
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

At the end of his 2007 PhD dissertation, Dr. Richard S.
Stansbury expressed a need for future work on the research
question he addressed: the modeling and evaluation of navigation
and ‘task’ completion as a constraint programming problem. His
research addressed only 2D topology, but the results showed strong
potential for applications in 3D, too.1 The goal of the research
project I formulated in 2016—and have worked on since as the
sole Principal Investigator—is to address this open question in the
constraint programming field within computer science and
computational math.

Figure 1 & 2: System and Mission Overview
The constraint satisfaction problem (CSP) is a search-based

problem domain from the Artificial Intelligence community where
the variables of the problem are assigned values that satisfy the
constraints set upon them. Constraint programming techniques
derived from constraint satisfaction research express very complex
relationships between interdependent variables. CSPs have been
applied to many application areas including scheduling, design,
and image processing. However, they have not been utilized much
for robotic applications due to the computational complexity (NP-
Hard) of current solution algorithms.7 These techniques allow the
platform to make a multi-objective decision more quickly and with
less resource-expenditure than rule-based systems can. A satisfying
solution to the CSP model is defined as one such that the task
selected will not only operate correctly but also satisfy the current
requirements set forth upon the robot, and ideally exceed its
performance expectations.5

System requirements may vary during operation to
accommodate the robot’s performance, environmental conditions,
or user expectations. For instance, a mobile robot navigating
through a congested environment should operate with greater

Introduction caution rather than ensure timely delivery. The task selection
requirements may be defined in terms of one or more performance
objectives. Possible performance objectives may be the timeliness
of the operation, risk avoidance, or resource conservation. These
objectives (Figure 3, below) could conflict with one another under
many scenarios; thus, it is a challenge to develop a decision-
making system capable of selecting a task given multiple
objectives. A task selection mechanism, such as the one presented
in this research, can change requirements while continuing to
ensure rationality.2 In addition, the controller can change
conflicting solutions when multiple requirements attempt to
influence the decision.

The decision maker maintains a list of tasks, querying each
task to determine if it is active—important to the mission. If a task
is considered active, it requests the task’s CSP. The task CSPs are
merged into a single CSP that represents the entire problem. The
CSP is solved, and its first N-solutions are extracted, where N is a
runtime-defined number.9 From these N-solutions, the best solution
is selected and executed, modifying the flight plan and navigation
plan when applicable.

Figure 4 below provides an example of a constraint satisfaction
problem (upper-left) and its solution (lower-right). For each, a
constraint graph is provided. The nodes represent the unsolved
variables; the domain for each respective variable is presented in
curly-braces next to the node. The arcs represent the constraints
between the variables; the solution contains a single value in the
domain for each variable.9

The decision-maker is constructed using many data structures
and algorithms in theoretical and applied computer science. The
dual-graph technique is used to compare binary and nth-order
CSPs. In dual graph, nodes represent constraints, and their domains
are “the legal combinations of values between the variables within
the constraint.” The arcs between these constraint nodes represent
common variables within the constraints and enforce that the
variables’ instantiation is the same for both constraints. In the dual-
graph form, there is a new and legal binary CSP that may utilize
any binary CSP solution or reduction technique.8,9

Methods and Current Work

Traditionally, constraint propagation techniques are performed
prior to solving the CSP with backtracking. Forward checking is a
technique that can be utilized such that arc consistency is
performed during the search; back-jumping makes the act of
backtracking more intelligent within the CSP solver. Rather than
backtracking to the previous node when a constraint conflict
occurs, the algorithm back-jumps along the search path to the node
that conflicts with the current node based on that constraint.4
Conflict-directed back-jumping was proposed for Constraint
Satisfaction Problems by Dr. Patrick Prosser in his groundbreaking
1993 paper.

(=> (== BatteryLevel LOW) (! = taskVariable curTaskID))
(Overridden by Charge Task)
For each path, if (path.traversable == false), (! = PathVariable
path)
For each path, (=> (== PathVariable path) (==
PathLengthVariable path.length))
For each path, (=> (== PathVariable path) (==
ObstructionVariable path.obstruction))

Consistency is a property of a CSP that directly correlates to
the effort required to solve a CSP, relating values and variable
domains that may conflict with a constraint.

• Node consistency (1-consistency): not any nodes that violate
unary constraints upon those nodes.

• Arc consistency (2-consistency): all pairs of variables within
the CSP there are not any values within either variable’s
domain that may cause a conflict.

• Path consistency (3-consistency): ensures that for any three
variables there are not any possible assignments that may
result in a conflict for any constraints between the variables

Obtaining strong n-consistency is also NP-hard.5 Constraint
propagation techniques, like the ones described above, improve arc
consistency—necessary to conform to strict regulations, which
require strong consistency. The CSP solution can be evaluated
according to the following five metrics, and solutions verified with
a student’s t-test:

– CSP solve time / CPU time
– Task execution time
– Resources consumed
– Number of collisions
– Number of failures

Figure 5: FAA UAS Arcgis

References
[1] Akers E. L., Stansbury, R.S., et al, “Long-Term Survival of Mobile
Robots” (2012)
[2] Dechter R., “Constraint Networks,” in Encyclopedia of Artificial
Intelligence (1991)
[3] Dechter R. & Pearl J., “Tree-clustering schemes for constraint-
processing” (1988)
[4] Kumar, V., “Algorithms for Constraint Satisfaction Problems: A
Survey” (1992)
[5] Mackworth, K., “Consistency in networks of relations” (1997)
[6] NIST, “Dictionary of Algorithms and Data Structures” (2017)
[7] Rossi, F., et al, “On the Equivalence of Constraint-Satisfaction
Problems” (1989)
[8] Russel, S., & Norvig, P., Artificial Intelligence: A Modern Approach
(2002)
[9] Stansbury, R.S. & Agah, A. Artif Intell Rev (2012) 38: 67.

Acknowledgements and Contact

courtneythurston.com
thurstc1@my.erau.edu

stansbur@erau.edu

Research Funded by:
Embry-Riddle Aeronautical University, Daytona Beach

PI Funded by:
Goldwater Scholarship, Jack Kent Cooke Foundation, Burger King
Scholars Foundation, GE-Reagan Foundation, Coca-Cola Scholars

Foundation, SanDisk Scholars, Elks Most Valuable Student Competition
Scholarship, AXA Achievement Foundation, VIP Women in Tech

Scholarship, Brad Feld and Amy Batchelor Aspirations in Computing
Scholarship, National Space Club, Lint Center Army Staff Sgt. Richard S.

Eaton, Jr. Scholarship, GoEnnounce & UPromise Define Yourself
Scholarship, Harry E. Arcamuzi Aviation Scholarship, CCA Scholarship,

Presidential Scholarship, Women of Excellence Scholarship, FIRST
Robotics Scholarship, Alumni Endorsement Grant, Campus Travel Grant,

NCWIT Aspirations in Computing Award

Embry-Riddle Aeronautical University, Daytona Beach

Courtney Thurston, Dr. Richard S. Stansbury

Constraint Programming Applications in Unmanned Aerial System Flight Pathing

While rule-based systems currently dominate the market,
applying constraint programming techniques by developing a
decision maker can decrease computational times and resource
expenditure up to an order of magnitude. The commercial
applications of this research are wide and varied; having
previously been applied in schedule planning and logistics, this
research has direct applications in autonomous delivery.
Further, these techniques can be used for any application in
which computational time, space, or other resources are a
concern; this has attracted further attention from emergency
preparedness and response groups that use unmanned systems
to respond in real-time to emergencies including crime scenes,
train derailments, etc.

Unmanned platforms are increasingly being used for
autonomous surveying and inspection of government
infrastructure, an area in which personnel numbers and safety
are concerns—concerns that the product of this research can
mitigate. In the future, I plan to test further the platform with
partners in industry, academia, and government, finish related
publications, and continue researching constraint programming
methods as I look forward to a research career.

	Slide Number 1

