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Abstract

In this thesis, we present practical experimental results to demonstrate a control law

for consensus of multiagent systems with switching topologies and time delays. The

nonlinear control law utilizes discontinuous cooperative control gains and uses con-

traction mapping to achieve consensus of multiagent systems. The testing platform we

used consists of a number of mobile robots and software simulations both in Matlab

and Microsoft Studio C++. We present the effectiveness of the control law design by

Aria mobile robots with applications in distributed cooperative formation control. Com-

puter simulations and hardware experiments presented include point consensus control

and formation control, both with changing topologies and time-delays. In addition to

2D simulations and experiments, we also developed the 3D model for more practical

applications, such as Unmanned Aerial Vehicles (UAVs) and Autonomous Underwater

vehicles (AUVs). The research presented was supported by Air Force Research Labora-

tory / Information Directorate (AFRL/RI)’s Machine Intelligence for Mission Focused

Autonomy program. The research presented in this thesis was included in multiple pre-

sentations to AFRL program managers, who provided very favorable feedback to our

research. Recently, some of our research results was published in the proceedings of

2014 IEEE International Conference on Electro/Information Technology [1], and the

paper received Best Paper Award at the conference. In addition, a poster presentation

describing our research was made to ERAU College of Engineering’s Industry Advi-

sory Board. The process of implementing the research results in AUVs has also been

progressing significantly. Upon invitation, some hardware tests were performed as part

of NASA NEEMO 19 (Extreme Environment Mission Operations) experiments, and

were subsequently reported twice in the headlines of the Science and Education section

in the Daytona Beach News Journal. Technical papers describing proposed cooperative

control in AUVs were submitted to 2015 ACM and IEEE conferences. . .



Acknowledgements

This thesis is not only a certification to graduate, it contains most of my study and

research life in ERAU. First and foremost I am deeply indebted to Dr. Tianyu Yang for

his continuous support both in life and research study. Dr. Tianyu Yang has supported

me not only by providing a graduate research assistantship, but also academically and

mentally with his patience, motivation and immense knowledge. Thanks to him for the

guidance of research and thesis writing for almost one and half years. I could not have

a better advisor both in my life and my study.

Also, I would like to express my deepest gratitude to Dr. Jing Wang, for his excellent

guidance in research and experiments. His knowledge and ideas always led me in a

most efficient way. I always experienced professional mentoring from him for solving

practical issues.

Besides, I would like to thank Dr. Ilteris Demirkiran with the great help of building my

thesis work professionally, and Dr. Hong Liu with selfless support to my study and life.

Most importantly, I would like to thank my parents for their support and encouragement.

Last but not the least, I appreciate all of my friends for a wonderful experience in two

years of graduate school. . .

ii



Contents

Abstract i

Acknowledgements ii

List of Figures v

1 Introduction 1

2 Relevant Literature and Research Work 4
2.1 System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Linear Dynamical Systems . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Nonlinear Dynamical Systems . . . . . . . . . . . . . . . . . . 6

2.2 Communication Topologies . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Undirected Communication Topologies . . . . . . . . . . . . . 7
2.2.2 Directed Communication Topologies . . . . . . . . . . . . . . 8

2.3 Cooperative Fleet Control . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Nonholonomic Ground Vehicles . . . . . . . . . . . . . . . . . 10
2.3.2 Underwater Vehicles . . . . . . . . . . . . . . . . . . . . . . . 11

3 Research Methodology 14
3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Simulations and Experiments 19
4.1 Software Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 2D Software Simulations . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 3D Software Simulations . . . . . . . . . . . . . . . . . . . . . 26

4.2 Hardware Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Aira Ground Vehicles Experiments . . . . . . . . . . . . . . . 27
4.2.2 Eco-dolphin Underwater Vehicles Experiments . . . . . . . . . 30

4.2.2.1 System Requirements . . . . . . . . . . . . . . . . . 30

iii



Contents iv

4.2.2.2 Contributions and Future Work . . . . . . . . . . . . 33

5 Discussions, Conclusions and Recommendations 35

A Appendix: Software Programs 37
A.1 Partial Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.1.1 System Dynamics and Control in 2D and 3D Simulations . . . . 37
A.1.2 Main Program for 2D and 3D Simulations . . . . . . . . . . . . 40

A.2 Partial C++ Code for Ground Vehicles . . . . . . . . . . . . . . . . . . 44

B Appendix: Photos and Tables 56

C Appendix: Websites and Media Links 59

Bibliography 60



List of Figures

1.1 A fleet of AUVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 A fleet of UAVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Global Communication Diagram . . . . . . . . . . . . . . . . . . . . . 7
2.4 Leader Follower Communication Diagram . . . . . . . . . . . . . . . . 8
2.5 Least Restrictive Communication Diagram . . . . . . . . . . . . . . . . 9
2.6 Amigo Mobile Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Underwater Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Testing Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Rendezvous of four agents without the sign function with undirected
communication topology . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Rendezvous of four agents with the sign function with undirected com-
munication topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Formation control with sign function and undirected communication
topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Formation control without sign function with undirected communica-
tion topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Rendezvous of four agents with the sign function and time-delays with
the directed communication topology . . . . . . . . . . . . . . . . . . 24

4.6 Rendezvous of four agents using new control laws with the sign func-
tion and time-delays and the directed communication topology . . . . . 25

4.7 Formation control using new control laws with the sign function and
time-delays and the directed communication topology . . . . . . . . . . 25

4.8 Formation control in 3D: a cuboid moving in the circle . . . . . . . . . 26
4.9 Practical position shift data from robot1 and robot2 . . . . . . . . . . . 28
4.10 Comparison between theoretical values with experimental values in dis-

continuous control gain . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.11 Rectangle-to-line and line-to-rectangle formation control with directed

communication and the sign function . . . . . . . . . . . . . . . . . . . 29
4.12 Formation change from rectangle to line to rhombus, ending with a

point with directed communication and the sign function . . . . . . . . 29

v



List of Figures vi

4.13 Yellow dolphin system diagram . . . . . . . . . . . . . . . . . . . . . . 31
4.14 Blue dolphin system diagram . . . . . . . . . . . . . . . . . . . . . . . 32
4.15 Position observed by the Position System . . . . . . . . . . . . . . . . 34

B.1 Sonar communication bit error rate without Sign function 1 . . . . . . . 56
B.2 Sonar communication bit error rate without Sign function 2 . . . . . . . 57
B.3 Sonar communication bit error rate with Sign function 3 . . . . . . . . 58



Chapter 1

Introduction

Cooperative control[5][10] aims at achieving consensus or agreement dynamics in a

multiagent system. It is an area of research lying at the intersection of systems dynamics

and graph theory. A prominent application area of cooperative control is autonomous

systems, especially for military and government demands. The development of single

agent systems is increasingly mature in recent years. For example, unmanned aerial

vehicle (UAV) and autonomous underwater vehicle (AUV) play an important role in

aerial photography, data collecting, specification monitoring in severe environments or

classified operation tasks. In addition cooperative control of multiagent systems can

enhance the system performance for these applications due to its’ high efficiency and

improved stability and reliability. The design of cooperative control is closely related

to system dynamics. For linear systems, the dynamics can be simplified to the first-

order integrator model or the double integrators model[1][2]. For nonlinear systems,

which are more relevant to real world applications, cooperative control is complicated

by complex system dynamics, system capability, signal transmitting and time-delays.

Large gaps exist between theoretical system design and practical applications[1][3].

The multigent system is a computerized system of multiple interacting intelligent agents

within an environment[5][13], and agents work together to accomplish certain tasks.

Each agent in the system has the capability of self-operating and communicating/sens-

ing with other agents. There are two key topics in the research of multiagent systems:

the design of cooperative control laws, and the controllability of networks. The network

communication topology plays a key role in accomplishing consensus tasks. From this

1



Introduction 2

perspective, several different communication strategies have been proposed[2][7]. A

typical undirected communication network is one in witch all agents have global posi-

tion information of the group, but this reliable topology presents some problems as the

amount of agents increases, since one agent need to obtain position information from

all other agents, which causes heavy payload for communication channels. Another

popular method is the leader-follower model, in which one agent plays as the leader,

and other agents communicate with the leader when performing the tasks. This model

has much less demanding communication requirement. Nevertheless, the entire system

breaks down once the leader agent is disabled. In this research, we tried to observe a

reliable communication topology with little restrictions and satisfactory performance.

The directed communication topology with the least restrictions will be presented in

this thesis together with a recently proposed new control law with discontinuous con-

trol gains for this topology.

In this thesis, we experimentally validate the effectiveness of the nonlinear coopera-

tive control proposed in [1], which is demonstrated through discontinuous cooperative

control for consensus of multiagent systems with switching topologies and time-delays

using mobile robots[1][2][12][15]. By designing nonlinear piecewise control gains, the

rendezvous or formation of multiangent systems with switching topologies and time-

delays are achieved both in software simulations and hardware experiments.

FIGURE 1.1: A fleet of AUVs
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FIGURE 1.2: A fleet of UAVs



Chapter 2

Relevant Literature and Research
Work

2.1 System Dynamics

Recently the development of cooperative control dynamical system has been improved

in linear dynamical systems [6], in terms of both design stability and consensus effi-

ciency. Also, significant progress has been made in nonlinear system control design

[7].

2.1.1 Linear Dynamical Systems

In a continuous-time autonomous or networked linear dynamical system, we usually

have the system model of (1), which specifies time derivatives of the systems variables

that are real and continuous in time.

ẋ(t) = A∗ x(t) (1)

In this equation x(t)∈ Rn, n is the number of agents in the system, and A is a constant or

a dynamic matrix that is not time dependent. The system model and diagram are shown

in figure 2.1 and 2.2.

4
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FIGURE 2.1: System Model

FIGURE 2.2: System Diagram
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2.1.2 Nonlinear Dynamical Systems

The linear system we mentioned above does have its significance in theoretical study,

and many linearized system models can be used to solve certain parts of nonlinear sys-

tems. On the other hand, a nonlinear system in the real world is often much more com-

plicated, especially when some random system deviations exist, such as interferences

or time-delay [10][8].

For general nonlinear systems, their design has seen fast development recent years with

the help of Lyapunov function and passivity design [12][13]. Lyapunov function in

autonomous system can be expressed as (2),

x∗ = 0 (2)

where x∗ is an equilibrium of the autonomous system ẋ = f (x), and Lypaunov function

V can be defined with time derivative as in (3).

V̇ (x) =
d
dt

V (x(t)) =
∂v
∂x
· dx

dt
= ∇V · .x= ∇V · f (λ ) (3)

2.2 Communication Topologies

Communication topologies describe the communication of information among a fleet

of agents. It can be expressed in matrix as (4),

S(ts
k) =


s11 a12(ts

k) · · · a1m(ts
k)

s21(ts
k) a22 · · · a2m(ts

k)
...

... . . . ...

sm1(ts
k) sm2(ts

k) · · · amm

 , (4)

where at (ts
k) : k = 0,1, · · · , the ith agent receives velocity, orientation and position infor-

mation from agent j, if si j(ts
k) = 1. Otherwise, if si j(ts

k) = 0, there is no communication

between agent i and agent j.
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In generaly, there are two types of communication topologies, directed and undirected.

2.2.1 Undirected Communication Topologies

In the undirected communication topologies, there is no restriction on the direction of

communication, which means all agents have the ability to both receive and transmit

data (such as position information). For example, the mesh topology represents a net-

work which ensures that every agent is connected to all the remaining agents in the fleet,

as described in (5) and figure 2.3. This topology’s main advantage is fault tolerance.

S(ts
k) =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 , (5)

FIGURE 2.3: Global Communication Diagram

There is another common undirected communication topology named leader-follower

model, as described in (6) and figure 2.4. One leader agent in the fleet communicates

with all the remaining agents. In this topolgy, the number of communication channels

and the required communication capacity are reduced. This topology works well as
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long as the leader is functioning normally and has sufficient communication capability.

This model is widely used in cooperative fleet control.

S(ts
k) =


1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

 , (6)

FIGURE 2.4: Leader Follower Communication Diagram

2.2.2 Directed Communication Topologies

Directed communication topologies are defined as: there is only one way communi-

cation between two agents, either receiving or transmitting. In this thesis, we seek a

directed communication topology that is least demanding (restrictive) while still guar-

antees multi-agent system consensus. To assure system consensus, this least restrictive

topology should satisfy the so-called sequential completeness condition according to

[1]. To understand this condition, we first note that if the sensing matrix sequence is

irreducible (corresponding directed graph is strongly connected), it is sufficient to guar-

antee consensus. But there is redundancy in communication. If the sensing matrix

sequence is reducible, it can be converted into a lower triangular form. Intuitively, the
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least restrictive condition should ensure that no subset of agents are disconnected from

the remaining agents permanently. From the graph theory perspective, a spanning tree

should exist. Mathematically, we can have the following two definitions regarding the

sequential completeness concept, which specifies the least restrictive communication

topology. An example of such a communication topology matrix and its corresponding

digram is presented in (7) and Figure 2.5.

Definition 1: Sensing matrix sequence S(t) is sequentially lower-triangularly complete,

if it is sequentially lower-triangular and in every row i of its lower triangular canonical

form, there is at least one j < i such that, the corresponding block is uniformly non

vanishing.

Definition 2: Sensing/communication matrix sequence S(t) is sequentially complete,

if the sequence contains an infinite subsequence that is sequentially lower triangularly

complete. Equivalent to a spanning tree in graph theory.

S(ts
k) =


1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

 , (6)

FIGURE 2.5: Least Restrictive Communication Diagram
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2.3 Cooperative Fleet Control

2.3.1 Nonholonomic Ground Vehicles

In the general nonlinear system, impressive development in the cooperative control de-

sign has been made. Nonetheless, there are still no unified cooperative control laws that

can be directly applied to dynamic systems with multiple agents with inherent nonlin-

ear kinematic constraints. For example, a nonholonomic system is a system whose state

depends on the path taken to achieve it [4][8][10].

In robotics, if the total degree of freedom are larger than the controllable parameters,

we have a nonholonomic system. It has wide applications, such as ground vehicles

with wheels and steering, fixed wing jets, etc. In our project, Amigo mobile robots, as

shown in figure 2.6, were used in hardware experiments to validate the newly proposed

cooperative fleet control.

FIGURE 2.6: Amigo Mobile Robot



Relevant Literature and Work 11

2.3.2 Underwater Vehicles

The newly proposed consensus algorithm is able to operate in tough environments, es-

pecially in the presence of strong interference and with low transmission/receiving com-

munication rate. The underwater environment provides such an experimental scenario

to test the consonsus algorithm. For the past couple of years, I have been the project

leader of the Eco-dolphins team at ERAU, and we have been building a fleet of AUVs,

which can be used to validate cooperative fleet control algorithms.

We sequentially developed the eco-dolphins during the past two years. We have three

underwater vehicles (Eco-dolphins), as shown in figure 2.7. The Yellow Dolphin was

fully tested in its mission destinations Indiana River Lagoon and littoral water near Key

Largo. The Blue Dolphin was assembled but needed additional calibration. The Red

Dolphin is still under construction. The streamlined hulls are elliptical shells with four

feet along the major axe and one foot along the minor axe. Besides the three AUVs,

the Eco-Dolphin system also includes a laptop that installs the ground station program

and user interface, an acoustic positioning subsystem, and dual mode communication

subsystem. The position of AUVs can be tracked by the acoustic positioning subsystem

installed on three buoys while submerged and by GPS while surfaced. The communi-

cation subsystem can relay wireless signals transmitted from distant ground station to

underwater sonar signals for submerged AUVs. With existing mechatronic devices and

successful MATLAB simulations, the fleet of AUVs are expected to run cooperatively

with minimal supervision from the ground station. The fleet of three AUVs is expected

to perform with full functionalities in summer 2015.

The first phase of design, production and assembly of the yellow Eco-Dolphin proto-

type, was performed in twelve months. The design includes an internal attitude control

system, combined with internal propulsion from brushless direct current thrusters, thus

allowing the vehicle to ascend and descend.

The team has also successfully completed the second phase of the program, which in-

volved tracking the Eco-Dolphins while submerged underwater. Work has been con-

ducted to add a GPS system for surface tracking. Converting the acoustic system from
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tethered to wireless made the ground station more robust. The Eco-Dolphin is config-

ured with recently developed control system software that utilizes a relay combination

of Wireless, Sonar and GPS radio wave communication.

The current progress on the blue Eco-dolphin was achieved by the end of summer 2014,

and the dolphin was tested in littoral waters of central Florida, blue spring, mosquito

Largo, Key Largo. As part of NASA Extreme Environment Mission Operations 19

teams, Eco-dolphin finished the extreme environment testing in Key Largo with coop-

erative wireless fleet control and navigation mission. The stories appeared in the head-

lines of Daytona Beach News Journal’s Science and Education section twice. Also, the

Eco-dolphin team was invited to NASA NEEMO 20 in 2015.

The Fourth phase involves the addition of three sequential (yellow, blue, red) vehicles,

therefore allows for better position and orientation data to be sent to the teams buoy

network. The three vehicles and the three-buoy communication structure increase the

data points collected for surveillance and underwater mapping purposes.

FIGURE 2.7: Underwater Vehicles
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FIGURE 2.8: Testing Figure



Chapter 3

Research Methodology

3.1 Problem Formulation

The 2D dynamics of a group of mobile agents are expressed as

ẋi = vi cosθi, ẏi = vi sinθi, θ̇i = ωi (1)

where xi and yi denote the position of the ith agent, θi shows the orientation which

is based on the driving velocity vi and steering velocity ωi. In this case (xi,yi) ∈ R2,

(vi,ωi) ∈ R and i ∈ 1, · · · ,n.

Let us define the desired trajectory for the group of agents as

q0(t) = [x0(t),y0(t)]T ∈ R2 (2)

And the motion frame is denoted as F(t), which can be considered as a constraint in

geometric coordinates in terms of relative positions of the robots. F(t) consists of q0(t)

and the orthonormal vectors, e1,e2, as defined below,

e1(t) =

[
e11(t)

e12(t)

]
=

 ẋ0(t)√
[ẋ0(t)]2+[ẏ0(t)]2

ẏ0(t)√
[ẋ0(t)]2+[ẏ0(t)]2

 ,

14
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e2(t) =

[
e21(t)

e22(t)

]
=

 ẋ0(t)√
[ẋ0(t)]2+[ẏ0(t)]2

ẏ0(t)√
[ẋ0(t)]2+[ẏ0(t)]2

 , (3)

This 2D orthonormal vectors can be easily convert to 3D, and e3(t) is a vector cross

product by e1(t) and e2(t) (4),

e3(t) = cross(e1(t),e2(t)),

e3(t) = e1(t)∗ e2(t), (4)

Based on the orthonormal vectors ei(t) and the trajectory information q0(t), the agent

position in 2D and 3D are given as,

Pi(t) = αi1e1(t)+αi2e2(t),

Pi(t) = αi1e1(t)+αi2e2(t)+αi3e3(t), (5)

where Pi(t) is the position of the ith robot, and αi j are constants determining the forma-

tion shape.

The sensing/communication information exchange among the fleet agents can be ex-

pressed by the sensing/communication matrix,

S(ts
k) =


s11 a12(ts

k) · · · a1m(ts
k)

s21(ts
k) a22 · · · a2m(ts

k)
...

... . . . ...

sm1(ts
k) sm2(ts

k) · · · amm

 , (6)

where at (ts
k) : k = 0,1, · · · , the ith agent receives velocity, orientation and position infor-

mation from agent j, if si j(ts
k) = 1. Otherwise, if si j(ts

k) = 0, there is no communication

between agent i and agent j.

Define the sign(z) function as,
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sign(z) =


1, z > 0

0, z = 0

−1, z < 0

(7)

For si j(ts
k) 6= 0, the control model can be expressed as,

ui(t) =
n

∑
j=1

α(si j(ts
k),Pj(ts

k))sign(Pj(t)−Pi(t)), (8)

where t ∈ [ts
k, t

s
k+1], and α(,) is a nonlinear control gain.

3.2 Control Design

In this propject, we use formation control to demonstrate the consensus of multiagent

systems with the new control law (8). First, we use the robot model (1), and define

x̂ = x+Rcosθ , ŷ = y+Rsinθ . Therefore,

˙̂x = vcosθ −Rsinθω, ˙̂y = vsinθ −Rcosθω, (9)

Now, we can linearize the robot model as (10), and the real control inputs are expressed

as (11).

˙̂x = ux, ˙̂x = uy, (10)

[
v

ω

]
=

[
cosθ sinθ

− sinθ

R
cosθ

R

]
+

[
ux

uy

]
,

[
v

ω

]
=

[
uxcosθ +uysinθ

−uxsinθ

R +
uycosθ

R

]
, (11)
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The moving velocity for the ith robot during formation to a certain shape following

certain predetermined track can be expressed as (12) based on (2),

qi(t) = q0(t)+
2

∑
j=1

α(si j(ts
k),Pj(ts

k)), (12)

This can be considered as the derivative value based on the robot’s relative velocity.

The ith robot’s control design without time-delays is based on (2)(3)(4)(8)(12), and is

given by,

ui =
n

∑
j=1

α(si j(ts
k),Pj(ts

k))sign(Pj(t)−Pi(t))+ q̇i(t), (13)

in (13), α(si j(ts
k) is the nonlinear control gain. S(ts

k) can be changed to reflect different

types of communication strategies such as leader-follower, global communication and

neighbor-follower, etc.

The design of nonlinear control gain for global communication and simple directed

communication without time-delay can be given as,

α(si j(ts
k)) =

si j(ts
k)

∑l=1 sil(ts
k)
, (14)

which has been studied in [1]. In this thesis, we show through computer simulations and

robots experiments that, the control gain (14) is sufficient for systems with continuous

control laws, i.e., no sign function in (13). However, the control law with control gain

(14) may fail to achieve consensus. Therefore, we adopt a new nonlinear control law

recently proposed in [1]. Let the nonlinear control gain αi j be designed as,

case 1: if Pi(ts
k) = max j∈NiPj(ts

k) = min j∈NiPj(ts
k),αi jcan be any bounded positive value.

case 2: if Pi(ts
k)≥ max j∈NiPj(ts

k), then al pha(si j can be ranged,

0≤
n

∑
j∈Ni

α(si j(ts
k)<

Pi(ts
k)−min j∈NiPj(ts

k)

c
, (15)
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case 3: if Pi(ts
k)≤ min j∈NiPj(ts

k), then al pha(si j can be selected,

0≤
n

∑
j∈Ni

α(si j(ts
k)<

max j∈NiPj(ts
k)−Pi(ts

k)

c
, (16)

case 4: if min j∈NiPj(ts
k)< Pj(ts

k)< max j∈NiPj(ts
k), let al pha(si j be selected to satisfy,

0≤
n

∑
j∈Ni

α(si j(ts
k)< min[(9),(10)], (17)

where c could be any positive constant. As proved in [1] analytically, the system con-

sensus is guaranteed with this choice of piecewise nonlinear control gain.



Chapter 4

Simulations and Experiments

4.1 Software Results

In the Matlab environment, we demonstrate the new control algorithm for multiagent

systems. All the demos consist of four agents performing the rendezvous or formation

control tasks with two communication topologies. One is the undirected communica-

tion topology, which means for each pair of two connecting agents, both know each

other’s information in terms of velocity, position and orientation. The other one is di-

rected communication topology, in which an agent may know a neighboring agent’s

information, but not vice versa.

4.1.1 2D Software Simulations

To implement the control law shown in (13), for the undirected communication topol-

ogy, we consider a group of four mobile robots achieving a rhombus formation while

following a circular movement. For the general setting as expressed in (12) (13), we

set q0(t) = [2cost,2sint]T , and e1(t) = [−sint,cost]T ,e2(t) = [−cost,−sint]T . The four

robots are following a circle, and the control gain applied is (14). The update time

ts = 0.05s. First, the control input (13) is adopted, which contains the sign function.

Second, to simulate the control law without the sign function, simply remove the sign

function part.

19
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In the first set of simulations, the undirected communication topology is adopted and we

compare the system performance with and without the sign function. Four robots are

designed to either converge to one point or form a certain shape (while making circular

movements). si j(tk) is applied as,

s1 =


1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 1

 ,s2 =


1 1 0 0

1 1 0 0

0 0 1 0

0 0 0 1

 ,

s3 =


1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1

 ,s4 =


1 0 0 0

0 1 0 0

0 0 1 1

0 0 1 1

 , (18)

The obtained trajectories are shown in figures 4.1-4.4.

Figure 4.1 shows rendezvous of four agents without the sign function with undirected

communication topology. They start from four initial positions and converge to one

point in T=4.7s. Figure 4.2 shows rendezvous of four agents with the sign function and

undirected communication topology, starting from four different positions and converg-

ing to one point. Time to consensus is T=3.6s.

Figure 4.3 shows four robots starting from different positions and forming a rhombus

while following a circle. We use the sign function and the undirected communication

topology. Time to the desired formation is T=3.3s. Figure 4.4 shows four robots starting

from different positions forming a rhombus while following a circle. Here we do not

use the sign function, and adopt the undirected communication topology. Time to the

desired formation is t=4.4s
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FIGURE 4.1: Rendezvous of four agents without the sign function with undirected
communication topology

FIGURE 4.2: Rendezvous of four agents with the sign function with undirected com-
munication topology
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FIGURE 4.3: Formation control with sign function and undirected communication
topology

FIGURE 4.4: Formation control without sign function with undirected communication
topology
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For the directed communication topology, we adopt the least-restrictive neighbor com-

munication topology, with each robot only communicating with a neighboring agent.

There is no leader in the system, and minimum data transferring is incurred. si j(tk) is

set as,

s1 =


1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

 ,s2 =


1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

s3 =


1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

 ,s4 =


1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 1

 , (19)

The control law with time-delays and the sign function can be expressed as (21), with

τi j set to one second,

ui =
n

∑
l=1

α(si j(ts
k),Pj(ts

k)− τi j)sign(Pj(t− τi j)−Pi(t))+ q̇i(t), (21)

The control gain design is specified in (14)(15)(16)(17), i.e., every time an agent re-

ceives a neighbor’s position information, the software compares this value with the

maximum or minimum value as shown in (14)(15)(16)(17), then the control gain is

selected accordingly.

As we mentioned before, the control gain in (14) may not be appropriate for the control

law with the sign function. Agents may fail to form the desired shape. Figure 4.5 below

gives an example of such scenario with the continuous control gain (14). The four

agents fail to converge within 60s and the trajectory contains oscillation.
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FIGURE 4.5: Rendezvous of four agents with the sign function and time-delays with
the directed communication topology

As we apply the rules (14)(15)(16)(17), the system works satisfactorily under the same

conditions, as shown in figure 4.6. A formation example is also shown in figure 4.7.
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FIGURE 4.6: Rendezvous of four agents using new control laws with the sign function
and time-delays and the directed communication topology

FIGURE 4.7: Formation control using new control laws with the sign function and
time-delays and the directed communication topology
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4.1.2 3D Software Simulations

We also implemented the new control law in 3D conditions in MATLAB. Four agents

with initial positions: r1(0,0,0), r2(0,0,0), r3(0,0,0), r4(0,0,0) converge to the formation

shape: r1(0,0,0), r2(-1,1,0), r3(-1,-1,0), r4(-2,0,0).

FIGURE 4.8: Formation control in 3D: a cuboid moving in the circle
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4.2 Hardware Experiments

4.2.1 Aira Ground Vehicles Experiments

We implemented the new control law in Aira mobile robots. The robots know the initial

position of themselves, but when they are moving, each robot only knows the veloc-

ity and the position information from one of its neighboring robots. q̇i(t) is set based

on the requirement of the consensus speed. All the Aira demos shown are for the dis-

tributed formation control of multiagent systems with switching topologies. q̇i(t) is set

to 200mm in both x and y orientations. The communication topology (19) is adopted

with the control law (13). At this time, the control gains are designed as Kx=120 and

Ky=20. Figure 4.9 shows the position information of robot 1, and figure 4.10 compares

the experimental results with the theory.

Referring to Robot 1 and Robot 2, Y is the distance between two robots in x and y

domains. We sampled 120 points, one point per second.

From figure 4.9 we can see the experimental value Kx=120 fits the theoretical control

gain very well based on (15). Similarly, for the y domain, the experimental value fits

well with the theoretical value (17).
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FIGURE 4.9: Practical position shift data from robot1 and robot2

FIGURE 4.10: Comparison between theoretical values with experimental values in
discontinuous control gain

Figures 4.11 and 4.12 are a series of images showing the Aira robot simulations in our

lab.

Figure 4.11 shows the Rectangle-to-line and line-to-rectangle formation control with

directed communication and the sign function.
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Figure 4.12 shows the formation shape changing from rectangle to line, then to rhom-

bus, and finally converging to one point. K is set to 60, and the moving velocity

q̇i(t) = 100mm with the same communication topology (19).

FIGURE 4.11: Rectangle-to-line and line-to-rectangle formation control with directed
communication and the sign function

FIGURE 4.12: Formation change from rectangle to line to rhombus, ending with a
point with directed communication and the sign function
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4.2.2 Eco-dolphin Underwater Vehicles Experiments

The AUVs share the same ground station, hull mold, type of thrusters, as well as similar

autopilot and positioning programs, electronic circuit control board, etc. However, the

three AUVs are also designed differently with complementary features.

4.2.2.1 System Requirements

Here we describe the key components that distinguish the Eco-Dolphin fleet from other

robots. The system is divided into three major components: 1) Three AUVs, 2) Ground

Station, and 3) Communication Network. The three AUVs run as a cooperative fleet to

collect heterogeneous data near the boat where the ground station is located. This func-

tion demands sophisticated communication systems among AUVs, as well as between

individual AUV and ground Station. Since electromagnetic radio signals do not work

under salty water for its high conductivity, acoustic communication is required when

the AUVs are submerged. Radio communication is also required to connect to ground

stations when AUVs are surfaced. Since AUVs cannot receive GPS signals underwater,

the fleet has to rely on acoustic positioning system. Hence, the Eco-Dolphin requires

dual communication systems as well as dual positioning system. Based on the size of

data collection sites and coverage of acoustic positioning range, the cruising distance

from the boat is designed to be about a square kilometer. The maximum cruise speed is

about 2 meters per second so that it can work under mild tidy current conditions. Blue

Dolphin can dive to calm water in 10 feet deep to improve acoustic communication.

The Yellow Dolphin can dive to 30 feet, and the Red Dolphin is designed to dive to 100

feet deep. The onboard battery needs to run for an hour when all thrusters run at max-

imum speed, and two hours continuously when the AUV runs normally. This means

that the AUV can have four-hour service time under water if the thrusters are on half of

the time. The Yellow dolphin is equipped with camera and hydrophones, and the Red

Dolphin is equipped with biochemical sensors and water sample collection devices. The

Red Dolphin shares the similar system diagram with the Yellow Dolphin, except for the

diving depth and payloads. Figure 4.13 and 4.14 illustrate the slightly different system

diagrams of the Yellow Dolphin and the Blue Dolphin.
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FIGURE 4.13: Yellow dolphin system diagram
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FIGURE 4.14: Blue dolphin system diagram

The top layer subsystems include a ground station, three AUVs, and scientific data col-

lection payloads on AUVs. In the middle layer, the ground station includes three acous-

tic positioning transducers on buoys, WIFI and acoustic communication modems, and a

laptop hosting the user interface for sending commands and observing AUV states and

positions. An AUV includes a Supervising Program installed in a SBC (Single Board

Computer, e.g. PC104) and an Autopilot Program installed in Arduino. In the low layer

hardware, each AUV includes propellers (thrusters), ballasts, two acoustic modems for

communication and positioning, Navigation devices such as GPS, IMU (Inertial Mea-

surement Unit), Compass, Depth Sonar, Short Range Obstacle Avoidance Sonar and

nexus of sensors for system safety, such as depth/temperature/humidity sensors. The

seven ovals in the middle layer represent the seven transactions logically connecting

hardware and software objects. Any path is a chain of intertwining objects and pro-

cesses that represent typical application scenarios.
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4.2.2.2 Contributions and Future Work

The set of three buoys allows the Eco-Dolphin team to track the location of a group

of AUVs while they are submerged under water. The buoy system acts as the relay

station from surface operations to underwater operations, which is a necessary link in

communication required for navigation and spatial awareness of the platform design.

This segment started with designing the three buoys, taking the product into manufac-

turing, and redesigning details to fulfill the tasks required of the network. Testing was

performed on both the buoyancy and stability of the buoys in Key Largo. Tracking of

an underwater vehicle was performed on three accounts under varying conditions to

give the team a baseline for future research and implementation of cooperative spatial

awareness.

During the NEEMO mission, we only tested the sonar communication between one

dolphin and ground station via communication sonar, and recorded the position infor-

mation by positioning sonar. This was the first step to simulate cooperative distributed

formation control, and we will further obtain the position information and establish the

communication with two sonars.

In the future, we will improve the communication system and test the wireless (WIFI)

communication on the surface in order to transmit commands to the dolphins.
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FIGURE 4.15: Position observed by the Position System



Chapter 5

Discussions, Conclusions and
Recommendations

In this thesis, we demonstrated a newly proposed distributed cooperative control for

consensus of multi-agent systems with switching topologies and time-delays using Mat-

lab and Aira mobile robots. Matlab simulations in 2D and 3D confirmed the advantages

of using the sign function with piecewise control gain, which, when compared with the

traditional control law without the sign function, guarantees consensus and results in

shorter consensus time. The simulation and experiental results validated the effective-

ness of the new control design in rendezvous and formation control problems with the

least restrictive inter-agent communication requirements.

Another important benefit of the new control law is that, it can be easily implemented in

robots, therefore practical implementation issues can be studied experimentally, such as

time-delays, hard ware limitations, etc. Formation control experiments with changing

topologies and time-delay were simulated with 2D mobile ground vehicles. Currently,

each robot does not have the capability of self-computing, and a computer in communi-

cation with all robots performs all calculations and sends commands to robot agents. In

this sense, our current hardware experiments with Aira Robots are in essence hardware

simulations.

For future work, we propose to demonstrate the new control design in 3D with a fleet of

autonomous underwater vehicles, with each of them having computing capabilities. The

35
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high interference and challenging nature of communication in underwater environment

enable us to test the robustness of the new control design. To prepare for this next

stage of experimentss, we have finished building two AUVs, and successfully tested

communication, motion, navigation and control systems individually. The immediate

next step is to implement the new consensus algorithm in these two AUVs.



Appendix A

Appendix: Software Programs

A.1 Partial Matlab Code

A.1.1 System Dynamics and Control in 2D and 3D Simulations

% Robot model:

% \dot\phi_{i1} = \phi_{i2},

% \dot\phi_{i2} = v_i,

% \phi_{i1}, \phi_{i2}, v_i \in Rˆ2

% Number of vehicles: Nagent

% The control objective is to move with the leader while coordinating with

% the neighboring agents as well as maintaining the relative positions to the leader

% Leader: psi(t) \in \Reˆ2 and its time derivatives psidot(t) and \psiddot(t)

% Case 1: constant velocity as \omega=(0.2, 0.2), omegax=0.2, omegay=0.2;

% psi = \omega t,

% psidot = \omega,

% psiddot =0,

% The moving frame attached to the leader: e_j(t) \in \Reˆ2, where

% e_1(t) = [ psidot_1(t)/\sqrt{ psidot_1ˆ2(t) + psidot_2ˆ2(t) }

% psidot_2(t)/\sqrt{ psidot_1ˆ2(t) + psidot_2ˆ2(t) } ]

% e_2(t) = [ - psidot_2(t)/\sqrt{ psidot_1ˆ2(t) + psidot_2ˆ2(t) }

% psidot_1(t)/\sqrt{ psidot_1ˆ2(t) + psidot_2ˆ2(t) } ]

% Need to calculate the derivatives: edot_i(t) and eddot_i(t)

% Coordinates of the i-th vehicle in the moving frame:

% delta_i(t) = \alpha_{i1} e_1(t) + \alpha_{i2} e_2(t),

% Its associated matrix is

37
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% Almatrix = [ \alpha_{11} \alpha_{12}; ... ; \alpha_{i1} \alpha_{i2}; ...]

% State transformation:

% x_{i1}=\phi_{i1} - psi - delta_i,

% x_{i2}=\phi_{i2}+ x_{i1}- psidot - deltadot_i ,

% Output

% y_i = x_{i1},

% Decentralized control and its canonical form:

% v_i = - x_{i2} - x_{i1} + u_i + psiddot + deltaddot_i

% under which

% \dot{x}_{i1} = -x_{i1} + x_{i2};

% \dot{x}_{i2} = -x_{i1} + u_i

% Cooperative control:

% u_i = G_i y,

% or u= G y

%function zdot=cformation3d(t, z)

%global Nagent S Almatrix;

% For Nagent robots: z \in Rˆ(Nagent*4) since each robot has 4

% differential equations to be solved (2 axis, 2nd order each)

% Leader: psi(t) \in \Reˆ2 and its time derivatives psidot(t) and \psiddot(t)

%2d circle where z is constant

%psi=[10*sin(0.1*t) 10*cos(0.1*t) 0];

%psidot=[cos(0.1*t) -sin(0.1*t) 0];

%psiddot=[-0.1*sin(0.1*t) -0.1*cos(0.1*t) 0];

%psi3dot = [-0.01*cos(0.1*t) 0.01*sin(0.1*t) 0];

%3d

%psi=[10*sin(0.1*t)*sin(0.1*t) 10*sin(0.1*t)*cos(0.1*t) 10*cos(0.1*t)];%10*cos(0.1*t)];

%psidot=[sin(0.2*t) cos(0.1*t)*cos(0.1*t)-sin(0.1*t)*sin(0.1*t) -sin(0.1*t)];%-sin(0.1*t)];

%psiddot=[0.2*sin(0.2*t) -0.2*sin(0.2*t) -0.1*cos(0.1*t)];%-0.1*cos(0.1*t)];

%psi3dot = [0.04*cos(0.2*t) -0.04*cos(0.2*t) 0.01*sin(0.1*t)];%0.01*sin(0.1*t)];

% The moving frame attached to the leader: e_j(t) \in \Reˆ2, where

% e_1(t) = [ psidot_1(t)/\sqrt{ psidot_1ˆ2(t) + psidot_2ˆ2(t) }

% psidot_2(t)/\sqrt{ psidot_1ˆ2(t) + psidot_2ˆ2(t) } ]

% e_2(t) = [ - psidot_2(t)/\sqrt{ psidot_1ˆ2(t) + psidot_2ˆ2(t) }

% psidot_1(t)/\sqrt{ psidot_1ˆ2(t) + psidot_2ˆ2(t) } ]

% Need to calculate the derivatives: deltadot_i(t) and deltaddot_i(t)

%e1 = [ psidot(1)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2); psidot(2)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2) ];

%e2 = [ -psidot(2)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2); psidot(1)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2) ];

%edot1 = [psiddot(1)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2)-psidot(1)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ3)

*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2));

% psiddot(2)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2)-psidot(2)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ3)



Partly Codes 39

*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2))];

%edot2 = [-edot1(2); edot1(1)];

%eddot1 = [ psi3dot(1)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2) - 2*psiddot(1)/sqrt((psidot(1)ˆ2 +

psidot(2)ˆ2)ˆ3)*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2))+3*psidot(1)/sqrt((psidot(1)ˆ2+psidot(2)ˆ2)ˆ5)*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2))ˆ2-psidot(1)/sqrt((psidot(1)ˆ2+ psidot(2)ˆ2)ˆ3)*(psiddot(1)ˆ2 + psiddot(2)ˆ2+psidot(1)*psi3dot(1)+psidot(2)*psi3dot(2));

%psi3dot(2)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2) - 2*psiddot(2)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ3)*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2))+3*psidot(2)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ5)*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2))ˆ2-psidot(2)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ3)*(psiddot(1)ˆ2 + psiddot(2)ˆ2 + psidot(1)*psi3dot(1)+psidot(2)*psi3dot(2))];

%eddot2 = [-eddot1(2); eddot1(1)];

%will need to find e3, and proper e1 and e2 for third dimension

%e1 = [ psidot(1)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2 + psidot(3)ˆ2); psidot(2)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2 + psidot(3)ˆ2); psidot(3)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2 + psidot(3)ˆ2)];

%e2 = [ -psidot(2)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2 + psidot(3)ˆ2); psidot(1)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2 + psidot(3)ˆ2); psidot(3)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2 + psidot(3)ˆ2)];

%e3 = cross(e1,e2);

%edot1 = [psiddot(1)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2)-psidot(1)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ3)*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2));

% psiddot(2)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2)-psidot(2)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ3)*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2)); 0];

%edot2 = [-edot1(2); edot1(1); edot1(3)];

%edot3 = cross(edot1, edot2);

%eddot1 = [ psi3dot(1)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2) - 2*psiddot(1)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ3)*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2))+3*psidot(1)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ5)*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2))ˆ2-psidot(1)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ3)*(psiddot(1)ˆ2 + psiddot(2)ˆ2 + psidot(1)*psi3dot(1)+psidot(2)*psi3dot(2));

% psi3dot(2)/sqrt(psidot(1)ˆ2 + psidot(2)ˆ2) - 2*psiddot(2)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ3)*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2))+3*psidot(2)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ5)*(psidot(1)*psiddot(1)+psidot(2)*psiddot(2))ˆ2-psidot(2)/sqrt((psidot(1)ˆ2 + psidot(2)ˆ2)ˆ3)*(psiddot(1)ˆ2 + psiddot(2)ˆ2 + psidot(1)*psi3dot(1)+psidot(2)*psi3dot(2)); 0];

%eddot2 = [-eddot1(2); eddot1(1); eddot1(3)];

%eddot3 = cross(eddot1, eddot2);

% Coordinates of the i-th vehicle in the moving frame:

% delta_i(t) = \alpha_{i1} e_1(t) + \alpha_{i2} e_2(t),

% Its associated matrix is

% Almatrix = [ \alpha_{11} \alpha_{12}; ... ; \alpha_{i1} \alpha_{i2};

% ...]

%for i=1:Nagent

% delta(i,:) = Almatrix(i,1)* e1’ + Almatrix(i,2) * e2’ + Almatrix(i,3) * e3’;

% deltadot(i,:) = Almatrix(i,1)* edot1’ + Almatrix(i,2) * edot2’ + Almatrix(i,3) * edot3’;

% deltaddot(i,:) = Almatrix(i,1)* eddot1’ + Almatrix(i,2) * eddot2’ + Almatrix(i,3) * eddot3’;

%end

%for i=1:Nagent

% rowsum(i)=0;

% for j=1:Nagent

% rowsum(i) = rowsum(i) + S(i,j);

% end

%end

%for i=1:Nagent

% compute u(i,:) for agent i

%u(i,:) = - [z((i-1)*4+1) z((i-1)*4+3)];
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%for l=1:Nagent

% u(i,:) = u(i,:) + S(i,l)/rowsum(i) * (([z((l-1)*4+1) z((l-1)*4+3)]) + delta(i,:) - delta(l,:));

%end

% compute v(i,:) for agent i

%v(i,:) = u(i,:) - [z((i-1)*4+2) z((i-1)*4+4)] + psidot + psiddot + deltadot(i,:) + deltaddot(i,:);

% compute u(i,:) for agent i

% u(i,:) = -[z((i-1)*6+1) z((i-1)*6+3) z((i-1)*6+5)];

% for l=1:Nagent

% u(i,:) = u(i,:) + S(i,l)/rowsum(i) * (([z((l-1)*6+1) z((l-1)*6+3) z((l-1)*6+5)]) + delta(i,:) - delta(l,:));

% end

% compute v(i,:) for agent i

% v(i,:) = u(i,:) - [z((i-1)*6+2) z((i-1)*6+4) z((j-1)*6+6)] + psidot + psiddot + deltadot(i,:) + deltaddot(i,:);

%end

% System model (this part can also be written as matrix form)

%for the i-th vehicle:

%z((i-1)+1) = \phi_{i1}(1); z((i-1)+2) = \phi_{i1}(2);

%z((i-1)+3) = \phi_{i2}(1); z((i-1)+4) = \phi_{i2}(2);

%for i=1:Nagent

%zdot((i-1)*4+1) = z((i-1)*4+2);

%zdot((i-1)*4+3) = z((i-1)*4+4);

%zdot((i-1)*4+2) = v(i,1);

%zdot((i-1)*4+4) = v(i,2);

%zdot((i-1)*6+1) = z((i-1)*6+2);

%zdot((i-1)*6+3) = z((i-1)*6+4);

%zdot((i-1)*6+5) = z((i-1)*6+6);

%zdot((i-1)*6+2) = v(i,1);

%zdot((i-1)*6+4) = v(i,2);

%zdot((i-1)*6+6) = v(i,3);

%end

%zdot=zdot’;

A.1.2 Main Program for 2D and 3D Simulations

global Nagent S Almatrix;

% Number of agents

%Nagent=10;

Nagent=4;

% Formation shape

%Almatrix = [0 0; -1 1; -1 -1; -2 2; -2 0; -2 -2; -3 3; -3 1; -3 -1; -3 -3];

%2d formation

%Almatrix = [0 0 ; -1 1; -1 -1; -2 0];
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%3d formation

Almatrix = [0 0 0; -1 1 0; -1 -1 0; -2 0 0];

%Almatrix = [0 0; 0 0; 0 0; 0 0];

% Simulation time

%T=46;

% The computing step time

%T1=0.4;

%tt=0:T1:T;

%for j=1:length(tt)-1

% ttt(j)=tt(j);

%end

%clc;

%c=fix(clock);

%fprintf(’started at %2i.%2i.%2i\n\n’, ...

% c(4),c(5),c(6));

% Initial condition

%xx0=[0 -0.5 0 0 -1 1 0 0 0 -1 0 0 1 0 0 0 2 1 0 0 2 3 0 0 4 2.5 0 0 2 5 0 0 3 1 0 0 3 -1 0 0]’;

%xx0=[0 -0.5 0 4 -20 3 0 12 13 6 16 -7 -8 20 18 -9]’;

%xx0=[0 -5 0 5 -4 4 0 0 3 3 0 0 1 -2 -6 0]’;

%[x1 vx1 y1 vy1 x2 vx2 y2 vy2 x3 vx3 y3 vy3 x4 vx4 y4 vy4 ...

%xyz0=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’;

%[x1 vx1 y1 vy1 z1 vz1 ...

xyz0=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’;

%for i=1:length(tt)-1

% fprintf(’ \n i= %i’, i);

% if rem(i,2)==1

%S = [1 1 1 1;

% 1 1 1 1;

% 1 1 1 1;

% 1 1 1 1;

% ];

% else

% S = [1 1 1 1;

% 1 1 1 1;

% 1 1 1 1;



Partly Codes 42

% 1 1 1 1;

% ];

% if rem(i,2)==1

% S = [1 1 1 1 1 1;

% 1 1 1 1 1 1;

% 1 1 1 1 1 1;

% 1 1 1 1 1 1;

% ];

% else

% S =[1 1 1 1 1 1;

% 1 1 1 1 1 1;

% 1 1 1 1 1 1;

% 1 1 1 1 1 1;

% ];

% end

% clear t

% clear yy

% yyy(i,:)=xx0’;

% [t, yy]=ode23(’cformation’, [tt(i) tt(i+1)], xx0); %, 0.001);

%xx0=yy(length(t), :)’;

% yyy(i,:)=xyz0’;

% [t, yy]=ode23(’cformation3d’, [tt(i) tt(i+1)], xyz0); %, 0.001);

% xyz0=yy(length(t), :)’;

%end

%c=fix(clock);

%fprintf(’end at %2i.%2i.%2i\n\n’, ...

% c(4),c(5),c(6));

%for i=1:400

% for l=1:16

% tmp(i,l)=0;

% end

%end

%figure

%for i=1:Nagent

%plot3(yyy(:,(i-1)*4+1), yyy(:,(i-1)*4+3), tmp(:,i));

% plot3(yyy(:,(i-1)*6+1), yyy(:,(i-1)*6+3), yyy(:,(i-1)*6+5));

% axis square

% axis([-5 15 -5 15 -25 -5]);



Partly Codes 43

% grid on

% hold on

%end

%for i=1:Nagent

% initial position

% rectangle(’Curvature’,[1 1], ’Position’, [yyy(1,(i-1)*4+1)-0.1 yyy(1,(i-1)*4+3)-0.1 0.2 0.2]);

% final position

% rectangle(’Curvature’,[1 1], ’Position’, [yyy(1000,(i-1)*4+1)-0.2 yyy(1000,(i-1)*4+3)-0.2 0.4 0.4]);

end

k=92;

% rectangle(’FaceColor’,’b’,’Curvature’,[1 1], ’Position’, [yyy(k,1)-0.3 yyy(k,3)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,5)-0.3 yyy(k,7)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’g’,’Curvature’,[1 1], ’Position’, [yyy(k,9)-0.3 yyy(k,11)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’r’,’Curvature’,[1 1], ’Position’, [yyy(k,13)-0.3 yyy(k,15)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’r’,’Curvature’,[1 1], ’Position’, [yyy(k,17)-0.3 yyy(k,19)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’r’,’Curvature’,[1 1], ’Position’, [yyy(k,21)-0.3 yyy(k,23)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,25)-0.3 yyy(k,27)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,29)-0.3 yyy(k,31)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,33)-0.3 yyy(k,35)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,37)-0.3 yyy(k,39)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’b’,’Curvature’,[1 1], ’Position’, [yyy(k,1)-0.3 yyy(k,3)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,5)-0.3 yyy(k,7)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’g’,’Curvature’,[1 1], ’Position’, [yyy(k,9)-0.3 yyy(k,11)-0.3 0.6 0.6]);

% rectangle(’FaceColor’,’r’,’Curvature’,[1 1], ’Position’, [yyy(k,13)-0.3 yyy(k,15)-0.3 0.6 0.6]);

% To generate the animation file

%axis square

%fig=figure;

%set(fig,’DoubleBuffer’,’on’);

%rect = get(fig,’Position’);

%rect(1:2) = [0 0];

%mov = VideoWriter(’formation.avi’,’compression’,’indeo5’);

%writerObj = VideoWriter(’formation.avi’);

%open(writerObj);

%for k=1:length(ttt)

% for i=1:4

%plot3(yyy(1:k,(i-1)*4+1), yyy(1:k,(i-1)*4+3), tmp(1:k,i));

% plot3(yyy(1:k,(i-1)*6+1), yyy(1:k,(i-1)*6+3), yyy(1:k,(i-1)*6+5));

% hold on

% end

% h1 = rectangle(’FaceColor’,’b’,’Curvature’,[1 1], ’Position’, [yyy(k,1)-0.3 yyy(k,3)-0.3 0.6 0.6]);

% h2 = rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,5)-0.3 yyy(k,7)-0.3 0.6 0.6]);
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% h3 = rectangle(’FaceColor’,’g’,’Curvature’,[1 1], ’Position’, [yyy(k,9)-0.3 yyy(k,11)-0.3 0.6 0.6]);

% h5 = rectangle(’FaceColor’,’r’,’Curvature’,[1 1], ’Position’, [yyy(k,13)-0.3 yyy(k,15)-0.3 0.6 0.6]);

% h6 = rectangle(’FaceColor’,’r’,’Curvature’,[1 1], ’Position’, [yyy(k,17)-0.3 yyy(k,19)-0.3 0.6 0.6]);

% h7 = rectangle(’FaceColor’,’r’,’Curvature’,[1 1], ’Position’, [yyy(k,21)-0.3 yyy(k,23)-0.3 0.6 0.6]);

% h8 = rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,25)-0.3 yyy(k,27)-0.3 0.6 0.6]);

% h9 = rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,29)-0.3 yyy(k,31)-0.3 0.6 0.6]);

% h10 = rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,33)-0.3 yyy(k,35)-0.3 0.6 0.6]);

% h11 = rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,37)-0.3 yyy(k,39)-0.3 0.6 0.6]);

% h1 = rectangle(’FaceColor’,’b’,’Curvature’,[1 1], ’Position’, [yyy(k,1)-0.3 yyy(k,3)-0.3 0.6 0.6]);

% h2 = rectangle(’FaceColor’,’y’,’Curvature’,[1 1], ’Position’, [yyy(k,5)-0.3 yyy(k,7)-0.3 0.6 0.6]);

% h3 = rectangle(’FaceColor’,’g’,’Curvature’,[1 1], ’Position’, [yyy(k,9)-0.3 yyy(k,11)-0.3 0.6 0.6]);

% h5 = rectangle(’FaceColor’,’r’,’Curvature’,[1 1], ’Position’, [yyy(k,13)-0.3 yyy(k,15)-0.3 0.6 0.6]);

%axis([-25 20 -25 20 -25 0]);

% grid on

% axis square

% frame = getframe(fig, rect);

% mov = addframe(mov,F);

% writeVideo(writerObj,frame);

%end

%close(writerObj);

A.2 Partial C++ Code for Ground Vehicles

/*

Program to connect four robots

formation.

Created By:

9/22/13

*/

#include "Aria.h"

#include <cmath>

#include <iostream>

#include <fstream>

//constant

#define PI 3.14159

#define KV 0.6666

using namespace std;

int sgn(double d)

{
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if(d<0) return -1;

else if (d==0) return 0;

else return 1;

}

int main(int argc, char** argv)

{

int ret;

std::string str;

int i = 1;

int Vx = 0, Vy=0;

int KV1 = 0, KV2 = 0, KV3 = 0, KV4 = 0;

int r1_x = 0, r1_y= 0, r2_x = 0, r2_y = 0, r3_x = 0, r3_y = 0, r4_x = 0, r4_y = 0;

//User needs to specify the location of each robot relative to robot 1.

//For robot 1, just use the values (0,0) since it is the robot the others will reference

//each other off of

int robot1_location_x, robot1_location_y;

int robot2_location_x, robot2_location_y;

int robot3_location_x, robot3_location_y;

int robot4_location_x, robot4_location_y;

cout << "----------------" << endl;

cout << "Input x and y coordinates of robot 1" << endl;

cout << "Robot 1 x: ";

cin >> robot1_location_x;

cout << "Robot 1 y: ";

cin >> robot1_location_y;

cout << "----------------" << endl;

cout << "Input x and y coordinates of robot 2" << endl;

cout << "Robot 2 x: ";

cin >> robot2_location_x;

cout << "Robot 2 y: ";

cin >> robot2_location_y;

cout << "----------------" << endl;

cout << "Input x and y coordinates of robot 3" << endl;

cout << "Robot 3 x: ";

cin >> robot3_location_x;

cout << "Robot 3 y: ";

cin >> robot3_location_y;

cout << "----------------" << endl;

cout << "Input x and y coordinates of robot 4" << endl;

cout << "Robot 4 x: ";

cin >> robot4_location_x;

cout << "Robot 4 y: ";

cin >> robot4_location_y;

cout << "----------------" << endl;

//get hostnames and port numbers

ArArgumentParser argParser(&argc, argv);

char* host1 = argParser.checkParameterArgument("-rh1");

if(!host1) host1 = "localhost";
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char* host2 = argParser.checkParameterArgument("-rh2");

if(!host2) host2 = "localhost";

char* host3 = argParser.checkParameterArgument("-rh3");

if(!host3) host3 = "localhost";

char* host4 = argParser.checkParameterArgument("-rh4");

if(!host4) host4 = "localhost";

int port1 = 8101;

int port2 = 8101;

int port3 = 8101;

int port4 = 8101;

//if same host, it must be using two ports

if(strcmp(host1, host2) == 0)

port2++;

if(strcmp(host1, host3) == 0)

port3 = port3 + 2;

if(strcmp(host1, host4) == 0)

port4 = port4 + 3;

bool

argSet = false;

argParser.checkParameterArgumentInteger("-rp1", &port1);

if(!argSet) argParser.checkParameterArgumentInteger("-rrtp1", &port1);

argSet = false;

argParser.checkParameterArgumentInteger("-rp2", &port2);

if(!argSet) argParser.checkParameterArgumentInteger("-rrtp2", &port2);

argSet = false;

argParser.checkParameterArgumentInteger("-rp3", &port3);

if(!argSet) argParser.checkParameterArgumentInteger("-rrtp3", &port3);

argSet = false;

argParser.checkParameterArgumentInteger("-rp4", &port4);

if(!argSet) argParser.checkParameterArgumentInteger("-rrtp4", &port4);

//add the key handler to aria

ArKeyHandler keyHandler;

Aria::setKeyHandler(&keyHandler);

//First robot variables

ArTcpConnection con1;

ArRobot robot1;

//Second robot variables

ArTcpConnection con2;

ArRobot robot2;
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//Third robot variables

ArTcpConnection con3;

ArRobot robot3;

//Fourth robot variables

ArTcpConnection con4;

ArRobot robot4;

//Attach the key handler to a robot now

robot1.attachKeyHandler(&keyHandler);

robot2.attachKeyHandler(&keyHandler);

robot3.attachKeyHandler(&keyHandler);

robot4.attachKeyHandler(&keyHandler);

//start up Aria stuff

Aria::init();

/*==================================*/

//Start up robot 1

ArLog::log(ArLog::Normal, "Connecting to first robot at %s:%d...", host1, port1);

if ((ret = con1.open(host1, port1)) != 0)

{

str = con1.getOpenMessage(ret);

printf("Open failed to robot 1: %s\n", str.c_str());

Aria::exit(1);

return 1;

}

robot1.setDeviceConnection(&con1);

if(!robot1.blockingConnect())

{

printf("Could not connect to robot 1...abort\n");

Aria::exit(1);

return 1;

}

//turn on motors, turn off sounds

robot1.comInt(ArCommands::ENABLE, 1);

robot1.comInt(ArCommands::SOUNDTOG, 0);

/*==================================*/

//Start up robot 2

ArLog::log(ArLog::Normal, "Connecting to second robot");

if ((ret = con2.open(host2, port2)) != 0)

{

str = con2.getOpenMessage(ret);

printf("Open failed to robot 2: %s\n", str.c_str());

Aria::exit(1);

return 1;

}
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robot2.setDeviceConnection(&con2);

if(!robot2.blockingConnect())

{

printf("Could not connect to robot 2...abort\n");

Aria::exit(1);

return 1;

}

printf("Turning on motors for robot 2\n");

//turn on motors, turn off sound

robot2.comInt(ArCommands::ENABLE, 1);

robot2.comInt(ArCommands::SOUNDTOG, 0);

/*==================================*/

//Start up robot 3

ArLog::log(ArLog::Normal, "Connecting to third robot");

if ((ret = con3.open(host3, port3)) != 0)

{

str = con3.getOpenMessage(ret);

printf("Open failed to robot 3: %s\n", str.c_str());

Aria::exit(1);

return 1;

}

robot3.setDeviceConnection(&con3);

if(!robot3.blockingConnect())

{

printf("Could not connect to robot 3...abort\n");

Aria::exit(1);

return 1;

}

printf("Turning on motors for robot 3\n");

//turn on motors, turn off sound

robot3.comInt(ArCommands::ENABLE, 1);

robot3.comInt(ArCommands::SOUNDTOG, 0);

/*==================================*/

//Start up robot 4

ArLog::log(ArLog::Normal, "Connecting to second robot");

if ((ret = con4.open(host4, port4)) != 0)

{

str = con4.getOpenMessage(ret);

printf("Open failed to robot 4: %s\n", str.c_str());

Aria::exit(1);

return 1;

}
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robot4.setDeviceConnection(&con4);

if(!robot4.blockingConnect())

{

printf("Could not connect to robot 4...abort\n");

Aria::exit(1);

return 1;

}

printf("Turning on motors for robot 4\n");

//turn on motors, turn off sound

robot4.comInt(ArCommands::ENABLE, 1);

robot4.comInt(ArCommands::SOUNDTOG, 0);

/*==================================*/

//setup vars

double robot1_x, robot1_y; // x/y position

double robot2_x, robot2_y;

double robot3_x, robot3_y;

double robot4_x, robot4_y;

double robot1_th, robot2_th, robot3_th, robot4_th; // angular orientation

double robot1_radius, robot2_radius, robot3_radius, robot4_radius; //robots radius

double robot1_x_hat, robot1_y_hat; //parameters

double robot2_x_hat, robot2_y_hat;

double robot3_x_hat, robot3_y_hat;

double robot4_x_hat, robot4_y_hat;

double robot1_control_1, robot1_control_2;

double robot2_control_1, robot2_control_2;

double robot3_control_1, robot3_control_2;

double robot4_control_1, robot4_control_2;

double robot1_velocity, robot1_rotation_velocity;

double robot2_velocity, robot2_rotation_velocity;

double robot3_velocity, robot3_rotation_velocity;

double robot4_velocity, robot4_rotation_velocity;

robot1_radius = robot1.getRobotRadius();

robot2_radius = robot2.getRobotRadius();

robot3_radius = robot3.getRobotRadius();

robot4_radius = robot4.getRobotRadius();

//run robots on background threads

robot1.runAsync(true);

robot2.runAsync(true);

robot3.runAsync(true);

robot4.runAsync(true);

printf("Running robots\n");
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ofstream in;

in.open("r1.txt",ios::trunc);

while(1)

{

/* if (i++<100000000) //follow slant line format to a squre and then a line SOFTWARE SIMULATION

r1_x = 707, r1_y= -707, r2_x = -707, r2_y = 707, r3_x = 707, r3_y = 707, r4_x = 0, r4_y = 1414;

else

r1_x = -1414, r1_y= -1414, r2_x = 707, r2_y = 707, r3_x = 1414, r3_y = 1414, r4_x = 2121, r4_y = 2121;

*/

/* if (i++<40000000) //follow slant line format to a squre and then a line SOFTWARE SIMULATION 5000000

r1_x = -609, r1_y= 0, r2_x = -609, r2_y = 0, r3_x = -609, r3_y = 0, r4_x = 1827, r4_y = 0, Vx=100, KV1 = 100, KV2 = 100, KV3 = 100, KV4 = 100;

else if(i++>=40000000 && i++<80000000)

r1_x = -800, r1_y= 0, r2_x = -800, r2_y = 0, r3_x = -800, r3_y = 0, r4_x = 2400, r4_y = 0, Vy=300, Vx=0, KV1 = 100, KV2 = 100, KV3 = 100, KV4 = 100;

else

r1_x = 0, r1_y= -800, r2_x = -800, r2_y = 800, r3_x = 0, r3_y = -800, r4_x = 800, r4_y = 800, Vy=50, Vx=0, KV1 = 50, KV2 = 50, KV3 = 50, KV4 = 50;

*/

/* if (i++<5000000) //follow slant line format to a squre and then a line SOFTWARE SIMULATION

r1_x = -609, r1_y= 0, r2_x = -609, r2_y = 0, r3_x = -609, r3_y = 0, r4_x = 1827, r4_y = 0, Vx=100, KV1 = 100, KV2 = 100, KV3 = 100, KV4 = 100;

else if(i++>=5000000 && i++<90000000)

r1_x = -609, r1_y= 0, r2_x = -609, r2_y = 0, r3_x = -609, r3_y = 0, r4_x = 1827, r4_y = 0, Vy=100, Vx=0, KV1 = 50, KV2 = 100, KV3 = 50, KV4 = 100;

else if(i++>=90000000 && i++<147000000)

r1_x = 0, r1_y= -609, r2_x = -609, r2_y = 609, r3_x = 0, r3_y = -609, r4_x = 609, r4_y = 609, Vy=50, Vx=70, KV1 = 70, KV2 = 50, KV3 = 50, KV4 = 70;

else

r1_x = 0, r1_y= 0, r2_x = 0, r2_y = 0, r3_x = 0, r3_y = 0, r4_x = 0, r4_y = 0, Vy=0, Vx=0, KV1 = 1000, KV2 = 1000, KV3 = 1000, KV4 = 1000;

*/

// r1_x = -609, r1_y= 0, r2_x = -609, r2_y = 0, r3_x = -609, r3_y = 0, r4_x = 1827, r4_y = 0, KV1 = 100, KV2 = 100, KV3 = 100, KV4 = 100, Vx=100 ; //line

// r1_x = 0, r1_y= -800, r2_x = -800, r2_y = 0, r3_x = 0, r3_y = 800, r4_x = 800, r4_y = 0;// squre

// r1_x = 0, r1_y= -609, r2_x = -609, r2_y = 0, r3_x = 0, r3_y = 609, r4_x = 609, r4_y = 0;// squre

// r1_x = 0, r1_y= 609, r2_x = -609, r2_y = 0, r3_x = 0, r3_y = -609, r4_x = 609, r4_y = 0;// squre 2

// r1_x = 0, r1_y= 0, r2_x = 0, r2_y = 0, r3_x = 0, r3_y = 0, r4_x = 0, r4_y = 0;

if (i++<50000000) //follow slant line format to a squre and then a line SOFTWARE SIMULATION

r1_x = -1500, r1_y= 0, r2_x = -1500, r2_y = 0, r3_x = -1500, r3_y = 0, r4_x = 4500, r4_y = 0, Vx=200,Vy=200, KV1 = 100, KV2 = 100, KV3 = 100, KV4 = 100;

else if(i++>=500000000 && i++<1470000000)

r1_x = 0, r1_y= -1500, r2_x = -1500, r2_y = 0, r3_x = 0, r3_y = 1500, r4_x = 1500, r4_y = 1500, Vy=200, Vx=200, KV1 = 100, KV2 = 100, KV3 = 100, KV4 = 100;

else

r1_x = 0, r1_y= 0, r2_x = 0, r2_y = 0, r3_x = 0, r3_y = 0, r4_x = 0, r4_y = 0, Vy=0, Vx=0, KV1 = 1000, KV2 = 1000, KV3 = 1000, KV4 = 1000;

//get robot initial position

robot1_x = robot1.getX() + robot1_location_x;

robot1_y = robot1.getY() + robot1_location_y;

robot2_x = robot2.getX() + robot2_location_x;

robot2_y = robot2.getY() + robot2_location_y;

robot3_x = robot3.getX() + robot3_location_x;
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robot3_y = robot3.getY() + robot3_location_y;

robot4_x = robot4.getX() + robot4_location_x;

robot4_y = robot4.getY() + robot4_location_y;

robot1_th = robot1.getTh() * PI/180;

robot2_th = robot2.getTh() * PI/180;

robot3_th = robot3.getTh() * PI/180;

robot4_th = robot4.getTh() * PI/180;

//control logic for robot1

robot1_x_hat = robot1_x + robot1_radius*cos(robot1_th);

robot1_y_hat = robot1_y + robot1_radius*sin(robot1_th);

robot2_x_hat = robot2_x + robot2_radius*cos(robot2_th);

robot2_y_hat = robot2_y + robot2_radius*sin(robot2_th);

robot3_x_hat = robot3_x + robot3_radius*cos(robot3_th);

robot3_y_hat = robot3_y + robot3_radius*sin(robot3_th);

robot4_x_hat = robot4_x + robot4_radius*cos(robot4_th);

robot4_y_hat = robot4_y + robot4_radius*sin(robot4_th);

in<<robot1_x_hat<<"\t"<<robot1_y_hat<<"\t"<<robot2_x_hat<<"\t"<<robot2_y_hat<<"\t"<<robot3_x_hat<<"\t"<<robot3_y_hat<<"\t"<<robot4_x_hat<<"\t"<<robot4_y_hat<<"\n";

/*******************************************************************************************************************************************************************************************/

/*//All communications

//Control Logic for robot 1

robot1_control_1 = KV*(robot2_x_hat - robot1_x_hat + robot3_x_hat - robot1_x_hat + robot4_x_hat - robot1_x_hat + r1_x) +150; //(500/sqrt(2.0))) + 200;

robot1_control_2 = KV*(robot2_y_hat - robot1_y_hat + robot3_y_hat - robot1_y_hat + robot4_y_hat - robot1_y_hat+ r1_y) +100; //(1500/sqrt(2.0))) + 200;

robot1_velocity = robot1_control_1*cos(robot1_th) + robot1_control_2*sin(robot1_th);

robot1_rotation_velocity = -(robot1_control_1/robot1_radius)*sin(robot1_th) + (robot1_control_2/robot1_radius)*cos(robot1_th);

//Control logic for robot 2

robot2_control_1 = KV*(robot3_x_hat - robot2_x_hat + robot4_x_hat - robot2_x_hat + robot1_x_hat - robot2_x_hat + r2_x) +150 ; //(1000/sqrt(2.0))) + 200;

robot2_control_2 = KV*(robot3_y_hat - robot2_y_hat + robot4_y_hat - robot2_y_hat + robot1_y_hat - robot2_y_hat + r2_y) +100; //(1000/sqrt(2.0))) + 200;

robot2_velocity = robot2_control_1*cos(robot2_th) + robot2_control_2*sin(robot2_th);

robot2_rotation_velocity = -(robot2_control_1/robot2_radius)*sin(robot2_th) + (robot2_control_2/robot2_radius)*cos(robot2_th);

//Control Logic for robot 3

robot3_control_1 = KV*(robot4_x_hat - robot3_x_hat + robot2_x_hat - robot3_x_hat + robot1_x_hat - robot3_x_hat + r3_x) +150 ; //(1500/sqrt(2.0))) + 200;

robot3_control_2 = KV*(robot4_y_hat - robot3_y_hat + robot2_y_hat - robot3_y_hat + robot1_y_hat - robot3_y_hat + r3_y) +100; //(500/sqrt(2.0))) + 200;

robot3_velocity = robot3_control_1*cos(robot3_th) + robot3_control_2*sin(robot3_th);

robot3_rotation_velocity = -(robot3_control_1/robot3_radius)*sin(robot3_th) + (robot3_control_2/robot3_radius)*cos(robot3_th);

//Control Logic for robot 4

robot4_control_1 = KV*(robot1_x_hat - robot4_x_hat + robot2_x_hat - robot4_x_hat + robot3_x_hat - robot4_x_hat + r4_x) + 150 ; //(1500/sqrt(2.0))) + 200;
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robot4_control_2 = KV*(robot1_y_hat - robot4_y_hat + robot2_y_hat - robot4_y_hat + robot3_y_hat - robot4_y_hat + r4_y) +100; //(500/sqrt(2.0))) + 200;

robot4_velocity = robot4_control_1*cos(robot4_th) + robot4_control_2*sin(robot4_th);

robot4_rotation_velocity = -(robot4_control_1/robot4_radius)*sin(robot4_th) + (robot4_control_2/robot4_radius)*cos(robot4_th);

*/

/*****************************************************************************************************************************************************************************************************************/

/* //Control Logic for robot 1 leader follow

//robot1_control_1 = KV*(robot2_x_hat - robot1_x_hat + r1_x) + 200; //(500/sqrt(2.0))) + 200; //(1500/sqrt(2.0))) + 200;

//robot1_control_2 = KV*(robot2_y_hat - robot1_y_hat + r1_y) +200; //(500/sqrt(2.0))) + 200;

robot1_control_1 = 200;

robot1_control_2 = 200;

robot1_velocity = robot1_control_1*cos(robot1_th) + robot1_control_2*sin(robot1_th);

robot1_rotation_velocity = -(robot1_control_1/robot1_radius)*sin(robot1_th) + (robot1_control_2/robot1_radius)*cos(robot1_th);

//Control logic for robot 2

robot2_control_1 = KV*(robot1_x_hat - robot2_x_hat + r2_x) + 200; //(1000/sqrt(2.0))) + 200;

robot2_control_2 = KV*(robot1_y_hat - robot2_y_hat + r2_y) +200; //(1000/sqrt(2.0))) + 200;

robot2_velocity = robot2_control_1*cos(robot2_th) + robot2_control_2*sin(robot2_th);

robot2_rotation_velocity = -(robot2_control_1/robot2_radius)*sin(robot2_th) + (robot2_control_2/robot2_radius)*cos(robot2_th);

//Control Logic for robot 3

robot3_control_1 = KV*(robot1_x_hat - robot3_x_hat + r3_x) + 200; //(1500/sqrt(2.0))) + 200;

robot3_control_2 = KV*(robot1_y_hat - robot3_y_hat + r3_y) +200; //(500/sqrt(2.0))) + 200;

robot3_velocity = robot3_control_1*cos(robot3_th) + robot3_control_2*sin(robot3_th);

robot3_rotation_velocity = -(robot3_control_1/robot3_radius)*sin(robot3_th) + (robot3_control_2/robot3_radius)*cos(robot3_th);

//Control Logic for robot 4

robot4_control_1 = KV*(robot1_x_hat - robot4_x_hat + r4_x) + 200; //(1500/sqrt(2.0))) + 200;

robot4_control_2 = KV*(robot1_y_hat - robot4_y_hat + r4_y) +200; //(500/sqrt(2.0))) + 200;

robot4_velocity = robot4_control_1*cos(robot4_th) + robot4_control_2*sin(robot4_th);

robot4_rotation_velocity = -(robot4_control_1/robot4_radius)*sin(robot4_th) + (robot4_control_2/robot4_radius)*cos(robot4_th);*/

/***********************************************************************************************************************************************************************************/

/* //Control Logic for robot 1 leader sgn function KV=100

robot1_control_1 = KV1*(sgn(robot2_x_hat - robot1_x_hat + r1_x)) + 100; //(500/sqrt(2.0))) + 200; //(1500/sqrt(2.0))) + 200;

robot1_control_2 = KV1*(sgn(robot2_y_hat - robot1_y_hat + r1_y)) ; //(500/sqrt(2.0))) + 200;

robot1_velocity = robot1_control_1*cos(robot1_th) + robot1_control_2*sin(robot1_th);

robot1_rotation_velocity = -(robot1_control_1/robot1_radius)*sin(robot1_th) + (robot1_control_2/robot1_radius)*cos(robot1_th);

//Control logic for robot 2

robot2_control_1 = KV2*(sgn(robot3_x_hat - robot2_x_hat + r2_x)) + 100; //(1000/sqrt(2.0))) + 200;

robot2_control_2 = KV2*(sgn(robot3_y_hat - robot2_y_hat + r2_y)) ; //(1000/sqrt(2.0))) + 200;

robot2_velocity = robot2_control_1*cos(robot2_th) + robot2_control_2*sin(robot2_th);
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robot2_rotation_velocity = -(robot2_control_1/robot2_radius)*sin(robot2_th) + (robot2_control_2/robot2_radius)*cos(robot2_th);

//Control Logic for robot 3

robot3_control_1 = KV3*(sgn(robot4_x_hat - robot3_x_hat + r3_x)) + 100; //(1500/sqrt(2.0))) + 200;

robot3_control_2 = KV3*(sgn(robot4_y_hat - robot3_y_hat + r3_y)) ; //(500/sqrt(2.0))) + 200;

robot3_velocity = robot3_control_1*cos(robot3_th) + robot3_control_2*sin(robot3_th);

robot3_rotation_velocity = -(robot3_control_1/robot3_radius)*sin(robot3_th) + (robot3_control_2/robot3_radius)*cos(robot3_th);

//Control Logic for robot 4

robot4_control_1 = KV4*(sgn(robot1_x_hat - robot4_x_hat + r4_x)) + 100; //(1500/sqrt(2.0))) + 200;

robot4_control_2 = KV4*(sgn(robot1_y_hat - robot4_y_hat + r4_y)) ; //(500/sqrt(2.0))) + 200;

robot4_velocity = robot4_control_1*cos(robot4_th) + robot4_control_2*sin(robot4_th);

robot4_rotation_velocity = -(robot4_control_1/robot4_radius)*sin(robot4_th) + (robot4_control_2/robot4_radius)*cos(robot4_th);

*/

/************************************************************************************************************************************************************************************************************************/

/*

//All communication control Logic for consensus to a point, let KV=3000 initial

robot1_control_1 = KV1*sgn(robot2_x_hat - robot1_x_hat + robot3_x_hat - robot1_x_hat + robot4_x_hat - robot1_x_hat + r1_x) ; //(500/sqrt(2.0))) + 200;

robot1_control_2 = KV1*sgn(robot2_y_hat - robot1_y_hat + robot3_y_hat - robot1_y_hat + robot4_y_hat - robot1_y_hat+ r1_y) ; //(1500/sqrt(2.0))) + 200;

robot1_velocity = robot1_control_1*cos(robot1_th) + robot1_control_2*sin(robot1_th);

robot1_rotation_velocity = -(robot1_control_1/robot1_radius)*sin(robot1_th) + (robot1_control_2/robot1_radius)*cos(robot1_th);

//Control logic for robot 2

robot2_control_1 = KV2*sgn(robot3_x_hat - robot2_x_hat + robot4_x_hat - robot2_x_hat + robot1_x_hat - robot2_x_hat + r2_x) ; //(1000/sqrt(2.0))) + 200;

robot2_control_2 = KV2*sgn(robot3_y_hat - robot2_y_hat + robot4_y_hat - robot2_y_hat + robot1_y_hat - robot2_y_hat + r2_y) ; //(1000/sqrt(2.0))) + 200;

robot2_velocity = robot2_control_1*cos(robot2_th) + robot2_control_2*sin(robot2_th);

robot2_rotation_velocity = -(robot2_control_1/robot2_radius)*sin(robot2_th) + (robot2_control_2/robot2_radius)*cos(robot2_th);

//Control Logic for robot 3

robot3_control_1 = KV3*sgn(robot4_x_hat - robot3_x_hat + robot2_x_hat - robot3_x_hat + robot1_x_hat - robot3_x_hat + r3_x) ; //(1500/sqrt(2.0))) + 200;

robot3_control_2 = KV3*sgn(robot4_y_hat - robot3_y_hat + robot2_y_hat - robot3_y_hat + robot1_y_hat - robot3_y_hat + r3_y) ; //(500/sqrt(2.0))) + 200;

robot3_velocity = robot3_control_1*cos(robot3_th) + robot3_control_2*sin(robot3_th);

robot3_rotation_velocity = -(robot3_control_1/robot3_radius)*sin(robot3_th) + (robot3_control_2/robot3_radius)*cos(robot3_th);

//Control Logic for robot 4

robot4_control_1 = KV4*sgn(robot1_x_hat - robot4_x_hat + robot2_x_hat - robot4_x_hat + robot3_x_hat - robot4_x_hat + r4_x) ; //(1500/sqrt(2.0))) + 200;

robot4_control_2 = KV4*sgn(robot1_y_hat - robot4_y_hat + robot2_y_hat - robot4_y_hat + robot3_y_hat - robot4_y_hat + r4_y) ; //(500/sqrt(2.0))) + 200;

robot4_velocity = robot4_control_1*cos(robot4_th) + robot4_control_2*sin(robot4_th);

robot4_rotation_velocity = -(robot4_control_1/robot4_radius)*sin(robot4_th) + (robot4_control_2/robot4_radius)*cos(robot4_th);

*/

/**************************************************************************************************************************************************************************************/

/*

//One line communication for consensus to a point function KV=3000,

robot1_control_1 = KV1*(sgn(robot2_x_hat - robot1_x_hat + r1_x)) +v; //(500/sqrt(2.0))) + 200; //(1500/sqrt(2.0))) + 200;

robot1_control_2 = KV1*(sgn(robot2_y_hat - robot1_y_hat + r1_y)) ; //(500/sqrt(2.0))) + 200;
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robot1_velocity = robot1_control_1*cos(robot1_th) + robot1_control_2*sin(robot1_th);

robot1_rotation_velocity = -(robot1_control_1/robot1_radius)*sin(robot1_th) + (robot1_control_2/robot1_radius)*cos(robot1_th);

//Control logic for robot 2

robot2_control_1 = KV2*(sgn(robot3_x_hat - robot2_x_hat + r2_x)) +v; //(1000/sqrt(2.0))) + 200;

robot2_control_2 = KV2*(sgn(robot3_y_hat - robot2_y_hat + r2_y)) ; //(1000/sqrt(2.0))) + 200;

robot2_velocity = robot2_control_1*cos(robot2_th) + robot2_control_2*sin(robot2_th);

robot2_rotation_velocity = -(robot2_control_1/robot2_radius)*sin(robot2_th) + (robot2_control_2/robot2_radius)*cos(robot2_th);

//Control Logic for robot 3

robot3_control_1 = KV3*(sgn(robot4_x_hat - robot3_x_hat + r3_x)) +v; //(1500/sqrt(2.0))) + 200;

robot3_control_2 = KV3*(sgn(robot4_y_hat - robot3_y_hat + r3_y)) ; //(500/sqrt(2.0))) + 200;

robot3_velocity = robot3_control_1*cos(robot3_th) + robot3_control_2*sin(robot3_th);

robot3_rotation_velocity = -(robot3_control_1/robot3_radius)*sin(robot3_th) + (robot3_control_2/robot3_radius)*cos(robot3_th);

//Control Logic for robot 4

robot4_control_1 = KV4*(sgn(robot1_x_hat - robot4_x_hat + r4_x)) +v; //(1500/sqrt(2.0))) + 200;

robot4_control_2 = KV4*(sgn(robot1_y_hat - robot4_y_hat + r4_y)) ; //(500/sqrt(2.0))) + 200;

robot4_velocity = robot4_control_1*cos(robot4_th) + robot4_control_2*sin(robot4_th);

robot4_rotation_velocity = -(robot4_control_1/robot4_radius)*sin(robot4_th) + (robot4_control_2/robot4_radius)*cos(robot4_th);

*/

/****************************************************************************************************************************************************************************************************/

/* //One line communication for changing (0,0) (0,609) (609,0) (609,609)

robot1_control_1 = KV1*(sgn(robot2_x_hat - robot1_x_hat + r1_x)) +Vx; //(500/sqrt(2.0))) + 200; //(1500/sqrt(2.0))) + 200;

robot1_control_2 = KV1*(sgn(robot2_y_hat - robot1_y_hat + r1_y)) +Vy ; //(500/sqrt(2.0))) + 200;

robot1_velocity = robot1_control_1*cos(robot1_th) + robot1_control_2*sin(robot1_th);

robot1_rotation_velocity = -(robot1_control_1/robot1_radius)*sin(robot1_th) + (robot1_control_2/robot1_radius)*cos(robot1_th);

//Control logic for robot 2

robot2_control_1 = KV2*(sgn(robot3_x_hat - robot2_x_hat + r2_x)) +Vx; //(1000/sqrt(2.0))) + 200;

robot2_control_2 = KV2*(sgn(robot3_y_hat - robot2_y_hat + r2_y)) +Vy; //(1000/sqrt(2.0))) + 200;

robot2_velocity = robot2_control_1*cos(robot2_th) + robot2_control_2*sin(robot2_th);

robot2_rotation_velocity = -(robot2_control_1/robot2_radius)*sin(robot2_th) + (robot2_control_2/robot2_radius)*cos(robot2_th);

//Control Logic for robot 3

robot3_control_1 = KV3*(sgn(robot4_x_hat - robot3_x_hat + r3_x)) +Vx; //(1500/sqrt(2.0))) + 200;

robot3_control_2 = KV3*(sgn(robot4_y_hat - robot3_y_hat + r3_y)) +Vy; //(500/sqrt(2.0))) + 200;

robot3_velocity = robot3_control_1*cos(robot3_th) + robot3_control_2*sin(robot3_th);

robot3_rotation_velocity = -(robot3_control_1/robot3_radius)*sin(robot3_th) + (robot3_control_2/robot3_radius)*cos(robot3_th);

//Control Logic for robot 4

robot4_control_1 = KV4*(sgn(robot1_x_hat - robot4_x_hat + r4_x)) +Vx; //(1500/sqrt(2.0))) + 200;

robot4_control_2 = KV4*(sgn(robot1_y_hat - robot4_y_hat + r4_y)) +Vy; //(500/sqrt(2.0))) + 200;
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robot4_velocity = robot4_control_1*cos(robot4_th) + robot4_control_2*sin(robot4_th);

robot4_rotation_velocity = -(robot4_control_1/robot4_radius)*sin(robot4_th) + (robot4_control_2/robot4_radius)*cos(robot4_th);

*/

/****************************************************************************************************************************************************************************************************************/

//One line communication for changing (0,0) (0,609) (609,0) (609,609)

robot1_control_1 = KV1*(sgn(robot2_x_hat - robot1_x_hat + r1_x)) +Vx; //(500/sqrt(2.0))) + 200; //(1500/sqrt(2.0))) + 200;

robot1_control_2 = KV1*(sgn(robot2_y_hat - robot1_y_hat + r1_y)) +Vy //(500/sqrt(2.0))) + 200;

robot1_velocity = robot1_control_1*cos(robot1_th) + robot1_control_2*sin(robot1_th);

robot1_rotation_velocity = -(robot1_control_1/robot1_radius)*sin(robot1_th) + (robot1_control_2/robot1_radius)*cos(robot1_th);

//Control logic for robot 2

robot2_control_1 = KV2*(sgn(robot3_x_hat - robot2_x_hat + r2_x)) +Vx; //(1000/sqrt(2.0))) + 200;

robot2_control_2 = KV2*(sgn(robot3_y_hat - robot2_y_hat + r2_y)) +Vy; //(1000/sqrt(2.0))) + 200;

robot2_velocity = robot2_control_1*cos(robot2_th) + robot2_control_2*sin(robot2_th);

robot2_rotation_velocity = -(robot2_control_1/robot2_radius)*sin(robot2_th) + (robot2_control_2/robot2_radius)*cos(robot2_th);

//Control Logic for robot 3

robot3_control_1 = KV3*(sgn(robot4_x_hat - robot3_x_hat + r3_x)) +Vx; //(1500/sqrt(2.0))) + 200;

robot3_control_2 = KV3*(sgn(robot4_y_hat - robot3_y_hat + r3_y)) +Vy; //(500/sqrt(2.0))) + 200;

robot3_velocity = robot3_control_1*cos(robot3_th) + robot3_control_2*sin(robot3_th);

robot3_rotation_velocity = -(robot3_control_1/robot3_radius)*sin(robot3_th) + (robot3_control_2/robot3_radius)*cos(robot3_th);

//Control Logic for robot 4

robot4_control_1 = KV4*(sgn(robot1_x_hat - robot4_x_hat + r4_x)) +Vx; //(1500/sqrt(2.0))) + 200;

robot4_control_2 = KV4*(sgn(robot1_y_hat - robot4_y_hat + r4_y)) +Vy; //(500/sqrt(2.0))) + 200;

robot4_velocity = robot4_control_1*cos(robot4_th) + robot4_control_2*sin(robot4_th);

robot4_rotation_velocity = -(robot4_control_1/robot4_radius)*sin(robot4_th) + (robot4_control_2/robot4_radius)*cos(robot4_th);

/****************************************************************************************************************************************************************************************************************************/

//set velocity and rotational velocity on robots

robot1.setVel(robot1_velocity);

robot1.setRotVel(robot1_rotation_velocity);

robot2.setVel(robot2_velocity);

robot2.setRotVel(robot2_rotation_velocity);

robot3.setVel(robot3_velocity);

robot3.setRotVel(robot3_rotation_velocity);

robot4.setVel(robot4_velocity);

robot4.setRotVel(robot4_rotation_velocity);

}

in.close();

Aria::shutdown();

}



Appendix B

Appendix: Photos and Tables

FIGURE B.1: Sonar communication bit error rate without Sign function 1

R4 is the sonar receive speed by 5 bits per second, and S4 is the transmit speed by 5

bits per second. Wave condition means a wave maker to generate the wave

environment.
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FIGURE B.2: Sonar communication bit error rate without Sign function 2

R5 is the sonar receive speed by 13 bits per second, and S5 is the transmit speed by 13

bits per second. Wave condition means a wave maker to generate the wave

environment.
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FIGURE B.3: Sonar communication bit error rate with Sign function 3

R5 is the sonar receive speed by 13 bits per second, and S5 is the transmit speed by 13

bits per second. Wave condition means a wave maker to generate the wave

environment.



Appendix C

Appendix: Websites and Media Links

1. News Journal: http://www.news-journalonline.com/article/20140903/NEWS/140909807

/1040?p=3&tc=pg

2. News Journal: http://www.news-journalonline.com/article/20140912/news/140919749

3. Free News Pos: http://www.freenewspos.com/en/home-news-article/a/1205281/today/

embry-riddle-teams-with-nasa-for-underwater-mission
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