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ABSTRACT

Rashid, Tasneem MSAE, Embry-Riddle Aeronautical University, December 2015. La-

grangian Points and Jacobi Constants for a Class of Asteroids.

Asteroid Gravitational Potentials are difficult to model owing to their irregular-
ity in shape. This thesis focuses on two approaches to model asteroid gravity fields,
namely, multiple-body and spherical harmonics modeling. Computation of gravity
potential serves as a first step to determine equilibrium points called Lagrangian
points for a spacecraft orbiting an asteroid. Further, Jacobi analysis is carried out
to determine zero-velocity regions, i.e., inaccessible regions corresponding to the un-
stable Lagrangian points. Multiple sphere modeling was studied through analysis of
so called Asteroid Restricted Three and Four Body Problems, providing insight into
the method of modeling an asteroid as a cluster of multiple spheres in contact with
each other and rotating with a constant angular velocity about the center of mass of
the cluster. A spherical harmonics approximation was then investigated for a special
case, an asteroid in the shape of an ellipsoid. This approach is common but yields
highly complex equations of motion due to multiple terms in the spherical harmon-
ics expansion. Finally the equivalence of the above two methods was validated by
considering a configuration of a cluster of spheres that can approximate an ellipsoid.
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1. INTRODUCTION

1.1 Formation of Asteroids

The solar nebula hypothesis, proposed by Kant and Laplace, explains the forma-

tion of our solar system. The solar system developed from a gigantic cloud of gas

and dust. This cloud was composed of highly dispersed material. Gravity caused

this scattered mass to come together. As the masses were attracted to the core of

the nebula, its gravity increased exponentially attracting more material. This led to

friction, radiating heat and culminating in nuclear fission reactions, giving birth to

the center of our solar system - the Sun. Meanwhile, the rest of the mass formed

a scattered disc orbiting the Sun. These materials started coming together as plan-

etesimals, owing to gravity. Those nearer the sun were composed of metal and rock

while those farther away cooled to ice and gas clouds. Some of these planetesimals

built up to the eight planets we know today - Mercury, Venus, Earth, Mars, Jupiter,

Saturn, Uranus and Neptune. The formation of planets facilitated the sweeping up

of the scattered materials around the Sun.

However, beyond the orbit of Mars, the formation of a planet was hindered by

immense gravity of the largest planet Jupiter. Hence there exists a belt of dispersed

planetesimals between the orbits of Mars and Jupiter. These planetesimals are termed

Asteroids and this belt is called the Main Asteroid belt. The main belt has around
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0.7-1.7 million asteroids, and their combined mass would yet be just half of the mass of

Earth’s moon. Many of them have moons too. Four of the largest asteroids are Ceres,

Vesta, Pallas and Hygiea. The asteroids are classified into C-type i.e. carbonaceous,

S-type i.e., silicate and M-type i.e., metallic asteroids, based on their composition.

Ceres was the first asteroid to be discovered while Gaspra was the first asteroid to be

approached by a space mission Galileo in 1991.

The asteroids constantly collide with each other and this also contributes to the

absence of a planet in the main belt. Also, the swing effect of Jupiter’s gravity causes

some of the largest asteroids to be ejected from the main belt into the inner solar

system or into the Kuiper belt. The Kuiper belt is a trans-Neptunian asteroid belt

where the asteroids are mostly composed of ice. The asteroids which have been flung

into the inner solar system by the swing effect of Jupiter’s gravity, either collide with

planets or collapse into the sun. Some of these have come near the Earth and are

hence termed Near Earth Asteroids (NEA). Studying these Asteroids may uncover a

lot of information about the solar system and also prevention of collisions of asteroids

with the Earth.

1.2 Near Earth Asteroids

The asteroids in the vicinity of the Earth’s orbit are called Near Earth Asteroids

(NEA). The semi-major axis of their orbits, is less than 1.3AU from the Sun. There

are more than 10,000 NEAs with dimensions ranging from 1m - 32km. The largest

NEA is Ganymed and is 34.28km×31.66km in dimension. It was discovered by Walter
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Baade in 1924. The NEAs are classified into four categories based on the distance of

their orbits from the sun. They are Atiras, Atens, Apollos and Amors. The Atiras

asteroids have orbits strictly within the Earth’s orbit. The Atens asteroids have semi-

major axis less than 1AU from the sun but aphelion distance greater than 0.983 AU

which means they cross Earth’s orbit, while Apollos asteroids have semi-major axis

greater than 1AU and cross Earth’s orbit too. Finally, the Amors asteroids have orbits

strictly outside that of Earth’s and some of them cross the Martian orbit too. This

classification enables us to determine Potentially Hazardous Asteroids (PHA) which

may threaten to impact the Earth. An asteroid falls under the PHA category when

it approaches closer than 0.05AU of an Earth Minimum Orbit Insertion Distance

(MOID), and has an absolute magnitude less than 22m i.e., it cannot get closer to

the Earth than 0.05AU and diameter greater than 150m. The largest PHA known

currently is Toutalis. There are 1592 PHAs known as of now.

The NEAs are part of a larger group called The Near Earth Object (NEO) group.

This consists of meteoroids, and comets in addition to asteroids. These pose hazards

to the Earth too. As of February 2014 around 11000 NEOs have been discovered.

Hence study of these objects is important to protect and prevent damage to the Earth

due to collisions.

1.3 Asteroid Missions

Asteroids are composed of materials which are the building blocks of planets.

Hence asteroid missions reveal important information regarding the origin of our so-
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lar system. Moreover, some asteroids, for example Pallas and Hygiea have organic

compounds and previously had water. Further, their current chemical composition is

similar to the primeval solar system. This would allow us to study the origin of life

on Earth. Asteroids harbor valuable metals which can be mined and studied. Mining

fragments from asteroid may give us a chance to study the solar system during dif-

ferent eras. Another important reason for asteroid missions is that scientists are now

considering trying to modify an asteroid’s trajectory by deflecting it. This in addi-

tion to an asteroid collision threat provide sufficient reasons for asteroid exploration

mission.

There have already been a couple of asteroid missions in the past. The first

space mission to closely approach an asteroid in terms of a flyby was the Galileo

mission in 1991 which captured images of Gaspra and Ida. It also imaged Ida’s moon

Dactyl. This marked the beginning of asteroid missions. This was followed by several

missions like the Cassini, NEAR Shoemaker, Rosetta, Hayabusa etc. These missions

have enabled scientists to infer important information about our solar system. For

example Pluto, which was initially considered the ninth planet has been demoted to

the status of a minor planet. Ceres, the largest asteroid has been now termed a dwarf

planet too owing to its size and mass. These missions are designed to capture images

of asteroids and to orbit them, attempt landings and send back material and data

to the Earth ground stations, and further get into the orbits of Mars and Jupiter as

a secondary part of their mission. Rosetta has successfully landed its lander module

Philae on comet 67P. This probe will now orbit the comet nucleus and move with
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it alongside on its journey towards the sun. This would be the ultimate mission to

understand the life cycle of a comet, its formation and decay. Hayabusa, a JAXA

mission, was the first to return material from a Near Earth Asteroid- Itokawa. If

not for its failed lander MINERVA, Hayabusa would have been the first asteroid

hopper. Thus asteroid spin, trajectory, impact threat, formation, life span etc. can

be understood through such missions.

Current missions now include the DAWN mission which is currently orbiting the

largest asteroid-dwarf planet Ceres. This is the second asteroid it is orbiting since

its journey along the second largest asteroid Vesta. Also the New Horizons space

probe is set to explore the most prominent member of the Kuiper belt Pluto. It is

scheduled to make its closest approach of Pluto on July 14 2015.The Hayabusa 2 an

asteroid sample return mission, is en route to Near Earth asteroid 1999 JU3. It is a

successor of Hayabusa but advanced since it plans to dig up the asteroid surface and

retrieve fresh sample material.

Future missions include the OSIRIS-REx which is scheduled to launch on Septem-

ber 3 2016. This is again an asteroid sample return mission, with Bennu as its target

asteroid. The objective of this mission is to document the asteroid’s surface, collect

data as well as enough sample to study asteroid formation, the Yarkovsky effect and

future impact threats as well as potential resources in asteroids. Another very bold

mission proposed by NASA is the Asteroid Redirect mission. Sample return missions

are expensive, extend for years and carry great risk especially in the deployment of

landers. This mission intends to grab a boulder from an asteroid and insert in a stable



6

lunar orbit, so astronauts may access it easily and in a very short span. Not only

this, bringing back a huge sample, may burn it during reentry to the Earth. This

way the sample becomes much more easily accessible.

1.4 Asteroid Modeling - Background Literature

Since asteroids are highly irregularly shaped, their gravitational potentials are not

simple to compute. Planets, on the contrary, are spheroids (slightly oblate spheres)

and hence have approximately uniform gravity fields. Computation of gravitational

potential plays an important role in determination of equilibrium positions, called

Lagrangian points and further estimate the Jacobi regions (forbidden regions i.e.,

inaccessible for navigation of a spacecraft), corresponding to these Lagrangian points.

Several approaches have been proposed to overcome the complexities of modeling the

gravity fields of irregularly shaped of asteroids (E. Herrera Sucarrat & Roberts, 2013).

They are discussed below.

Spherical harmonics: This is one of the most commonly used technique (Scheeres,

2012). It is basically a solution of the Laplace equation. It employs a number of har-

monic co-efficients to mimic the potential function on an irregular surface. This

approach however is a series expansion. Hence, truncation leads to loss of accuracy.

In addition, the nature of the terms becomes increasingly complex at higher orders

and this, increases the computation time and cost. Also this approximation assumes

the irregular body to have uniform mass distribution. Hence, the series diverges when
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the proximity to the asteroid increases. This approximation will be discussed in detail

in Chapter 4.

Polyhedron model: This model also assumes the asteroid under consideration

to be of uniform and constant density (Werner, 1993). It approximates the asteroid

as a polygon with multiple planar faces to approximate its surface features like craters

and ridges, as accurately as possible. It suffers from the same divergence issues as

Spherical Harmonics due to the constant density assumption.

Mascon model: The Mascon or Mass concentration model (Werner & Scheeres,

1996) computes the gravitational potential by approximating the asteroid as a uniform

three dimensional mesh with point masses at the vertices of the grid points. These

point masses may of equal or unequal densities and the sum total of the point masses

is matched to be the same as that of the asteroid. For example, the asteroid Castalia

was filled with 3300 point masses to approximate the mass and mass distribution of

the actual asteroid. This method accounts for mass distribution but this approach is

asteroid specific as it requires a lot of data regarding the geometry, shape and density

variation. Hence it cannot be applied for a general case.

Another approach discussed in detail in this thesis, is multiple body modeling.

This approach provides a simple method of determining the gravitational potential by

approximating an irregular body by a number of constant and equal density spheres or

other symmetric shapes, for example an ellipsoid. The advantage of this approach is

that, the gravity potentials of symmetric shapes like spheres are closed form solutions

and simpler to determine than the tedious harmonics approach.
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To get further insight into multiple body modeling, Asteroid Restricted Three

body problems are studied as a first step. Restricted three body and Restricted Full

Three Body Problems (RF3BP) (i.e. both primaries rotating with different angular

speeds), an extension of full two body problems, have been well documented by

Werner and Scheeres. However, the above problems considered, do not investigate

the case where the primaries are in contact with each other and rotate with a constant

angular speed. This is an important point to be considered when modeling a single

asteroid as a multiple sphere system, since the masses are expected to be in contact

with each other. Figure 1.1 shows asteroid Itokawa as an asteroid which can be split

into lobes of different densities.

Figure 1.1. Asteroid Itokawa (Nermiroff & Bonnell, 2014)

D. J. Scheeres (Scheeres, 2012) has extensively studied the modeling of aster-

oids using spherical harmonics, and determination of gravity potentials, Langrangian
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Figure 1.2. Asteroid Itokawa represented as two lobes of different
densities (Lowry, 2014)
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points and Jacobi regions. Complete analysis of the asteroid Betulia (C. Magri, 2007)

provides a good understanding of the order of expansion of the harmonic approxi-

mation to compute the gravity potential and to find the Lagrangian points. Further,

Scheeres has also documented the application of spherical harmonics to model the

gravity potential of an ellipsoid. All the above literature has laid the background for

correlating the two problems - modeling of asteroids using multi body modeling in-

stead of spherical harmonics and as a special case of validation, an ellipsoid is modeled

as three spheres of varying masses and their equilibrium points are compared.

1.5 The Problem Statement

The major objective of this thesis is the application of multiple-body modeling

for computation of gravitation potential of asteroids. Further, equilibrium points and

Jacobi integrals are evaluated using the above approach. The underlying motive is

to replace the spherical harmonics modeling approach which is highly complex and

computationally demanding, by multiple sphere modeling by the comparison of their

respective equilibrium positions.

1.6 Organization of the Thesis

The first part of the thesis (Chapter 2) discusses the Restricted Three Body Prob-

lem. An extension to this case is applied by analyzing the Restricted Four Body

Problem (Chapter 3). Multiple configurations of the primaries are considered in both
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cases. Further an ellipsoid is modeled using spherical harmonics (Chapter 4). Finally

the multiple-body modeling approach is validated by comparison of Lagrangian points

yielded by an ellipsoid modeled as a cluster of three spheres, by spherical harmonics

and that modeled by multi-sphere modeling approach (Chapter 5).
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2. THE ASTEROID RESTRICTED THREE BODY PROBLEM

2.1 Introduction

The three-body problem is a classical problem in orbital mechanics, to analyze

the motion of three bodies, based on their data at a particular time, specifying their

masses, velocities and positions. This traditionally came into existence in Isaac New-

tons Principia. Prior to the invention of the chronometer - a device to determine

the longitude at sea, one of the approaches was to use the position of the moon as

guidance. But as its motion about the Earth was perturbed due to the gravity of the

Sun, the problem gained importance and was addressed by Amerigo Vespucci and

Galileo Galilei. The most common three body problems are those concerning the

Sun-Earth-Moon system or Earth-Moon-Spacecraft system.

Bruns and Poincare have shown that there is no general analytical solution for

the three body problem. Hence, some restrictions were imposed which generated the

concept of a Restricted Three Body Problem. These restrictions impose that one of

the three bodies has a negligible mass and gravity with respect to the other two. This

negligible mass is referred to as the secondary body and the other two, as primary

bodies. This secondary mass orbits the primaries in an x-y plane, with respect to the

center of mass of the primary mass system. The primaries in general have a large mass

difference and are separated by huge distances (E.g. Earth-Moon-Spacecraft System).
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In our multiple-body modeling approach, the analysis of this Restricted Three Body

Problem plays an important role. This is because another important restriction is

imposed on the above problem in addition to the existing assumptions. The primaries

are considered to have relatively comparable masses and are brought in contact with

each other such that they rotate with a constant angular velocity together about

their common center of mass. This helps to mimic a binary asteroid system at the

simplest case. Addition of further masses to this system provides further insight into

the multi-sphere modeling approach.

Let us consider a system of two spheres (primaries) of equal and constant density,

rigidly connected to each other and rotating with a constant angular velocity, Ωk̂ .

The spheres may (symmetric case) or may not (asymmetric case) be of equal masses.

A spacecraft (secondary mass) orbits the above sphere system in an x-y plane. Let

r be the position vector of the spacecraft with respect to the center of mass O of

the sphere system. Similarly r1 and r2 are the position vectors of the spacecraft with

respect the centers mass of spheres 1 and 2 respectively. The co-ordinate axes are

fixed to the sphere system, in the rotating frame of reference, such that, the origin is

at the O. The spheres have a circular orbit about O. The following diagram depicts

the above mentioned system.
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Figure 2.1. Symmetric sphere system

Figure 2.2. Asymmetric sphere system
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2.2 Gravitational Potential

Estimation of the Gravity Potential is the first step to obtain the equations of

motion, followed by the determination of Lagrangian points and Jacobi Analysis.

The gravitational potential of a sphere is expressed as follows.(Curtis, 2010)

U =
µ

r
(2.1)

where,

µ = Gm = Gravitational constant of the sphere, km3/s2

r = position vector of the spacecraft with respect to center of mass of the sphere,

km

Let r12 be the distance between the centers of the two spheres. Let m1 and

m2 be their respective masses and, σ1 and σ2 be their respective mass ratios. The

position vectors mentioned earlier can now be defined as follows. The terms in the

x-components are different due to spread of the spheres along the x-axis.

m1 +m1 = m (2.2)

µ1 = Gm1;µ2 = Gm2 (2.3)

σ1 =
m1

m1 +m2

;σ2 =
m2

m1 +m2

(2.4)

r2 = x2 + y2 + z2 (2.5)

r21 = (x+ σ2r12)
2 + y2 + z2 (2.6)

r22 = (x− σ1r12)2 + y2 + z2 (2.7)



16

Thus, the gravitational potential due to each individual sphere is given as follows,

U1 =
µ1

r1
;U1 =

µ2

r2
(2.8)

Hence, the total gravitational potential due to both the spheres is,

U = U1 + U2 (2.9)

2.3 Equations of Motion

Once the gravity potential has been determined, the equations of motion can

be derived from Newton’s second law as follows. It is to be noted that the total

acceleration r̈ is in the inertial frame of reference.

mr̈ = F (2.10)

where, F = ∇ U

Let vrel and arel be the relative velocity and acceleration with respect to the

rotating frame of reference, respectively. The general acceleration formula, accounting

for Coriolis force and centripetal acceleration is as follows,

r̈ = Ω × (Ω × r) + 2Ω × vrel + arel (2.11)

where,

vrel = ẋî+ ẏĵ + żk̂ (2.12)

arel = ẍî+ ÿĵ + z̈k̂ (2.13)
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From the above definitions, the equations of motion in the x, y and z directions

respectively can be framed as given below.

ẍ− 2Ωẏ −Ω2x =
∂U

∂x
(2.14)

ÿ + 2Ωẋ−Ω2y =
∂U

∂y
(2.15)

z̈ =
∂U

∂z
(2.16)

The derivatives are then computed to get the following final equations of motion,

ẍ− 2Ωẏ −Ω2x = −µ1

r31
(x+ σ2r12)−

µ2

r32
(x− σ1r12) (2.17)

ÿ + 2Ωẋ−Ω2y = −µ1

r31
y − µ2

r32
y (2.18)

z̈ = −µ1

r31
z − µ2

r32
z (2.19)

To analyze a general case, it is a good practice to non-dimensionalize the equations.

Now, all distances are non-dimensionalized with respect to r12. All parameter with

the over-bar notation represent non-dimensionalized quantities.

x = x̄r12; y = ȳr12; z = z̄r12

r = r̄r12; r1 = r̄1r12; r2 = r̄2r12

The angular velocity, time and time period are non-dimensionalized with respect to

their characteristic counterparts, Ωc, tc and Tc.

Tc = 2π

√
r312
µ

tc =

√
r312
µ
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Ωc =

√
µ

r312

Post non-dimensionalization, the equations transform as follows.

¨̄x− 2Ω̄ ˙̄y − Ω̄2x̄ = −σ1
r̄31

(x̄+ σ2)−
σ2
r̄32

(x̄− σ1) (2.20)

¨̄y + 2Ω̄ ˙̄x− Ω̄2ȳ = −σ1
r̄31
ȳ − σ2

r̄32
ȳ (2.21)

¨̄z = −σ1
r̄31
z̄ − σ2

r̄32
z̄ (2.22)

2.4 Lagrangian Points

In celestial mechanics, Lagrangian points are equilibrium positions of a small mass

(spacecraft) in an orbital configuration of two larger masses, such that in the rotating

frame, the smaller mass always appears to be stationary. There are five such points.

L1, L2 and L3 lie on the line connecting the larger masses, while L4 and L5 each

form an equilateral triangle with them. The equilateral triangle assumption holds

good only when the system of primary masses does not rotate beyond its natural

characteristic angular velocity Ωc. The Lagrangian points L4 and L5 are determined

first. At equilibrium positions, all time derivatives reduce to zero i.e.

¨̄x = ¨̄y = ¨̄z = ¨̄x = ¨̄y = ¨̄z = 0 (2.23)

Hence, the system of non-dimensional equations reduces to the following.

Ω̄2x̄ = −σ1
r̄31

(x̄+ σ2)−
σ2
r̄31

(x̄− σ1) (2.24)

−Ω̄2ȳ = −σ1
r̄31
ȳ − σ2

r̄31
ȳ (2.25)
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0 = −σ1
r̄31
z̄ − σ2

r̄31
z̄ (2.26)

The above system yields the following analytical solutions.

x̄ =
1

2
(σ1 − σ2) (2.27)

ȳ = ±

√√√√
(

1

Ω̄
)

4

3 − 1

4
(2.28)

z̄ = 0 (2.29)

An important conclusion can be drawn from the above results. It is to be noted that

x̄ is independent of Ω̄, while ȳ is purely a function of Ω̄. From this a limiting value

of Ω̄ can be obtained. This was found to be 2.8283 i.e., for ȳ = 0 ; Ω̄ = 2.8283. The

following graph shows the variation of the y-co-ordinate of L4 and L5 with respect

to Ω̄

From Figure 2.3, it is observed that at Ω̄ = 0, ȳ → ∞ . Physically this implies

that, when Ω̄ = 0, the primaries are not rotating and hence the centripetal acceler-

ation tends to zero implying zero gravity. Hence the equilibrium position escapes to

infinity. Conversely, when Ω̄ = 2.8283 (limiting condition), ȳ → 0 . This means that,

when the primaries rotate beyond their maximum angular speeds, the centripetal ac-

celeration becomes very high, implying a corresponding increase in the gravity field.

This causes the equilibrium position to coalesce at the center of mass of the primary

system.

The other Lagrangian points, L1, L2 and L3 are determined next. Since these

points lie along the longitudinal axis i.e. x -axis of the system, ȳ is set to zero,
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Figure 2.3. Plot of y-co-ordinates of L4 and L5 with respect to Ω̄
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in addition to all the previous assumptions. Hence, we are left with the following

equation which gives three roots (i.e. x -co-ordinates of L1, L2 and L3).

σ1
r̄31

(x̄+ σ2)−
σ2
r̄31

(x̄− σ1)− Ω̄2x̄ = 0 (2.30)

where,

r̄1 = |x̄+ σ2|; r̄2 = |x̄− σ1|

The above equation is highly non-linear and hence cannot be solved analytically. It

was thus solved numerically for different cases of Ω̄ as shown in the plots below. The

plots are a function of the x̄-co-ordinates of the L1, L2 and L3 with respect to the

mass ratio of the sphere 2. L2 is a negative root while L3 is positive. L1 may be

positive, zero or negative. A special case occurs for σ2 = 0.5 (implying a symmetric

case) where L1 = 0 and, L2 and L3 have equal magnitudes but opposite directions.

2.5 Jacobi Analysis

The Jacobi Analysis is carried out to determine the Jacobi Integral and also the

Jacobi regions for a classical three body system. The Jacobi region envelopes the zero

velocity curves and maps a forbidden region which cannot be crossed by a spacecraft.

This plays an important role during the navigation of a spacecraft in close proximity

to an asteroid. The prime objective of the Jacobi Analysis is to map permissible

regions around the Lagrangian points L1, L2 and L3. This is because these points are



22

Figure 2.4. Plot of x -co-ordinates of L1, L2 and L3 with respect to σ2 for Ω̄=1

Figure 2.5. Plot of x -co-ordinates of L1, L2 and L3 with respect to σ2 for Ω̄=2
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Figure 2.6. Plot of x -co-ordinates of L1, L2 and L3 with respect to
σ2 for Ω̄=2.8283
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highly divergent and hence unstable with respect to L4 and L5. The Jacobi constant

C is determined as follows,

v̄2 − Ω̄2

2
(x̄2 + ȳ2)− σ1

r̄1
− σ2
r̄2

= C (2.31)

where, v̄= speed of the spacecraft relative to the rotating frame of reference. In order

to determine regions of zero-velocity and restricted motion (i.e. z = 0), the equation

for the Jacobi Constant becomes,

C = −Ω̄
2

2
(x̄2 + ȳ2)− σ1

r̄1
− σ2
r̄2

(2.32)

Three of the Jacobi constants are determined by plugging in the co-ordinates of

the Lagrangian points L1, L2 and L3 respectively. The Jacobi regions are then plotted

using the values of these constants. The Jacobi regions of the Earth-Moon-Spacecraft

system are presented in Figures 2.7-2.9 In the given plots, the region between the

inner and outer boundaries represents the forbidden region i.e., inaccessible for an

Earth launched spacecraft. As the value of C increases the forbidden region shrinks.

The two inner lobes in Figure 2.7 depict the Earth and Moon. Further, the Jacobi

regions for the restricted three body case discussed are explored.

Figure 2.10 present the plots of the Jacobi regions for a symmetric case i.e., σ1 =

σ2 = 0.5 at Ω̄ = 1. It is to be noted that the lobes in this case are equal and

symmetrical corresponding to the equal mass ratios.

The asymmetric case is then analyzed (Figures 2.11), i.e., for a sample case of

σ1 = 2/3, σ2 = 1/3 at Ω̄ = 1. Here again, it is to be noted that the lobes in this case

are unequal and asymmetrical corresponding to the unequal mass ratios.
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Figure 2.7. Jacobi regions for C1 = -1.6735

Figure 2.8. Jacobi regions for C2 = -1.6649
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Figure 2.9. Jacobi regions for C3 = -1.5810
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Figure 2.10. Jacobi regions for C1 = -2 at L1 ( x̄ = 0) and C2,3 =
−1.728398 at L2,3 (x̄ = ±1.1984)
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Figure 2.11. Jacobi regions for C1 = -7.346154 at L1 ( x̄ = -0.2374),
C2 = -1.808990 at L2 ( x̄ = 1.1363) and C3 = -1.682071 at L3 ( x̄ =
-1.2490)
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3. THE ASTEROID RESTRICTED FOUR BODY PROBLEM

3.1 Introduction

Let us extend the restricted three body problem to a four body case. The reason

behind this, is to provide further understanding of the multi-body modeling, as ad-

ditional masses are added to the existing system. Let us consider a system of three

spheres (primary masses) and a spacecraft (secondary mass). All assumptions remain

exactly as those of the three body case. In addition r13 is the distance between the

centers of spheres 1 and 3. Below are presented three different configurations of the

four body case.

Figure 3.1. Symmetric configuration of a sphere system with equal mass ratios
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Figure 3.2. Symmetric configuration of a sphere system with unequal mass ratios

Figure 3.3. Asymmetric configuration of a sphere system with de-
creasing mass ratios
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3.2 Equations of Motion

As the previous case, the gravitational potential is used to derive the equations

of motion. The non-dimensionalized equations of motion are presented below. It is

to be noted that the overbar notation is omitted for the sake of convenience. All

distances for this case are non-dimensionalized with respect to r13 and σ3 is the mass

ratio of the third mass.

ẍ− 2Ωẏ −Ω2x = −σ1
r31

(x+ σ23)−
σ2
r32

(x−R + σ23)−
σ3
r33

(x− 1 + σ23) (3.1)

ÿ + 2Ωẋ−Ω2y = −σ1
r31
y − σ2

r32
y − σ3

r33
y (3.2)

z̈ = −σ1
r31
z − σ2

r32
z − σ3

r33
z (3.3)

where,

R = r12/r13

σ23 = σ2R + σ3

r12 =
(
σ1
σ3

)
1
3 + (

σ2
σ3

)
1
3

(
σ1
σ3

)
1
3 + 2(

σ2
σ3

)
1
3 + 1

An important inference here, is that addition of another mass led to just addition

of a single term and did not change the nature of the existing equation in terms of

degree and order. This is the prime advantage of the multi-body modeling approach.

It does not increase the complexity of the equations as further terms are added due

to addition of more masses. This reduces the computation time.
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3.3 Lagrangian Points

The Lagrangian points are determined next from the above equations of motion,

in the same manner as carried out previously. All the Lagrangian points in this case

have no analytic solutions. The equations solved simultaneously to obtain L4 and L5

are as follows.

Ω2x = −σ1
r31

(x+ σ23)−
σ2
r32

(x−R + σ23)−
σ3
r33

(x− 1 + σ23) (3.4)

Ω2y = −σ1
r31
y − σ2

r32
y − σ3

r33
y (3.5)

The following table presents the values of co-ordinates of L4 and L5 for Ω=1, for

different configurations. The points are obtained using numerical methods.

The first case shown in the table represents the case of the three spheres such that

they have decreasing masses and thus an asymmetric configuration. The second case

represents the symmetric configuration of the three spheres such that the mass of the

central sphere is twice that of the two adjacent spheres. The x -co-ordinate is observed

to be at zero, corresponding to the symmetry of the configuration. The third case is

a test of the approach as the one of the masses is set to zero i.e., a return to the three

body problem. The results confirm with those of the three body symmetric case for

Ω = 1 i.e., ' (0,
√
3
2

). The last case is just an observation of the change in results

when the zero mass is replaced by a very small mass.

The remaining equilibrium points, L1, L2 and L3 are then determined from the

Equation 3.6 following the previous procedure.
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Table 3.1. Co-ordinates of L4 and L5 for Ω = 1, for different config-
urations of mass ratios

Distance between C.O.M Mass Ratios L4,L5

r13 = 1

r12 = 0.5384

σ1 = 0.50

σ2 = 0.30

σ3 = 0.20

0.0817, 0.9233

r13 = 1

r12 = 0.5

σ1 = 0.25

σ2 = 0.50

σ3 = 0.25

0, 0.9456

r13 = 1

r12 = 0.5

σ1 = 0.50

σ2 = 0

σ3 = 0.50

0.0001,0.8660

r13 = 1

r12 = 0.5013

σ1 = 0.50

σ2 = 0.01

σ3 = 0.49

0.0049,0.8681
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ẍ− 2Ωẏ −Ω2x = −σ1
r31

(x+ σ23)−
σ2
r32

(x−R + σ23)−
σ3
r33

(x− 1 + σ23) (3.6)

where,

r1 = |x+ σ23|; r2 = |x−R + σ23|; r3 = |x− 1 + σ23|

Figure 3.4. Plot of x -co-ordinates of L1, L2 and L3 with respect to
σ1 for Ω = 1 for σ1 = 0, 1/3, 2/3; σ2 = 1/3; σ3 = 1− σ2 − σ3

From the plot in Figure 3.4 we observe the values of L1, L2 and L3 for Ω = 1 for

the three discussed configurations. For the symmetric cases it is observed that L1 lies

at x = 0.
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3.4 Jacobi Analysis

The Jacobi constants and their corresponding Jacobi regions are determined for

the Lagrangian points L1, L2 and L3. The equation solved for obtaining the Jacobi

Constant is as follows.

C = −Ω
2

2
(x2 + y2)− σ1

r1
− σ2
r2
− σ3
r3

(3.7)

The plots below represent the Jacobi regions for all the three configurations dis-

cussed. The asymmetric case is analyzed, i.e. for a sample case of σ1 = 0.5, σ2 = 0.3

and σ3 = 0.2 at Ω = 1. It is to be noted that the lobes in this case (Figure 3.5) are un-

equal and asymmetrical corresponding to the unequal mass ratios and three different

Jacobi regions are generated corresponding to the three unique Jacobi integrals

The symmetric configuration of the three spheres of equal masses i.e. σ1 = σ2 =

σ3 = 1/3 at Ω = 1 is next. It is to be noted that the lobes in this case (Figure 3.6)

are equal and symmetrical corresponding to the equal mass ratios. Also it is observed

the Jacobi regions are identical corresponding to the symmetric Lagrangian roots L2

and L3.

Finally the other symmetric configuration, corresponding to σ1 = σ3 = 0.25,

σ2 = 0.5; at Ω = 1, is analyzed. Here again, it is observed that the central lobe in

Figure 3.7 is larger than the adjacent lobes in accordance with the above mentioned

mass ratios. Also the Jacobi regions are identical due to their symmetric roots.
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Figure 3.5. Jacobi regions for C1 = -3.212439 at L1 (x = -0.0624),
C2 = -1.688938 at L2 (x = 1.1824) and C3 = -1.631470 at L3 (x =
-1.1179)
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Figure 3.6. Jacobi regions for C1 = -3.141694 at L1 (x = 0) and C2,3

= -1.665923 at L2,3 (x = ±1.1534)
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Figure 3.7. Jacobi regions for C1 = -3.272352 at L1 (x = 0) and C2,3

= -1.6311 at L2,3 (x = ±1.1262)
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4. THE SPHERICAL HARMONICS APPROACH

4.1 Introduction

So far the multi-body modeling approach was discussed. One of the most com-

monly used approaches to model gravity fields of irregularly shaped bodies is the

spherical harmonics modeling approach. This approach is just a solution to the

Laplace equation corresponding to physical mass distribution. It is used to model

irregular shaped bodies, in our case asteroids. It utilizes harmonic co-efficients to

model the irregularities, choosing them to match with the actual potential function.

Spherical harmonics is applied to model the gravity fields of planets too. For example,

the Earth although generally treated as a sphere for the purpose of computation of

gravity potential, is more of a spheroid in actual as are other planets, hence spheri-

cal harmonics could model the gravity potential more accurately. This however, is a

series expansion and hence results in minor truncation errors.

An important drawback of this approximation is that, it does not take mass dis-

tribution into account. Spherical harmonics approximates an irregular body based

on a constant density assumption. In general, asteroids have non uniform mass dis-

tribution. Hence spherical harmonics holds good from a far field point of view, but

diverges in the vicinity of the asteroid.
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The gravitational potential is given by the following approximation,(Scheeres,

2012)

U(r, δ, λ) =
µ

r

∞∑
l=0

l∑
l=0

(
ro
r

)lPlm(sinδ)[Clmcosmλ+ Slmsinmλ] (4.1)

where,

ro = normalizing radius of the body

Plm = Associated Legendre Functions

Clm, Slm = Gravity field harmonic co-efficients

r2 = x2 + y2 + z2; sinδ = z
r
; tanλ = y

x

Let us apply this approach to a symmetrical body, example an ellipsoid, to un-

derstand the modeling approach better. An ellipsoid is a closed quadric surface that

is a three-dimensional analogue of an ellipse. The standard equation of an ellipsoid

centered at the origin of a Cartesian coordinate system and aligned with the axes is,

x2

a2
+
y2

b2
+
z2

c2
= 1 (4.2)

where, a, b and c are the semi major, intermediate and minor axes respectively.

Let us consider a constant density ellipsoid, rotating with an angular speed Ωk̂.

A spacecraft orbits this ellipsoid in a restricted plane i.e., x-y plane. Further, the

ellipsoid is an ellipsoid of revolution i.e., b=c. The motive to model the ellipsoid with

these restrictions is to later investigate the convergence of Lagrangian points yielded

with the solutions of the symmetric configuration of the Restricted Four body Problem

where σ1 = σ3, at Ω = 1, since the ellipsoid can be approximated by this configuration

as shown in the next chapter. Further, the ellipsoid has a closed form solution and
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hence owing to its symmetry would be easier to analyze using the spherical harmonics

approach.

Figure 4.1. Tri-axial Ellipsoid with semi axes a, b and c marked (Mercator, 2010)

4.2 Gravitational Potential

The gravitational potential is computed from Equation 4.1. It is to be noted that

the series can be expanded to infinite number of terms. However this is unrealistic

and hence the series is truncated to a particular order and degree. The accuracy

of the approximation is proportional to the number of terms included in the series

expansion. Generally, the co-efficients up to the quadratic term are more significant

and hence it is common practice to expand the series up to the second order. However,

in order to increase the accuracy let us expand the series to the fourth order. It is
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important to remember that, the greater the irregularity of the body, greater is the

order of expansion required for the above series.

The expression to determine the Gravity harmonic co-efficients for a constant

density (σ) body is given as follows (Montenbruck & Gilll, 2000).

(C, S)lm =
σ(2− δ0m)

M

(l −m)!

(n+m)!

∫
S

R3(δ, λ)

l + 3
(
R(δ, λ

ro
)lPlm(sinδ)cos(mδ)cosδdδdλ

(4.3)

where, the radius R(δ, λ) is a function of the latitude and longitude and defines the

shape of the body.

Several of the above Gravity field harmonic co-efficients reduce to zero under the

following conditions.C00 = 1 by definition. If the origin is chosen to be at the center

of mass, C11 = S11 = C10 = 0 due to the following definition.

xCM = C11ro

yCM = S11ro

zCM = C10ro

Secondly, for any given mass distribution, it is always possible to define a set of

coordinates such that the products of the polar moments of inertia i.e. Ixy, Iyz and

Izx are zero. The polar moments of inertia are defined as follows.

Ixy = −2Mr2oS22

Iyz = −Mr2oS21



43

Izx = −Mr2oC21

From the above definitions, S22 = S21 = C21 = 0. Thirdly, due to the symmetry

of the ellipsoid, all the Slm co-efficients reduce to zero. Further if either l or m is

odd, Clm = 0. Thus we are left with the following truncated approximation up to the

fourth order.

U =
µ

r
{P00(sinδ)C00 + (

ro
r

)2[P20(sinδ)C20 + P22(sinδ)C22cos2λ]+

(
ro
r

)4[P40(sinδ)C40 + P42(sinδ)C42cos2λ+ P44(sinδ)C44cos4λ]}
(4.4)

The Associated Legendre Polynomials are derived from the following expression,

Plm(sinδ) = cosmδ

int[l−m
2
]∑

i=0

Tlmisin
l−m−2iδ (4.5)

where,

Tlmi =
(−1)i(2l − 2i)!

2li!(l − 2i)!(l −m− 2i)!

where, the int[x] functions returns the integer part of x. The associated Legendre

functions can also be defined by the following simpler rule, for a general case.

Plm(x) = (1− x2)m/2 d
m

dxm
(Pl0(x)) (4.6)

where,

Pl0 =
1

2ll!

dl

dxl
(x2 − 1)l

The restricted motion (x-y plane) imposes the following conditions.
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z = 0 (4.7)

This implies the following,

sinδ = 0 (4.8)

cosλ =
x

r
(4.9)

r2 = x2 + y2 (4.10)

Plm(sinδ) = Plm(0) (4.11)

Further, the simplified expressions of the Gravity field harmonic co-efficients for

a constant density ellipsoid are as follows.

C20 =
1

5r2o
(c2 − a2 + b2

2
) (4.12)

C22 =
1

20r2o
(a2 − b2) (4.13)

C40 =
15

7
(C2

20 + 2C2
22) (4.14)

C42 =
5

7
C20C22 (4.15)

C44 =
5

28
C2

22 (4.16)

Substituting the above assumptions and, the values of the harmonic co-efficients

and associated Legendre polynomials, we get the following expression for the gravi-

tational potential.
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U =
µ

r
{1 + (

ro
r

)2[
−C20

2
+ 3C22

x2 − y2

r2
]

+(
ro
r

)4[
C40

8
− 15

2
C42

x2 − y2

r2
+ 105C44

x4 − 6x2y2 + y4

r4
]}

(4.17)

4.3 Equations of Motion

As discussed in the three and four body problems, the non-dimensionalized equa-

tions of motion are derived from the gradient of the gravitational potential and pre-

sented below. The normalizing variables are ro, Ωc and tc .
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ÿ + 2Ωẋ−Ω2y = −µy
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(4.19)

z = 0 (4.20)

From the above equations, it is evident that the nature of the terms becomes

increasingly complex as the order of expansion increases. Further, the above equations

are much more complex than those obtained as a result of multi-sphere modeling.

4.4 Lagrangian Points

Although Lagrangian points traditionally exist in three body problems, their

existence is investigated, for an ellipsoid using spherical harmonics. According to
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D.J.Scheeres, four equilibrium points are yielded by spherical harmonics approxima-

tion for the general case of asteroids with the exception of the asteroid Betulia which

yields six such points. The procedure adopted for determining these points is as per

the previous cases. The time-invariant equations solved to get the equilibrium points

are given below.
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z = 0 (4.23)

The above equations were solved using numerical methods for a sample case of a =

3, b = 2, c = 1 = ro to obtain symmetrical roots for L4 and L5, [0,±1.3886] shown in

Figure 4.4.

Further, the existence of the collinear equilibrium points is investigated by setting

y = 0, reducing the above system of equations to the following.

Ω2 = − µ
r3
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r
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5x4 − 46x2y2 + 21y4

r4
]}

(4.24)

where, r = |x|. Two equilibrium points, (±1.67839, 0) are obtained by solving the

above equation for the same conditions.
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Figure 4.2. Lagrangian Points for an ellipsoid, a = 3, b = 2, c = 1 = ro
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5. VALIDATION

The asteroid gravitational potential modeling techniques - Multiple body modeling

ans Spherical harmonics were studied in detail in the previous chapters. The prime fo-

cus of this thesis is to present the technique of multi-sphere modeling as it is computa-

tionally less demanding and also takes into account mass distribution when compared

to spherical harmonics. To effectively substitute the spherical harmonics approxima-

tion with multiple sphere modeling, the convergence of the Lagrangian points yielded

by both methods, was investigated.

For this purpose, an ellipsoid was modeled as a cluster of three spheres and La-

grangian points were computed through both the discussed approaches and the per-

centage difference was calculated. The motive for this, is to be able to model any

asymmetric body, an asteroid in our case, by a cluster of spheres in contact with each

other and rotating with a constant angular speed about their common center of mass.

The spheres can be cotangent or overlapping. Further each sphere can have a

unique size and density. For modeling the cluster as an ellipsoid a symmetric config-

uration of three spheres - a central large sphere and the symmetric smaller adjacent

spheres, as discussed in the Four body problem. The case of overlapping spheres is

not considered for the sake of simplicity.
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In order to approximate an ellipsoid as a cluster of cotangent spheres, mass and

moment of inertia have to be conserved. Based on this, the dimensions and mass

distribution of the spheres is computed. Since the bulk of the matter of an ellipsoid

is concentrated at the center, the density of the central sphere is the same as that

of the ellipsoid ρe and the radius of the sphere is the the length of the semi major

axis of the ellipsoid b. It is for this reason that an ellipsoid of revolution (b = c) was

considered, since a sphere is fitted in its center. Further, spheres 1 and 3 have equal

dimensions RS1, density ρ1 and mass MS1 due to symmetry.

Figure 5.1. Approximation of an ellipsoid using three spheres with
non-uniform individual sphere density

The following equations present the mass and moment of inertia conservation.
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Figure 5.2. Approximation of an ellipsoid using three cotangent
spheres for uniform individual sphere density
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Mass Conservation:

Me = MS2 + 2MS1 (5.1)

where,

Me = Mass of the Ellipsoid

MS1,MS2 = Mass of spheres 1 and 2 respectively

ρeVe = ρeVS2 + 2ρ1VS1 (5.2)

where,

VS1, VS2 = Volume of spheres 1 and 2 respectively

7

5
(1− b)R2

S1 + 2b(1− b)RS1 + b2(1− b)− 1

5
(1− b2) = 0 (5.3)

Moment of Inertia Conservation:

Izz,e = Izz,S2 + 2(Izz,S1 +MS1r
2
12) (5.4)

1

5
ρeVe(a

2 + b2) =
1

5
ρeVS2R

2
S1 + 2(

1

5
ρ1VS1(RS1 + b)2) (5.5)

where,

Izz,e = Moment of Inertia of the Ellipsoid

Izz,S1, Izz,S2 = Moment of Inertia of spheres 1 and 2 respectively

Based on equations 5.3 and 5.5, RS1 and ρ1 are plotted as a function of b. It

is to be noted that all the equations (5.1-5.5) are non-dimensional. Densities are
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normalized with respect to ρe and distances are normalized with respect to the semi-

major axis length of the ellipsoid a. Figures 5.3 and 5.4 represent the variation of

RS1 and ρ1 with b

Figure 5.3. Variation of RS1 with b

As a test case, a sample value was picked for b, and the corresponding values

of RS1 and ρ1 were obtained from the plots in Figures 5.3 and 5.4. For b = 0.4a,

RS1 = 0.23775a and ρ1 = 3.5718ρe. Lagrangian points were determined as done in the

case of the Asteroid Restricted Problem using equations 3.4-3.6. Also the Lagrangian
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Figure 5.4. Variation of ρ1 with b
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Table 5.1. Lagrangian Points for an Ellipsoid modeled as a cluster of spheres

Lagrangian Point Multiple-body modeling Spherical Harmonics % difference

L1 0.2706, 0 N/A N/A

L2 +1.1430, 0 +1.1563, 0 1.16%

L3 -1.1430, 0 -1.1563, 0 1.16%

L4 0, +0.9324 0, +0.9506 1.93%

L5 0, -0.9324 0, -0.9506 1.93%

points through spherical harmonics approximation were determined using equations

4.21-4.24. Table 5.1 presents the values of the obtained equilibroum points for the

discussed test case.

From Table 5.1, it is observed that the percentage difference between the La-

grangian points obtained from both techniques ranges from 1.16-1.93%, indicating

that multiple sphere modeling can very closely approximate the spherical harmonics

approximation.
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6. CONCLUSIONS

This thesis focused on modeling asteroid gravitational potentials. The first part of the

thesis focused on the approach of multiple-body or more specifically multiple sphere

modeling. To get a good understanding of this approach, Asteroid Restricted Three

and Four body problems where studied. Using the above modeling approach, the

gravitational potential for both problems was computed, for symmetric and asym-

metric configurations. This provides further insight into modeling a single asteroid

as a cluster of spheres in contact with each other. Further, it was inferred from the

nature of the equations of motion that, as additional masses were considered in the

cluster, each mass added a corresponding additional term with similar structure, to

the existing equations of motion. This is the biggest advantage of multiple body mod-

eling. The computation of the gravitational potential facilitated the determination of

equilibrium positions i.e. Lagrangian points and also the Jacobi regions (forbidden

regions) corresponding to the unstable Lagrangian Points.

The second approach that was investigated is the spherical harmonics modeling.

This is an existing approach. It was applied to obtain gravitational potential for

an ellipsoid. Spherical harmonics, being an approximation, loses its accuracy upon

truncation. Besides, as the order of expansion is increased, the nature of the additional

terms increases in complexity. This is an important demerit of this approach. Loss
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of accuracy and increased complexity reduce the favorability of spherical harmonics

modeling.

Another important parameter that was studied was mass distribution. Spherical

Harmonics approximations, like elliptic integrals and polyhedron models, approxi-

mates an asymmetric body as a constant density mass. This assumption holds good

from a far field point of view, however, inside the Brillouin sphere (circumscribing

sphere for the asteroid), the approximations diverge. Further, many asteroids have

non-homogeneous mass distributions. Mascon model takes mass distribution into ac-

count as does multiple body modeling. Multi-sphere modeling however accounts for

moment of inertia conservation which is not taken into consideration in the mascon

model.

A demerit of multi-sphere modeling and mascon model is that, they require a lot

of topological and density variation data of the asteroid considered, to approximate

it with multiple masses. Since, only a few asteroids like Ceres, Eros, etc have been

fully studied and only triaxial dimensions and overall density are known for other

asteroids, it is an important drawback of this concept.

As a final step, to validate the accuracy of multiple sphere, the convergence of

Lagrangian points yielded by this method and by spherical harmonics, was investi-

gated. The percentage difference between the two methods was between 1.16-1.93%

indicating that for the purpose of determination of Lagrangian points, multi-sphere

modeling can closely approximate spherical harmonics.
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A. MATLAB CODES

A.1 The Asteroid Restricted Three Body Problem

A.1.1 Determination of Lagrangian Points - L4 and L5

1 % Program to determine the Lagrangian points L4 and L5 for an
2 % Asteroid Restricted Three Body Problem
3 clc
4 clear all
5

6 omega = 0:0.05:3; %...omega is non domensional
7 y = sqrt( ((1./omega).ˆ(4./3)) − 0.25 ); %...y is non−dimensional
8

9 plot(omega,y,'k')
10 hold on
11 plot(omega,−y,'k')
12

13 xlabel('\Omega b a r');
14 ylabel('y b a r');
15 title('y vs \Omega for L4, L5');

A.1.2 Determination of Lagrangian Points - L1, L2 and L3

1 % Program to determine the Lagrangian points L1, L2 and L3 for an
2 % Asteroid Restricted Three Body Problem
3

4 clc
5 clear all
6 close all
7 global sigma1 sigma2 Omega
8

9 % r12 dim = distance between the centers of the two masses
10 % r12 = non−dimensional r12 dim
11 % r12 = 1;
12

13 % Mass Ratios
14 % sigma1 = m1/(m1 + m2)
15 % sigma2 = m2/(m1 + m2)
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16 % sigma1 + sigma2 = 1
17

18 for sigma1 = 0:0.1:1;
19 sigma2 = 1 − sigma1;
20

21 % Omega dim = dimensional angular speed of the two primary masses, which
22 % can be either detached or rigidly attached
23 % Omega = non−dimensional angular speed of the two primary masses
24

25 % nc = dimensional angular speed of the two primaries when they are not
26 % rigidly attached
27 % Omega = Omega dim/nc
28

29 % We start with Omega = 1
30 Omega = 1; % Omega = 2, 2.8283
31

32 % All x distances are non−dimensional
33 % x is non−dimensional coordinate defined as:
34 % x dim = r12 dim*x
35

36 x10 = 0;
37 xL(1) = fminsearch('LHS of Eq1',x10)
38 F1 = LHS of Eq1(xL(1))
39

40 x20 = 3;
41 xL(2) = fminsearch('LHS of Eq1',x20)
42 F2 = LHS of Eq1(xL(2))
43

44 x30 = −3;
45 xL(3) = fminsearch('LHS of Eq1',x30)
46 F3 = LHS of Eq1(xL(3))
47

48 hold on
49 plot(sigma2, xL, 'k−*')
50 xlabel('\sigma 2');

A.1.3 Determination of Lagrangian Points - L1, L2 and L3 - Function file

1 function [F] = LHS of Eq1(x)
2 % All x distances are non−dimensional
3 % x is non−dimensional coordinate defined as:
4 % x dim = r12 dim*x
5

6 global sigma1 sigma2 Omega
7 r1 = abs(x + sigma2); %..Position Vector of Sphere1
8 r2 = abs(x − sigma1); %..Position Vector of Sphere2
9

10 r1 3 = r1.ˆ3;
11 r2 3 = r2.ˆ3;
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12

13 f1 = sigma1.*(x + sigma2)/r1 3 + sigma2.*(x − sigma1)/r2 3 − x.*Omegaˆ2;
14 F = f1.ˆ2;
15 end

A.1.4 Determination of Jacobi Integral

1 % Determination of Jacobi Constants C1, C2 & C3
2 % from x−y co−ordinates of L1, L2 & L3 respectively
3 clc
4 clear all
5

6 % Solving for an Earth−Moon system for verification
7 % All Equations used are non−dimensionalized
8 % i.e length with respect to r12 & omega with respect to 'nc'
9

10 % Equation to solve for C is as follows
11 % C = 0.5*(omegaˆ2)*(xˆ2 + yˆ2) − sigma1/r1 − sigma2/r2
12

13 %Basic Data for an Earth−Moon system from Dr.Curts's book
14

15 % nc = 2.66538e−6;%rad/s...Asteroid rotation rate
16 % omega dim = 2.66538e−6;%rad/s...Asteroid rotation rate
17 % omega = omega dim/nc...Hence omega = 1
18

19 % r12 = 3.844e+5;%km...Distance between centers of mass
20 % of the two bodies
21 % x dim(L1) = 0.8369*r12
22 % x(L1) = x dim(L1)/r12 = 0.8369
23 % y dim(L1) = 0*r12
24 % y(L1) = y dim(L1)/r12 = 0
25

26 omega = 1;
27

28 x = 0.8369;
29 y = 0;
30

31 sigma1 = 0.9878;% mass ratio m1/(m1 + m2)
32 sigma2 = 1 − sigma1;% mass ratio m1/(m1 + m2)
33

34 %Position vectors
35 r1 = sqrt( (x + sigma2).ˆ2 + y.ˆ2 );%km
36 r2 = sqrt( (x − sigma1).ˆ2 + y.ˆ2 );%km
37

38 C = −(0.5*(omegaˆ2)*(xˆ2 + yˆ2)) − (sigma1/r1) − (sigma2/r2);
39

40 fprintf('The Jacobi Constant is %2.6f',C);
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A.1.5 Determination of Jacobi Regions

1 % Program to plot Jacobi Regions
2

3 clc
4 clear all
5 clf
6

7 ezplot('JacobiRegion',[−5.5e5 5.5e5]);
8 setcurve('color','black')
9 hold on

10

11 % ezplot('JacobiRegion23',[−2 2]);
12 % setcurve('color','black')
13

14

15 % ezplot('JacobiRegion33',[−2 2]);
16 % setcurve('color','green')
17

18 title('Jacobi Region')
19 xlabel('x {bar}');
20 ylabel('y {bar}');
21 legend('L1','L2','L3')
22

23 % Labelling the Lagrangian Points
24 x1 = 0;
25 y1 = 0;
26 str1 = '* L1';
27 text(x1,y1,str1)
28

29 x2 = 1.1984;
30 y2 = 0;
31 str2 = '* L2';
32 text(x2,y2,str2)
33

34 x3 = −1.1984;
35 y3 = 0;
36 str3 = '* L3';
37 text(x3,y3,str3)
38

39 x4 = 0;
40 y4 = 0.8661;
41 str4 = '* L4';
42 text(x4,y4,str4)
43

44 x5 = 0;
45 y5 = −0.8661;
46 str5 = '* L5';
47 text(x5,y5,str5)
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A.1.6 Determination of Jacobi Regions - Function file

1 function F = JacobiRegion(x,y)
2

3 %Basic Data for an Earth−Moon System
4 % C = −1.6649; % Jacobi Constant
5 % omega = 2.66538e−6;%rad/s Asteroid rotation rate
6 % r12 = 3.844e+5;%km Distance between centers of mass of the two bodies
7 % myu1 = 398620;%kmˆ3/sˆ2 Gravitaional constant of the first body
8 % myu2 = 4903.02;%kmˆ3/sˆ2 Gravitaional constant of the second body
9 % sigma2 = 0.01215; % mass ratio m1/(m1 + m2)

10 % sigma1 = 1 − sigma2; % mass ratio m1/(m1 + m2)
11

12 % For the sphere system
13 omega = 1;%rad/s Asteroid rotation rate
14 sigma1 = 2/3; % mass ratio m1/(m1 + m2)
15 sigma2 = 1 − sigma1; % mass ratio m1/(m1 + m2)
16

17 %Position vectors
18 r1 = sqrt( (x+sigma2).ˆ2 + y.ˆ2 );%km
19 r2 = sqrt( (x−sigma1).ˆ2 + y.ˆ2 );%km
20

21 %Defining terms of the equation
22 Eq1 t1 = (omegaˆ2)*(x.ˆ2 + y.ˆ2);
23 Eq1 t2 = 2*sigma1./r1;
24 Eq1 t3 = 2*sigma2./r2;
25 Eq1 t4 = 2*C;
26

27 F = Eq1 t1 + Eq1 t2 + Eq1 t3 + Eq1 t4;
28

29 end

A.2 The Asteroid Restricted Four Body Problem

A.2.1 Determination of Lagrangian Points - L4 and L5

1 % Program to determine the Lagrangian points L4 and L5 for an
2 % Asteroid Restricted Four Body Problem
3 clc
4 clear all
5 close all
6 global r13 r12 sigma1 sigma2 sigma3 Omega
7

8 % Mass Ratios
9 % sigma1 = m1/(m1 + m2 + m3)
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10 % sigma2 = m2/(m1 + m2 + m3)
11 % sigma3 = m2/(m1 + m2 + m3)
12 % sigma1 + sigma2 + sigma3 = 1
13

14 sigma1 = 1/3;
15 sigma2 = 1/3;
16 sigma3 = 1 − sigma1 − sigma2;
17

18 % r13 dim = distance between the centers of masses 1 and 3
19 % r13 = non−dimensional r13 dim
20 % r12 dim = distance between the centers of masses 1 and 2
21 % r12 = non−dimensional r12 dim
22 % r13 = Rs1 + 2*Rs2 + Rs3...Rs is radius of a sphere
23 % r12 = Rs1 + Rs2
24 % sigma1/sigma3 = m1/m3 = (Rs1/Rs3)ˆ3...Constant Density Assumption
25 % sigma1/sigma2 = m1/m2 = (Rs1/Rs2)ˆ3...Similarly
26

27 r13 = 1;
28 r12 = ((sigma1/sigma3)ˆ(1/3) + (sigma2/sigma3)ˆ(1/3))/...
29 ((sigma1/sigma3)ˆ(1/3) + 2*(sigma2/sigma3)ˆ(1/3) + 1);
30

31 % Omega dim = dimensional angular speed of the two primary masses, which
32 % can be either detached or rigidly attached
33 % Omega = non−dimensional angular speed of the two primary masses
34

35 % nc = dimensional angular speed of the two primaries when they are not
36 % rigidly attached
37 % Omega = Omega dim/nc
38

39 Omega = 1;
40

41 X0 = [−10;10];
42 XL = fminsearch('Four body LHS of Eq1 2',X0)
43 G = Four body LHS of Eq1 2(XL)

A.2.2 Determination of Lagrangian Points - L4 and L5 - Function file

1 function [F] = Four body LHS of Eq1 2(X)
2

3 % All x distances are non−dimensional
4 % x is non−dimensional coordinate defined as:
5 % x dim = r13 dim*x
6

7 global r13 r12 sigma1 sigma2 sigma3 Omega
8

9 %Short hand notation
10 R = r12/r13;
11 sigma23 = sigma2*R + sigma3;
12
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13 x = X(1);
14 y = X(2);
15

16 r1 = sqrt( (x + sigma23)ˆ2 + yˆ2 );
17 r2 = sqrt( (x − R + sigma23)ˆ2 + yˆ2 );
18 r3 = sqrt( (x − 1 + sigma23)ˆ2 + yˆ2 );
19

20 r1 3 = r1ˆ3;
21 r2 3 = r2ˆ3;
22 r3 3 = r3ˆ3;
23

24 f1 = sigma1*(x + sigma23)/r1 3 + ...
25 sigma2*(x − R + sigma23)/r2 3 + ...
26 sigma3*(x − 1 + sigma23)/r3 3 − x*Omegaˆ2;
27 f2 = sigma1/(r1 3) + sigma2/(r2 3) + sigma3/(r3 3) −Omegaˆ2;
28

29 LHS Eq1 Sqrd = f1ˆ2;
30 LHS Eq2 Sqrd = f2ˆ2;
31

32 F = max(LHS Eq1 Sqrd, LHS Eq2 Sqrd);
33 end

A.2.3 Determination of Lagrangian Points - L1, L2 and L3

1 % Program to determine the Lagrangian points L1, L2 and L3 for an
2 % Asteroid Restricted Four Body Problem
3 clc
4 clf
5 global r13 r12 sigma1 sigma2 sigma3 Omega
6

7 sigma1 = 1/3;
8 sigma2 = 1/3;
9 sigma3 = 1 − sigma1 − sigma2;

10

11 r13 = 1;
12 r12 = ( ((sigma1/sigma3)ˆ(1/3)) + ((sigma2/sigma3)ˆ(1/3)) )/...
13 (((sigma1/sigma3)ˆ(1/3)) + (2*(sigma2/sigma3)ˆ(1/3)) + 1 );
14

15 Omega = 1;
16

17 x10 = −1e−20;
18 xL(1) = fminsearch('Four body LHS of Eq1',x10)
19 F1 = Four body LHS of Eq1(xL(1))
20

21 x20 = 1;
22 xL(2) = fminsearch('Four body LHS of Eq1',x20)
23 F2 = Four body LHS of Eq1(xL(2))
24

25 x30 = 3;
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26 xL(3) = fminsearch('Four body LHS of Eq1',x30)
27 F3 = Four body LHS of Eq1(xL(3))
28

29 x40 = −1;
30 xL(4) = fminsearch('Four body LHS of Eq1',x40)
31 F4 = Four body LHS of Eq1(xL(4))
32

33 x50 = −3;
34 xL(5) = fminsearch('Four body LHS of Eq1',x50)
35 F5 = Four body LHS of Eq1(xL(5))
36

37 plot(sigma1,xL,'k*')
38 hold on
39

40 title('L1,L2,L3 Vs \sigma 1');
41 xlabel('\sigma 1');
42 ylabel('L1, L2, L3');
43 axis([0 1 −1.5 1.5])

A.2.4 Determination of Lagrangian Points - L1, L2 and L3 - Function file

1 function [F] = Four body LHS of Eq1(x)
2

3 global r13 r12 sigma1 sigma2 sigma3 Omega
4

5 %Short hand notation
6 R = r12/r13;
7 sigma23 = sigma2*R + sigma3;
8

9 r1 = abs(x + sigma23);
10 r2 = abs(x − R + sigma23);
11 r3 = abs(x − 1 + sigma23);
12

13 r1 3 = r1.ˆ3;
14 r2 3 = r2.ˆ3;
15 r3 3 = r3.ˆ3;
16

17 f1 = sigma1*(x + sigma23)/r1 3 +...
18 sigma2*(x − R + sigma23)/r2 3 +...
19 sigma3*(x − 1 + sigma23)/r3 3 − x.*Omegaˆ2;
20

21 F = f1ˆ2;
22 end

A.2.5 Determination of Jacobi Integral
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1 % Determination of Jacobi Constants C1, C2 & C3
2 % from x−y co−ordinates ol L1, L2 & L3 respectively
3 clc
4 clear all
5

6 % Equation to solve for C is as follows
7 % C = 0.5*(omegaˆ2)*(xˆ2 + yˆ2) − sigma1/r1 − sigma3/r3
8

9 omega = 1;
10

11 x = 0.0001;
12 y = 0;
13

14 sigma1 = 0.5;% mass ratio m1/(m1 + m2 + m3)
15 sigma2 = 0;% mass ratio m2/(m1 + m2 + m3)
16 sigma3 = 1 − sigma1 − sigma2;% mass ratio m3/(m1 + m2 + m3)
17

18 r13 = (sigma1/sigma3)ˆ(1/3) + 2*(sigma2/sigma3)ˆ(1/3) + 1;
19 r12 = (sigma1/sigma3)ˆ(1/3) + (sigma2/sigma3)ˆ(1/3);
20

21 %Short hand notation
22 R = r12/r13;
23 sigma23 = sigma2*R + sigma3;
24

25 %Position vectors
26 r1 = sqrt( (x + sigma23)ˆ2 + yˆ2 );
27 r2 = sqrt( (x − R + sigma23)ˆ2 + yˆ2 );
28 r3 = sqrt( (x − 1 + sigma23)ˆ2 + yˆ2 );
29

30 C = −(0.5*(omegaˆ2)*(xˆ2 + yˆ2)) − (sigma1/r1) ...
31 − (sigma2/r2) − (sigma3/r3);
32

33 fprintf('The Jacobi Constant is %2.6f',C);

A.2.6 Determination of Jacobi Regions

1 % Determination of Jacobi Regions for an
2 % Asteroid Restricted Four Body Problem
3 clc
4

5 ezplot('JacobiRegion Four Body Case',[−2.5 2.5]);
6 setcurve('color','black')
7 hold on
8

9 xlabel('x');
10 ylabel('y');
11

12 % ezplot('JacobiRegion Four Body Case23',[−2.5 2.5]);
13 % setcurve('color','red')
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14

15 % ezplot('JacobiRegion Four Body Case33',[−2.5 2.5]);
16 % setcurve('color','green')
17

18 legend('L1','L2 & L3')
19 title('Jacobi Region')
20

21 % Labelling the Lagrangian Points
22 x1 = 0;
23 y1 = 0;
24 str1 = '* L1 ';
25 text(x1,y1,str1)
26

27 x2 = 1.1534;
28 y2 = 0;
29 str2 = '* L2 ';
30 text(x2,y2,str2)
31

32 x3 = −1.1534;
33 y3 = 0;
34 str3 = '* L3 ';
35 text(x3,y3,str3)
36

37 x4 = 0;
38 y4 = 0.9231;
39 str4 = '* L4 ';
40 text(x4,y4,str4)
41

42 x5 = 0;
43 y5 = −0.9231;
44 str5 = '* L5 ';
45 text(x5,y5,str5)

A.2.7 Determination of Jacobi Regions - Function file

1 function F = JacobiRegion Four Body Case(x,y)
2

3 C = −1.6311; % Jacobi Constant
4 omega = 1;%rad/s Asteroid rotation rate
5

6 sigma1 = 0.25; % mass ratio m1/(m1 + m2 + m3)
7 sigma2 = 0.5; % mass ratio m2/(m1 + m2 + m3)
8 sigma3 = 1 − sigma1 − sigma2; % mass ratio m3/(m1 + m2 + m3)
9

10 r13 = (sigma1/sigma3)ˆ(1/3) + 2*(sigma2/sigma3)ˆ(1/3) + 1;
11 r12 = (sigma1/sigma3)ˆ(1/3) + (sigma2/sigma3)ˆ(1/3);
12

13 %Short hand notation
14 R = r12/r13;
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15 sigma23 = sigma2*R + sigma3;
16

17 %Position vectors
18 r1 = sqrt( (x + sigma23).ˆ2 + y.ˆ2 );
19 r2 = sqrt( (x − R + sigma23).ˆ2 + y.ˆ2 );
20 r3 = sqrt( (x − 1 + sigma23).ˆ2 + y.ˆ2 );
21

22 %Defining terms of the equation
23 Eq1 t1 = (omegaˆ2)*(x.ˆ2 + y.ˆ2);
24 Eq1 t2 = 2*sigma1./r1;
25 Eq1 t3 = 2*sigma2./r2;
26 Eq1 t4 = 2*sigma3./r3;
27 Eq1 t5 = 2*C;
28

29 F = Eq1 t1 + Eq1 t2 + Eq1 t3 + Eq1 t4 + Eq1 t5;
30

31 end

A.3 Spherical Harmonics Modeling

A.3.1 Determination of Lagrangian Points of an Ellipsoid

1 % Program to determine the Lagrangian points of an Ellipsoid
2 clc
3 clear all
4 close all
5

6 global Omega
7

8 % r0 dim = Characteristic radius of the Ellipsoid
9 % r0 = non−dimensional r0 dim

10 % Omega dim = dimensional angular speed of the ellipsoid
11 % Omega = non−dimensional angular speed of the ellipsoid
12

13 % All x and r distances are non−dimensional
14 % x is non−dimensional coordinate defined as:
15 % x dim = r0 dim*x
16 % r dim = r0 dim*x
17 % Omega is non dimensional
18 % Omega dim = OmegaC dim*Omega
19

20 Omega = 1;
21

22 % To determine L4 and L5 for the Ellipsoid
23

24 X10 =[0;−1.38]
25 XL = fminsearch('Lagrangian Points Ellipsoid',X10)
26 G1 = Lagrangian Points Ellipsoid(XL)
27
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28 plot(XL(1),XL(2),'r*')
29 hold on
30

31 X20 =[0;1.38]
32 XL = fminsearch('Lagrangian Points Ellipsoid',X20)
33 G2 = Lagrangian Points Ellipsoid(XL)
34

35 plot(XL(1),XL(2),'r*')
36 hold on
37 title('Lagrangian Points for an Ellipsoid');
38 ylabel('y');
39 xlabel('x');
40

41 % To determine L1 and L2 for the Ellipsoid
42

43 x11 = 0;
44 xL1(1) = fminsearch('Lagrangian Points L123 Ellipsoid',x11)
45 F1 = Lagrangian Points L123 Ellipsoid(xL1(1))
46

47 x21 = 3;
48 xL1(2) = fminsearch('Lagrangian Points L123 Ellipsoid',x21)
49 F2 = Lagrangian Points L123 Ellipsoid(xL1(2))
50

51 x31 = 5;
52 xL1(3) = fminsearch('Lagrangian Points L123 Ellipsoid',x31)
53 F3 = Lagrangian Points L123 Ellipsoid(xL1(3))
54

55 x41 = −3;
56 xL1(4) = fminsearch('Lagrangian Points L123 Ellipsoid',x41)
57 F4 = Lagrangian Points L123 Ellipsoid(xL1(4))
58

59 x51 = −5;
60 xL1(5) = fminsearch('Lagrangian Points L123 Ellipsoid',x51)
61 F5 = Lagrangian Points L123 Ellipsoid(xL1(5))
62

63 y = 0;
64 plot(xL1,y,'r*')
65

66 % Point Labels
67

68 x1 = 1.6783;
69 y1 = 0;
70 str1 = '\rightarrow L1';
71 text(x1,y1,str1)
72

73 x2 = −1.6783;
74 y2 = 0;
75 str2 = '\rightarrow L2';
76 text(x2,y2,str2)
77

78 x4 = −0.0001;
79 y4 = 1.3886;
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80 str4 = '\rightarrow L4';
81 text(x4,y4,str4)
82

83 x5 = −0.0001;
84 y5 = −1.3886;
85 str5 = '\rightarrow L5';
86 text(x5,y5,str5)

A.3.2 Determination of Lagrangian Points - L4 and L5 - Function file

1 % Function file for determining Lagrangian Points for an Ellipsoid
2

3 % The equations of motion are as follows
4 % Omegaˆ2−[(1/rˆ3)*{1 − (3/rˆ2)*[ C20/2 + C22*(7*yˆ2 − 3*xˆ2)/rˆ2 ]..
5 % + (15/rˆ4)*[ C40/8 + 0.5*C42(9*yˆ2 − 5*xˆ2)/rˆ2 + ...
6 % 7*C44*(5*xˆ4 −46xˆ2*yˆ2 + 21*yˆ4)/rˆ2 ]} = 0...eq(1)
7

8 % Omegaˆ2−[(1/rˆ3)*{1 − (3/rˆ2)*[ C20/2 + C22*(3*yˆ2 − 7*xˆ2)/rˆ2 ]..
9 % + (15/rˆ4)*[ C40/8 + 0.5*C42(5*yˆ2 − 9*xˆ2)/rˆ2 + ...

10 % 7*C44*(5*yˆ4 −46xˆ2*yˆ2 + 21*xˆ4)/rˆ2 ]} = 0...eq(2)
11 function F = Lagrangian Points Ellipsoid(X)
12

13 global Omega
14

15 % Special case 1:
16 % a, b and c are non−dimensional a bar = a/r0
17 b = 2;
18 c = 1;
19 a = 3;
20

21 C20 = 0.2*(cˆ2 − 0.5*(aˆ2 + bˆ2));
22 C22 = 0.05*(aˆ2 − bˆ2);
23 C40 = (15/7)*(C20ˆ2 + 2*C22ˆ2);
24 C42 = (5/7)*C20*C22;
25 C44 = (5/28)*C22ˆ2;
26

27 x = X(1);
28 y = X(2);
29

30 r = sqrt( xˆ2 + yˆ2 );
31 r 2 = rˆ2;
32 r 3 = rˆ3;
33 r 4 = rˆ4;
34 x 2 = xˆ2;
35 x 4 = xˆ4;
36 y 2 = yˆ2;
37 y 4 = yˆ4;
38

39 % Defining terms of the two equations of motion
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40 E1 T1 = Omegaˆ2;
41 E1 T2 = C20/2;
42 E1 T3 = 1*C22*(7*y 2 − 3*x 2)/r 2;
43 E1 T4 = C40/8;
44 E1 T5 = 0.5*C42*(9*y 2 − 5*x 2)/r 2;
45 E1 T6 = 7*C44*(5*x 4 − 46*x 2*y 2 + 21*y 4)/r 4 ;
46

47 E2 T1 = Omegaˆ2;
48 E2 T2 = C20/2;
49 E2 T3 = 1*C22*(3*y 2 − 7*x 2)/r 2;
50 E2 T4 = C40/8;
51 E2 T5 = 0.5*C42*(5*y 2 − 9*x 2)/r 2;
52 E2 T6 = 7*C44*(5*y 4 − 46*x 2*y 2 + 21*x 4)/r 4 ;
53

54 f1 = E1 T1 − ( (1/r 3)*( 1 − (3/r 2)*( E1 T2 + E1 T3 ) +...
55 (15/r 4)*(E1 T4 + E1 T5 + E1 T6) ));
56 f2 = E2 T1 − ( (1/r 3)*( 1 − (3/r 2)*( E2 T2 + E2 T3 ) +...
57 (15/r 4)*(E2 T4 + E2 T5 + E2 T6) ));
58

59 LHS Eq1 Sqrd = f1ˆ2;
60 LHS Eq2 Sqrd = f2ˆ2;
61

62 F = max(LHS Eq1 Sqrd, LHS Eq2 Sqrd);
63

64 end

A.3.3 Determination of Lagrangian Points - L1 and L2

1 % Function file for determining Lagrangian Points L1 and L2
2 % for an Ellipsoid
3

4 % The equations of motion are as follows
5 % Omegaˆ2 − [(1/rˆ3)*{1 − (3/rˆ2)*[C20/2 + C22*(7*yˆ2 − 3*xˆ2)/rˆ2]..
6 % + (15/rˆ4)*[ C40/8 + 0.5*C42(9*yˆ2 − 5*xˆ2)/rˆ2 + ...
7 % 7*C44*(5*xˆ4 −46xˆ2*yˆ2 + 21*yˆ4)/rˆ2 ]} = 0...eq(1)
8

9 function F = Lagrangian Points L123 Ellipsoid(X)
10

11 global Omega
12

13 x = X(1);
14 y = 0;
15

16 r = abs(x);
17 r 2 = rˆ2;
18 r 3 = rˆ3;
19 r 4 = rˆ4;
20 x 2 = xˆ2;
21 x 4 = xˆ4;
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22 y 2 = yˆ2;
23 y 4 = yˆ4;
24 r 2 = rˆ2;
25 r 3 = rˆ3;
26 x 2 = xˆ2;
27

28 % Special case 1:
29 % a, b and c are non−dimensional a bar = a/r0
30 b = 2;
31 c = 1;
32 a = 3;
33

34 % C20, C22, C40, C42, C44 are non−dimensional
35 C20 = 0.2*(cˆ2 − 0.5*(aˆ2 + bˆ2));
36 C22 = 0.05*(aˆ2 − bˆ2);
37 C40 = (15/7)*(C20ˆ2 + 2*C22ˆ2);
38 C42 = (5/7)*C20*C22;
39 C44 = (5/28)*C22ˆ2;
40

41 % Special case 2, The ellipsoid becomes a sphere:
42 % b = 1;
43 % c = b;
44 % a = b;
45

46 % Defining terms of the equation of motion
47 E1 T1 = Omegaˆ2;
48 E1 T2 = C20/2;
49 E1 T3 = 1*C22*(7*y 2 − 3*x 2)/r 2;
50 E1 T4 = C40/8;
51 E1 T5 = 0.5*C42*(9*y 2 − 5*x 2)/r 2;
52 E1 T6 = 7*C44*(5*x 4 − 46*x 2*y 2 + 21*y 4)/r 4 ;
53

54 f1 = E1 T1 − ( (1/r 3)*( 1 − (3/r 2)*( E1 T2 + E1 T3 ) +
55 (15/r 4)*(E1 T4 + E1 T5 + E1 T6) ));
56 LHS Eq1 Sqrd = f1ˆ2;
57

58 F = LHS Eq1 Sqrd;
59

60 end

A.4 Validation

A.4.1 Determination of the Radius and Density of spheres 1 and 3 as a
function of the semi-minor axis length b

1 % Program to compute radius and density of spheres 1 and 3
2 % as a function of the semi−minor axis length b
3 clc
4 clear all
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5 close all
6

7 for b = 0.01:0.01:0.99;
8

9 p = (7./5).*(1−b);
10 q = 2.*b.*(1−b);
11 r = ((b.ˆ2).*(1−b)) − ((1./5).*(1+b.ˆ2)) − ((2./5).*(b.ˆ3));
12

13 Rs1 1 = (− q + sqrt( q.ˆ2 − 4.*p.*r)) ./ (2.*p);
14 Rs1 2 = (− q − sqrt( q.ˆ2 − 4.*p.*r)) ./ (2.*p);
15

16 figure(1)
17 plot(b,Rs1 1,'−bo');
18 axis([0.01 0.99 0 +1])
19 xlabel('b')
20 ylabel('Rs 1')
21 title('Variation of Radius of spheres 1 & 3 as a
22 function of Radius of sphere 2')
23 hold on
24

25 rho1 1 = (b.ˆ2).*(1−b) ./ (2.*Rs1 1.ˆ3);
26 rho1 2 = (b.ˆ2).*(1−b) ./ (2.*Rs1 2.ˆ3);
27 disp(rho1 1);
28 disp(rho1 2);
29

30 figure(2)
31 plot(b,rho1 1,'−bo');
32

33 xlabel('b')
34 ylabel('\rho 1')
35 title('Variation of Density of spheres 1 & 3 as a
36 function of Radius of sphere 2')
37 hold on
38

39 end
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