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At the end of his 2007 PhD dissertation, Dr. Richard S. 
Stansbury expressed a need for future work on the research 
question he addressed: the modeling and evaluation of navigation 
and ‘task’ completion as a constraint programming problem. His 
research addressed only 2D topology, but the results showed strong 
potential for applications in 3D, too.1 The goal of the research 
project I formulated in 2016—and have worked on since as the 
sole Principal Investigator—is to address this open question in the 
constraint programming field within computer science and 
computational math.

Figure 1 & 2: System and Mission Overview
The constraint satisfaction problem (CSP) is a search-based 

problem domain from the Artificial Intelligence community where 
the variables of the problem are assigned values that satisfy the 
constraints set upon them. Constraint programming techniques 
derived from constraint satisfaction research express very complex 
relationships between interdependent variables. CSPs have been 
applied to many application areas including scheduling, design, 
and image processing. However, they have not been utilized much 
for robotic applications due to the computational complexity (NP-
Hard) of current solution algorithms.7 These techniques allow the 
platform to make a multi-objective decision more quickly and with 
less resource-expenditure than rule-based systems can. A satisfying 
solution to the CSP model is defined as one such that the task 
selected will not only operate correctly but also satisfy the current 
requirements set forth upon the robot, and ideally exceed its 
performance expectations.5

System requirements may vary during operation to 
accommodate the robot’s performance, environmental conditions, 
or user expectations. For instance, a mobile robot navigating 
through a congested environment should operate with greater

Introduction caution rather than ensure timely delivery. The task selection 
requirements may be defined in terms of one or more performance 
objectives. Possible performance objectives may be the timeliness 
of the operation, risk avoidance, or resource conservation. These 
objectives (Figure 3, below) could conflict with one another under 
many scenarios; thus, it is a challenge to develop a decision-
making system capable of selecting a task given multiple 
objectives. A task selection mechanism, such as the one presented 
in this research, can change requirements while continuing to 
ensure rationality.2 In addition, the controller can change 
conflicting solutions when multiple requirements attempt to 
influence the decision.

The decision maker maintains a list of tasks, querying each 
task to determine if it is active—important to the mission. If a task 
is considered active, it requests the task’s CSP. The task CSPs are 
merged into a single CSP that represents the entire problem. The 
CSP is solved, and its first N-solutions are extracted, where N is a 
runtime-defined number.9 From these N-solutions, the best solution 
is selected and executed, modifying the flight plan and navigation 
plan when applicable.

Figure 4 below provides an example of a constraint satisfaction 
problem (upper-left) and its solution (lower-right). For each, a 
constraint graph is provided. The nodes represent the unsolved 
variables; the domain for each respective variable is presented in 
curly-braces next to the node. The arcs represent the constraints 
between the variables; the solution contains a single value in the 
domain for each variable.9

The decision-maker is constructed using many data structures 
and algorithms in theoretical and applied computer science. The 
dual-graph technique is used to compare binary and nth-order 
CSPs. In dual graph, nodes represent constraints, and their domains 
are “the legal combinations of values between the variables within 
the constraint.” The arcs between these constraint nodes represent 
common variables within the constraints and enforce that the 
variables’ instantiation is the same for both constraints. In the dual-
graph form, there is a new and legal binary CSP that may utilize 
any binary CSP solution or reduction technique.8,9

Methods and Current Work

Traditionally, constraint propagation techniques are performed 
prior to solving the CSP with backtracking. Forward checking is a 
technique that can be utilized such that arc consistency is 
performed during the search; back-jumping makes the act of 
backtracking more intelligent within the CSP solver. Rather than 
backtracking to the previous node when a constraint conflict 
occurs, the algorithm back-jumps along the search path to the node 
that conflicts with the current node based on that constraint.4
Conflict-directed back-jumping was proposed for Constraint 
Satisfaction Problems by Dr. Patrick Prosser in his groundbreaking 
1993 paper.

(=> (== BatteryLevel LOW) (! = taskVariable curTaskID)) 
(Overridden by Charge Task)
For each path, if (path.traversable == false), (! = PathVariable
path)
For each path, (=> (== PathVariable path) (== 
PathLengthVariable path.length))
For each path, (=> (== PathVariable path) (== 
ObstructionVariable path.obstruction))

Consistency is a property of a CSP that directly correlates to 
the effort required to solve a CSP, relating values and variable 
domains that may conflict with a constraint. 

• Node consistency (1-consistency): not any nodes that violate 
unary constraints upon those nodes. 

• Arc consistency (2-consistency): all pairs of variables within 
the CSP there are not any values within either variable’s 
domain that may cause a conflict. 

• Path consistency (3-consistency): ensures that for any three 
variables there are not any possible assignments that may 
result in a conflict for any constraints between the variables

Obtaining strong n-consistency is also NP-hard.5 Constraint 
propagation techniques, like the ones described above, improve arc 
consistency—necessary to conform to strict regulations, which 
require strong consistency. The CSP solution can be evaluated 
according to the following five metrics, and solutions verified with 
a student’s t-test:

– CSP solve time / CPU time 
– Task execution time
– Resources consumed
– Number of collisions
– Number of failures

Figure 5: FAA UAS Arcgis
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Constraint Programming Applications in Unmanned Aerial System Flight Pathing

While rule-based systems currently dominate the market, 
applying constraint programming techniques by developing a 
decision maker can decrease computational times and resource 
expenditure up to an order of magnitude. The commercial 
applications of this research are wide and varied; having 
previously been applied in schedule planning and logistics, this 
research has direct applications in autonomous delivery. 
Further, these techniques can be used for any application in 
which computational time, space, or other resources are a 
concern; this has attracted further attention from emergency 
preparedness and response groups that use unmanned systems 
to respond in real-time to emergencies including crime scenes, 
train derailments, etc. 

Unmanned platforms are increasingly being used for 
autonomous surveying and inspection of government 
infrastructure, an area in which personnel numbers and safety 
are concerns—concerns that the product of this research can 
mitigate. In the future, I plan to test further the platform with 
partners in industry, academia, and government, finish related 
publications, and continue researching constraint programming 
methods as I look forward to a research career.
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