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ABSTRACT

Rane, Jitesh MSAE, Embry-Riddle Aeronautical University, August 2015. Similarity

Analysis of a Swirling Counter-�ow.

Swirling counter-�ows are used in numerous engineering applications, like combus-
tion, heat exchangers, cyclonic separation and mixing, etc. These swirling counter-
�ows produce complex �ow �elds. It is important to study these types of �ows in
order to be able to use them properly in many applications.

The present work provides insight into the �ow�eld inside a swirling counter-�ow
when the �uid is injected tangentially in a cylindrical container. A semi-analytical
solution is developed by starting with the full Navier-Stokes equations and using
a similarity analysis. A decaying swirl along the axis of the cylinder is assumed,
which reduces the Navier-Stokes equations to �rst order ordinary di�erential equations
with boundary conditions. The two point boundary value and eigenvalue problem is
then solved using a collocation method. Pro�les are obtained for various velocity
components that validate the swirling counter-�ow behavior. The opposite pressure
gradients near the inlet and dead-end, and also near the side wall and the axis, show
that there are two streams of �uids that �ow in opposite directions. CFD simulations
of 2D axisymmetric setup and a full 3D con�guration of the same problem are carried
out using a commercial �nite volume method code (Fluent). The analytical results
are then compared against the CFD results. It is observed that the velocity pro�les
for all the cases behave similarly, although there are some variations in their values.
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1. Introduction

Swirling �ows have many interesting features and occur frequently both in nature and

in technology. The main interest for these kind of �ows developed due to the need

to study the �ows of tornados which cause severe damage and are one of the most

dangerous natural calamities. Swirling �ow is an important natural as well as tech-

nological phenomena. They have found applications in combustion, heat exchange,

cyclone separation, mixing, etc. The complex nature of the �ow however hinders the

complete understanding and hence, an e�cient application to recent technologies. For

these reasons, swirling �ows have been extensively studied over several decades. Many

publications and books can be found in the literature that give a thorough review

of swirling �ows (Gupta, Lilley, & Syred, 1984); (Steenbergen, 1995); (Rocklage-

Marliani, Schmidts, & Ram, 2003) ; (Pashtrapanska, Jovanovic, Lienhart, & Durst,

2006). Most of these studies concentrate on the e�ects of swirl �ow created when

the �uid is subjected to sudden or gradual expansion in pipes or injected as a free

jet. It is observed that the swirl component decays as you go downstream because of

adverse pressure gradients and vortex breakdowns are observed.
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1.1 Background on Swirling Flows

Swirl �ows can be said to be a combination of axial motion and tangential mo-

tion. As a result, the �uid moves forward in a helical path. Various swirl-generating

methods can be used to generate swirl �ows that impart spiral motion to a laminar

�ow. (Gupta et al., 1984) classi�ed them into 3 principal categories.

1. Tangential inlets, such as tangential plus axial entry or just tangential slots.

2. Guided vanes such as swirl vane packs, swirlers, honeycomb structures.

3. Direct rotation such as rotating pipes.

As the �uid passes through the swirl generators, the previously non-swirling �ow

acquires helical streamlines. The �uid moves in helical paths and may be considered

as a combination of primary and secondary �ows. The primary �ow is parallel to the

longitudinal axis whereas the secondary �ow is a circulatory �uid motion about the

axes parallel to the primary �ow. (Fokeer, 2006)

There is no standard quantity that denotes the strength of a swirling �ow. How-

ever, the swirl number S is commonly used. The de�nition of swirl number varies

from author to author. (Gupta et al., 1984) de�nes the Swirl number as a nondimen-

sional number representing the angular momentum �ux of the �uid divided by the

axial momentum �ux and the hydraulic radius of the pipe in which swirl �ow occurs.

S =
Gθ

GxR
(1.1)

where,
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Gθ =

∫
(ρuxuθ + ρu′′xu

′′
θ)r

2dr (1.2)

and

Gx =

∫ R

0

(ρu2x + ρu′2 + (p− p∞))rdr (1.3)

It is di�cult to calculate the exct swirl number with these equations since it is

very hard to get the pressure and velocity values experimentally. Simpli�cation to

these equations can be found easily in the literature. Another much more widely used

de�nition is given by (Rocklage-Marliani et al., 2003) as

S =

∫ R
0
uxuθr

2dr

R
∫ R
0
u2xrdr

(1.4)

This equation was further simpl�ed by (Rocklage-Marliani et al., 2003)., as

S =
2
∫ R
0
uxuθr

2dr

R3u2ref
(1.5)

where the axial momentum �ux is replaced by a reference velocity uref.

(Parchen & Steenbergen, 1998) showed that swirl intensity, de�ned by Eq. 1.5,

decays exponentially as:

S = S0e
−βx
D (1.6)

where β is the decay rate and S0 is the initial swirl intensity.
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1.2 Counter�ows

Counter�ows, which are �ows of a �uid in opposite directions have a wide num-

ber of technological applications. There are two types of counter�ows: �ows in the

opposite direction separated by an impermeable surface and �ows with no separating

surface. Heat exchangers use an impermeable surface between the �uids �owing in

the opposite direction, to facilitate the transfer of heat but keeping the hot and cold

�uids separated at all times. Hydrocyclones, vortex tubes and vortex combustors are

examples of counter�ows that have no separating surfaces between the �ows. A natu-

ral example of a counter�ow is the Gulf Stream in the Atlantic Ocean, where opposite

currents occur in the ocean depths. These �ows are highly turbulent but still survive

intense mixing. Swirling counter�ows are used in vortex combustors to e�ciently

mix fuel, oxidizer, and �ue gases. E�ciency increases as a result of the swirling �ows

and also reduces harmful emissions. Vortex tubes and commercial hydrocyclones also

work on the principles of swirling counter�ows.

1.3 Mechanism of Swirling Counter�ows

The mechanism of swirling counter�ows is based upon a pressure minimum occur-

ing at the focal point near the axis (Shtern, 2012). Here, the cyclostrophic balance

equation, ∂p/∂r = ρv2s/r comes into play, which is the relation between the centrifugal

force and the radial gradient of pressure. The equation shows that pressure increases

as we move away from the axis, since ρv2s/r is always > 0.
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Figure 1.1. Vortex Breakdown Bubble in a �uid �lled cylinder with
endwall rotation, for Re=10000.

Figure 1.2. Close up of streamlines of a vortex breakdown bubble

Now for the axial pressure gradient, consider the �ow shown in �gure 1.2 (Shtern,

2012), where the z direction represents the axis of rotation and the horizontal axis

represents the radial direction. For a high speed �ow, the angular momentum rvs is

almost completely conserved along a streamline. Thus, as the streamline approaches
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near the axis, the swirl velocity increases and the pressure drops at the axis according

to the cyclostrophic balance equation.

Near the focal point, the streamlines �rst converge near the axis, then diverge away

from the axis. A local pressure minimum is developed at the axial location where

the �ow convergence changes into �ow divergence. As the swirl velocity increases,

the pressure minimum becomes deeper and deeper, and thus starts to suck �uid from

downstream. As a result, this causes �ow reversal and swirl-induced circulation, which

is referred to as vortex-breakdown bubble, VBB. This swirl-induced counter�ow is on

a local scale, and is small compared to the surrounding �ow.

On a larger scale, however, swirl causes global meridional circulation, occupying

the entire �ow region. Flows where both global and local circulations occur are

common. An example of this shown in �gure 1.1, from a CFD simulation conducted

by the author(and is also analyzed in detail later in this thesis). Figure 1.1 shows an

axisymmetric setup of a sealed cylinder �lled with �uid, with one rotating endwall.

The �uid moves along the sidewall towards the deadend, makes a U-turn and moves

back towards the rotating end along the axis, which is the global circulation of the

system. For a certain swirl intensity, VBB is observed near the axis, as shown in the

�gure. This is the local circulation.

1.4 Applications of Swirling Counter�ows

As stated previously, swirling counter�ows have found applications in hydrocy-

clones, vortex tubes, vortex combustors, etc. The �ows moving in opposite directions
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are used to seperate solid particles suspended in liquids or two liquids of di�erent

densities.

Figure 1.3. Schematic of a hydrocyclone (Ozgen & Yildiz, 2010).

Figure 1.3 (Ozgen & Yildiz, 2010) shows a schematic of a hydrocylone. The mix-

ture to be separated, lets say oil-water mixture (Shtern, 2012) is injected tangentially

and develops a swirling �ow. The mixture travels along the length, where the oil

droplets are pushed into the inner vortex due to centrifugal buoyancy, which again

travels back up and exits through the over�ow. The clean water exits through the

under�ow. A similar application is found in vortex tubes where pressurized air is

injected tangentially to be separated into hot and cold out�ows.

The most recent application of swirling counter�ows has been in the �eld of rocket

motors. Hybrid rockets, which use solid fuel and liquid oxidizer for propulsion, are

considered as an attractive and viable alternative to liquid and solid rockets due to a
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large number of safety, cost and ease of manufacture advantages. However, they face

a few disadvantages (Chiaverini & Kuo, 2007) such as low regression rate of solid fuel,

low volumetric loading, and low combustion e�ciency. Swirl injection of oxidizer is

considered as a solution to these problems.

Figure 1.4. Schematic of a Vortex Injection Hybrid Rocket Engine
(Knuth, Chiaverini, Sauer, & Gramer, 2002).

A lot of research and literature exists for the application of swirl injection of

oxidizer into a hybrid rocket combustion chamber. The engine, termed as "Vortex

Injection Hybrid Rocket Engine" is being developed and tested currently by Orbital

Technologies Corporation. The literature, (Chiaverini & Kuo, 2007) gives a thorough

description of the �ow�eld inside such a con�guration. Figure 1.4 (Knuth, Chiaverini,

Sauer, & Gramer, 2002) shows a schematic of the VIHRE. The oxidizer is injected
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tangentially near the aft-end, forms a swirling counter�ow inside the combustion

chamber and exits through the nozzle. This considerably improves the residence time

of the fuel-oxidizer mixture, along with improved mixing, e�ciency, and a multi-fold

increase in regression rate (Majdalani & Vyas, 2004).

The vortex injection concept has also been used for liquid rocket motors by Orbital

Technologies. The cyclonic �ow is used to keep the hot gases away from the chamber

wall. The liquid oxygen is injected into the combustion chamber in such a way

that it generates a stable, tornado-like cyclonic �ow that con�nes the combustion

to the central region of the chamber, which protects the surfaces. One such rocket

was tested recently in the Mojave desert. The motor was a version of the 30,000-lb

(13,600-kg) thrust liquid engine that Orbitec is developing for the U.S. Air Force"s

Advanced Upper Stage Engine Program and for several NASA in-space and planetary

propulsion systems including the Space Launch System. (Ashley, 2009)

Thus, swirling counter�ows have a wide number of applications in the current and

future industry and it is important to continue indepth research on this topic.

1.5 Organization of the thesis

This thesis is structured as follows: Chapter 2 gives the problem formulation

and the analytical solution for the �ow�eld inside a cylindrical container in which

�uid is tangentially injected. Chapter 3 deals with the setup, solution procedure and

results for the 2D axisymmetric CFD problem. Chapter 4 gives the CFD setup and

results for the full 3D case. A direct comparison between all the 3 cases: analytical,
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2D axisymmetric CFD, and 3D axisymmetric CFD is also included in chapter 4.

Chapter 5 gives the conclusion to this work.
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2. Problem Formulation

The purpose of this section is to develop an analytical solution and plot the velocity

pro�les for a swirling �ow which is developed when �uid is tangentially injected into

a cylindrical container. The container is considered to be as follows (Figure 2.1).

Figure 2.1. Schematic of the axisymmetric cylindrical container.

Fluid enters through the tangential inlet near the endwall that has the outlet.

Due to the radial and axial pressure gradient developed(proved later), �uid is pushed

out towards the wall and travels along the length of the container. As the �uid moves

along the sidewall, the swirl decays due to viscous e�ects. These two e�ects lead to

opposite axial pressure gradients near the axis and the sidewall, as well as opposite

pressure gradients at the endwall near the inlet and away from the inlet. Thus, the
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�uid travels axially along the sidewall, makes a U-turn at the dead-end, converges

near the axis, and then travels back to the endwall with the outlet.

2.1 Solution Setup

The work done in this chapter is based upon the work done by (Shtern, 2012).

However, the �nal equations that are derived and solved here are di�erent from the

ones used by (Shtern, 2012). Also, the boundary value problem solver 'bvp4c' in

MATLAB is used to solve the equations numerically, instead of Newton's shooting

method as done by (Shtern, 2012).

The assumptions made here are that the �uid is injected tangentially in a cylin-

drical container, the �uid being a viscous incompressible �uid. Starting with the

unsteady incompressible Navier-Stokes equations in cylindrical coordinates, we have,

The r −momentum equation

∂vr
∂t

+ vr
∂vr
∂r

+
vφ
r

∂vr
∂φ

+ vz
∂vr
∂z
−
v2φ
r

= −1

ρ

∂P

∂r
+
µ

ρ
[
∂2vr
∂r2

+

1

r

∂vr
∂r

+
1

r2
∂2vr
∂φ2

+
∂2vr
∂z2
− vr
r2
− 2

r2
∂vφ
∂φ

]

(2.1)

The z −momentum equation

∂vz
∂t

+ vr
∂vz
∂r

+
vφ
r

∂vz
∂φ

+ vz
∂vz
∂z

= −1

ρ

∂P

∂z
+
µ

ρ
[
∂2vz
∂r2

+

1

r

∂vz
∂r

+
1

r2
∂2vz
∂φ2

+
∂2vz
∂z2

]

(2.2)
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The θ −momentum equation

∂vφ
∂t

+ vr
∂vφ
∂r

+
vφ
r

∂vφ
∂φ

+ vz
∂vφ
∂z

+
vrvφ
r

= − 1

ρr

∂P

∂φ
+
µ

ρ
[
∂2vφ
∂r2

+

1

r

∂vφ
∂r

+
1

r2
∂2vφ
∂φ2

+
∂2vφ
∂z2

− vφ
r2

+
2

r2
∂vr
∂φ

]

(2.3)

The continuity equation

1

r

∂(rvr)

∂r
+

1

r

∂vφ
∂φ

+
∂vz
∂z

= 0 (2.4)

Next, the Navier-Stokes equations are non dimensionalized using the following scales

1. Length scale -Rin , the cylindrical container's inner radius.

2. Velocity scale - vφsc , the characteristic swirl velocity.

3. Pressure scale - ρv2φsc , where ρ is the density of the �uid.

Also, applying the assumptions that the �ow is steady and axisymmetric, equa-

tions (2.1), (2.2), (2.3), and (2.4) reduce to the following equations

vr
∂vr
∂r

+ vz
∂vr
∂z
−
v2φ
r

+
∂P

∂r
=

1

Re
[
1

r

∂

∂r
(r
∂vr
∂r

)− vr
r2

+
∂2vr
∂z2

] (2.5)

vr
∂vz
∂r

+ vz
∂vz
∂z

+
∂P

∂z
=

1

Re
[
1

r

∂

∂r
(r
∂vz
∂r

) +
∂2vz
∂z2

] (2.6)
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vr
∂vφ
∂r

+
vrvφ
r

+ vz
∂vφ
∂z

=
1

Re
[
∂2vφ
∂r2

+
1

r

∂vφ
∂r
− vφ
r2

+
∂2vφ
∂z2

] (2.7)

∂(rvr)

∂r
+
∂(rvz)

∂z
= 0 (2.8)

Where Re = vφscRin/ν is the Reynolds number, and ν is the kinematic viscosity.

The Stream function ψ is introduced in the above equations by substituting vr and

vz as follows

vr = −
1

r

∂ψ

∂z
(2.9)

vz =
1

r

∂ψ

∂r
(2.10)

where ψ is scaled by 2πR2
inρvφsc

This satis�es the continuity equation (eqn (2.8))

The next step is to eliminate the pressure gradients ∂P/∂r and ∂P/∂z. This is

done by substituting ψ from equations (2.9) and (2.10) into (2.5) and (2.6). Then

these reduced r and z momentum equations are di�erentiated w.r.t z and r respec-

tively. A common term ∂2P/∂r∂z is obtained in both the equations, which is elimi-

nated by substituting one equation in the other.
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Substituting equations (2.9) and (2.10) in equation (2.5), we get

−1

r

∂ψ

∂z

∂

∂r
(−1

r

∂ψ

∂z
) +

1

r

∂ψ

∂r

∂

∂z
(−1

r

∂ψ

∂z
)−

vφ2

r
+
∂P

∂r
=

1

Re
[
1

r

∂

∂r
{r ∂
∂r

(−1

r

∂ψ

∂z
)} − 1

r2
(−1

r

∂ψ

∂z
) +

∂2

∂z2
− 1

r

∂ψ

∂z
]

(2.11)

Simplifying

1

r

∂ψ

∂z

∂

∂r
(
1

r

∂ψ

∂z
)− 1

r2
∂ψ

∂r

∂2ψ

∂z2
−
vφ2

r
+
∂P

∂r
=

1

Re
[−1

r

∂

∂r
{r ∂
∂r

(
1

r

∂ψ

∂z
)}+ 1

r3
∂ψ

∂z
− 1

r

∂3ψ

∂z2∂r
]

Di�erentiating this equation by z, we get

Re
∂

∂z
[
1

r

∂ψ

∂z

∂

∂r
(
1

r

∂ψ

∂z
)− 1

r2
∂ψ

∂r

∂2ψ

∂z2
−
vφ2

r
] +Re

∂2P

∂r∂z
=

−1

r

∂2

∂r∂z
{r ∂
∂r

(
1

r

∂ψ

∂z
)}+ 1

r3
∂2ψ

∂z2
− 1

r

∂4ψ

∂z3∂r
]

Rearranging,

Re
∂2P

∂r∂z
= −Re ∂

∂z
[
1

r

∂ψ

∂z

∂

∂r
(
1

r

∂ψ

∂z
)− 1

r2
∂ψ

∂r

∂2ψ

∂z2
−
vφ2

r
]

−1

r

∂2

∂r∂z
{r ∂
∂r

(
1

r

∂ψ

∂z
)}+ 1

r3
∂2ψ

∂z2
− 1

r

∂4ψ

∂z3∂r
]

(2.12)

Substituting eqns (9) and (10) in eqn (6), we get

(−1

r

∂ψ

∂z
)
∂

∂r
(
1

r

∂ψ

∂r
) + (

1

r

∂ψ

∂r
)
∂

∂z
(
1

r

∂ψ

∂r
) +

∂P

∂z
=

1

Re
[
1

r

∂

∂r
{r ∂
∂r

(
1

r

∂ψ

∂r
)}+ ∂2

∂z2
(
1

r

∂ψ

∂r
)]
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Simplifying,

−1

r

∂ψ

∂z

∂

∂r
(
1

r

∂ψ

∂r
) +

1

r2
∂ψ

∂r

∂2ψ

∂r∂z
) +

∂P

∂z
=

1

Re
[
1

r

∂

∂r
{r ∂
∂r

(
1

r

∂ψ

∂r
)}+ ∂2

∂z2
(
1

r

∂ψ

∂r
)]

Di�erentiating the above equation by r, we get

Re
∂

∂r
[−1

r

∂ψ

∂z

∂

∂r
(
1

r

∂ψ

∂r
) +

1

r2
∂ψ

∂r

∂2ψ

∂r∂z
)] +Re

∂2P

∂r∂z
=

∂

∂r
[
1

r

∂

∂r
{r ∂
∂r

(
1

r

∂ψ

∂r
)}] + ∂3

∂z2∂r
(
1

r

∂ψ

∂r
)

(2.13)

Substituting the value of Re ∂
2P

∂r∂z
from equation (12) into equation (13), we get

∂

∂r

{
1

r

∂

∂r

[
r
∂

∂r

(
1

r

∂ψ

∂r

)]}
+

∂3

∂z2∂r

[
1

r

∂ψ

∂r

]
+

1

r

∂2

∂r∂z

[
r
∂

∂r

(
1

r

∂ψ

∂z

)]
− 1

r3
∂2ψ

∂z2
+

1

r

∂4ψ

∂z4
=

Re
∂

∂r

[
1

r2
∂ψ

∂r

∂2ψ

∂r∂z
− 1

r

∂ψ

∂z

∂

∂r

(
1

r

∂ψ

∂r

)]
+Re

∂

∂z
[
1

r
v2φ −

1

r

∂ψ

∂z

∂

∂r
(
1

r

∂ψ

∂z
) +

1

r2
∂ψ

∂r

∂2ψ

∂z2
]

(2.14)

Substituting eqns (9) and (10) in eqn eqn(7)

−1

r

∂ψ

∂z

∂vφ
∂r
− 1

r

∂ψ

∂z

vφ
r

+
1

r

∂ψ

∂r

∂vφ
∂z

=
1

Re
[
∂2vφ
∂r2

+
1

r

∂vφ
∂r
− vφ
r2

+
∂2vφ
∂z2

]

Rearranging,
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∂2vφ
∂r2

+
1

r

∂vφ
∂r
− vφ
r2

+
∂2vφ
∂z2

= Re

[
1

r

∂ψ

∂r

∂vφ
∂z
− 1

r

∂ψ

∂z

(
∂vφ
∂r

+
vφ
r

)]
(2.15)

Thus, The pressure terms are eliminated completely and the four equations started

with are reduced to just two equations (2.14) and (2.15)

2.2 Swirl Decay

The �ow in the core region(away from the end walls) is considered. This �ow is

assumed to have very weak dependence in the z-direction.

The swirling �ow decays from the inlet to the outlet as the �uid is viscous and no

slip boundary conditions are applied to the wall. To model this decay, the solution is

assumed to be in the form of

vφ = F (r)e−λz +O(λ2) (2.16)

and

ψ = Q(r)e−λz +O(λ2) (2.17)

λ is assumed to be the decay rate in the z-direction. As the �ow is assumed to

have a very weak dependence in the z-direction, λ << 1

Also, as the swirl is strong, Re >> 1. Hence the product of λRe cannot be

neglected.

Therefore, substituting eqns (2.16) and (2.17) in (2.14), ful�lling di�erentiation

by z and setting λ = 0 everywhere, while still retaining the λRe terms, we get
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∂

∂r

{
1

r

∂

∂r

[
r
∂

∂r

(
1

r
Q′e−λz

)]}
=

Re
∂

∂r

[
1

r2
Q′e−λz(−λ)Q′e−λz − 1

r
(−λ)Qe−λz ∂

∂r

(
1

r
Q′e−λz

)]
+
Re

r

∂

∂z
(F 2e−2λz)]

Simplifying,

{
1

r

[
r

(
1

r
Q′
)′]′}′

= λRe{[1
r
Q(

1

r
Q′)′ − 1

r2
Q′2]′ − 2

r
F 2} (2.18)

Substituting (2.16) and (2.17) into (2.15),

∂2(Fe−λz)

∂r2
+

1

r

∂(Fe−λz)

∂r
− (Fe−λz)

r2
+
∂2(Fe−λz)

∂z2
=

Re

[
1

r

∂

∂r
(Qeλz)

∂

∂z
Fe−λz)− 1

r

∂

∂z
(Qe−λz)

(
∂

∂r
(Fe−λz) +

(Fe−λz)

r

)]

Simplifying,

F ′′ +
F ′

r
− F

r2
= λRe

[
Q

r

(
F ′ +

F

r

)
− Q′F

r

]
(2.19)

Again, pointing out that F is the tangential velocity and Q is the stream function,

ψ, we de�ne the axial velocity as W = Q′/r. Since the axis is a streamline, ψ =

constant, putting Q = 0 at the axis r = 0, and also applying the no slip boundary

condition at the side wall, r = 1, we end up with these boundary conditions,
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Q(0) = Q′(0) = 0 (2.20)

Q(1) = Q′(1) = 0 (2.21)

F (0) = 0 (2.22)

F (1) = 0 (2.23)

This boundary value problem has a trivial solution. In order to obtain a non-zero

solution, an eigen value, which is λRe in this case, must be found.

The above boundary value problem is rewritten as a system of �rst order di�er-

ential equations as follows.

F ′ = F1 (2.24)

F ′1 =
F

r2
− F1

r
+ λRe

(
QF1

r
+
QF

r2
−WF

)
(2.25)

Q′ = rW (2.26)

W ′ = W1/r (2.27)

W ′
1 = rW2 (2.28)

Substituting these values into equation (18)
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{
1

r
[rW ′]

′
}′

= λRe{[1
r
QW ′ −W 2]′ − 2

r
F 2}

{
1

r
W ′

1

}′
= λRe{[ 1

r2
QW1 −W 2]′ − 2

r
F 2}

W ′
2 = λRe{[− 2

r3
QW1 +

1

r2
Q′W1 +

1

r2
QW ′

1 − 2WW ′ − 2

r
F 2}

W ′
2 = λRe

(
QW2 − 2QW1

r2
−WW1 − 2F 2

)
r

(2.29)

2.3 Matlab Simulation

The boundary value problem to be solved now consists of the following equations,

F ′ = F1 (2.30)

F ′1 =
F

r2
− F1

r
+ λRe

(
QF1

r
+
QF

r2
−WF

)
(2.31)

Q′ = rW (2.32)

W ′ = W1/r (2.33)

W ′
1 = rW2 (2.34)
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W ′
2 = λRe

(
QW2 − 2QW1

r2
−WW1 − 2F 2

)
r

(2.35)

The boundary conditions are set as

Q(0) = Q′(0) = 0 (2.36)

Q(1) = Q′(1) = 0 (2.37)

F (0) = 0 (2.38)

F (1) = 0 (2.39)

F1(0) = 0 (2.40)

To compute the proper eigen value, MATLAB requires an extra boundary con-

dition that excludes the zero solution. This extra condition is provided by equa-

tion(2.40), which is F1(0) = 0. (Shtern, 2012)

The boundary value problem is solved using MATLAB's 'bvp4c' solver. This

solver uses collocation method to solve the ordinary di�erential equations.

'bvp4c' requires an initial guess for the desired solution. The initial solution is

guessed on the basis of behaviour of di�erent velocity pro�les(Shtern, 2012) as follows

:

F = r (2.41)

F ′ = 1 (2.42)

Q = 4r − 4r2 (2.43)
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W = −0.246991(4r2 − 3r4 − 1) (2.44)

W ′ = 8r2 − 12r4 (2.45)

W2 = 5.7242 cos(3r) (2.46)

To compute the proper eigen value, MATLAB requires an extra boundary con-

dition that excludes the zero solution. This extra condition is provided by equa-

tion(2.40), which is F1(0) = 0.

bvp4c also requires an initial guess for the eigen-value. The better the guess, the

faster the solution will converge. The guess here is set to 319.15. (Shtern, 2012)

The solution is calculated in 3 steps with di�erent number of mesh points and

relative tolerances. The solution for each step acts as the initial guess for the next

step.

2.4 Velocity Pro�les

Figure 2.2 represents the radial distribution of the tangential or the swirl velocity.

The x-axis represents the non-dimensional radial distance from the axis, 0 being the

axis and 1 being the sidewall. The swirl velocity increases from 0 away from the axis,

reaches a certain maxiumum value, and then falls back to zero as it goes towards the

sidewall.

The plot for F ′ is plotted just to verify whether the solution behaves correctly.

As F' is the derivative of F, the plot from F' behaves as the plot for the slope of F
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Figure 2.2. Tangential velocity.

Figure 2.3. plot for F'(to validate the correct behaviour of the solution)

would, constant slope at the beginning, decreases to 0 as it reaches the maxima, and

then becomes negative after the maxima.
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Figure 2.4. Streamfunction(mass �ow rate).

Figure 2.4 represents the mass �ow rate (ψ normalized by 2πRinρvφsc). ψ �rst

decreases away from the axis, reaches its minimum value where the axial velocity

changes its direction, then goes back to zero at the sidewall.

Figure 2.5. Axial Velocity.
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Figure 2.5 represents the axial velocity scaled by the absolute value at the axis

|Vz0|. The positive axial velocity represents the �ow towards the dead end while the

negative axial velocity represents the �ow towards the exhaust. The axial velocity

changes its sign at about r = 0.53, the same value as where the mass �ow rate is

the maximum. The maximum value of axial velocity is about 0.28, at r = 0.76. The

opposite directions of the axial velocity validates the counter�ow in the container.

Figure 2.6. plot for W'(to validate the correct behaviour of the solution).

The plot for W1 (�g 2.6) is again, to validate that the solution is behaving cor-

rectly, as it is the plot for the slope of W.

The plot for W2(�g 2.7) relates to the pressure distribution of the solution as is

shown below.
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Figure 2.7. W2 relates to pressure distribution.

2.5 Pressure Distribution

Considering that the radial velocity vr is negligible in the core �ow, the equation

(2.5) can be reduced to the cyclostrophic balance equation (Shtern, 2012),

∂p

∂r
=
v2φ
r

(2.47)

Since v2φ/r is always greater than 0, the radial pressure gradient is always positive

at any z. This causes the �uid to push towards the wall when it is injected into the

container.

Integrating the above equation gives

p = p0(z) +

∫ r

0

r−1v2φdr (2.48)

where p0(z) is the pressure at the axis, r = 0.



27

Also, equation (2.6) reduces to

∂p

∂z
=

1
Re

[W2 + λRe(W 2 − 1

r2
W1Q)] (2.49)

At the sidewall, r = 1, Q(1) = 0, W (1) = 0 (since Q′(1) = 0 and W = Q′/r)

Therefore the equation (2.49) reduces to

∂p

∂z
=

1
Re

W2(1) (2.50)

From �gure 2.7, it can be seen that W2(1) < 0. Hence, ∂p/∂z < 0 at r = 1. This

negative pressure gradient pushes the �uid towards the deadend along the sidewall.

At r = 0, the equation (2.49) again reduces to

∂p

∂z
=

1
Re

W2(0) (2.51)

From �gure "2.7", W2(0) > 0. Hence, pressure decreases from the dead end to the

outlet along the axis, which pushes the �ow towards the outlet near the axis, r = 0.
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3. 2D Axisymmetric CFD of Swirling Flow in a Con�ned Cylinder with

Endwall Rotation

In this chapter, the solution of the swirling counter�ow is obtained by using CFD. The

results obtained are compared with the similarity analysis performed in the previous

chapter.

The �ow inside a con�ned cylinder with endwall rotation is one of the simplest

model and most fundamental one to analyse swirling �ows. The steady-state �ow

produced in a closed cylindrical container by rotation of one endwall is determined

by the aspect ratio H/R and Reynolds number ωR2/ν, H being the cylinder length,

R its radius, ω the angular velocity of the endwall, and ν the kinematic viscosity of

the contained �uid. The rotating endwall acts as a pump, drawing in �uid axially

and driving it away in an upward spiral. In a closed container, the �uid swirls along

the cylindrical wall. Spirals in across the �xed endwall and then again turns into the

axial direction towards the rotating endwall. The inward spiraling motion results in

an initial increase in swirl velocity, due to the conservation of angular momentum,

and so the creation of a concentrated vortex.

When this experiment was �rst conducted, it was observed that for certain Reynolds

numbers and H/R ratio, the vortex underwent breakdown, i.e a stagnation point fol-

lowed by a recirculation zone of limited extent appears on the cylinder axis. Vortex
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breakdowns are desirable in some cases while are undesirable in many others. For

example, it is important to breakdown the trailing vortices from a large aircraft wings

such that it does not a�ect smaller aircrafts �ying in its wake. However, leading-edge

vortices shed from a delta wing induce a velocity �eld that results in increased lift

and stability of the wing.

3.1 Physical Model

Figure 3.1. Cylinder �lled with water and rotating base.

As no slip conditions are applied to all the walls, the viscous �uid will start to move

along with the rotating wall and due to centrifugal force, will be pushed out to the

outside of the cylinder(�gure 3.1 (Lopez, 2012)). With the base rotating continuously,

more and more �uid is pushed to the outer wall and the �uid already there is pushed

up along the surface. This �uid, after reaching the head of the cylinder, is de�ected

towards the axial direction, from where it moves down again towards the base. As
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the �uid reaches the base, the process is again repeated and after some time, the

�ow reaches a steady state. The �ow is stable for low Reynolds number. But as

the Reynolds number begins to increase, the �ow becomes more and more turbulent.

After a certain critical Reynolds number, a vortex breakdown is observed near the

head wall along the axial direction.

3.2 Mesh

Figure 3.2. Structured mesh for the 2D Axisymmetric CFD simulation

Pointwise is used for creating the mesh for this simulation. A simple rectangle

is used as the geometry to represent the axisymmetric cross-section of the cylinder.

The bottom side of the rectangle is the axis of the cylinder. The left side denotes the
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rotating end-wall. The top side is the sidewall, and the right side is the stationary

endwall. The structured grid has 400 divisions horizontally, and 100 divisions ver-

tically. The mesh is re�ned near the sidewall and the axis to appropriately capture

the wall e�ects and vortex breakdown(if any) near the axis of the cylinder. The total

number of points for the mesh is 40,000. A grid independent study was done and

it was found that there was no noticeable di�erence in the solution beyond 40,000

points.

The sides of the rectangle are referred to as left, right , bottom, and top henceforth.

The boundary conditions applied are as follows

� Left - Rotating Wall boundary condition with no-slip. The angular velocity is

set to 1 rad/s.

� Right - Stationary Wall boundary condition with no-slip.

� Bottom - Axis boundary condition.

� Top - Stationary Wall boundary condition with no slip.
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3.3 Numerical Setup

The solution is obtained using the commercially available software Ansys-Fluent.

Fluent uses �nite volume method to simulate �ow�elds.

As the �ow is a very highly swirling �ow, turbulence and swirl e�ects have to

be taken into consideration. The turbulence model used to solve for this �ow is the

RNG(Re-normalization group) k − ε model with Swirl enhanced �ows. The RNG

k − ε model has an additional ε term in its equation that signi�cantly improves the

accuracy for rapidly strained �ows. The swirling e�ect on turbulence is included in

the RNG model, which considerably improves the accuracy for swirling �ows.(Itai,

Ferreira, Guerra, & Mesquita, 2006)

For pressure discretization, the default scheme in FLUENT interpolates the pres-

sure values at the faces using momentum equation coe�cients. This procedure is

good when there is smooth pressure variation between cell centers. When jumps or

large gradients in the momentum source terms between control volumes, the pres-

sure pro�le has a high gradient at the cell face, and this scheme interpolates it with

poor accuracy. If this scheme is used, the discrepancy shows up in overshoots/under-

shoots of cell velocity. Swirling �ows have large �uctuations in their velocities. In

such cases, it is necessary to pack the mesh in regions of high gradient to resolve the

pressure variation adequately. Another source of error is that FLUENT assumes that

the normal pressure gradient at the wall is zero. This is valid for boundary layers,

but not in the presence of body forces or curvature. Again, the failure to correctly
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account for the wall pressure gradient is manifested in velocity vectors pointing in-

/out of walls. Several alternate methods are available for cases in which the standard

pressure interpolation scheme is not valid. One of them is the PRESTO! Pressure

discretization scheme. The PRESTO! (PREssure STaggering Option) scheme uses

the discrete continuity balance for a "staggered� control volume about the face to

compute the "staggered� (i.e. face) pressure. This procedure is similar in spirit to

the staggered-grid schemes used with structured meshes.

3.4 Results

Figure 3.3. Tangential Velocity pro�le
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Figure 3.3 shows the tangential velocity pro�le for the two dimensional CFD

simulation. The solution behaves as was found out in the analytical solution. The

swirl velocity starts increasing from zero away from the axis, reaches a maximum

value, and then falls back down to zero near the sidewall. However, the peak for

this velocity is shifted towards the sidewall, as opposed the maximum value attained

exactly at r = 0.5 in the analytical solution.

Figure 3.4. Axial Velocity

Figure 3.4 shows the plot for the axial velocity scaled to its absolute value at

r = 0. This plot behaves exactly the same way as for the analytical solution. The

positive axial velocity corresponds to the �ow near the sidewall moving towards the
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dead-end whereas the negative axial velocity represents the �ow near the axis which

is traveling towards the exhaust.

Figure 3.5. Streamfunction (mass �ow rate)

The plot in Figure 3.5 shows the mass �ow rate from the axis to the sidewall.

Once again, it can be seen that the mass �ow rate reaches its peak at the same spot

as the axial velocity changes its direction.
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4. 3D Simulation of a Swirling Counter�ow

In this section, a 3D model of a swirling counter�ow in a cylindrical chamber is cre-

ated. Fluid is injected through a tangential inlet near the aft-end. The physics of the

problem remain the same as the previous two cases. The results for the 3D simulation

are compared with the analytical solution and the 2D axisymmetric solution.

4.1 Geometry

The geometry was created using Catia V5. The H/R ratio was chosen to be 6.

Figure 4.1. Geometry for the 3D CFD simulation with 4 inlets.

Initially, 4 tangential inlets were used in the geometry to inject the �uid into the

cylindrical chamber, as shown in the �gure. However, when the simulation was ran,
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the results were not consistent with the analytical and the 2D axisymmetric solutions.

The velocity vectors and the streamlines showed a lot of turbulence and mixing near

the inlets as the �ows converged which a�ected the solution throughout.

Hence, a single inlet was chosen for the �nal simulation which provided with results

much similar to the previous two cases.

The con�guration remains the same as previous, �uid is injected tangentially near

the end-wall that has the outlet, while the other end-wall remains closed.

Figure 4.2. Modi�ed Geometry for the 3D CFD simulation with one inlet.

4.2 Mesh

The mesh was generated using Pointwise. It is an unstructured tetrahedral mesh.

The total number of cells is 2,463,835. A grid independent study was done on this
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Figure 4.3. Mesh for the 3D case.

case and a more re�ned mesh than the above number of cells had no considerable

e�ect on the solution.

4.3 Boundary Conditions

Velocity Inlet boundary condition is applied to the inlet shown in �g 4.2. Pressure

Outlet boundary condition is applied to the outlet as shown in �g 4.2. Every other

surface has a Wall boundary condition with no-slip. The velocity is set such the

Reynolds number for the case is 2000.
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Figure 4.4. Unstructured mesh for the 3D setup(zoomed in).

4.4 Results

Figure 4.5. Streamlines for the 3D case
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Figure 4.5 shows the 3D volume streamlines, along with the velocity contours. It

can be seen that the Velocity is the highest at the inlet, but starts decreasing rapidly

as soon as the �uid enters the cylindrical container. The swirling decay can also be

seen as the �uid moves along the sidewall towards the dead end.

Figure 4.6. Tangential Velocity(3D).

Figure 4.6" shows the tangential velocity pro�le for the 3D CFD case. The behav-

ior of the pro�le remains the same as the previous two cases. However, the tangential

velocity at the axis of the cylinder (r = 0) is not zero, and has some positive value.
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Figure 4.7. Axial Velocity(3D).

The plot for the axial velocity case behaves the same as the previous two cases.

A direct comparison between the 3 cases is done in the next section.
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4.5 Comparison between all the three cases

It should be noted that for the similarity analysis, turbulence was not taken into

consideration. For the CFD simulations, turbulence models were used to correctly

solve the solutions. This may be the source of di�erence between the results between

them.

Figure 4.8. Comparison between tangential velocity pro�les for all the cases.

Figure 4.8 shows the plot for the tangential velocity for all the 3 cases. The major

di�erence between them is that the peak for the analytical solution is located right at

the midpoint (r = 0.5) between the axis and the sidewall, while for the CFD cases,

the maximum value is located slightly closer to the sidewall.

Figure 4.9 shows the plots for axial velocity for all the cases. They all behave the

same, except that the CFD simulations have a higher maximum value.



43

Figure 4.9. Comparison between axial velocity pro�les for all the cases.

The pro�le for the radial velocity is not plotted in any of the cases, as the radial

velocity is negligibly small in the core �ow region which is being considered.
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5. Conclusion

This thesis concentrates on the �ow �eld of a swirling counter�ow inside a cylindrical

container where �uid is injected tangentially near the end wall that has the exhaust

and is closed at the other end. A decaying swirl assumption is used to reduce the

incompressible and steady Navier-Stokes equations to a set of �rst order ordinary

di�erential equations, which are solved using MATLAB's boundary value problem

solver 'bvp4c'. The velocity pro�les are plotted in the core �ow region (away from

the end walls) and the pressure distribution is obtained. It is shown that that the

counter�ow exists because of the opposite pressure gradients at the side wall and the

dead end. Computational Fluid Dynamics (CFD) simulations are then conducted of

the same con�guration in a steady 2D axisymmetric setup and full 3D setup using

RNG (Re-Normalization Group) k−ε turbulence model and the results are compared.

Similar velocity pro�les are observed for all the three cases, with slight variations in

their values.

The results obtained here are for a simple con�guration with a lot of simpli�cations

and assumptions. A more complex study can be conducted by considering the e�ects

of compressibility, turbulence, heat addition and/or combustion, and considering a

more complex geometry with di�erent boundary conditions such as exhaust e�ect of

having a nozzle or e�ects of side wall addition. The work done here provides a basic
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analytical insight into the �ow �eld of a swirling counter�ow and can be used as a

foundation for future work.
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