Feb 26th, 3:45 PM

Analogies and Comparisons for STM Data Bodies

Phillip M. Cunio
ExoAnalytic Solutions, Inc., pcunio@exoanalytic.com

Brien Flewelling
ExoAnalytic Solutions, Inc.

Follow this and additional works at: https://commons.erau.edu/stm

Part of the Cataloging and Metadata Commons, Data Storage Systems Commons, Information Literacy Commons, and the Other Operations Research, Systems Engineering and Industrial Engineering Commons

https://commons.erau.edu/stm/2019/presentations/9

This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in Space Traffic Management Conference by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu, wolfe309@erau.edu.
Analogies and Comparisons for STM Data Bodies

Brien Flewelling and Phillip M. Cunio

Space Traffic Management
UT Austin

26 February 2019
ExoAnalytic Global Telescope Network (EGTN) map

Space Traffic Scale
- SSN tracks ~19,000 RSOs (July 2018)
 - 1232 active LEO / 16,000 total (7.7% active)
 - 558 active GEO / 3000 total (18.6% active)
- Superconstellations
 - Additional ~15,000 in LEO

Regime	Data demand per diem (bits)	Representative
SSN/RSO | 3.65e19 | 1.13e26
Human Performance | 1.13e19 | 3.65e19
IT Net | 1.30e19 | 3.65e19
STM | 6.6e15 | 1.13e26

Global Imagery: 1-m img of pop. globe, 0.1 Hz
Full-Body Data: Human cell/organelle, 680 Hz
IT Network: Every device at 2 packets/second
STM: RSOs/debris at 1 Hz, with image chip

Takeaways
Data sources (RSOs) may double
Data need will rise
Data Overwhelming

Perspective on data amounts

• Shipping 5’ cube of 30-TB hard drives overnight: data transfer at ~2.7 TB/sec
• Handling this data volume is a serious infrastructural challenge
 – STM is in infancy; can still manage data volume thoughtfully
 – Builds infrastructure for future needs without engendering massive future strain
• De facto management method: data depth on demand

Data Depth On Demand

More Information
• STM 2018 [https://commons.erau.edu/stm/2018/tuesday/2/]
Traffic Density and Persistence - GEO vs. LEO

- **LEO**
 - 16,000 objects, 1.26e-08 obj/km³
 - Up to 30,000 obj, 2.36e-08 obj/km³

- **GEO**
 - 3000 objects, 4.72E-08 obj/km³
 - GEO can be observed every 5 seconds; rapid convergence to spacecraft state
 - Persistence enables:
 - Recovery/forensics on unexpected events
 - Responsive support to operators
 - LEO STM at density of GEO challenges human in the loop

- GEO is denser - 18% of objects active and maneuverable
 - LEO has <8% active, <1% maneuverable today
 - LEO Super Constellations ~50% active and maneuverable

- LEO is a very different traffic situation
 - Supported by fewer sensors
 - Less time for post-maneuver evaluation
 - Models assume ballistic behavior
 - Critically significant challenges in sensor support strategies if frequency of non-coordinated maneuvering increases

- More traffic, less time between events
 - More complex conjunctions; less C2 time
 - Suggests move to fully-automated real-time process
Key questions for future STM

• Will new members of the LEO population be required to carry propulsion?
 – LEO density is increasing at an alarming rate; this increases collision risk
 – Increasing maneuverable members of the LEO population will break assumptions assuming long ballistic periods
 – Either a significant increase in coordination, an increase in sensor support, or real-time connectivity and automation will be required as these trends continue (probably all)

• Are our sensing strategies sufficient for expected increases in maneuvering space traffic?

• As these challenges associated with complexity, speed, density increase the STM sensor footprint, are we appropriately considering the big data paradigm that will be necessary?