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 Hybrid electric aircraft have received much attention in recent years due to 

their potential to reduce the environmental impact of civil aviation, which 

contributes two percent of the global CO2 emissions from transport (Sustainable 

Aviation, 2008). In Europe, the European Commission aims to reduce aviation-

related CO2 emissions compared to the year 2000 by 75% until 2050 (European 

Union, 2011). To achieve lower CO2 emissions, the transition to hybrid electric 

aircraft is viewed as a significant step. In addition to increased fuel efficiency, 

these aircraft would emit less noise and fewer particles. Another indicator that 

hybrid electric aircraft engines might be the next step in propulsion evolution is 

the fact that gas turbines as the state-of-the-art propulsion technology have 

reached saturation in fuel efficiency (Stricker, 2003). Every further development 

would mean only small improvements in efficiency while significantly adding 

more complexity.  

 

To this date, however, little research has been done on the economic 

benefits of the hybridization of civil passenger aircraft. Hence, the purpose of this 

paper is to investigate whether hybrid electric passenger aircraft with 50 seats can 

be competitive against the established 100 seat aircraft on short-range scheduled 

flights. Specifically, a hypothetically hybridized 50 seat aircraft with increased 

fuel efficiency is compared to a 100-seat aircraft by cost per available seat mile 

(CASM). To make this case, t-tests are utilized to evaluate cost and efficiency. It 

has been found that hybridization shows promising competitive advantages 

compared to existing and conventional benchmarks. 

 

Literature Review 

 

Enabling Technologies for Hybrid Electric Aircraft 

 One of the critical enablers for hybrid aircraft is the advancement of 

lithium-ion batteries, providing higher energy density, power density, and 

increased levels of safety. Further, hybrid electric aircraft concepts make use of 

the increased degrees of freedom in the design space between aerodynamics, 

aeroelastics, structures, propulsion, and energy conversion, aiming to optimize the 

integration of the propulsive units and the energy management system for 

efficiency (Geiß & Voit-Nitschmann, 2017). 

 

Besides “soft” efficiency considerations, “hard” and rule-based safety 

considerations must be considered. Specifically, the engines of a modern 

conventional turbofan-jet aircraft shall be sized to provide go-around power in the 

case of the failure of the most critical engine (Pornet & Isikveren, 2015). This 

scenario includes asymmetric thrust conditions and countermeasures, including 

opposite rudder, which not only increases drag but also increases the required 
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thrust. Consequently, in the case of a twin-engine aircraft, a single-engine go-

around and climb is the critical phase, which the engines must be sized for. In this 

case, a hybrid system can size one single gas-turbine for cruise climb power and 

take the additionally required power for takeoff from the batteries, while the 

critical case of a one-engine-inoperative-go-around can be significantly alleviated 

by the use of multiple electric propulsive units. During cruise, the gas-turbine runs 

close to best efficiency (see Figure 1) and can even be further optimized to 

operate at that specific design point, drastically reducing the thrust-specific fuel 

consumption - in other words, fuel would be saved in these phases of flight (Liu, 

Valencia, & Teng, 2016 and Geiß & Voit-Nitschmann, 2017).  

 

Consequently, the size of a gas turbine in a hybrid aircraft can be reduced 

to only provide sufficient power for cruise-climb and one single, large gas-turbine 

would be enough. Additional power for peak demand scenarios, such as a single-

engine-go-around, can be provided by the batteries. Since the gas-turbine would 

run at constant cruise power without the necessity for wide power variations, it 

could be optimized for that design point, which would enable significant 

improvements in fuel consumption (Liu, Valencia, & Teng, 2016 and Geiß & 

Voit-Nitschmann, 2017). 

 

 
Figure 1. Efficiency versus power setting of the PW127 turboprop engine. Best 

efficiency is reached at full power for turboprop and turbojet engines. Data from 

the University of Stuttgart, as described in “Sizing of fuel-based energy systems 

for electric aircraft,” by I. Geiß and R. Voit-Nitschmann, 2017, Proceedings of the 

Institution of Mechanical Engineers.  
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Batteries 

 

Thus, in hybrid applications, batteries would enable short periods of high 

power demand, such as takeoffs and go-arounds. Additional applications could 

include electric taxi exclusively from battery power to ensure zero emissions on 

the ground and increase efficiency:  Turboprop engines and turbofans have 

relatively high fuel flow rates during taxi operations and reach a low point in 

specific fuel consumption (Geiß & Voit-Nitschmann, 2017). Especially in the 

case of busy airports, the amount of taxi fuel used due to long waiting periods at 

the departure holding point with idling engines is of concern to the operators.  

 

Nevertheless, batteries are ideal for quick power demand scenarios, since 

there is no lag such as the spool-up time in turboshaft engines, even when 

considering the relatively high weight of batteries about the amount and duration 

of thrust that can be generated. Moreover, the weight problem is expected to 

improve. In a recent technical report, NASA researchers investigated 

developments in lithium-ion batteries. As of 2015, they identified the current 

density levels at 80 to 200 Wh/kg for lithium-ion batteries, 250 to 300 Wh/kg for 

lithium-sulfur batteries and 300 to 350 Wh/kg for lithium-air/oxygen chemistries 

on the cell level (Dever et al., 2015).  While lithium-ion batteries are already 

market available, the other two cell chemistries are still in development. For 

lithium-ion chemistry batteries, Deveter et al. (2015) expect improvements so 

“that the cell-level performance will continue to improve from today’s average of 

150 Wh/kg, to approximately 400 Wh/kg within 15 years and to 450 Wh/kg 

within 30 years” (p 31), while lithium-sulfur batteries “will enable a commercial 

product with a cell-level specific energy of approximately 500 Wh/kg within 15 

years and 800 Wh/kg within 30 years” (p. 32). For lithium-air batteries, he 

predicts “approximately 600 Wh/kg within 15 years and 1200 Wh/kg within 30 

years” (p. 32).  

 

Since the weight of aircraft subcomponents contributes in a non-linear 

way to the overall performance of an aircraft, these expected energy density 

improvements will be more significant than just the weight savings alone. 

Additional weight saving could be achieved by the inclusion of batteries into the 

load carrying structure.  

 

Besides these technical advantages, the price of lithium-ion batteries has 

been falling sharply in the last two decades, while the volumetric energy density 

is continuously increasing (Nykvist & Nilsson, 2015). Hence in sum, the trends of 

better technical usability and cheaper prices support the adaption of lithium-ion 

battery packs in aviation propulsion systems.  
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Electric motors 

 

Not only batteries but also the torque and power density of modern electric 

motors have increased over the last decades due to several technological 

advancements. Weight optimization was achieved using modern computational 

tools to optimize the mechanical structure of the rotor and the stator.  

 

 
Figure 2. History and predictions of energy product improvements for 

neodymium iron boride (NdFeB) sintered permanent magnets. Achievements in 

the laboratory (blue dots) and entry dates into market show a prediction for 

product improvements until 2040. Reprinted from “Assessment of technologies 

for noncryogenic hybrid electric propulsion,” by T. P. Dever, B. B. Choi, A. M. 

Lowe, A. J. Provenza, K.P. Duffy, P. L. Loyselle, and C. R. Morrison, 2015, 

NASA/TP-2015-216588. 

 

Modern materials such as aluminum alloys and carbon-fiber reinforced 

rotors help to further decrease weight, while secondary parts (mostly power 

electronics) decreased in weight and size. 

 

 Neodymium iron boride (NdFeB) magnets are considered a technological 

breakthrough for compact electric motors. They provide powerful magnetic fields 
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at very compact size. Permanent magnets can be classified by their energy 

product (BH)max, “the maximum product of the magnet’s remanence Br and its 

coercivity Hc. Essentially, (BH)max determines a magnet’s strength: the higher the 

number, the stronger the magnet” (Dever et al., 2015, p. 11). Figure 2 shows the 

technological advancement of NdFeB sintered permanent magnets in the 

laboratory and projections to reach their theoretical maximum energy product 

(BH)max in 2018. The timeframe from the laboratory to market is projected to last 

up to 20 years with the highest technological development reaching market 

around 2040. 

 

NdFeB permanent magnets replace samarium cobalt (SmCo) and alnico in 

most applications and provide a reduction in volume by 50% and 90% 

respectively (Thompson, 2009). This new generation of rare earth magnets was 

introduced in 1983, but it took until the last decade for NdFeB magnets to become 

readily available for a full field of applications and especially in electric motors. 

 

Aerodynamic optimization 

 

As mentioned above, the hybrid electric design space increases the 

number of parameters that can be manipulated during the aircraft design process. 

As will be exemplarily shown, the right choice and placement of propulsors can 

significantly support the aerodynamic optimization process. The same applies to 

aeroelastic and structural design optimization, which are partially interdependent, 

but beyond the scope of this paper. 

 

The aerodynamic efficiency of the fuselage and the wing can both be 

increased by the optimization of laminar flow. Laminar flow across the wing can 

be increased by a reduction in cruise speed, which allows for the use of laminar 

airfoils. The placement of the engines in the vicinity of the wings induces 

turbulent flow and pressure changes, which either directly reduce the laminar flow 

areas by provoking transition to turbulent flow or increase the induced drag by 

disturbing the elliptic lift distribution of the finite wing.  

 

These factors all favor placement of the propulsive unit in the back of the 

aircraft, preferably at the tail-section. In the case of a propeller aircraft, this can 

also lead to increased propeller-efficiency. As shown in Figure 3, the compact 

size of an electric motor decreases the blocked area behind the propeller (Geiß & 

Voit-Nitschmann, 2017). 
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Figure 3. Comparison of a commuter aircraft airframe optimized for a turboprop 

engine (left) and an airframe optimized for an electric motor (right). The propeller 

blocking area and wetted fuselage area behind the propeller significantly reduced 

with the tail installed electric engine/propeller assembly, increasing the installed 

and propeller efficiency and reducing turbulent flow on the fuselage. Reprinted 

with Permission from University of Stuttgart, as described in “Sizing of fuel-

based energy systems for electric aircraft,” by I. Geiß and R. Voit-Nitschmann, 

2017, Proceedings of the Institution of Mechanical Engineers. 

 

 Another example for new synergistic design options is the distribution of 

the thrust too many small propulsive units. Ducted fans can be placed around the 

fuselage and close to the trailing edge of the wing to ingest the boundary layer. 

The concept of boundary layer ingestion (BLI) is not new but did not prove 

practicable so far. Liu, Valencia, and Teng (2016) conclude that “with wake 

ingestion, the power expended can be less than the product of the forward speed 

and craft drag. The benefit of boundary layer ingestion (BLI) comes from re-

energizing the aircraft wake, which enables less kinetic energy to be wasted” (p. 

1146). With the advent of distributed electric propulsion (DEP), this synergistic 

effect becomes more straightforward to use in aircraft design. In short, the hybrid 

electric design could effectively balance weight increase due to batteries and 

subsystems with improvements in the aerodynamic layout of an aircraft for an 

overall increase in efficiency and without jeopardizing flight safety.  

 

Hybrid Commuter Aircraft Concepts 

 

Hybrid Propulsion Architecture Components. Compared to 

conventionally powered aircraft, hybrid electric aircraft have additional system 

components which add to takeoff mass and acquisition cost. Depending on the 

hybrid architecture, the degree of hybridization, and operational demands, the 

components on the electric system can vary slightly. Typically, the following 

components are the main parts of a hybrid system: electric motors, gearboxes, 

generators, power electronics and inverters, cables, and batteries (see Figure 4). 

 

For short range applications, the degree of hybridization is typically low, 

and the amount of batteries is reduced to a useful minimum. For a short distance 
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hybrid aircraft, the endurance from battery capacity alone is not essential, the 

battery power is only used to provide additional power during peak demands, 

such as takeoffs and missed-approaches.  

 

The battery can be recharged during times of low power use like in 

economic cruise over extended periods of time or especially during descent, 

where very little propulsive power is required. During these times, the excess 

electric power from the generators can be stored in the batteries. For mild hybrid 

commuter concepts, like in the automotive equivalent, no additional charging of 

the batteries on the ground is foreseen. 

 

 
Figure 4. Hybridization scenarios and system components. Depending on the 

source of energy and hybridization concept (parallel or serial) some 

subcomponents can differ. However, the core components stay the same, only 

with variations in the arrangement. Reprinted from “Electric Flight - Potential and 

Limitations,” by M. Hepperle, 2012, AVT-209 Workshop on Energy Efficient 

Technologies and Concepts Operation, Lisbon. Reprinted with permission. 
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Market Potential 

 

 The above mentioned additional components increase acquisition cost for 

hybrid electric aircraft relative to their conventional counterparts. There are no 

exact industry numbers available yet; Siemens (2016) expects aircraft acquisition 

cost is increasing by 10-30%, while NASA (2017) forecasts fuel savings of 26% 

to 56% for hybrid electric aircraft compared to conventional aircraft of similar 

size. 

 

The European aircraft manufacturer Airbus (2017) indicates that the first 

viable product with a hybrid propulsion system will probably have 50 to 70 seats. 

Looking at data from the North American short-range airline sector, it seems 

obvious, that aircraft competitiveness usually increases with increasing seat count, 

while the maximum seating capacity for short routes (below 500 nm) usually is at 

100 seats (ESG Aviation Services, 2017).  

 

Overall it is hypothesized, that hybrid electric commuter aircraft with 50 

seats can be competitive on short-range scheduled flights, on a cost per available 

seat mile (CASM) basis and in direct comparison with 100 seat aircraft with 

conventional propulsion systems. Hence, the null hypothesis, which will be tested, 

states that the 50 seat hybrid aircraft is not competitive against the established 100 

seat aircraft on a CASM basis. 

 

Methodology 

 

Sources of Data 

 

To support or reject this hypothesis, the chosen methodology will examine 

the question, whether and how the cost per available seat mile of a conventionally 

powered 50-seat aircraft differ significantly from a conventionally powered 100-

seat aircraft and a hypothetical hybrid-electric 50-seat aircraft. This methodology 

has been chosen because hybrid electric aircraft will probably first enter the 

market as a short-range aircraft with 50 seats or less, whereas the most 

competitive short-range aircraft typically have 100 seats. 

 

The amount of available operational data related to European airlines is 

limited. Even for North American airlines, the amount of data is not abundant, but 

there are several sources that provide sufficient information to compare aircraft 

models in service on direct operating costs. The data used in this research paper 

was gathered from the database of The Airline Monitor (ESG Aviation Services, 

2017). 
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The Airline Monitor lists only a handful of carriers supporting short routes 

below 500 nautical miles with their aircraft, but several use a fleet of Embraer 

Regional Jets with different seating limitations that lend themselves to compare 

short-range aircraft in the same operational airline environments. Therefore, the 

Embraer EMB 145 50-seat aircraft and the EMB 190 with 100 seats were chosen 

for this comparison (ESG Aviation Services, 2017). 

 

Data Reliability, Validity, and Comparability 

 

The data was considered reliable, due to it being provided by The Airline 

Monitor, a long time and independent industry analyst; data provided by this 

source are used by government agencies like the US Department of 

Transportation (ESG Aviation Services, 2017). Data validity is assumed for the 

direct comparison of the two Embraer (EMB) Jet aircraft and a hypothetical 

hybrid version thereof for planned flight distances of up to 500 nautical miles. 

Validity and in particular the ability to transfer findings to other non-jet aircraft 

are limited by the small number of datasets for short range aircraft. 

 

Data Treatment and Statistical Analysis 

 

Operational data of the EMB145 (50-seater) and EMB190 (100-seater) 

aircraft was collected from The Airline Monitor for the years 2010 to 2016. The 

aircraft cost per available seat mile (CASM) was chosen as a key performance 

indicator since it is a common parameter for comparison and includes important 

operational costs like flight crew expenses, fuel, and maintenance.  

 

The data was gathered in a spreadsheet (see Table 1) to compare a 50-seat 

short-range jet in conventional and hybridized configuration to a conventionally 

powered 100 seat version.  

The CASM data for the hybridized 50-seater were calculated with the 

conservative assumption of a 25% reduction in fuel usage and cost. Hence a 

quarter of the fuel cost per CASM was subtracted from the cost per available seat 

mile values of the conventional EMB 145 to generate the CASM data of the 

hypothetical hybrid Embraer 145 (EMB 145-hybrid). 

Two t-tests were conducted to compare the operational costs of the fleets. 

The two-sample t-tests were performed using Microsoft Excel; variance levels 

were recalculated and confirmed by hand since they appeared to be slightly larger 

than anticipated. The first two-tailed t-test was used to verify, whether the mean 

CASM of the conventional EMB 145 is significantly higher than the mean CASM 

of the EMB 190. 
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Table 1 

Cost per available seat mile (CASM) of the two common regional jets Embraer 

145, 190, and a hypothetical hybrid version of the EMB 145. Units are US cents. 

  EMB 145   EMB 190 

Year CASM fuel cost CASM hybrid 
 

CASM 

2010 10.12 5.22 8.82   8.34 

 
11.61 5.61 10.21 

 
10.81 

 
9.37 5.02 8.12 

 
8.79 

      
2011 11.86 7.43 10.00 

 
10.32 

 
12.61 6.77 10.92 

 
10.74 

 
11.48 7.76 9.54 

 
12.89 

      
2012 11.66 7.10 9.89 

 
10.98 

 
12.14 6.99 10.39 

 
11.15 

 
11.43 7.15 9.64 

 
13.67 

      
2013 12.37 7.45 10.51 

 
11.87 

 
12.99 7.39 11.14 

 
12.28 

 
12.07 7.47 10.20 

 
12.07 

     
8.66 

2014 12.28 7.11 10.50 
 

11.88 

 
13.19 7.18 11.40 

 
14.42 

 
11.86 7.08 10.09 

 
11.43 

     
8.52 

2015 10.45 4.89 9.23 
 

9.65 

 
11.70 5.06 10.44 

 
8.01 

 
9.02 4.63 7.86 

 
9.99 

      
2016 11.18 3.56 10.29 

 
8.87 

  9.64 3.50 8.77   9.32 

 

Even though the absolute price difference is only a few cents, a systematic 

difference seems visible. Therefore a cut-off confidence level of 95% is chosen 

for both tests. The second two-tailed test is used to examine if the hybridization of 

the 50-seater leads to a significantly lower CASM relative to the conventional 

100-seater.  
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Results 

 

 The results indicate that generally speaking, the standard 50-seater is more 

expensive on short routes than its 100-seat competitor. The hybridization and an 

associated reduction in fuel burn in the order of 25% can give the 50-seater a 

competitive advantage, even against the established 100-seater. 

Table 2 

T-test to determine a statistically significant cost advantage of the EMB 190 

compared to the EMB 145. Data from the operational years 2010 to 2016 
  EMB 145   EMB 190   

 
n M SD 

 
n M SD t 

CASM 20 11.45 1.17   22 10.67 1.80 1.639 

 

For the operational years between 2010 and 2016, the mean CASM for the 

conventional 50-seater was at 11.45 cents (SD = 1.17) significantly higher than 

the mean CASM for the 100-seater at 10.67 cents (SD = 1.80), t(36) = 1.693, p = 

0.0495 (see Table 2). While for the hybrid version, the t test showed the CASM 

(M = 9.90, SD = 0.94) to be significantly lower than the EBM 190 CASM (M = 

10.67, SD = 1.80), t(32) = -1.760, p = 0.0440 (see Table 3). 

Consequently, the null hypothesis has to be rejected and the research 

hypothesis can be supported. 

Table 3 

T-test to determine a statistically significant cost advantage of the hybridized 

EMB 145 compared to the conventional EMB 190 during the operational years 

2010 to 2016 

  EMB 145 hybrid   EMB 190   

 
n M SD 

 
n M SD t 

CASM 20 9.90 0.94   22 10.67 1.80 -1.760 

 

Looking at Figure 5, it can be seen that meager fuel prices like in 2015 and 

2016 can reduce the cost advantage of a hybrid 50 seat EMB 145 compared to the 

100-seater, while still offering greater flexibility of the smaller aircraft at the same 

price point. By contrast, operational years with higher fuel cost, like 2012, show 

the future potential of hybridization efforts, where the cost savings become 

substantial compared to the legacy propulsion technology as fuel prices rise 

further. 
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Figure 5. Graphical comparison of cost per available seat mile data of the EMB 

145, EMB 145 hybrid, and the EMB 190 between operational years of 2010 and 

2016 

It should be noted that this comparison is based on one, carefully chosen 

aircraft family. Therefore, the result should not be generalized without an 

operational context of where and how the aircraft are used in mind. Nevertheless, 

the Embraer Regional Jets represent a good benchmark for the short-range market 

with an aircraft market share of 40% in North America (AirInsight, 2011). 

Furthermore, they represent current market trends, which shift towards jets with 

around 100 seats. Regional airline analysts from AirInsight observe that “today 

the 50-seaters have grown unpopular because of higher fuel costs. The regional jet 

segment is better defined at between 75 and 100 seats” (AirInsight, 2011). Hence, 

future work should investigate a broader spectrum of short-haul aircraft. 

 

 Overall, the results of this study indicate that the hybridization of small 

regional jets can make aircraft with only 50 seats more competitive than the 

established 100 seat aircraft because hybrid electric aircraft eliminate the cost-

rationale for choosing bigger aircraft.  
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Conclusion 

 

 To the authors’ knowledge, the economic competitiveness of hybrid 

electric aircraft, especially for small regional aircraft and short-range scheduled 

flights, has not yet been studied. 

 

Since variable costs heavily depend on operational efficiencies, the total 

cost of ownership is not a simple metric for cost comparison. The fuel savings on 

a cost per available seat mile basis lends itself as a good tool to investigate 

competitiveness on increased efficiencies through hybrid technologies. 

 

It was shown that a hybrid 50 seat regional jet could be competitive 

against a conventional 100 seat aircraft on short routes of 500 NM. This finding 

indicated that entry into the market could be made with hybrid electric aircraft 

seating only 50 passengers, therefore increasing the chance to bring hybrid 

aircraft to market within the next 10 to 15 years on existing technology levels. 

 

Most notably, this is the first study, which has investigated the cost 

sensitivity for hybrid electric aircraft on an operating cost basis. The results 

provided a compelling case for companies and start-ups to consider investing in 

hybrid aircraft technologies.  
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