

Space Traffic Management Conference

2018 Seeking Sustainable Solutions

Jan 18th, 3:30 PM - 5:00 PM

ITU Radio Regulation & Space Traffic Management

Attila Matas *ret. ITU*

Follow this and additional works at: https://commons.erau.edu/stm

Matas, Attila, "ITU Radio Regulation & Space Traffic Management" (2018). *Space Traffic Management Conference*. 18. https://commons.erau.edu/stm/2018/presentations/18

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in Space Traffic Management Conference by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

STM-18

4th Annual Space Traffic Management Conference Embry-Riddle Aeronautical University's College of Aviation 15 - 19 January 2018 Daytona Beach, Florida USA

ITU Radio Regulation & Space Traffic Management

Attila MATAS

STM Concept

- Space Traffic management (STM) means the set of technical and regulatory provisions for promoting safe access into outer space, operations in outer space and return from outer space to Earth <u>free from</u> physical or <u>radio-frequency interference</u>
- Other terms are used, whenever applicable, in definitions provided by legal/regulatory texts (in particular UN, ITU, ICAO)

ITU Radio Regulations (RR)

- Created in **1906** for different radio services
- 1963 *first* extra-ordinary Administrative WRC to allocate frequency bands for *Space radiocommunication purposes*
- Intergovernmental *Treaty* <u>legal bindings</u> on all Member states, governing the use of <u>spectrum/orbit</u> resources by administrations
- Define the *rights* and *obligations* of Member States in respect of the use of these resources
- Following the ITU RR Any frequency assignments of transmitting and receiving earth and space stations shall be notified to the Bureau (No. 11.2) if:
 - Capable of causing harmful interference; or
 - Used for international radiocommunication; or
 - Seeking to obtain international recognition; or
 - Non conforming assignment under No. 8.4 seeking to be recorded into MIFR for information purposes only

Space Operation Service

Space Operation functions

- Tracking
- Telemetry
- Telecommand

Failure or improper use of Space Operation functions could lead to loss or degradation of service, reduced operational lifetime of satellite, harmful interference, potential for collisions, debris generation

Regulatory Definitions

Article 1 of ITU Radio Regulations

No. 1.23	Space Operation	service concerned exclusively with the operation of spacecraft, in particular space tracking, space telemetry and space telecommand
No. 1.133	Space Telemetry	transmission from a space station of results of measurements made in a spacecraft, including those relating to the functioning of the spacecraft.
No. 1.135	Space Telecommand	transmission of signals to a space station to initiate, modify or terminate functions of equipment on an associated space object, including the space station.
No. 1.136	Space Tracking	Determination of the orbit, velocity or instantaneous position of an object in space by means of radiodetermination, for the purpose of following the movement of the

object.

Tracking

To determine the orbit, velocity or instantaneous position of spacecraft

Satellite

For orbit control (transfer orbit, station keeping, fleet management and maneuvering, End Of Life) Surveillance and safety functions

Earth Station

Satellite

Telemetry

For maintenance of spacecraft by monitoring its condition and payload using measured data:

- Temperature
- Magnetic field for instantaneous attitude or rotation speed
- Moving units measurement
- Inertial measurements for attitude and station keeping
- Measurements in relation to Earth, Sun, stars
- Current, voltages
- Condition of components
- Acknowledgement of reception and execution of command

To ensure proper operational conditions, optimizing the spacecraft and payload mission facilities and analysing unforeseen situations

Earth Station

Satellite

Telecommand

For modifying the operation of the spacecraft and its payload

Also, to ensure immediate cessation of radio emissions, whenever required under the provisions of Radio Regulations (RR No. 22.1) such as elimination of harmful interference under RR Nos. 8.5 and 11.42

Earth Station

Frequency band selection

- Preferred bands of frequencies for Space Operation are between 1 and 8 GHz
- As an exception, bands above 10 GHz are technically suitable for use for Space Operations during re-entry of satellites into Earth's atmosphere to ensure greatest reliability and flexibility during routine, launch or other critical phases

Source: Rec. ITU-R SA.363-5

New/Upcoming non-GSO FSS Satellite Projects

O3B12 MEO SatellitesOneWeb700 LEO SatellitesSpaceX4000 LEO Satellites

O3B

- Equatorial plane
 - Orbit 8 065 km
- 12 satellites in orbit plus 8 more in 2017-2018
- Service ±45^o Latitude

OneWeb

- Circular orbit
- Orbit 1200 km
- 648 satellites in 18 planes
- Complete initial deployment in 2020

SpaceX

- Circular LEO orbit
- Different orbit altitudes
- Around 4000 satellites

Detailed New/Upcoming non-GSO FSS satellite filings

A d m / O m m	Satallita Nama	Number of unique	Number of		Satallita Na	
Aum/Org	Satemite Name	orbit types	satellites per type	AdmyOrg	Satemite Na	
USA	USCSID-P	1	8	F	ES-SAT-2	
J	QZSS-1	1	1	CYP	ANDROMEDA-	
CAN	CASCADE-CX	1	1	NOR	NORSAT-H1	
G	ОЗВ-В	1	24	CAN	102	
IND	INSAT-NAVR-GS	1	4	G	ОЗВ-В	
CAN	CANPOL	1	2	RUS	SKY-F	
CAN	COMMSTELLATION	3	891	NOR	SE-6-HEO-1	
G	L5	4	2692	NOR	SE-6-HEO-1A	
CAN	CANPOL-2	2	51	HOL	DREBBELSAT	
G	O3B-A	1	24	NZL	APOG	
NOR	ASK-1	2	7	G	THEO	
LIE	3ECOM-1	1	288	CAN	MAPLELEAF-1	
F	MCSAT-2 HEO	5	312	RUS/IK	IK-NGSO-A10k	
F	MCSAT LEO	1	774	CAN	MULTUS	
NOR	STEAM-1	3	3993	CAN	CANSAT-LEO	
NOR	STEAM-2	3	3993	NOR	STEAM-2B	
F	MCSAT-2 LEO-1	14	4500	RUS/IK	IK-NGSO-A10k	
F	MCSAT-2 LEO-2	4	2772	USA	USASAT-NGSC	
F	MCSAT-2 MEO-1	10	624	USA	USASAT-NGSC	
F	MCSAT-2 MEO-2	4	744	USA	USASAT-NGSC	
F	MCSAT-2 HEO-1	3	36	USA	USASAT-NGSC	
G	O3B-C	7	840	NOR	NORSAT-H1	
LIE	3ECOM-3	1	288			

Adm/Org	Satellite Name	Number of unique	Number of	
		orbit types	satellites per type	
F	ES-SAT-2	30	1428	
CYP	ANDROMEDA-A	1	48	
NOR	NORSAT-H1	2	4	
CAN	102	1	774	
G	O3B-B	1	24	
RUS	SKY-F	2	24	
NOR	SE-6-HEO-1	1	2	
NOR	SE-6-HEO-1A	1	2	
HOL	DREBBELSAT	1	24	
NZL	APOG	1	18	
G	THEO	1	882	
CAN	MAPLELEAF-1	1	60	
RUS/IK	IK-NGSO-A10K-1	4	160	
CAN	MULTUS	3	80	
CAN	CANSAT-LEO	2	117	
NOR	STEAM-2B	1	1600	
RUS/IK	IK-NGSO-A10K-2	4	160	
USA	USASAT-NGSO-3C	1	1600	
USA	USASAT-NGSO-3D	1	1600	
USA	USASAT-NGSO-3E	1	400	
USA	USASAT-NGSO-3F	1	400	
NOR	NORSAT-H1	2	4	

Adm/Org	Satellite name	ACT CODE	Date of receipt	IFIC	Nr. of orbits	Nr. of sats.
F	MCSAT-2-HEO	М	17.10.2017	'as received"	19	312
USA	USASAT—NGSO-6	А	04.10.2017	'as received"	3	12
F	AST-NG-C-4	А	05.10.2017	'as received"	604	8832
CHN	ACONNECT	А	29.09.2017	'as received"	6	54
CHN	ACONNECT-T	А	29.09.2017	'as received"	6	54
ISR	NSL-1	А	11.09.2017	'as received"	19	19
CHN	FORTRAN-2	А	25.08.2017	'as received"	4	5
G	L5	М	13.06.2017	'as received"	36	1980
G	тнеме	А	29.03.2017	2855/03.10.2017	16	1280
F	ZIP	А	22.03.2017	2855/03.10.2017	16	1280
CAN	CANPOL-3	А	09.02.2017	2854/19.09.2017	2	6
USA	USASAT-NGSO-4	А	01.01.2017	'as received"	8	112
USA	USASAT-NGSO-3B-R	А	01.01.2017	2853/05.09.2017	43	2425
USA	USASAT-NGSO-3A-R	А	01.01.2017	2853/05.09.2017	43	2425

Non-GSO EPFD

- Equivalent power-flux density (EPFD) takes into account the aggregate of the emissions from all Non-GSO satellites in the direction of any GSO earth station, taking into account the GSO antenna directivity
- EPFD considers pointing of a victim receiving antenna with respect to any source of interference
- Complex calculation methodology considers an interference varying in time and space

SPACE @ DEBRIS

ASTROSCALE

Space debris issue is a social problem caused 100% by mankind, unlike global environmental problems such as climate change. The growing number of space debris is threat to the vital satellites orbiting around the earth.

The severity of the space debris issue is aggravating as collisional chain reactions increases debris population at an increasing rate; outpacing the natural rate of orbital decay into our atmosphere.

Conclusion

- STM is an essential concept to promote *rational, equitable, efficient and economical* use of the orbit/spectrum resources by all radiocom services
- Space Operation functions are critical for proper management of the satellite, especially when orbits are becoming more congested, to maintain its intended service free from harmful interference during its lifetime

ITU - STM info - FREE download !

ITU RR @2016 http://www.itu.int/pub/R-REG-RR/en

SRS Communication Handbook https://www.itu.int/pub/R-HDB-43

ITU-R Recommendations https://www.itu.int/rec/R-REC-SA/en