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Evidence of dispersion and refraction of a spectrally
broad gravity wave packet in the mesopause
region observed by the Na lidar
and Mesospheric Temperature
Mapper above Logan, Utah
T. Yuan1, C. J. Heale2, J. B. Snively2, X. Cai1,3, P.-D. Pautet1, C. Fish4, Y. Zhao1, M. J. Taylor1,3,
W. R. Pendleton Jr1, V. Wickwar1,3, and N. J. Mitchell5

1Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah, USA, 2Physical Sciences Department,
Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA, 3Physics Department, Utah State University, Logan,
Utah, USA, 4Space Dynamic Laboratory, Utah State University, Logan, Utah, USA, 5Department of Electronic and Electrical
Engineering, University of Bath, Bath, UK

Abstract Gravity wave packets excited by a source of finite duration and size possess a broad frequency and
wave number spectrum and thus span a range of temporal and spatial scales. Observing at a single location
relatively close to the source, the wave components with higher frequency and larger vertical wavelength
dominate at earlier times and at higher altitudes, while the lower frequency components, with shorter vertical
wavelength, dominate during the latter part of the propagation. Utilizing observations from the Na lidar at Utah
State University and the nearby Mesospheric Temperature Mapper at Bear Lake Observatory (41.9°N, 111.4°W),
we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the
mesopause region over Logan, Utah (41.7°N, 111.8°W), that occurred on 2 September 2011, to study the
waves’ evolution as it propagates upward. The lidar-observed temperature perturbation was dominated by
close to a 1 h modulation at 100 km during the early hours but gradually evolved into a 1.5 h modulation
during the second half of the night. The vertical wavelength also decreased simultaneously, while the
vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical
level during the second half of the night. A two-dimensional numerical model is used to simulate the
observed gravity wave processes, finding that the location of the lidar relative to the source can
strongly influence which portion of the spectrum can be observed at a particular location relative to a source.

1. Introduction

Gravity waves (GWs) can be generated through convection, wind shear, topography, and other sources at lower
altitudes [Fritts and Alexander, 2003]. GW packets propagate away from their sources and experience dissipation
via viscosity, wind filtering, or nonlinear breaking and instability. Such dissipation processes are critical for upper
atmospheric dynamics and chemistry, since these mechanisms transfer and deposit the energy and momentum
that the waves inherit from their sources while affecting the dynamic flow and thermal structures in the meso-
sphere and lower thermosphere. Fritts and Alexander [2003] reviewed these processes includingGWpropagation,
dissipation and its associated instabilities, turbulent mixing, and momentum. Later, Alexander and Holton [2004]
found that GW packets generated by transient tropospheric convection, such as that associated with cumulus
clouds, have quite broad frequency spectra and a wide range of vertical scales. They also pointed out that the
GW characteristics observed by ground-based observatories can be very sensitive to the distance relative to
the source and the observation (including both horizontal and altitude ranges). The results suggest that at a cer-
tain altitude in the upper atmosphere, the high-frequency, long vertical wavelength components, which are
believed to account for a significant share of gravity wave momentum flux in the mesosphere [e.g., Fritts et al.,
2014a], are primarily observed at close range relative to the source except in cases of reflection and ducting
[e.g.,Walterscheid et al., 2001; Heale et al., 2014b], while the low-frequency components arrive later due to slower
vertical wave speed.

In the mesopause region where the dissipation by molecular viscosity is not dominant, such transitions from
high frequency to low frequency are not expected to be easily detected even at a station that close to the
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source. This is because the amplitudes of components within a GW packet’s continuous spectrum vary dra-
matically over a wide altitude range. The highest vertical phase velocity components often have relatively
small amplitudes as compared to the dominant components of the packet that may be observed as they pass
through the mesopause region. The fastest waves become significant and measurable only when they pro-
pagate well into the thermosphere, while mesosphere/lower thermosphere (MLT) region observations
appear more likely to reveal dispersion of the small-to-medium-scale waves with intermediate group veloci-
ties ~10–100m/s [e.g., Heale et al., 2014a]. Various model and numerical simulation works [Fritts and Vadas,
2008; Yu et al., 2009; Liu et al., 2013; Heale et al., 2014a] have been conducted to investigate the GW packet
propagation, dispersion, and dissipation in the upper atmosphere. When studying the GW packet behaviors
in the lower thermosphere, Heale et al. [2014a] found the reduction of the vertical wavelength in time due to
effect of dispersion and subsequent damping of waves by molecular viscosity in the thermosphere, which is
in agreement with earlier model studies [Vadas and Fritts, 2005; Liu et al., 2013]. During the time evolution of a
spectrally broad GW packet, the simulation shows that the high-frequency components with long vertical
wavelength also have large vertical group velocities and thus reach the highest altitudes and dissipate first.
This leaves the slower, low-frequency components with shorter vertical wavelength to reach high altitudes
and become dominant at later times. The transition from the long vertical wavelength to a shorter one can
be clearly seen in Figure 4b of Heale et al. [2014a], which shows the evolution of the horizontal wind with
time. Although we note that this study was conducted in a periodic domain, so that there is technically no
distance from the source in the horizontal direction, the same dispersive separation can be expected for
packets that are compact in the horizontal direction. Indeed, the group velocities of waves within a spectrum
determine the spatial evolution of the packet’s extent over time.

In parallel to thesemodeling studies, extensive ground-based observational studies have been conducted for
GW dynamics in the mesosphere/lower thermosphere (MLT) region, although most analyses focus on quasi-
monochromatic events [Cai et al., 2014; Li et al., 2007a, 2007 b; Lu et al., 2009; Chen et al., 2013]. On the other
hand, little empirical evidence has been reported to confirm the key phenomenon described by the above
simulated GW packet propagation, dispersion, and dissipation process, in which the apparent dominant
wave signature evolves from high-frequency components most detectable at high altitudes to ones with
lower frequency at later time and lower altitudes with its vertical wavelength decreasing simultaneously,
leaving the dispersive evolution of gravity waves mostly unnoticed. This is partly due to the fact that at a sin-
gle location, observing a narrow altitude range of the upper atmosphere, only a portion of the entire GW
spectrum may be present and observable. At large distances away from the sources, most of the observable
dominant waves are typically high frequency and nearly ducted [e.g., Snively et al., 2013; Heale et al., 2014b],
or belong to the low-frequency and short vertical wavelength section of the whole spectrum, while other
parts of the GW packet components may have already dissipated, been filtered, or passed through the obser-
ving altitude range at a different horizontal position to where the measurements are made.

In this paper, we study one unique event that the Na lidar at Utah State University (USU) captured on
2 September 2011, which closely resembles the above mentioned model results of a spectrally broad GW
packet as it propagates and disperses. Utilizing USU’s suite of nearby instruments at Bear Lake Observatory
(BLO), including a Mesospheric Temperature Mapper (MTM) and meteor wind radar (MWR), we conduct com-
prehensive diagnosis of this event. A fully compressible, nonlinear 2-D numerical model [Snively and Pasko,
2008; Snively, 2013; Heale et al., 2014a] is also utilized to simulate this event, by constraining the conditions
of the model run using these observations results, including GW packet parameters, temperature, and horizon-
tal wind background. The paper is laid out as follows: the instruments involved are briefly described in
section 2; experimental observations and measurements of the event are discussed in section 3; the model
simulation and associated discussion are presented in section 4; and conclusions are articulated in section 5.

2. Instruments

The Na lidar facility, complemented by the MTM and MWR at BLO located ~40 km northeast of Logan, is an
advanced resonance fluorescence Doppler lidar system operating at the Na D2a line (589.158nm) with a
120MHz FWHM (full width at half maximum) laser pulse bandwidth. Utilizing the naturally existing Na layer
in the upper atmosphere, it can provide critical atmospheric information, such as neutral temperature, and hor-
izontal wind along with Na density profiles throughout a full diurnal cycle of observations of the mesopause
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region (80–110km) [She et al., 2003, 2004]. For gravity wave and small-scale dynamics studies, the lidar data can
be processed with high resolutions. One of the advantages of this advanced lidar system is that the tidal period
perturbations can also be removed to avoid bias in estimations of mean fields and gravity wave parameters
[Cai et al., 2014; Yuan et al., 2014]. For the investigation of this event, a 1 km FWHM Hanning sliding window is
applied in the vertical direction and 10min integration times are utilized to bin the lidar data. On the night of
2 September 2011, the Na lidar was pointing one of its beams in the zenith direction and using one 1.25m dia-
meter mirror of the USU Rayleigh lidar receiver to collect the return photo echoes to boost the signal-to-noise
ratio. During the same night, the meridional wind was measured from the north pointing lidar beam (30° off
zenith) coupled with a 0.3m diameter Celestron-14 telescope. In this paper, we set the upper limit of the tem-
perature uncertainty at 15K to reject inferior measurements.

At the nearby BLO, the University of Bath SkiYMet MWR provided continuous horizontal wind measurements.
The MWR is an all-sky interferometric system [Hocking et al., 2001] that employs a high pulse repetition
sounding to detect and measure meteor trail echoes. The MWR transmits continuously at a fixed frequency
of 32.5MHz, with a power output of ~6 kW using a crossed Yagi antenna, and receives on a 5-Yagi (crossed)
antenna configuration. Each hour, a horizontal wind vector is fitted to 3 km wide height bins over a sampled
height interval of 83–98 km. The MWR meteor trails are detected primarily at middle- to low-elevation angles
and represent an average wind over a horizontal region of ~400 km in diameter, centered on BLO. The stan-
dard uncertainty for MWR horizontal wind measurement is ~ ±5m/s.

The Mesospheric Temperature Mapper (MTM) is a CCD-based instrument developed at Utah State University.
It is installed and operating at BLO alongside the MWR. It images a ~90° (field of view) area of the sky, cen-
tered on the zenith, using a back-illuminated 1024× 1024 pixel CCD detector (binned down to 128 × 128 pix-
els to improve the signal-to-noise ratio), a telecentric lens system, and three narrow-band filters to
sequentially measure the P1(2) and P1(4) lines of the OH (6,2) Meinel band and the sky background intensity
at 857 nm [Pendleton et al., 2000; Taylor et al., 2001]. In 2001, this instrument was improved to include mea-
surements of the intensity of two well-defined regions of the O2 (0,1) atmospheric band at 866 and 868 nm.
This emission is located slightly higher (~94 km) than OH, adding complementary altitude information on the
atmospheric temperature. The exposure time for each line is typically 60 s, which gives two temperature mea-
surements at two different altitudes (87 and 94 km) every ~5.5min. Rotational temperatures can be com-
puted separately for the OH and the O2 emissions using the well-established “ratio method,” as described
by Meriwether [1984].

3. Observations

Figure 1 shows the Na density and temperature observations by the USU Na lidar on the night of 2 September
2011 (245th day of the year) from the zenith pointing lidar beam, labeled as “sg2.” From the figure, the strong
GW modulations can be easily seen in both lidar measurements but are more pronounced (in part due to
scaling) in the temperature observations. During the first half of the night, the modulation of the temperature
at higher altitudes is close to 20 K peak to peak. The first half of the night was dominated by the modulation

Figure 1. The USU Na-lidar-observed (left) mesospheric Na layer and (right) temperature variations on 2 September 2011.
The lidar data are processed with 1 km and 10min spatial and temporal resolutions.
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with long vertical wavelength but changed to the component with shorter vertical wavelength during the
second half of the night within the bottom half of the mesopause region. Such gradual variation of the ver-
tical wavelength can also be observed in the Na density variation. The perturbations’ downward phase pro-
gression suggests that this is part of an upward propagating GW packet. The modulation above 94 km
disappeared after 09:00 UT, and it was limited below 92 km by the end of the night. From the figure, the per-
iod of the modulation at higher altitudes also appeared to be shorter than that of the lower altitudes. This
data set is unique, in that while most of the reported GW event studies from the ground-based instruments
report quasi-monochromatic events or series of a few clearly discrete GW oscillations, this event appears as a
gradual and smooth variation of GW parameters over time. This seems to be associated with the propagation
of a single GW packet at medium scale with a relatively broad (and dispersed) temporal spectrum, which is
unusual in the context of previously reported wave events.

To quantitatively investigate the frequency spectrum variations throughout the night, the Morlet wavelet
analysis is performed at 85 km, 87 km, 94 km, and 100 km on temperature perturbations, as shown in
Figure 2. The wavelet results at 87 km and 94 km are chosen to compare with MTM measurements at OH
and O2 levels. Although the wavelet analysis sacrifices some spectral resolution, it can resolve the spectra
of each wave packet as functions of time for each altitude. Here the temperature data are band pass filtered to
retain perturbations with periods between 50min and 3h. Thus, components with periods outside the band-
width of the filter are not expected in the figure. Figures 2a–2d show the wavelet results at these four altitudes:
at 85 km, starting from06:00UT, the dominant component had a period of slightly above 1.5 h (90min) formost
of the night; at 100 km, the first component appeared between ~04:00UT and ~06:30UTwith a period centered
at roughly 1.2 h; thereafter, it switched to some weak component with much longer period of ~2.5 h, and there
was not much strong modulation for the rest of the night at this altitude. This is most likely due to horizontal
wind filtering effect that is explained in the later part of this section; similar to the scenario at 100 km, near
the O2 layer (94 km), the spectrumwasmixedwith a period between 1h and 1.5 h before 08:00UT but followed

Figure 2. The wavelet analysis results at (a) 85 km, (b) 87 km, (c) 94 km, and (d) 100 km. The analysis is applied on the Na
lidar temperature measurements that are high pass filtered to remove the modulations with period longer than 3 h.

Journal of Geophysical Research: Atmospheres 10.1002/2015JD023685

YUAN ET AL. OBSERVING SPECTRALLY BROAD GRAVITY WAVE 582



by weakmodulation with a period longer than 2h; slightly below, within the OH layer (87 km) altitude, the spec-
trum seems to be opposite to that of O2 altitude, mixed with a longer period (~1.3 h to ~2h) during the first half
of the night but a shorter period (~1.1 h to ~1.3 h) in the second half. It is worth noting that there was a similar
transition at 94 km around 07:00UT but inmuch less time scale. This effect could be due towave breaking in the
lidar data at a later time, which causes the formation of smaller-scale and shorter-period structures. In addition,
ray trace theory suggests that a changing background wind can modulate the ground relative frequency of a

GW, i.e., dω
dt ¼ ω dU

dt . It could be that the phase and timing of the background wind at 87 km is such that it

increases the frequency of the gravity wave as it propagates through this region, thus leading to a transition
from longer to shorter periods. Indeed, at later times at 87 km (around 8–9UT), the wind turns northward
and dU/dt is maximized (see Figure 8, bottom). Over all, based on these lidar results, the shifting from
high-frequency modulations at higher altitudes to low-frequency ones below 90km is evident, with additional
complexity detected at the altitudes of the OH layer.

During the same night, the USU MTM installed at nearby BLO observed a similar variation of period between
the O2 (~94 km±3 km) and OH (~87 km±5 km) layers. Figure 3 shows the east-west and north-south sliced
keograms of the rotational temperatures from the O2 and OH channels. The data are filtered to focus on GW
modulations with periods between 60 and 120min, and the periods of this large-scale waves are deduced
using fast Fourier transform processing [Fritts et al., 2014a]. From the figure, it is apparent that themodulation
near 94 km had higher frequency than that near 87 km. Indeed, near the O2 layer, the MTM data indicate a
modulation mostly near 1.25 h, while the data from the OH layer shows an averaged observed period of
1.5 h. Also, the modulations during the first half of the night were much stronger than those in the second
half of the night, which also agrees with the lidar observations. The large values of temperatures in O2 signal
near 12:00 UT are mostly due to saturation from the sunlight during the early morning. The horizontal wave-
lengths at these two levels are measured to be ~290 km and ~260 kmwith observed horizontal phase speeds
of ~64m/s and ~46m/s, respectively. The packet was also found to be traveling ~355° relative to the north
that night. However, it has to be pointed out here that the uncertainties of the measured horizontal wave-
length and phase speeds for such large-scale waves by MTM are relatively larger (~10%) than those of the
measured small-scale waves (~1%) due to the instrument’s limited field of view. It is also important to note
that the MTM results are the “average” through the whole OH or O2 layer. Thus, some differences are
expected between Na lidar and MTM observations.

To quantify the GW packet’s parameters, such as intrinsic frequency and vertical wave number, horizontal
wind information is essential, and the MWR at BLO provided the wind measurements throughout this event.
Based on the GW dispersion relationship [Fritts and Alexander, 2003], the GW vertical wave number,m, can be
calculated as

Figure 3. The (top row) north-south and (bottom row) east-west keograms of MTM temperature measurements near
(left column) O2 layer and (right column) OH layer observed at Bear Lake Observatory on 2 September 2011.
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m2 ¼ k2 N2=ω2
i � 1

� �� 1=4H2; (1)

whereωi= kci= k(c�Uh), c and Uh are the GW observed horizontal phase velocity by MTM and the mean wind
in the direction of GW propagation measured by MWR, ci= k(c�Uh) is the GW intrinsic phase speed, and k
represents the observed horizontal wave number. Since the packet was propagating almost strictly to the
north that night (355° relative to the north), Uh is very close to meridional wind, which will represent Uh for
the reminder of the paper. The buoyancy frequency, N, and scale height, H, are both calculated based upon
the Na lidar background temperature observations, T0. Here the lidar data at each altitude are further pro-
cessed with a Butterworth filter that removes perturbations with periods less than 30min. Then, the time ser-
ies of background temperatures for each altitude, T0, are deduced from a 2 h window, sliding across this new
set of lidar temperature data at 10min steps. The time series of the temperature variances (discussed later),
T’2, at each altitude for the later discussed GW momentum flux calculations are also derived in the same pro-
cess. However, due to the width of the 2 h sliding window, this approach cannot calculate the momentum
flux near the beginning and end of the lidar observation.

Thus, we utilize T’2 deduced from the first and last window, along with T0 deduced from a 2 h boxcar aver-
aged for the momentum flux calculation on both ends of the lidar observation.

Furthermore, we can evaluate the GW vertical group velocity, Vgz, near the two nightglow layers, by using

Vgz ¼ �mω2
i

ωi k
2 þm2 þ 1=4H2

� � ; (2)

based on the Hines inviscid relation [Hines, 1960]. The vertical wave number, m, should be negative in this
case, representing upward wave propagation or downward phase progression.

Figures 4a and 4b show the calculated variations of vertical wavelength and GW vertical group velocities near
the two nightglow levels. It is evident that near both altitudes, the GW packet vertical wavelength was decreas-
ing during the night, from around 40 km near the beginning of the night to close to zero in the early morning.
The gradual decrease of vertical wavelength occurring near both the O2 and OH levels is most likely due to both
the dispersion of the spectrum as it propagates and the packet approaching a critical level near this height as the
wind flow evolves. During the same time, the vertical group velocity of the packet was slowing down, from
~10m/s near OH level and ~15m/s near O2 level, to close to zero by the end of the night. It is worth noting that
the GW packet reached zero speed earlier (07:30UT) near O2 layer than it did near OH layer (near 09:30UT). This
could be caused by the increasing of northward horizontal wind in the GW’s horizontal propagating direction
that generated critical levels for this packet. Indeed, the lidar meridional wind measurement shows that the cri-
tical level was likely formed around UT 08:30 near the O2 level, while that near OH level was formed at a later time
around UT 10:00. Such northward wind enhancement is most likely due to the approaching of the meridional
wind semidiurnal tidal maximum during the second half of the night [Yuan et al., 2008], which arrives earlier near
94 km than it does near 87 km due to downward tidal wave phase progression.

The gravity wave momentum flux (MF) and its divergence can provide insight into the wave’s amplitude and
impacts in the mesopause region. In addition to the coplanar lidar beam measurement [Acott et al., 2011], as
discussed by Ern et al. [2004] and Alexander et al. [2008], the relation between absolute MF and temperature
variance is

u′w ′
�� �� ¼ 1

2
λz
λh

g2

N2

T ’2

T20
¼ 1

2
k
m

g2

N2

T ’2

T20
; (3)

where λz and λh are the GW vertical and horizontal wavelength, respectively. Using a similar approach, the most
recent work by Fritts et al. [2014a] took advantage of the precise temperature perturbation measurement by an
Advanced Mesospheric Temperature Mapper [Pautet et al., 2014], coupled with Na lidar and MWR observations,
to estimate GW momentum flux for small-scale waves in the mesopause region. Thus, based upon the above
observed parameters of this GW packet and equation (3), we can estimate the momentum flux variation during
this critical phase of thewave propagation by utilizing theMTM’s observations and Na lidar temperaturemeasure-
ments discussed earlier. If we ignore the uncertainties in the MTM observations of horizontal wavelength and
phase speeds (relatively small compared to the waves’ large horizontal scale, for example, the uncertainty of hor-
izontal wavelength is estimated to be ~10% compared to λz~260km near OH layer), the uncertainties of this cal-
culation are dominated by photon noise of the lidar data and the uncertainty in MWR’s wind measurement.
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Figure 4c shows the calculated MFs near the two nightglow emission levels. Both have very similar variation
over the course of the night and exhibit similar magnitudes within the error bars. It also clearly indicates that
although inheriting relatively larger error, the MF in the mesopause region was considerably larger during the
first half of the night. Specifically, near both altitudes (87 km and 94 km) the MF started to increase after
04:00UT and peaked around 05:30UT ~ 12m2/s2. It was then decreasing until 07:30 UT and staying around
1m2/s2 after 08:30 UT till the end of the night. In other words, the MF was much more significant during
the first half of the night when components with long vertical wavelength were dominating the mesopause
region. This is in good agreement with the theoretical statements [Fritts and Alexander, 2003; Alexander and
Holton, 2004; Vadas and Fritts, 2005; Fritts et al., 2014b] mentioned in section 1 that in the mesosphere and
lower thermosphere, longer vertical wavelength components tend to contribute more to the MF than GW
components with short vertical wavelength. However, since we are only able to calculate theMF at two levels,
considering the uncertainty of the calculated MF results, it is very difficult to estimate the horizontal wind
acceleration in this case, which depends upon the vertical gradient of the MF.

4. Model Simulations and Discussion

We note that the lidar and MTM observations resemble the GW packet’s dispersion within the lower thermo-
sphere as described in Heale et al. [2014a], where a spectrally broad GW packet was excited at lower altitude.

Figure 4. (a) The variations of the absolute value of vertical wavelength of the GW packet near O2 layer (squares) and OH
layer (solid dots); (b) the GW packet’s vertical group velocities near O2 layer and OH layer; and (c) the momentum flux
variations near the two nightglow levels.
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Thus, this model is utilized here to
demonstrate the dispersion process of
the medium-scale wave packet identified
in this study. By using the experimentally
observed temperature, horizontal wind,
and GW parameters, a numerical model
simulation is constructed for a GWpacket
to investigate its vertical and horizontal
variations in the mesopause region. The
numerical model is a 2-D nonlinear, fully
compressible solution to the Euler equa-
tions, with Navier-Stokes viscosity [e.g.,
Snively et al., 2013] using an adaptation
of the Clawpack finite volume routines
[LeVeque and Berger, 2004; Snively and
Pasko, 2008, and references cited
therein]. The clawpack routines solve a
hyperbolic system of equations by
decomposing the fluxes between cell
boundaries into a series of characteristic

waves with characteristic speeds, which are then propagated at each time step. The main system of equations
solve for conservation of mass, momentum, and energy which include gravity as a balanced source term via
the Fwave method [Bale et al., 2002]. Dissipation is then accounted for via a time-split method that applies ther-
mal conduction and molecular viscosity to the previously solved system of equations. Gravity waves are excited
with a time-dependent vertical body forcing which acts as a source term to the system of equations [e.g., Heale
et al., 2014a]. Finally, the solution is coupled with a nonlinear solution to airglow photochemistry and associated
perturbations due to gravity wave dynamics [e.g., Snively et al., 2010; Snively, 2013, and references cited therein].

In this model simulation, the steady state background wind is specified to match the meridional wind obser-
vations from the nearby MWR. The model background temperature profile is constructed using a combina-
tion of an NRLMSISE-00 profile [Picone et al., 2002] set to Bear Lake Observatory and the nightly averaged
Na lidar data. The lidar data are spliced into the Mass Spectrometer Incoherent Scatter (MSIS) profile over
the 80–105 km altitude range and smoothed. The later discussed reverse ray trace, used to determine the
horizontal propagation distance between the tropopause and 50 km, utilizes this MSIS background tempera-
ture structure to determine the wave refraction. The temperature background, between 80 and 105 km, is set
to be constant in time and match the Na-lidar-measured nightly averaged temperature profile (see Figure 5).
The horizontal domain was specified to be 2800 km with 10 km resolution, and 300 km in the vertical (0.5 km
resolution), with results output every 5min. The GW was excited via a vertical body forcing centered at
z0 = 50 km and x0 = 500 km. Note that x represents the meridional direction in this simulation, since the wave
was propagating mostly in this direction, and z is altitude. The equation for the spectrally broad gravity wave
source is given by

F x; z; tð Þ ¼ B cos k x � x0ð Þ � ω t � t0ð Þð Þ exp½ � 0:5½ x � x0ð Þ2
σ2x

þ z � z0ð Þ2
σ2z

þ t � t0ð Þ2
σ2t
��; (4)

where B is the amplitude, k= 2π/260 km, ω= 2π/92min, t0 = 368min, σx= 260 km, σz= 3 km, and σt=92min.
Here the period and horizontal wavelength are set to match the MTM observations near OH layer at BLO, and
the GW packet propagates toward the north. The amplitude is chosen to be large enough to match the lidar
observation, and this is also found sufficient to limit the nonlinear interactions and instability during the pro-
cess near the observation region. Indeed, at farther distances away ~1800 km from the source, the waves
become strongly nonlinear as they achieve instability and breaking. In other words, energy and momentum
deposition during wave dissipation are small enough near the observation site that the gravity wave-mean
flow interaction does not dramatically affect background temperature and wind field; therefore, the linear
GW theory can still be applied approximately. It has to be noted that the simulation is to qualify the spatial
and temporal variations during the packet propagation process and captures only part of the full spectrum
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Figure 5. The comparison of the lidar measured nightly averaged tem-
perature and the constant background temperature applied in the model
simulation.
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of dynamics observed during the event. Due to the complex nature of this process, differences between
model results and the observations are expected.

After running the simulations, we introduce two “virtual lidar” stations at horizontal positions of x=950km
(LIDAR1) and x=1800 km (LIDAR2), respectively, in order to obtain a time series of the vertical GW variations
in the mesopause region at single locations. The station at x=950 km is chosen to match the lidar observation
the best, which is slightly less than two horizontal wavelengths away from the source regions. As shown in the
following discussion, LIDAR1 that is positioned 450 km away from the source will tend to “observe” the higher-
frequency (long vertical wavelength) components of the packet, which travel more vertically than horizontally.
Whereas LIDAR 2 is 1300 km away from the source region and will observe the dominant lower frequency com-
ponents (short vertical wavelength) of the packet, since the high-frequency components have already propa-
gated through the mesopause region and well into thermosphere. The simulation will later indicate that
these observed effects are caused by a combination of wave packet dispersion andwind filtering. In an attempt
to locate the geophysical source of this wave packet, by using the same NRLMSISE-00 profile for background, a
basic ray trace analysis on a downward propagating wave, originating at the source altitude (50 km), is con-
ducted. The result suggests that the wave would propagate 730 km horizontally (northward) before getting

Figure 6. National NEXRAD reflectivity at 09:30 P.M. local time on 1 September, which is UT 03:30 on 2 September, over the
southeast climate region of the United States. The red circle marks an active storm system, ~1200 km south of the USU Na
lidar station, which is likely the source for the lidar-observed GW packet.
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to the source altitude (z=50 km) in the model simulation. Therefore, a rough estimate of the total horizontal
propagation distance from tropopause to MLT would be ~1180 km (730 km+450 km). Indeed, the NOAA
Next Generation Weather Radar (NEXRAD) reflectivity data, archived at website http://gis.ncdc.noaa.gov/map/
viewer/#app=cdo&cfg=radar&theme=radar&display=nexrad, reveal a strong storm system near the south side
of Arizona-Mexico border, which is roughly 1200 km away from Logan, UT (Figure 6), during the early evening
on 1 September (UT day 2 September) that lasted for more than 2h. Considering the horizontal distance
between source location of this storm system in the troposphere and its site of penetration in the tropopause,
the ray-tracing technique reasonably locates the source of the GW packet. It is important to note, however, that
themodel source of the simulated wave at 50 km, and its chosen spatial and temporal characteristics, is only an
approximation of a packet that may have originated from a tropospheric source at relatively greater distances.

Figure 7 shows the time series of the temperature perturbation that LIDAR1 would observe in the model
simulation, along with the Na-lidar-measured temperature perturbations during that night. Here using a
high-pass filter, the lidar temperature perturbation is derived by removing the modulations with period
longer than 3 h. It has to be pointed out that the starting time of this model run is arbitrary; thus, the time
shift of the GW features in the simulations when compared to the lidar temperature observations is not cri-
tical. As the figure shows, this simulated GW packet perturbation closely resembles the actual Na lidar mea-
sured temperature variations and indicates the characteristic descending GW shape with the decreasing
vertical wavelength. In this figure, at early time, LIDAR1 observes the high-frequency (1 h) portion of the wave
packet that propagates with the largest vertical group velocity and vertical wavelength. Compared with the
simulation, the less vertical wavelength in the lidar data below 90 km is most likely due to the much larger
horizontal wind variations in reality.

Figure 7. (top) The simulated temperature perturbations in the mesopause region above the virtual station LIDAR1
x = 950 km and (bottom) the Na lidar temperature perturbation measurements on night of 2 September 2011. The plots
are aligned accordingly to the UT time.
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More recent research [Eckermann, 1997; Sartelet, 2003; Vanderhoff et al., 2008; Senf and Achatz, 2011; Huang
et al., 2013; Heale and Snively, 2015] has suggested that the time dependence of the background wind plays
an important role in gravity wave propagation. The changing background wind will act to alter the ground
relative frequency of the gravity wave. This can lead to a reduction in both reflection and critical level filtering
while increasing upward transmission. Due to the time dependence of the background wind, the critical level
becomes transient at a given location and will change location with the phase of the wind; therefore, there is
less time for a wave and critical level to “interact” at a given altitude. Also, the changing background wind
tends to change the ground relative frequency such that a “hard” critical level does not occur. However,
under simplifying assumptions of hydrostatic and slowly varying motion, inferred from linear and inviscid
steady state wave structure, the changes of mean wind can alter the structure of the GW packet near the cri-
tical level as defined by Booker and Bretherton [1967]

m2e
N2

Uh � cð Þ2: (5)

In this case, the strong southward wind during early part of the night (see Figure 8) will turn this portion of
the spectrum to even larger vertical wavelength by increasing the denominator in equation (5) and vertical
group velocities due to Doppler shift, resembling the lidar observations in Figure 4. At a later time, the

Figure 8. The comparison of (top) the model-simulated horizontal wind variations above the virtual station LIDAR1
x = 950 km in the GW propagating direction (mostly in meridional direction) and (bottom) the Na-lidar-measured meri-
dional wind on the night of 2 September 2011. The plots are aligned accordingly to the UT time.
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simulated temperature perturbation shows the parts of the packet, which have shorter vertical wavelength
and smaller vertical group velocities, but the modulations are limited below roughly 90 km, which is also
extremely similar to the lidar temperature observations. The wind in the GW propagating direction (meridio-
nal direction) is later turning northward (see Figure 8) and, thus, shifts the packet to even shorter vertical
wavelength by decreasing the denominator in equation (5). During this time period, the temperature pertur-
bation simulation shows that at lower altitudes in the mesopause region, the perturbations are dominated by
low-frequency component, while the amplitudes of high-frequency component become fairly weak. In
Figure 7, the simulation also reveals a considerable temperature enhancement structure above 100 km
during the second half of the night that was not evident in the lidar measurement. The model results suggest
that this is likely related to horizontal expansion of some secondary effect when wave instability occurs
during the second half of the night near 100 km altitude around x= 1600 km. Indeed, in a similar model
run with much smaller forcing amplitude, this temperature enhancement structure does not emerge at this
location. As expected, the horizontal wind plays a significant role in this simulated GW packet dissipation
process when approaching its critical level. Toward the end of the simulation, the wind possesses a strong
enough positive amplitude that it acts to critical level filter the susceptible portion of the packet.
Therefore, these two effects in tandem cause the appearance of the descending pattern and the decreasing
vertical wavelength in time.

Figure 8 shows that the simulated variations of horizontal wind component in the wave propagation direction
(primarily meridional) generally agree with those of the lidar measuredmeridional wind in high spatial and tem-
poral resolutions. However, when comparing the lidar measurement with that in the simulation, it is found that
the lidar-measured meridional wind experienced some large perturbations once the vertical wavelength
became shorter after UT 09:00 below 89km, which are not captured in the simulated wind and do not appear
as a result of the evolving medium-scale waves. The large perturbation may be interpreted by the simplified

relationship between horizontal wind perturbation and vertical wave number, u’h∝m
1=2, near the critical level

[Booker and Bretherton, 1967]. Here uh′ represents the gravity-wave-induced horizontal wind perturbation along
the wave-propagating direction. Therefore, the aforementioned increase of vertical wave number,m, is able to
induce large wind perturbation in the meridional direction in this region when the waves are approaching the
critical level, which occurred around 10:00UT near 87 km as mentioned before. The absence of this feature
within the simulation could be due to other wave dynamics that were present during the event. The model
simulation also tries to enforce a specified model wind field, thus limiting wave-background interactions. The
specifiedmodel wind ismuch smoother than reality, underestimating the extremely dramatic swing ofmeridio-
nal wind in the lidar observation during the first half of the night when themeridional wind reversed from close
to 150m/s southward to several tens of meters per second northward within a couple of hours. Such huge
reverse of horizontal wind in such short time span implies a sharp transition of over 100m/s amplitude that
is not understood at this point. It may suggest very strong tidal and larger-scale wave activity or impacts of
stronger, faster waves present at earlier times that are not simulated. It is worth noting that gravity wave deposi-
tion of momentum and self-acceleration could also alter the spatial and temporal structure of the packet and
tend to increase the vertical wavelength and facilitate the packet to penetrate the critical level [Fritts and
Dunkerton, 1984; Fritts et al., 2015]. However, the fact that neither strong, lasting impacts on flow nor evidence
of the increasing vertical wavelength were observed by the Na lidar that night implies the absence of this

Figure 9. The simulated temperature perturbation of the GW packet within the mesopause region above the virtual station
LIDAR2 x = 1800 km.
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scenario during this night. The model results also suggest insufficient amplitudes to achieve strong self-
acceleration for the simulated spectrum under the specified conditions.

If the lidar were observing the same GWpacket propagation at a location farther away from the simulated source
region, a completely different scenario would be observed. Figure 9 shows the same GW-packet-induced tem-
perature perturbation observed by LIDAR2, 1300km away from the source region. In this case, the portion of
the packet that LIDAR2 observes is much more spectrally uniform in time (quasi-monochromatic) with much
larger amplitude (more than doubled) than those observed at LIDAR1. Contrary to the scenario above LIDAR1,
the packet is not subject to critical level filtering by the background wind due to its higher horizontal phase velo-
city and, thus, dominates the second half of the night. The simulated wave shows signs of breaking/instability at
the LIDAR2 location, due to its relatively large amplitude. The simulation suggests that while themodel results do
not show wave breaking at LIDAR1, breaking could occur downstream of this site (farther north), where the cen-
tral frequency of the wave packet dominates and the amplitude of the wave becomes larger. There is also slight
altitude dependence in the vertical wavelength, however, due to the Doppler shifting of the gravity wave by the
background wind. Note that although this scenario does not match well with the lidar data for this event, these
simulated results are similar to most of the GW events discussed in the other literatures and publications from
ground-based measurements. This suggests that for the same GW packet, the location of the lidar or any other
instruments relative to the source region will determine what GW characteristic can be observed. In other words,
to have a comprehensive view of the GW packet dissipation and propagation, simultaneous observations from a
few ground-based instruments spacing properly in horizontal direction would be needed.

The numerical model also simulates gravity wave perturbations to OH layer and associated OH band emissions
[e.g., Snively et al., 2010; Snively, 2013, and references cited therein], along with density perturbations to the
mesospheric Na layer. Figure 10 shows the north-south sliced keogram of the model’s simulated OH (6–2) band
brightness-weighted temperature perturbations, which arise near 87 km at x=950 km (top). They are compared
with BLO MTM rotational temperature observation for the same arrangement (bottom). The two agree

Figure 10. The comparison between the MTM OH temperature observations and the module-simulated OH (6–2) band
temperature modulations by the same GW packet.
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remarkably well, although dynamics are necessarily simpler in the model simulation due to the nature of the
specified source and background. Note that the data may suggest some form of instability/breaking after
~8UT as a result of the wave being shifted to smaller vertical wavelength by the background wind. This may
help explain the transition from longer to shorter periods seen in the wavelet data at z=87 km in Figure 2.

5. Conclusion

While most reports of GW events observed via ground-based instruments have focused on quasi-
monochromatic wave propagation, the Na lidar at Utah State University has captured evidence of a dispersing
GW spectrum in the mesopause region. This event occurred on the night of 2 September 2011, and the lidar
data are supported by additional observations from a suite of instruments at nearby Bear Lake Observatory.
The temperature perturbations were found to be dominated by GW components with relatively long vertical
wavelength and higher frequencies at high altitudes during the early part of the night, while components with
shorter vertical wavelength and lower frequencies were considerably stronger at lower altitude and during the
second half of the night. The MTM’s observations near OH layer (~87 km) and O2 layer (94 km) confirm the Na
lidar observation by measuring the perturbation periods of 92min and 75min near these two layers, respec-
tively. Such a smooth frequency evolution of GW components is rarely seen in experimental studies. The calcu-
lated vertical group velocity suggests that near both nightglow levels, the wave was slowing down in the
vertical direction with increasing vertical wave number, implying refraction of the wave occurring during the
second half of the night as it approaches a critical level. At the same time, themomentum flux calculations near
the two nightglow layers indicate that the significant flux occurred during the first half of the night when the
mesopause region was dominated by GW components with longer vertical wavelength.

The remarkable similarities between this observation andmodel predictions of selective dispersion and dissipa-
tion of spectrally broad GW packets motivated a specific numerical case study for this GW event, based upon
observations by Na lidar, MTM, andMWR. After the packet is forced at the upper stratosphere, it has propagated
vertically and horizontally in the model, where two virtual lidar stations are set up 450km and 1300km away
from the source region to observe the temperature perturbations in the mesopause region. The simulation
shows that the station close to the source region would observe an extremely similar scenario to the Na lidar
observations on the night of 2 September 2011, while at the station that is farther away, completely different
features would bemeasured (quasi-monochromatic modulation dominated by low-frequency GW components
with short vertical wavelength). This is because, within the packet spectrum, the high-frequency components
with long vertical wavelength propagate more vertically than horizontally and, thus, reach the mesopause
region earlier and are confined to a horizontal range that is relatively close to the source, while the low-
frequency components with short vertical wavelength behave in the opposite manner. The horizontal wind
is found to play a highly important role in this process by generating a critical level for the high-frequency
packet components during the second half of the night, modulating the vertical wavelength and preventing
them from reaching higher altitudes, which can be clearly seen in both lidar observation model simulations.

The model also successfully reproduces primary features of the MTM’s OH layer observations, although spe-
cies density variations are calculated only for the ~1 h wave dynamics of interest and are thus less compli-
cated by additional dynamics seen under actual MLT conditions. The model simulation is conducted under
constant (in time) background temperature and smoothed background wind and does not incorporate com-
prehensive tidal dynamics beyond an approximate description of the evolving winds. This also limits the non-
linear wave-mean flow interaction, although it provides insight into the observable features of the gravity
event, i.e., its refraction, dispersion, dissipation, and modulation to the airglow and species layers. These
limitations cause some discrepancies between the model results and lidar observations, such as the wave-
instability-induced considerable temperature enhancement near 100 km that did not appear in the lidar tem-
perature, along with absence of enhanced wind perturbation near critical level in the simulation.

Nonetheless, with the assistance from the numerical model, we can conclude that the lidar-observed tempera-
ture perturbation “anomaly” belongs to an important phase during the dispersion of a spectrally broad GW
packet that was excited relatively close to the Na lidar station at northern Utah. A basic ray trace analysis on
a downward propagating wave, coupled with NOAA NEXRAD observation, suggests that the lidar-observed
wave packet could be excited by a strong storm system ~1200 km south of USU during early evening of
1 September near the Mexico side of the Arizona-Mexico border. Observing this process in the mesopause
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region above northern Utah, the dominant observable GW components were shifting from high-frequency
components with large vertical wavelength to lower frequency component with shorter vertical wavelength.
Near USU, the collaborative observations conducted by a suite of instruments provided a detailed view of this
process, helping to understand a key phase of the complex GW packet propagation, dispersion, and dissipation
process. However, since ground-based instrument observations are highly sensitive to the altitudes of obser-
vation and the horizontal distances relative to the source region, to have a complete view of the GW
dispersion and dissipation processes, several ground-based observations would need to be made along the
GW-propagating direction with proper spacing in the horizontal domain. These observations underscore the
need for (and value of) multiple-instrument observations in addition to synergistic modeling for the interpreta-
tion of wave processes that occur over hundreds to thousands of kilometer spans.
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