Finally, it is noted that LEM accounts for

• Viscous effects for fully developed flows RaN ,

• Flow unsteadiness MaN , and

• Nonlinear resistance due to velocity momentum RaO,nl.

It discards or neglects

• Viscous effects of starting developing flow RaCf

• Phase lag from the nonlinearities MaO,nl.
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In the below table, the computation differences between shapes for modeling the

orifices are shown, mainly circular and rectangular.

Table 2.1.. Difference in shapes for orifice (equations)

Circular Rectangular

QD (m3/s) jωD∆∀δ jωD∆∀δ

ωH (s−1)

√
3π(dO/2)2c2

4hN∀δ

√
5wO(dO/2)c2

3hN∀δ

RaN (kg/m4s)
8hNµ

π(dO/2)4
3hNµ

2wO(dO/2)3

MaN (kg/m4s)
4hNρ

3π(dO/2)2
3hNρ

5wO(dO/2)

ζ 12
ωδ

ωHS2
5
ωδ

ωHS2

These two have different impedance terms as well as damping coefficients due

to alternate resistance and reactance terms which can incorporate the properties of

these shapes. Initial design parameters were selected using the same open surface

area AO among the circular orifice and rectangular slot. Based on LEM plots, the

experimental models were developed.
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2.1.5 Results

Figure 2.6.. LEM result for Model-C {ωδ, Vj}

Figure 2.7.. LEM result for Model-R {ωδ, Vj}
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2.2 Development of an Actuator

The initial design parameters for the cavity were selected based on the small scale

wing configuration so that the actuator can be embedded. Orifice dimensions are

selected for the effective measurements from the HWA experiments. The diameter

of the actuator orifice dO is almost equal to the the hot wire probe length, helping

towards predicting the velocities with more accuracy. Many design parameters were

investigated before selecting the initial design configuration, these include different

cavity heights, widths, and lengths {hC , wC , lC}; as well as different diaphragm

parameters such as shim-to-piezo diameters and shim and piezo thicknesses {dD, tD};

and different orifice shapes with same areas AO to obtain maximum Vj peak velocity.

2.2.1 Actuator Geometry

Similar geometry is used for the SJA with circular and rectangular slot. The

geometrical parameters are provided in the tables:

Table 2.2.. Geometric parameters for acuators Model-C and Model-R

Circular Rectangular
Model-C Model-R

Orifice/Slot Diameter dO (mm) 2.5 1.6
Slot Width wO (mm) - 3

Orifice/Slot Length hN (mm) 0.5 0.5
Cavity Height hC (mm) 50 50
Cavity Length lC (mm) 40 40
Cavity Width wC (mm) 3 3

Voltage Applied Eδ (V ) 25 25
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2.2.2 Diaphragm Boundary

Table 2.3.. Selected piezoelectric diaphragm properties

Piezoceramic Shim

Young’s Modulus E (pa) 6.3× 1010 8.9× 1010

Poisson’s Ratio ν 0.4 0.331

Density ρ (kg/m3) 8600 7500

Thickness tD (mm) 0.3 0.23

Diameter dD (mm) 23 35

The diaphragm boundary condition is a very important aspect and has a signifi-

cant impact on the performance and also on the design of an actuator. LEM assumes

a clamped boundary condition, which creates a fixed boundary.

Figure 2.8.. Clamped boundary (Mohseni & Mittal, 2014)
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At the clamped boundary near the edges, transverse radial displacement is zero,

while there is a finite radial displacement for the rest of the diaphragm. This can be

achieved by sandwiching metal plates with a sealed portion having the approximate

thickness of the shim.

Another type of boundary can be created by using o-rings, which is a pinned

boundary. In practice, it is hard to achieve this type of boundary condition. When

two o-rings on either side of the diaphragm are used, they cease the diaphragm from

displacement and instead allow rotation with zero radial displacement.

Figure 2.9.. Pinned boundary (Mohseni & Mittal, 2014)

There are other practices like rubber gasket. The boundary condition for these

types is somewhere between the pinned and clamped condition. A clamped boundary

is used in the developement of an actuator.

2.2.3 Prototype

Four plates were screwed together with a cavity compartment between them. Two

plates are used to mount the diaphragm as a clamped boundary as discussed on page

22. The diaphragm used is the Murata 7BB-35-3LO, having a shim diameter of 35



24

mm and a piezoceramic dD of 23 mm. As already discussed two different orifice

shapes were developed, Model-C has the circular orifice and Model-R is changed to a

rectangular slot. Since individual plates were used in the development of models, this

gives flexibility to try the actuator with double diaphragms and circular orifice using

Model-D. Later HWA experiments were conducted at various frequencies to obtain a

frequency response graph with the current models and to validate with the results

from the plots of the LEM results. Different models are shown in the figures below.

Figure 2.10.. Circular orifice geometry in CATIA from Model-C

Figure 2.11.. Circular orifice actuator, prototype Model-C
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3. Computational Fluid Dynamics

3.1 CAD Geometry and Meshing

As already mentioned, the geometry has been selected using an LEM low fidelity

analysis tool. Equal areas AO are used in order to compare and understand what the

differences in shape effects can be when the circular orifice and the rectangular slot

are compared. Separate 3D models of the actuator geometries were made in CATIA.

Figure 3.1 below shows the rectangular slot model of geometry. For 2D numerical

simulations, both geometric shapes for the orifice have similar dimensions and can be

ambiguous. Therefore, 3 dimensional models are used to obtain the velocity profiles

from the differing geometries.

Figure 3.1.. SJA and ambient domain geometry top view for Model-R
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Figure 3.2.. Meshed SJA with ambient air computational domain

In order to translate the geometry into the solver it must be converted into a

meshed computational domain. To accomplish this, Pointwise was used to make

structured meshes.

3.1.1 Rectangular Slot

As Model-R involves no round edges, it is easy to discretize into an unskewed

structured hexahedral grid. Several additional guidelines, domains, and blocks are
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created and boundaries are set. The piston is a velocity inlet, the rest of the cavity and

orifice are walled. Orthogonal to the orifice is a wall representing the wing’s surface.

The top ambient surface is a pressure outlet and the ambient sides are pressure inlets.

3.1.2 Circular Orifice

Figure 3.3.. Equiangle skewness in Model-C computational mesh

In order to achieve structured hexahedral mesh for the areas surrounding the

circular orifice, some additional construction edges needed to be created in order to

limit maximum skewness to approximately 0.4. The boundaries are set similarly to

the mesh settings for the rectangular slot.
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Figure 3.4.. Construction lines for circular orifice

3.1.3 Mesh Independence

For grid independence studies, coarse 3/4, medium 1/1, and fine 5/4 meshes are

used to verify that the results converge similarly after multiple cycles of operation.

Cell counts for the meshes include 7524244 for the actuator Model-C and 5240572

with the rectangular Model-R. When doing mesh independence, the sizes for the

rectangular domains would become 2190112 and 10312400 cells for the comparisons.

For comparison, all three mesh sizes were used to capture a velocity profile after

five cycles at t = 3.009× 10−3 with 928 time steps and plotted together. All three of

the results show very similar results and practically equal Vj exit velocities in figure
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Figure 3.5.. Velocity profile mesh independence comparison {dO, Vj}

3.5. The finer mesh of course displays more fine details that can be made out in the

shape of the velocity profiles.

3.2 Numerical Solution

Commercial Fluent 14.5 solver is used for the solution. The following sections

detail some of the solver specifications.
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Nearly all the flows in nature are transient. The steady state assumption only

holds if transient fluctuations have been ignored. Naturally occurring transient flow

is due to the growth of instabilities or non-equilibrium states of the fluids, while with

forced transients, the source drives the flow field.

Forced transients mostly have time dependent boundary conditions and a time

periodic solution where flow variables fluctuate with repeating patterns. In Fluent,

boundaries for these types of flows use a UDF (User Defined Function) that is de-

pendent on time. The UDF δ for modeling Eδ at this boundary is discussed in more

detail in section 3.2.2.

In order to accurately resolve the flow field of the governing Navier-Stokes equa-

tions, turbulence modeling is needed.

3.2.1 Turbulence Model

The k-ε turbulence model is the most popular and widely used for the simulations.

This is also the most common model used in CFD that simulates the characteristics

of the mean flow for turbulent flow conditions. (Mane et al., 2007).

• Energy in the turbulence can be determined from the first transport variable k

which is Turbulent Kinetic Energy.

• Turbulent Dissipation Rate ε is the second transport variable that determines

the dissipation rate.
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The two governing transport equations are the PDEs which give the general de-

scription of the turbulence. For the standard k-ε model, the turbulent kinetic energy

is solved using equation 3.1 and the dissipation rate with 3.2.

∂(ρk)

∂t
+
∂(ρkui)

∂xi
=

∂

∂xj

[
µt
σk

∂k

∂xj

]
+ 2µtEijEij − ρε (3.1)

∂(ρε)

∂t
+
∂(ρεui)

∂xi
=

∂

∂xj

[
µt
σε

∂ε

∂xj

]
+ C1ε

ε

k
2µtEijEij − C2ερ

ε2

k
(3.2)

Which means the rate change and the transport of the turbulent kinetic energy

or dissipation rate is equal to the transport by diffusion and rate of production and

destruction of the kinetic energy or dissipation rate.

Pressure-Implicit with Splitting of Operation (PISO) options were used for the

circular orifice to have more accurate simulations of pressures and velocities in the

hexahedral control volumes due to skewness in the mesh. PISO is based on a high

degree of approximation between the iterative corrections, which significantly reduces

the difficulties with the convergence.

3.2.2 Boundary Conditions

Boundary conditions provide the information about the way fluids interact with

their surroundings. Numerically, fixing boundary conditions to the model provides

external velocity information to the differential equations.
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Wall Boundary Condition

Normally wall conditions use a no-slip boundary condition. This condition states

that there is no relative motion between the particles of the fluid vf and wall surfaces

vw or solid boundaries.

vf = vw (3.3)

When vw = vf = 0 the wall is stationary and if this value changes, the flow at the

boundary is altered.

Diaphragm Boundary Condition

Due to the oscillating diaphragm deflection δ, the boundary condition deals with

changes in velocity. To model the effect of this behavior, a user defined function is

created with the δ(t) = δx sin(ωδt) waveform, corresponding to the input signal Eδ but

neglecting the piezoelectric coupling of the mechanical and electrical domains. Actual

displacements at the boundary of the mesh is not taken into account (Bourlier, 2010).

vδ(t) =
∂δ

∂t
= ωδδxcos(ωδt) (3.4)

This function vf = vδ(t) is given as a time dependent velocity boundary condition

on the cavity-piston domain. As this models the diaphragm as a flat rectangular
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piston, more precise calculations with additional degrees of freedom and a circularly

clamped diaphragm require the adaptive time step and a spatially moving boundary.

δx =
vδ
ωδ

=
AOVj
ADωδ

(3.5)

The deflection δx of the diaphragm was estimated by taking the incompressible

limit into account and is calculated by taking the area of the piston AD and the orifice

neck AO into consideration with the Bernoulli principle.

Using a programmed user defined function, this behavior is translated into the

Fluent solver according to SI units. The final amplification of the end results depends

on what approximate Vj is desired under incompressible limit assumption.

3.2.3 Time Stepping

To calculate the time step size ∆t, the inverse of the sampling frequency fs is

used. This number is obtained by computing the number of time steps n ∈ N desired

per period Tδ of waveform oscillation.

∆t ≈ f−1s =
Tδ
n

=
2π

ωδn
(3.6)

For these numerical experiments n ≈ 185 is used with operating frequencies of 1800

Hz. Thus, using some rounding, for ωδ = 2π× 1800→ ∆t = 3× 10−6 s. Simulations

were carried out for different cases. For numerical simulations in Ansys Fluent the

maximum number of iterations per time step is set to 9.
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3.3 Results

Figure 3.6.. Model-R velocity profiles {dO, Vj}, {wO, Vj}
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Figure 3.7.. Model-C velocity profiles {dO, Vj}
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The velocity profiles are acquired at different locations of the orifice and slot,

mainly along the length and width for the rectangular slot or the perpendicular di-

ameters for the circle {dO, wO} and also at the entrance and exit of the orifice or

slot along hN . These velocity profiles are taken during the 8th pressure cycle for ap-

proximate inflow and outflow temporal phases after 1445 and 1537 time steps. When

the same ωδ frequency is provided to both the models, having the same orifice and

slot area AO, it is noted that the circular orifice of Model-C has more velocity Vj

coming out than the rectangular slot of Model-R. Velocity profiles undergo significant

development along the orifice length hN . It is observed that these velocity profiles

depend on the local conditions.
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4. Hot Wire Anemometry

To measure the velocity of the jet Vj from the actuator, Hot Wire Anemometry

experimenting is used. The flow from the synthetic jet actuator is highly unsteady and

also contains a region of high vorticity, requiring a large dynamic range to measure.

For this chapter, the approach for making the velocity measurements for different

operating frequencies ωδ of the actuator is given. Most of the measurements of velocity

require substantial amount of time to acquire results and the placement of the probe

affects the velocities that are being measured. HWA presents interesting advantages

to jet measurements, especially for investigating frequency response, as hot wires have

a very high frequency response in the range of 104 − 105 (TSI, 1993). Most of the

operating range of the actuator in the current study operates between 20-4000 Hz.

Therefore, it should not be difficult for the hot wire to capture this motion of the

fluid.

4.1 Purpose

The purpose of these experiments is to obtain frequency response plots by mea-

suring Vj peak velocities at various frequencies ωδ and to compare them with the

results obtained from the low fidelity analysis LEM tool.
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4.2 Equipment

1. Hot wire probe, EHW

2. IFA 300 anemometer

3. RS232 interface

4. DAQ with ThermalPro software

5. Oscilloscope

6. Function generator, Eδ

7. Amplifier

8. Model-C SJA with single diaphragm and circular orifice

9. Model-R SJA with single diaphragm and rectangular slot

10. Model-D SJA with double diaphragm and circular orifice

4.3 Principles

A thin wire is mounted to supports and a surface area Aw of the wire is exposed

to the changing velocity Vj emitting from the device. When the current I is passed

through the wire, heat Tw is generated. At equilibrium, the velocity and the current

must be balanced by Ts, the heat loss to surroundings.

I2Rw = hT · Aw(Tw − Ts) (4.1)



39

Velocity changes are related to the convective heat transfer coefficient hT . If the

velocity changes then the balance of the relation changes too and the wire temperature

Tw and current will change until it reaches a new equilibrium. For flows with non-

constant temperature, the wire resistance Rw can also be modeled as a function of

fluid temperature Ts.

Figure 4.1.. Hot wire anemometer circuit

For constant-temperature hotwire anemometers, King’s Law uses the following

equation:

hT = a+ bVj
c

=
I2Rw

Aw(Tw − Ts)
(4.2)

Where {a, b, c} are calibration constants, and Vj is the orifice velocity to be solved

for. This is a form of a heat transfer equation for the heat loss from the sensor to the

fluid. This fit gives a reasonable curve with only a few points.

The following assumptions are used for simplified static analysis:
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• Velocity impacts normally on the wire of the probe uniformly over its entire

length.

• Density and fluid temperature are constant.

• Radiation losses are small.

• Temperature is uniform over the length of the sensor.

Figure 4.2.. Hot wire probe

4.4 Anemometer

A constant-temperature anemometer (IFA 300 ) is a bridge and amplifier circuit

that controls a tiny wire and keeps the sensor resistance constant, as depicted in fig-

ure 4.1. Depending on the sensor used, it provides up to 300 kHz frequency response.

For measuring fluid temperature, each module is designed with a built-in thermocou-

ple circuit and for making temperature corrections. All operations, including setup,

calibration, and data acquisition are software-controlled via an RS-232 interface. IFA

300 anemometer and the interface board are shown below.
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Figure 4.3.. Anemometer with Channel 1 connection

Figure 4.4.. HWA interface board
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As a fluid flow passes over the heated hot wire probe, the amplifier senses an

off-balance in the bridge. In order to keep the bridge balance, the current to the top

of the bridge is adjusted. Built in software relates the velocity of the flow from the

information obtained using King’s Law as discussed in the previous section. The volt-

age measurement of the bridge is sensitive to temperature as well as velocity changes.

The anemometer has a built-in thermocouple circuit that is attached to a thermocou-

ple which measures the temperature of the fluid for constant-temperature calibration.

Each IFA 300 anemometer has eight channels with built-in signal conditioning.

4.5 Method

The input of Channel 1 on the back of the IFA 300 anemometer is connected to

the probe. Channel 1 output voltage EHW is connected to the DAQ board, which

is connected to the computer running ThermalPro software. The software allows

control of the IFA 300 anemometer and the A/D converter through the interface.

The software allows the user to select the channels to be used and measures the

resistance of the sensor. Options include setting the sampling rate for the A/D

converter, making corrections for the temperature drift and the atmospheric pressure

for the fluid, quantifying velocity data with flexible units, and entering probe position

for plotting the data.
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Figure 4.5.. Function generator Eδ with Model-C and Model-R

Figure 4.6.. Experimental setup with function generator, amplifier, SJA,
hot wire probe, anemometer, DAQ board, and computer
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Figure 4.7.. Hot wire probe and Model-R SJA with rectangular slot

The calibration program in the software allows calibration of the sensor probe

using calibration files for the specified probe supplied by the manufacturer TSI.

Using the data acquisition program, each batch of data is displayed on a time

history display. Temperature, mean velocity, and the turbulence intensity are also

displayed. Data can be stored for further analysis.

The post processing program of the software allows calculation of the mean veloc-

ity, normal stress, turbulence intensity, skewness coefficient, etc and also displays the

complete statistical results for different types of probes. The program also displays a

histogram of the stored data and saves it via ASCII text file. This file can be used

to plot the velocity data obtained.
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4.6 Results

Figure 4.8.. Frequency response for Model-C LEM and HWA experiment
{ωδ, Vj}

Figure 4.9.. Frequency response for Model-R LEM and HWA experiment
{ωδ, Vj}
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Frequency response of the actuators with the circular orifice and the rectangular

slot are provided below and were validated against LEM low fidelity analysis results.

Figure 4.10.. Frequency response graph for actuators Model -C, -R, and
-D {ωδ, Vj}

LEM has a set of limitations to be operated within. The shape effects are given

priority, since the primary goal is to test the actuator on the modified wing as a

control device.

Results from the hotwire experiment failed to agree with the LEM frequency

response plot. However, in these cases LEM showed a similar number of peaks as in

HWA experiments and the frequency ranges for the 1st peak and 2nd peak maximum

velocities are almost similar to what was observed with experiments. For not fully

developed flows, LEM results are overshooting if experimental results are considered

accurate.
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4.7 Alternate Model

For further comparison, the Gallas LEM is validated with another set of actuator

geometrical parameters from (de Luca et al., 2000), where they developed a different

LEM model and actuator design based on the basic laws of fluid dynamics similar

to (Sharma, 2007)’s perspective. The three differential equations that describe these

actuator dynamics are given by

δ̈ + 2ζDωDδ̇ + ω2
Dδ = ω2

D∆δ sinωδt−
PCAD
mD

(4.3)

VC
γPa

dPC
dt
− ADδ̇ = −AOVj (4.4)

V̈j +
Kd

hN
|Vj|V̇j + ω2

HVj =
AD
AO

ω2
H δ̇ (4.5)

Derivation of the analytical model is described in (de Luca et al., 2000). This is

the model that they used to predict performance and determine synthetic jet actuator

geometrical parameters. By using these geometrical parameters in the Gallas LEM

model and plotting the results with the experimental data from their research, a

comparison can be made. First, in figure 4.11 a plot giving validation of their model

with experimental results is given and then the comparison is made in figure 4.12.

The parameters for their actuator design is given in tables 4.1 and 4.2.
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Table 4.1.. Geometric parameters and properties of (de Luca et al., 2000)
actuator

Property

Orifice Diameter dO (mm) 2

Orifice Height hN (mm) 2

Cavity Diameter dC (mm) 35

Cavity Width wC (mm) 3

Voltage Applied Eδ (V ) 35, 70

Table 4.2.. Piezoelectric diaphragm properties and dimensions (de Luca
et al., 2000)

Piezoceramic Shim

Young’s Modulus E (pa) 6.7× 1010 9.7× 1010

Poisson’s Ratio ν 0.31 0.36

Density ρ (kg/m3) 8000 8490

Thickness tD (mm) 0.23 0.4

Diameter dD (mm) 23 35



49

The plots in figure 4.11 below show the frequency response plots from this different

LEM model with experimental results at two different Eδ voltages of 35 and 70 V for

the same geometrical parameters.

Figure 4.11.. Numerical-experimental comparison of average exit flow
velocity frequency response {ωδ, Vj}, (de Luca et al., 2000)

Triangles represent the experimental measurements, black curves indicate results

from the numerical solution. After having looked at the difference in the frequency

response plots between the LEM and HWA experimental results in the current thesis,

the Gallas LEM is once again validated with geometric parameters of this actuator

design given, derived from an alternate method.
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Figure 4.12.. Experimental validation of actuator developed using LEM
model based on Sharma’s work vs Gallas LEM model using (de Luca et
al., 2000) actuator design {ωδ, Vj}

When using the equal actuator parameters, the current Gallas model of the LEM

used in this project overshoots the experimental results by a factor of 2−3 times from

the (de Luca et al., 2000) results. This is observed for both of the cases with 35 V and

70 V . Similar type of differences in results are obtained from the comparison of the

Gallas LEM with the prototype HWA experimental results in this thesis, indicating

a scalar overshooting correlation.
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5. Wind Tunnel Experiment

For the final part of the project, the actuator model was placed inside the wing sec-

tion. In this chapter an overview of the wind tunnel experiments is provided. The

modified Glauert wing section is mounted inside the subsonic wind tunnel and forces

are obtained with and without the SJA actuation. From the obtained forces, coef-

ficients of lift CL (dimensionless parameter) were obtained based on the free stream

flow conditions V∞ and the wing section geometry. These are compared with the

theoretical CL of a 2D airfoil.

5.1 Modified Glauert Airfoil

The shape of the airfoil is different from many other conventionally used airfoils

in aviation. Separated flow can be observed, this is due to the discontinuity bump

near the trailing edge. This phenomenon can be used to understand the synthetic jet

actuator flow physics when embedded into the airfoil. Dimensioning of the wing is

given in the below table:

Table 5.1.. Modified Glauert wing dimensions

Wing Span bw (cm) 12.4
Airfoil Chord cw (cm) 14
Surface Area sw (cm2) 16× 12.4
Slot Position xTE (cm) 0.7cw
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Figure 5.1.. Modified Glauert airfoil

With a 14 cm chord cw and a span of 12.5 cm bw, the actuator was embedded at

a ratio of 0.7 of the chord. This is considered the optimal location to increase the

enhancement of the flow, as the value was obtained from a parallel research project.

The Embry-Riddle Aeronautical University subsonic wind tunnel is used in this

experiment. Voltages EWT were obtained from every run of WT through a data

acquisition computer using LabView Express software. Post processing needs to be

carried out in order to compare the lift curve plots.

5.2 Strain Gauge Principle

When a force is applied to the spindle, it causes a bending moment at each point

along the length of the internal beams. The bending moment stretches one surface

and compresses the opposite surface of the beam. There is a fine wire which is woven
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back and forth across the surface of the beam, causing an increase in resistance

when the wire is stretched along with the beam surface. When a force F is applied,

the resistance of the wire increases and the current drops. Unknown forces can be

obtained by measuring the current change ∆EWT and then comparing the current

change with the calibration data to find out what the unknown force was to produce

that result. Lift component of the balance has been calibrated by placing the weights

directly on the force balance platform. The setup used for lift component calibration

is shown in figure 5.2.

5.3 Calibration

A strain gauge balance system verifies the accuracy of the system by applying

known loads and noting the resultant voltages. When known loads are applied, volt-

ages can be recorded on a digital voltmeter. Recorded data is plotted as output

voltages versus applied load and a straight line is fitted to the data. Calculating the

slope of the straight line gives the calibration constant with units of Volts output per

unit of force applied. The output voltages are simply multiplied by the calibration

constants to determine the aerdynamic forces.
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Figure 5.2.. Lift component calibration

Weight Tare To get only the lift produced by the wing mounted inside the wind

tunnel, weight tare needs to be carried out to subtract the additional lift. Additional

lift might be added to the wing due to free stream flow conditions when the wind tun-

nel is at rest. To test this, the wind tunnel needs to be turned off and measurements

need to be recorded from the DAQ computer.
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5.4 Operation of Wind Tunnel

After checking weight tare, the wing section needs to be mounted and secured

properly into the AEROLAB Pyramidal Strain Gauge Balance System. The deviation

blades accelerate the airflow into the wind tunnel when it is operated. The desired

velocity range V∞ can be set for the experiments.

As already mentioned output from the WT can be recorded for different AoA or

α in terms of voltages EWT . For obtaining more steady and constant velocity flows,

the fan should be allowed to run for a few seconds to stabilize internal wind tunnel

conditions.

To convert the voltages EWT in terms of physical values of force, the calibration

constants {a, b} are used, which are the voltage-lift curve slope and the offset values

that had been measured and given by a = 0.732 and b = −0.243. Using the below

equation, force L can be calculated.

EWT = aL+ b (5.1)

Similarly Le or excess lift from the wind tunnel, as already discussed, is subtracted

from the obtained lift force L to get the final lift Lf .

Lf = L− Le = 0.5ρV 2
∞swCL (5.2)

The coefficient of lift is obtained by rearranging formula 5.2. Similar calculations

give the drag coefficent.
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CL =
2Lf
ρV 2
∞sw

(5.3)

CD =
2Df

ρV 2
∞sw

(5.4)

Theoretical coefficient of pitching moments can also be obtained:

CM ≈ −
CL
4

(5.5)

The setup of the experiment has been provided below. Function generation and

amplification Eδ is used to generate the signal for the actuator.

Figure 5.3.. Wind tunnel with actuator setup
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Figure 5.4.. Experimental setup of the wing

Figure 5.5.. Experimental setup of the wing with actuator embedded
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5.5 Results

Coefficients plotted against α graphs show the curves, one with the actuator turned

on and the other is a clean case without any actuator. The associated Reynolds

numbers for the experiments are 38000 and 76000 for the 5 and 10 m/s cases based

on the airfoil chord.

Double diaphragm SJA with circular orifice, Model-D, was used because it has

more Vj velocity than Model-C and Model-R, around 9 m/s. Plots below show the

lift curves that were plotted for two different WT V∞ velocities, 5 m/s and 10 m/s.

Figure 5.6.. Lift curve plot for clean and SJA case at 5 m/s {α, CL}
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Figure 5.7.. Lift curve plot for clean and SJA case at 10 m/s {α, CL}

The typical value for lift curve slope with a 2D airfoil is around 2πα (about 0.11 per

degree). It implies that for each 1 degree of change in the airfoil angle of attack, the

lift coefficient will be increased by 0.11. Thin airfoil theory addresses an airfoil with

almost zero thickness and infinite wingspan. As the thickness to chord ratio increases,

CL moves away from the theoretical value. From the graphs, for free stream velocity

of 5 m/s, the actuation case showed an increase in CL of 8% and decrease in CD of

5% over the clean case. For free stream velocity at 10 m/s, there is a change in {CL,

CD} of approximately {5%, 3%}.
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Figure 5.8.. Drag curve plots for clean and SJA case {α, CD}
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Figure 5.9.. Moment curve plots for clean and SJA case {α, CM}
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6. Conclusions

Due to increasing usage and uniqueness of their behavior, Synthetic Jet Actuators

stand out from various other active and passive flow control techniques. Designing

an actuator is a function of geometrical parameters, operational parameters, and flow

conditions on the actuator-wing unit. All the possible parameters affect the design

and the performance of the synthetic jet actuator. Advancement in computational

science helps to understand some of the parameters, but trying to incorporate all of

the parameters into a single computational study requires large amounts of numerical

data and is also very time consuming.

Due to large parameter space involved in the design of the actuator, low dimen-

sional models are important to establish design optimization conditions. DI - Dynamic

Incompressible flow model, SC - Static Compressible model and LEM - Lumped Ele-

ment Model (Tang et al., 2007), (Gallas, Holman, & Cattafesta, 2005) are examples.

Circular orifice and rectangular slot prototypes had been developed using LEM

and validated using Hot Wire Anemometer experiments, additionally their differing

velocity profiles due to shape effects were obtained using 3D CFD simulations. It is

to be noted that the placement and length of the hot wire probe affect the output of

the frequency response measured. Because results from the LEM didn’t show good

agreement with HWA experimental results, the Gallas LEM is also validated with (de
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Luca et al., 2000) and it is found that the present LEM model used in this study is

overshooting the Vj peak velocities.

Finally wind tunnel experiments were conducted and lift curve slopes with and

without actuator placement were plotted. The effect noticed in both the cases is

not very outstanding but hopeful. This might be due to the ineffective performance

of the actuator. The design of the actuator needs to be optimized and understood

better before proceeding further into research. Only a single actuator was placed in

the wing section; however, embedding multiple actuators into the wing section might

have significant additive effect on the desired characteristics.

Precise machining of materials used for the actuator is needed in order to reduce

the weight and to improve the performance and cavity resonance characteristics.

LEM is only capable of measuring first modes of the diaphragm frequency ωD due

to the λδ assumptions from the LEM. Thus, there is not much preliminary design

operating information beyond the first mode of the diaphragm frequency. An effective

diaphragm is also required, especially having effective piezoelectric-material to shim

diameter and thickness {dD, tD} ratios.

Due to limitations of the current research regarding design optimization analysis

tools and immediately available materials, only a basic model of the actuator was

developed. More research is recommended to develop mathematical models using

reduced order methods that take more actuator configurations into consideration.

Building on these tools will help in simulating and exploring parametric spaces for

actuators and reactive flight control systems for Active Flow Control on a small UAV.
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