EMBRY-RIDDLE

Aeronautical University.
SCHOLARLY COMMONS

Publications

3-2002

IR-Based Estimation of Velocities Above Flames Spreading over
Different Fuels

Lulu Sun
Embry-Riddle Aeronautical University, sunl@erau.edu

Xiangyang Zhou
University of California, Riverside

David R. Weise
USDA Forest Service - Pacific Southwest Research Station

Shankar Mahalingam
University of California, Riverside

Follow this and additional works at: https://commons.erau.edu/publication

0 Part of the Other Engineering Commons

Scholarly Commons Citation

Sun, L., Zhoy, X., Weise, D. R., & Mahalingam, S. (2002). IR-Based Estimation of Velocities Above Flames
Spreading over Different Fuels. , (). Retrieved from https://commons.erau.edu/publication/201

Sun, L., Zhou, X., Weise, D.R., & Mahalingham, S. "IR-Based Estimation of Velocities Above Flames Spreading Over
Different Fuels," Spring WSS/CI meeting of The Combustion Institute, San Diego, CA, March 25-26, 2002.

This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in
Publications by an authorized administrator of Scholarly Commons. For more information, please contact
commons@erau.edu.


http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/publication
https://commons.erau.edu/publication?utm_source=commons.erau.edu%2Fpublication%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/315?utm_source=commons.erau.edu%2Fpublication%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/publication/201?utm_source=commons.erau.edu%2Fpublication%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

IR-Based Estimation of Velocities Above Flames
Spreading over Different Fuels'

Lulu Sun®, Xiangyang Zhou', David R. Weise"", and Shankar Mahalingam"

"Department of Mechanical Engineering
University of California, Riverside, CA 92521

“Forest Fire Laboratory
4955 Canyon Crest Drive, Riverside, CA 92507

Paper # 025-88 presented at the 2002 Spring Meeting of the Western States Section of
The Combustion Institute, March 25-26, San Diego, CA

ABSTRACT: Wildfire spread in living vegetation such as chaparral in California and
eucalyptus forests in Australia often causes significant damage to infrastructure and
ecosystems. A physically based empirical model to predict fire spread rate is used in the
United States to assist in a variety of fire management operations. The spread model
does not adequately describe the chemical processes of combustion in live fuels.

Prior to describing and modeling the chemical processes of combustion in
wildland fuels using computational fluid dynamics, we are investigating a technique to
non-intrusively measure flame gas velocities using thermal imagery. By tracing “hot”
pixels through successive digital images, we estimate velocity field using gradient-based
algorithms. We also explore technidues established in digital particle image velocimetry
(DPIV) to estimate fluid velocities. The images are acquired by a thermal camera with
uncooled microbolometer 320%x240 pixel focal plane array in the 7.5 - 13 pm spectral
range. We estimated fluid velocities in flames spreading above isopropyl alcohol and
shredded aspen wood (excelsior). Results from cxcelsior fires are presented. Finally,
results obtained from computational modeling were used to validate the velocity field
estimated from the gradient-based algorithm. Preliminary results using a DPIV-based

algorithm appear promising.

' This manuscript was produced, in part, by a U.S. Government employee using U.S. Government funds, is
not subject to copyright laws, and is in the public domain.



INTRODUCTION

Wildfire spread in living vegetation such as chaparral in California and eucalyptus
forests in Australia often causes significant damage to infrastructure and ecosystems. For
predicting fire spread rate, existing models utilized by the Forest Service are based on the
semi-empirical model developed originally by Rothermel (1972). It is applicable to quasi-
steady burning of surface fires with uniform fuel loading and assumes that the fuel is
dominated by dead material and in close proximity to the ground. Crown fire, transition
from ground-to-crown-fire, fire spread through live fuels, fire spread by spotting, and
modification of meteorological conditions by the fire are some of the phenomena not
accounted for in the Rothermel model. Wilson (1982, 1985) examined fire spread in
moist fuel and proposed changes in the manner in which moisture content is modeled in
the Rothermel model. Wilson (1990) suggested that a term in the spread model involving
wind and fuel moisture might be appropriate. However, the application of this to shrub
fuel beds such as chaparral is currently unknown. Fuel depths observed in chaparral
crowns range from 30 to 120 c¢cm and vary by species, elevation, slope aspect, and
rainfall. Total height of chaparral stands ranges from 1 to 6 m, and the crowns tend to be
fairly porous (low packing ratio). In fact, fire spread in chaparral has been described as a
crown fire. This provides the motivation to determine what is necessary to establish a
propagating flame front in chaparral brush fuels independent of ground fuels.

Fire spread in wildland fuels is created by the coupled effects of fuel combustion,
air convection, flame and ember radiation, and mechanical advection effects such as
rolling embers and spotting. As an essential component of the convection, intense fire
vortices on the scale of meters almost certainly play a fundamental role in the physics of
fire spread (Emmons and Ying, 1967; Byram and Martin, 1972; Haines, 1982). McRae
and Flannigan (1990) describe fire vortices that in one case were observed to rip out and
loft standing trees. Clark et al. (1999) observed a fire vortex rising more than-3 km above
ground level With.ﬂaming materials that were visible at about 2 km. Therefore, fire
vortices not only are suspected of being hazards to nearby firefighters, but are an

important fire spread mechanism through both local dynamics and the ability to loft

flaming objects into areas well removed from the former fire front (Clark et al., 1999).



Because of the difficulty in measuring the velocity field of wild fire, there is no currently
available data that describes the small temporal and spatial scale involved in the fire
vortices that help to determine fire spread.

The focus of this paper is on the investigation of non-intrusive techniques for
measuring flame gas velocities using high frequency, high-resolution radiant temperature
images obtained by a thermal infrared camera. The velocity field that represents the
motion of object points across an image is called the optical flow field. Optical flow
results from relative motion between a camera and objects in the scene. In our method,
the object points are represented by “hot” pixels measured by the thermal camera. One
method is to trace “hot” pixels through successive digital images, to estimate vertical
velocities The “gradient based algorithm” relies on an equation that relates optical
velocities to spatial and temporal changes in the image (Lucas and Kanade, 1981;
Kearney et al., 1987; Simoncelli et al., 1993, Clark et al., 1999). These gradient-based
algorithms are generally relatively simple to implement, efficient to compute, and can
produce accurate dense optical flow fields. For example, an empirical study by Barron et
al. (1994) found the gradient-based local optimization method to be the best-performing
overall. The general assumption in this algorithm is that the signal from a point on the
object in space does not change with time and is therefore invariant with motion. In our
case the signal from a point is the IR temperature that is assumed conserved over a short
time required for analysis. An alternate method of estimating velocities is based on
established techniques in digital particle image velocimetry (DPIV) (Willert and Gharib,
1991; Raffel et al., 1998). It is assumed that over small time intervals the signal of the hot
pixel is conserved and behaves like a fluid particle analogous to seed particles used in an
actual DPIV algorithm.

The fire plume experiments were completed using alcohol and shredded aspen
wood (excelsior) as fuel. The fire images were acquired by a thermal camera FLIR
SC500% with uncooled microbolometer 320x240 pixel focal plane array in the 7.5 to 13
wn spectral range. Results from a gradient-based algorithm to estimate fluid velocities in

flames are presented. As a useful validation tool, a CFD (computational fluid dynamics)

2 The use of tradenames is provided for informational purposes only and does not constitute an
endorsement by the U.S. Department of Agriculture.



code was applied to simulate the fire plume for approximate conditions as in the
laboratory experiments. The goal was to utilize predicted temperature fields to estimate
fluid velocities using the two algorithms discussed, and to compare these estimates with
simulation results. In this paper, the fire dynamics simulator (FDS) code developed by
McGrattan et al. (2000) was used to compute the temperature and velocity field in the fire
plume. The computed instantaneous temperature data were assumed as successive digital
images. The gradient-based algorithm and the DPIV-based algorithm were used to
estimate the velocity field. The gradient-based estimation of velocities were compared
with that obtained by FDS code. Results illustrate the applicability and performance of
gradient-based algorithms in fire research. Preliminary DPIV-based result although

promising, requires further investigation.

GRADIENT-BASED ALGORITHM

The gradient constraint equation relates optical flow velocity on the image (i, w)
and the image brightness function ¢(x, z, #), which corresponds to the temperature 7(x, z,
f) obtained by experiment or computation (Clark et al., 1999). Here x and z denote
horizontal and vertical coordinate directions in the image, with u and w denoting velocity
components along these directions respectively. In our case the signal from a point is
assumed conserved over a short time required for analysis. We assume the image motion
is pure translation and its velocity components 1 and w are locally constant. So the

governing equation for the image flow is
D
—0=¢, tup, +wp, =0 1
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It would be instructive to compare this equation to the energy equation of fluid flow
under some certain circumstances where internal heat generation is absent. The viscous
dissipation and thermal diffusion are negligible. These circumstances would be
applicable to the flow with a very large Reynolds number as the limiting case of small
viscous forces compared with inertia forces. These two equations could be considered
fairly analogous. The gradient of the image signal is stationary (conserved) over the short

time.
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The images of fires are taken frame by frame from a stationary camera, frame 1 and 2,
with the time difference, Az. By assuming that fire particle motion is dominated by pure
translation motion, each of the fire particles of frame 1 translates from pixel coordinate

(x, z) to (x+Ax, z+Az) of frame 2. The function that we want to minimize is of the form,
/\=Z[@1(X+AX>Z+AZ)"(92(3C:Z)]2 3)
where ¢ is the temperature on the two-dimensional field at time 7, and ¢, is the

temperature at time #+Az. Summation is taken over all the pixels in the image. By Taylor

series expansion approximation,

q;l(x+Ax,z+Az)=cpl(x,z)+Ang+Az@ (4)
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Substituting this in (3), the quantity A is minimized with respect Ax and Az. This results

in the matrix equation for the estimate Ax and Az,
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where the subscript i denotes the thermal images taken at different time levels and i,c
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denotes the center time image. Summations are taken over local paths of pixels. Once Ax
and Az at each pixel are calculated, velocity components u and w at each pixel can be
calculated from

(6)

_ _ Az
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respectively.

DPIV-BASED ALGORITHM

The digital particle image velocimetry (DPIV) is an effective instantaneous and
non-intrusive technique. It allows evaluation of the instantaneous velocity field by
recording the position of seed particles at successive time images. The selected two (or

more) sequential images are analyzed by subdividing the image into small interrogation



areas (IA). In order to determine the displacement of seed particles, a statistical cross-
correlation analysis algorithm is applied to each pair of small interrogation areas. This is
given by,
O (mm) =55 [ Hg+m,j+n), (7)
J

where f(i, j) and g(i, j) denote the image intensity distribution of the first and second

image, m,n is the pixel offset between the two images and ® , (m,n) is the standard

cross-correlation function. When the offset values at which the IA’s particle images align
with each other, the sum of the products of pixel intensities will be larger than elsewhere,

resulting in a high cross-correlation value ® , at this position. The cross-correlation

function is a statistically measure of the degree of match between the two IA’s for a given
offset, so the maximum value in an [A can be used to estimate the average particle
displacement in the TA. This process is repeated for each area of interrogation over the
two image frames, the result is a complete velocity vector field for the selected image.

An easy way to calculate the cross-correlation function (7) and obtain velocity
vector field is explored. By using normxcorr2 function included in MATLAB (The
MathWorks, Inc.) software, the normalized cross-correlation function reads as follows:

5511697kl 4+ 50n0)

P, (m,n)=—=
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The result is the cross-correlation coefficient function, which modifies the standard cross-

)

correlation function and gives better results. Normxcorr2 function in MATLAB uses Fast
Fourier Transform (FFT) based cross-correlation (FFT-CC) function instead of direct
cross-correlation (D-CC) function. The difference between these two functions is that the
discrete cross-correlation function is defined for a finite region, while the FFT-based
cross-correlation function has to be extended to an infinite domain. FFT-based cross-

correlation simplifies and significantly speeds up the evaluation process.

EXPERIMENTAL PROCEDURE



Experiments were performed on small pool fires in the middle of the fire
laboratory, i.e., well away from aerodynamic obstacles. The small pool fires were
contained in aluminum trays of horizontal dimensions 330200 mm and depth 40 mm.
The fuel used was alcohol and shredded aspen wood (excelsior). Chamise, one of several
dominant shrubs in chaparral, will be used in the next experiment.

For the IR-based method, we used successive digital images captured by an
infrared thermography camera, through tracing “hot” pixels to get velocity field. An
infrared thermography camera can produce images of invisible infrared or "heat"
radiation and provide precise non-contact temperature field. Successive images are
captured from the ThermaCAM SC500 IR camera, which can provide optimal thermal
sensitivity and non-contact temperature measurement precision where thermal differences
are small or very high accuracy is desired. Temperature changes as small as 0.07 °C can
be distinguished. The sampling rate of the thermal camera is 5 Hz. As will be seen later,
this low sampling rate limits the accuracy of estimated velocities. ThermaCAM software
is used to get 320x240 pixel temperature field. A default flame emissivity (¢) of 0.92 was
used. Even though the flame emissivities were much lower than 0.92, the results
presented here are not affected since all pixels in the image were assigned equal €. At the
separate points above the pool fire, temperatures were also measured by 24 gauge Type K
thermocouples, which will be used to estimate ¢ for the various flames we are studying.
An electrical scale was used to measure fuel mass variation with time. A heat flux sensor
was used to measure the rate of heat flux. The thermocouple results, the heat flux sensor

results and the electrical scale results are not included in this paper.

NUMERICAL SIMULATION

The Fire Dynamics Simulator (FDS) code developed by McGrattan et al. (2000)
was used in the present simulation. FDS code solves a form of the Navier-Stokes
equations appropriate for low-speed, thermally-driven flows of smoke and hot gases
generated in a fire (McGrattan et al., 1994,1998).

An approximate form of the Navier-Stokes equations appropriate for low Mach
number applications is used in the model of FDS. The approximation involves the

filtering of acoustic waves while allowing for large variations in temperature and density.



This gives the equations an elliptic character, consistent with low speed, thermal
convective processes (Mahalingam et al., 1990). The computation is treated as a Large
Eddy Simulation (LES) in which the large scale eddies are computed directly and the
sub-grid scale dissipative processes are modeled. The fire is represented by discrete
Lagrangian particlesv(or thermal elements) that originate at burner (or solid surface) and

release heat at a specified rate.
RESULTS AND DISCUSSION

Estimated Velocity from Experimental Data

Figure 1 illustrates two successive temperature images obtained by an infrared
thermal camera with a frequency of 5 Hz and a resolution of 320x240 pixels. The IR
images represent thermal data of the front of the fire plume over the fuel of excelsior. The
x direction is along the horizontal and z is the vertical direction. Using a ratio translation,
x and z correspond to the physical geometric position.

The gradient-based image flow analysis scheme was applied to this sequence of
temperature images to derive the instantaneous velocity field. Figure 2 shows the
estimated fire velocity vectors overlying the background IR temperature field. The IR
temperatures cover the full 25°=500°C temperature range of the camera setting. For about
the first 0.15 m above the fuel pool the thermal field was saturated because the IR
temperature exceeded 500°C. In this region, the estimated fire speed is not accurate
because the movement of the ‘hot’ pixels may not be observed. Above this region, the
upward velocity vectors and rotating air are shown in figure 2. There is an accelerating
central core in the fire plume with relative high turbulent velocities at the edge of the fire.
This is consistent with the vortex observed at the left and the right edges of the fire
plume. It is known that the fire vortex leads to strong radial inflow of ambient air into the
core of the fire. The estimated peak value of vertical velocity is about 2 m/s.

Overall, the estimated velocity field using gradient-based algorithm appears
reasonable. Because there is no independently mcasured velocity data, the accuracy of
this method in the present fire case cannot be assessed. One problem is that the current

sampling frequency of 5 Hz is too low to capture the successive change of the



temperature image to a satisfactory accuracy. For the gradient-based algorithm, the main
assumption is that the signal is conserved over a short time. However, as shown in figure
1, the change of the temperature between the two successive images is evident over a
relatively long sampling time interval of 0.2 seconds. This certainly is expected to reduce
the accuracy of the gradient-based algorithm. In the next section, the temperature data
obtained from the FSD code will be used to analyze the effect of image sampling

frequency on the accuracy of the gradient-based algorithm.

Estimated Velocity from CFD Data

Recent increases in computer power and the development in turbulence and
combustion models make it possible for researchers to use CFD (computational fluid
dynamics) code to study fire. With a CFD code, it is possible to provide full information
on density, velocity, temperature and species concentrations. In this paper, the FDS (fire
dynamics simulator) code developed by McGrattan et al. (2000) was used to simulate the
fire plume under the approximate condition with the present experiment. Because there
were no measured velocity data, the purpose of the FDS code was to utilize predicted
temperature fields to estimate fluid velocities using the two algorithms discussed, and to
compare these estimates with simulation results. The three dimensional computational
domain is 0.8%0.6x0.8 m in size along the x, y and z directions respectively. The grid
used is 81x61x81. The heat release rate per unit area is 615 kW/m’. The ambient
temperature is 25 °C. The computed instantaneous temperature data were assumed as
successive digital thermal images. Both the gradient-based algorithm and the DPTV-based
algorithm were used to estimate the velocity field. These velocity field predictions were
then compared with that obtained by the FDS code.

Figure 3 illustrates the successive images of temperature field computed from the
FDS code for the pool fire using the assumed heat release rate. The time difference is
0.00687 second corresponding to a data sampling rate of 145 Hz. Over this short time
period, a minor upward movement of the temperature images can be observed, however,
the shape of the temperature images is almost same without significant change. This

means the gradient-based algorithm can use the assumption that the signal from a point is

conserved over a short time.



Figures 4 (a) and (b) show a comparison of the velocity vectors computed from
FDS code and that estimated from gradient-based algorithm, overlaying the background
temperature field. Overall, both velocity fields compare well in the fire region. There are
upward velocity vectors in the core region and minor rotating vortices at the edge of the
fire plume. The peak value of instantaneous vertical velocity estimated by gradient-based
algorithm is about 9 m/s, which is a little larger than that calculated by FDS code, 7 m/s.
As discussed earlier, the frequency of the thermal images is important for the
accuracy of the gradient-based algorithm. At a height z = 40 cm, figure 5 illustrates the
comparison of the vertical velocity profiles obtained from FSD code and from gradient-
based algorithm using temperature images with different sampling rates. It is clear that
the frequency of the sampled images will influence the results obtained from the
gradient-based algorithm. For the present case, the best accuracy is achieved with images
procured with a sampling frequency of 145 Hz. At smaller sampling time intervals or
high sampling frequency, the movement of the temperature images is not evident so that
the value of Az obtained from equation (5) is not accurate. At low sampling rates, the
assumption of conserved signal from a point over a short time may not be applicable.
However, it should be pointed out that an acceptable sampling rate might depend on the
domain size of the thermal images and the speed of the images. In the experiment of a
wild fire examined by Clark et al. (1999), the domain size of the IR thermal image is
20%x20 m and the time step used is from 0.1 s to 66 s. The results obtained were
reasonable, showing two rising towers of hot, rotating air that were consistent with
vorticity at the fire front undergoing enhanced vortex tilting.
Using successive temperature images obtained from FDS code (shown in figure
3), the DPIV-based algorithm was utilized to estimate the velocity field. In the present
case, the temperature signal at each grid point is assumed as a hot pixel or tracer particle.
For the two-dimensional image shown in figure 3, the grid size is 81x81, corresponding
to 6561 hot pixels. The sequential images are analyzed by subdividing the image into
small interrogation areas (IA) including 9x9 pixels or grid points. In order to determine
the displacement of hot pixels, a statistical cross-correlation analysis is performed. The
interrogation areas from successive images are cross-correlated with each other. The

correlation produces a signal peak, identifying the displacement, Ax and Ay, that is the



result of a velocity vector describing the average direction and speed of pixel
displacement in each small TA. This process was repeated for each TA spanning the entire
image.

Figure 6 shows the velocity vector field obtained using the DPIV-based
algorithm. Because of the selected size of 1A, 9%9 pixels, each velocity vector represents
the average velocity in each IA, the velocity vector field shows a low density. Due to the
presence of vortices, the movement of the flame plume appears irregular. This makes it
difficult to detect velocity vectors through cross-correlation. In general most of velocity
vectors are upward that are consistent with the results obtained from the FDS code. At the
edge of the fire plume, there are leftward and rightward velocity vectors due to the
vortical motion. Overall the estimated velocity vector field from the DPIV-based
algorithm reflects the basic structure of the fire plume, but the results are still not very
satisfactory. The peak velocity magnitude is about 2 m/s compared to 7m/s obtained from
the FDS code. The main reason for this large discrepancy is attributed to the relatively
low resolution of the whole image (81%81) which was divided into small TA’s including
9x9 pixels for estimating the velocity field. The low density of hot pixels influences the
normalized cross-correlation, and detection of the position of its peak value. An
important difference between the DPIV algorithm and the present DPIV-based algorithm
is that the signal generated by tracer particles is conserved optical intensity, but the
temperature value represented by hot pixel will change with time. These preliminary

velocity estimates produced by the DPIV-based algorithm requires further investigation.

CONCLUSION

The use of thermal infrared imagery to estimate flame velocities in wildland fires
was investigated. Two methods were considered. The first one is a gradient-based
algorithm that relies on an equation that relates optical velocities to spatial and temporal
changes in the image. The second method utilizes techniques in digital particle 1mage
velocimetry. The gradient-based estimation of velocities compared well with that
obtained by FDS code. The sampling rate of the thermal images is important for the

accuracy of the gradient-based algorithm. Results illustrate the applicability and
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performance of gradient-based algorithms in fire research. Preliminary DPIV-based
results although encouraging, requires further investigation.

While techniques utilizing infrared imagery to estimate velocities are promising,
we need to increase the sampling rate in order to gather more accurate information. In
the near future, we will have the capability to measure flames at sampling rates in excess
of 30 Hz. The DPIV-based algorithm provides an easy and fast tool to implement FET
based cross-correlation to estimate fluid velocities. Additional improvements under
investigation include acquisition of high-resolution images, three-point estimators,
offsetting the interrogation areas to increase thc matched “hot” pixels, etc. High-
resolution imagery, coupled with gradient-based and DPIV-based algorithms enables us
to estimate flame velocities in sufficient detail to enable comparison with computational

models of combustion in live fuels.
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Figure 1. Successive images of temperature (K) field of the pool fire above the fuel of
excelsior measured by thermal camera with time difference 0.2 s or sampling rate 5 Hz.
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Figure 2. Velocity vector field estimated by the gradient-based algorithm from the
thermal images shown in figure 1, overlying the background IR temperature field.
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Figure 4. Comparison of velocity vector field (a) computed from FDS code; (b) estimated
by gradient-based algorithm using temperaturc images obtained from FDS code.

Sampling rate is 145 Hz. Temperature contours are illustrated to show the flame shape.
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Figure 6. Velocity vector field estimated by DPIV-based algorithm using two successive
images calculated from FDS code with image sampling rate 145 hz.
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