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Abstract
In order to determine the most effective geometry of a lightning rod, one must first
understand the physical difference between their current designs. Benjamin Franklin’s original
theory of sharp tipped rods suggests an increase of local electric field, while Moore et al.’s
(2000) studies of rounded tips evince an increased probability of strike (Moore et al., 2000;
Gibson et al., 2009). In this analysis, the plasma discharge is produced between two electrodes
with a high potential difference, resulting in ionization of the neutral gas particle. This process,
when done at low current and low temperature can create a corona discharges, which can be
observed as a luminescent emission. The Cartesian geometry known as Paschen, or Townsend,
theory is particularly well suited to model experimental laboratory scenario, however, it is
limited in its applicability to lightning rods. Franklin’s sharp tip and Moore et al.’s (2000)
rounded tip fundamentally differ in the radius of curvature of the upper end of the rod. As a
first approximation, the rod can be modelled as an equipotential conducting sphere above the
ground. Hence, we expand the classic Cartesian geometry into spherical and cylindrical
geometries. In this work we explore the effects of shifting from the classical parallel plate
analysis to spherical and cylindrical geometries more adapted for studies of lightning rods or
power lines. Utilizing Townsend’s equation for corona discharge, we estimate a critical radius
and minimum breakdown voltage that allows ionization of the air around an electrode.
Additionally, we explore the influence of the gas in which the discharge develops. We use
BOLSIG+, a numerical solver for the Boltzmann equation, to calculate Townsend coefficients
for CO2-rich atmospheric conditions (Hagelaar and Pitchford, 2005). This allows us to expand
the scope of this study to other planetary bodies such as Mars. We solve the problem both
numerically and analytically to present simplified formulas per each geometry and gas
mixture. The development of a numerical framework will ultimately let us test the influence of
additional parameters such as background ionization, initiation criterion, and charge
conservation on the values of the critical radius and minimum breakdown voltage.

IV. CONCLUSIONS
The results and conclusions obtained in this work can be
summarized as follows:
• A new model for calculations of the critical radius and minimum

breakdown voltage for Corona discharge in Cartesian and spherical
geometries is presented;

• The model is validated using classic Paschen theory and experimental
data in air from Meek and Craggs (1978);

• We expand classic Paschen theory into an analytical solution for spherical
geometry;

• Our numerical model and the analytical solution show excellent
agreement;

• The significantly lower pressure on Mars compared to Earth lowers the
minimum breakdown voltage required to create discharge.
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Figure 2: Visual representation of the process
of an electron avalanche in Townsend’s
breakdown model. This can also be referred to
as a Cartesian case due to the parallel plate
structure (Gewartowski et al., 1965).

Figure 1: Glow Coronas form on the edges of a
powerline transformer (Berkoff, 2005).

Corona Discharge
• Electrical discharge around a

conductor due to electric field;
• Weakly ionized gas responsible

for glow at visible wavelengths;
• Hypothesized to promote the

formation of upward
connecting leaders in lightning
discharges.

Electron Avalanche
The process of electron avalanching
is similar between various types of
discharges:
• Initial step of a discharge;
• Release of secondary electrons

in electron-neutral collision;
• Secondary electrons with

enough KE to repeat the process;
• Avalanche criteria:

 𝑅1
𝑅2 𝛼eff 𝑑𝑟= ln(Q) ≈ 18-20; Q = 104

Types of Discharges
Parameter Glow Corona Streamer Leader

Temperature ∼300 K ∼300 K ≳5000 K

Electron energy 1-2 eV 5-15 eV 1-2 eV

Electric field 0.2-2.7 kV/cm 5-7.5 kV/cm 1-5 kV/cm

Electron density 2.6×108 cm-3 5×1013-1015 cm-3 4×1014 cm-3

Table 1: Characteristics for types of discharge at sea level [Adapted from (Gibson et al, 2009)].

Figure 3: (A) A Wartenberg wheel in which glow Coronas form at the tip of each spindle.
(Berkoff, 2005); (B) Streamers are the origin of a sprite phenomenon (courtesy of H. H. C.
Stenbaek-Nielsen); (C) A lightning strike is perhaps the most common example of a leader
discharge. (Whetmore, 2016).

(A) (B) (C)

I. Introduction

Objectives
• Apply Paschen theory to Cartesian and spherical

geometries;
• Obtain analytical expressions for critical radius and

Stoletov’s point;
• Develop numerical models for Cartesian and

spherical geometries;
• Verify numerical models and analytical solutions

with experimental data;
• Generalize to any atmosphere using a Boltzmann

solver (Hagelaar and Pitchford, 2005);
• Establish the differences between sharp and blunt

tipped rods for corona discharges in air and CO2–
rich atmospheres;

Geometry Analytical Solution Numerical Solution

Cartesian   
𝑥1

𝑥2 𝛼eff𝑑𝑥 = ln(𝑄)

 𝑥1 = 0

 𝛼eff(𝐸) = 𝐴𝑝𝑒
−𝐵𝑝

𝐸

 𝑑 = 𝑥2 − 𝑥1


𝜕𝑉

𝜕𝑑
= 0: Stoletov′s point

  
𝑥1

𝑥2 𝛼eff𝑑𝑥 = ln(𝑄)

 𝑥1 = 0

 𝛼eff(E) =
ν𝑖 𝐸 −ν𝑎(𝐸)

𝜇𝑒 𝐸 𝐸

 𝑑 = 𝑥2 − 𝑥1


𝜕𝑉

𝜕𝑑
= 0: Stoletov′s point

 Boltzmann equation solver

Spherical   
𝑅1

𝑅2 𝛼eff𝑑𝑟 = ln(𝑄)

 R2 →∞

 𝛼eff(𝐸) = 𝐴𝑝𝑒
−𝐵𝑝

𝐸


𝜕𝑉

𝜕𝑅1
= 0: Stoletov′s point

 𝐸 𝑅1 = 𝐸𝑐
𝑐2

𝑅1
2

  
𝑅1

𝑅2
𝛼eff𝑑𝑟 = ln(𝑄)

 R2 →∞

 𝛼eff(E) =
ν𝑖 𝐸 −ν𝑎(𝐸)

𝜇𝑒 𝐸 𝐸


𝜕𝑉

𝜕𝑅1
= 0: Stoletov′s point

 Boltzmann equation solver

 𝐸 𝑅1 = 𝐸𝑐
𝑐2

𝑅1
2

II. Model Formulation

III. Results and Discussion

Figure 4: (A) A dust storm on earth. The ionization behind this event could potentially create
breakdown. (B) A dust storm photographed on the surface of Mars. The similarities between
these two phenomenon indicate the possibility of breakdown potential on the surface of Mars.
(C) The same dust storm on the surface of Mars seen from above. From (Yair, 2012).

(A) (B) (C)

Earth Mars

Paschen curves

Stoletov’s Point
𝑽𝐦𝐢𝐧 (V)

Analytical Numerical Error 
(%)

Cartesian (Earth) 918.6 912.4 0.7%

Spherical (Earth) 1178.3 1136.1 3.7%

Cartesian (Mars) 358.9 356.1 0.8%

Spherical (Mars) 682.9 668.8 2.1%

Figure 11: Paschen curves for spherical geometry

• Analytical solution 𝑉 𝑟 =
4𝐵 ln 𝑄 +𝐴𝑝𝑟 2

𝜋𝑝𝐴

1

𝑟1
−

1

𝑟2

• Stoletov’s point 𝑉𝑚𝑖𝑛 =
16𝐵

𝜋𝐴
ln 𝑄

Figure 9: Analytical solution for electric field (E vs. d) as a function of r in Spherical 

geometry 𝐸 𝑟 =
4𝐵(ln 𝑄 +𝐴𝑝𝑟)2

𝜋𝑝𝐴2𝑟2

Figure 7: Analytical solution for electric field (E vs. d) as a function of r in Spherical 

geometry 𝐸 𝑟 =
4𝐵(ln 𝑄 +𝐴𝑝𝑟)2

𝜋𝑝𝐴2𝑟2

Coefficients Raizer 
(1991)

Bolsig+ 
(Earth)

Morrow and 
Lowke 
(1997)

Bolsig+ 
(Mars)

A 
(1/cm/Torr)

15 9.29 7.7 33.44

B (V/cm/Torr) 365 295.18 274.7 430.07
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• A and B coefficients derived from
the exponential fit accurately predict
the minimum voltages (Table 2);

• Differences between numerical and
analytical solutions of Stoletov’s
points are ≲2%;

• Mars minimum breakdown voltages
are lower than Earth due to Martian
atmospheric pressure (0.6% PEarth).

Table 2: Exponential approximation coefficients (A and B) from

figure 6 found from fitting: 𝛼𝑒𝑓𝑓(𝐸) = 𝐴𝑝𝑒
−𝐵𝑝

𝐸

Table 3: The minimum breakdown voltages for each geometry

and atmosphere; also known as Stoletov’s points
𝜕𝑉

𝜕𝑅1
= 0.

Motivations:
• Potential hazard due to arcing on

landers and rovers;
• Interfere with sensitive external

systems and data measurements;
• Possible electrical shortage and

failure.

Earth Analogy:
• Tribocharging in Martian dust

storms akin to Earth sandstorms;
• Charge separation due to

sedimentation & gravitation;
• Integration in the Martian global

electric circuit.
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Figure 5: The exponential fit model of the exponential approximation for 𝛼eff(E) for
coefficients given by: Morrow and Lowke (1997), Hagelaar and Pitchford (2005).

𝛼𝑒𝑓𝑓 =
ν𝑖 𝐸 − ν𝑎(𝐸)

𝜇𝑒 𝐸 𝐸

𝛼𝑒𝑓𝑓 = 33.44𝑝𝑒−
430.07𝑝

𝐸

Bolsig+ (Mars)

𝛼𝑒𝑓𝑓 = 9.29𝑝𝑒−
295.18𝑝

𝐸

Bolsig+ (Earth)

Assumptions
• 𝑝 = 𝑁𝑘𝐵𝑇

• 𝐸 𝑅1 = 𝐸 𝑐 = 𝐸𝑐 ≈ 30
𝑁0

𝑁
𝑘𝑉/𝑐𝑚 (Earth)

• ∇. 𝑬 = 𝜌0 = 0 

Figure 10: Paschen curves for Cartesian geometry

• Analytical solution 𝑉 𝑑 =
−𝐵𝑝𝑑

ln
ln 𝑄

𝐴𝑝𝑑

• Stoletov’s point 𝑉𝑚𝑖𝑛 =
𝑒𝐵

𝐴
ln 𝑄

Figure 8: Analytical solution for electric field (E vs. d) as a function of d in Cartesian 

geometry 𝐸 𝑑 =
−𝐵𝑝

ln
ln 𝑄

𝐴𝑝𝑑

Figure 6: Analytical solution for electric field (E vs. d) as a function of d in Cartesian 

geometry 𝐸 𝑑 =
−𝐵𝑝

ln
ln 𝑄

𝐴𝑝𝑑

Bolsig+ numerical 
solution

𝐸 𝑑 =
−𝐵𝑝

ln
ln 𝑄
𝐴𝑝𝑑

𝛼𝑒𝑓𝑓 =
ν𝑖 𝐸 − ν𝑎(𝐸)

𝜇𝑒 𝐸 𝐸

Bolsig+ numerical 
solution

𝐸 𝑑 =
−𝐵𝑝

ln
ln 𝑄
𝐴𝑝𝑑

Bolsig+ numerical 
solution

Meek and Craggs (1978)

Bolsig+ numerical 
solution

𝐸 𝑑 =
4𝐵(ln 𝑄 + 𝐴𝑝𝑟)2

𝜋𝑝𝐴2𝑟2

𝛼𝑒𝑓𝑓 =
ν𝑖 𝐸 − ν𝑎(𝐸)

𝜇𝑒 𝐸 𝐸
𝐸 𝑟 =

4𝐵(ln 𝑄 + 𝐴𝑝𝑟)2

𝜋𝑝𝐴2𝑟2

Bolsig+ numerical 
solutions

𝑉 𝑑 =
−𝐵𝑝𝑑

ln
ln 𝑄
𝐴𝑝𝑑

𝑉 𝑑 =
−𝐵𝑝𝑑

ln
ln 𝑄
𝐴𝑝𝑑

Stoletov’s point

𝐸 𝑟 =
4𝐵(ln 𝑄 + 𝐴𝑝𝑟)2

𝜋𝑝𝐴2𝑟2

𝛼𝑒𝑓𝑓 =
ν𝑖 𝐸 − ν𝑎(𝐸)

𝜇𝑒 𝐸 𝐸

Bolsig+ numerical 
solutions

Stoletov’s point

Application to Martian Studies
Coefficients and Stoletov’s points


