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[1] Numerical model results demonstrate that acoustic
waves generated by tropospheric sources may produce
cylindrical “concentric ring” signatures in the mesospheric
hydroxyl airglow layer. They may arrive as precursors to
upward propagating gravity waves, generated simultane-
ously by the same sources, and produce strong temper-
ature perturbations in the thermosphere above. Transient
and short-lived, the acoustic wave airglow intensity and
temperature signatures are predicted to be detectable by
ground-based airglow imaging systems and may provide
new insight into the forcing of the upper atmosphere from
below. Citation: Snively, J. B. (2013), Mesospheric hydroxyl
airglow signatures of acoustic and gravity waves generated by tran-
sient tropospheric forcing, Geophys. Res. Lett., 40, 4533–4537,
doi:10.1002/grl.50886.

1. Introduction
[2] Gravity waves exhibiting cylindrical symmetry or cur-

vature have been observed via ground- and space-based
imaging systems [Taylor and Hapgood, 1988; Dewan et
al., 1998; Sentman et al., 2003; Suzuki et al., 2007; Yue
et al., 2009, 2013] and clearly correlated with tropospheric
convection. Such waves appear in mesospheric and lower
thermospheric (MLT) airglow data, exhibiting concentric
ring structures, with curvature of the gravity wave phase
fronts indicating close proximity to their sources [e.g., Yue
et al., 2013].

[3] Numerical 3-D models of tropospheric convection
confirm that spatially isolated systems produce gravity
waves with cylindrical structure [Piani et al., 2000], which
propagate upward into the middle atmosphere. Wave peri-
ods of approximately tens of minutes, and wavelengths of
approximately tens of kilometers, are excited; exact scales
are determined by the characteristics of the system and
the state of the tropopause. Ray tracing demonstrates that
propagation of such waves is significantly influenced by
intervening three-dimensional wind fields [e.g., Vadas et al.,
2009], which may result in asymmetry of cylindrical wave
structures in the MLT. Existence of multiple simultaneous
tropospheric sources may produce superposed concentric
gravity wave structures at the heights of the airglow layers
[Vadas et al., 2012].
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[4] Numerical 2-D cylindrically axisymmetric models
reveal gravity wave responses above idealized thermal forc-
ing [Walterscheid et al., 2001]. Infrasonic-acoustic waves
are also generated as a response to compressions associated
with similar forcing [Walterscheid et al., 2003], with peri-
ods of approximately tens of seconds to several minutes,
that propagate into the thermosphere. Acoustic and gravity
waves are also both reproduced in compressible ray-tracing
studies of propagation from simulated convective plumes
[e.g., Vadas, 2013].

[5] Acoustic waves with periods �1–5 min have been
identified in the ionosphere above tropospheric convection
[e.g., Georges, 1973, and references cited therein]. Waves
above the Brunt-Väisälä frequency have also been detected
in airglow image [e.g., Hecht et al., 2002] and airglow spec-
tral [e.g., Pilger et al., 2013] data, attributable to acoustic,
evanescent, or gravity waves (under favorable conditions).
Ray tracing of acoustic waves from tropospheric sources
suggests amplitudes sufficient to perturb the hydroxyl (OH)
layer, which may provide indications of forcing at ground
level by various processes [Bittner et al., 2010, and ref-
erences cited therein]. The observational importance of
acoustic waves in the MLT and ionosphere (MLTI) was
highlighted following the Tohoku earthquake and tsunami:
Acoustic and gravity waves were detected in ionospheric
electron density [e.g., Galvan et al., 2011, and references
cited therein], and in situ satellite measurements revealed
waves in the F region, with periods �1 min, perturbing neu-
tral density by up to �11% with vertical velocities up to
�130 m/s [Garcia et al., 2013].

[6] The present study aims to provide guidance on the
identification of MLT region acoustic waves generated by
forcing from below. We investigate, using a numerical
model, the observable features of acoustic waves gener-
ated by idealized transient tropospheric updrafts and their
relationship to simultaneously forced gravity waves. We
quantify the integrated intensity and brightness-weighted
temperature (BWT) perturbations to the near-infrared (NIR)
OH(3,1) emission, which for the modeled waves are esti-
mated to be readily detectable by recent NIR imaging
systems [e.g., Hecht et al., 2007; Taylor et al., 2010].

2. Numerical Model Formulation
2.1. Compressible Dynamics and
Photochemical Models

[7] Numerical simulations are performed with the non-
linear, compressible, atmospheric model of Snively and
Pasko [2008], based on the “f-wave” finite volume method
of Bale et al. [2002] and LeVeque [2002], and imple-
mented within the Clawpack software package [http://www.
clawpack.org]. The model solves the Euler equations of
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Figure 1. (a) Ambient profiles of sound speed cs, Brunt-Väisälä period �N, and acoustic cutoff period �A. Visualization of
wave temperature perturbations due to upward propagating acoustic and gravity waves are shown for (b) the Case I source
and (c) the Case II source.

conservation of mass, momentum, and energy in a cylin-
drically axisymmetric domain and supports propagation of
steep acoustic waves without formation of artifacts. The
domain, with radius r and altitude z, is similar to those of
Walterscheid et al. [2003] and de Larquier et al. [2010];
geometric terms [e.g., LeVeque, 2002, pp.433-434] are
solved via a second-order approach, using time splitting.
Axisymmetric models exclude the influence of winds; how-
ever, high-phase-velocity waves are well captured near to
their sources.

[8] As only waves with periods on the order of min-
utes are considered, we include viscosity and thermal con-
duction but exclude additional absorption processes [e.g.,
de Larquier et al., 2010]. Viscous terms�r2Ev and 1

3�r(r�Ev)
are included in the momentum equation (dynamic viscosity
� varies minimally with altitude, while kinematic viscosity
varies with�/�), solved via an explicit method with adaptive
time stepping, and applied using a time-split approach [e.g.,
Snively and Pasko, 2008]; conduction is applied similarly.
The waves of interest for the present study are not strongly
damped below 100 km altitude.

[9] The photochemistry model solves for OH vibrational
emissions using the method of Snively et al. [2010] for
the chemistry of Adler-Golden [1997], to obtain perturbed
OH(v) densities. Advection equations are solved for N2, O2,
and O. Full continuity equations are solved for O3 and H,
which include chemical production and loss, and short-lived
OH(v) molecules are treated using a steady state approach.
We finally calculate the OH(3,1) band-averaged integrated
intensity and BWT, which are frequently used in airglow
imagery and spectroscopy. Equivalent results (not shown)
are also obtained for the (2,0), (4,2), (6,2), and (8,3) bands;
due to large vertical wavelengths of acoustic waves, the sig-
natures are not strongly dependent on species layer profiles
or peak altitudes.

2.2. Ambient Atmosphere
[10] NRLMSISE-00 temperature and neutral density pro-

files are specified arbitrarily for 29.2ıN latitude, 81.0ıW
longitude, on 1 January 2010, at 12:00UT [Hedin, 1991;
Picone et al., 2002]. The waves studied here are not sensi-
tive to specific conditions, and we assume that intervening
winds would not strongly influence their upward propaga-
tion. The domain extends from 0 to +400 km in the radial r
direction and 0 to +400 km in the altitude z direction, with

equal dr = dz = 500 m cell dimensions. Open boundaries
are placed at r = 400 km and z = 400 km; ground z = 0
km is a reflecting surface. Viscosity and conduction natu-
rally damp waves that propagate vertically toward the upper
boundary, and no sponge layer is required [e.g., Snively and
Pasko, 2008].

[11] Figure 1a depicts profiles of sound speed
cs=
p
�RT, Brunt-Väisälä period �N = (2�)/!N, where

!N=
p

(g/� )(d� /dz), and acoustic cutoff period
�A = (2�)/!A, where !A=(cs/2)(d(ln �)/dz) [Gossard and
Hooke, 1975, p.114]. Here � is the ratio of specific heats,
R is the specific gas constant, T is temperature, g is the
acceleration of gravity, � is potential temperature, and � is
mass density.

2.3. Source Characteristics and Case Studies
[12] Wave sources correspond with single updrafts and

subsequent atmospheric responses and are applied via verti-
cal forcing near tropopause. They appear in the momentum
equation as a “body force” term [e.g., Vadas, 2013], pro-
portional to density, Fz = �A(r, z, t). The source is defined
by a simple vertical acceleration of Gaussian form A =
Ao exp[–(r – ro)2/2� 2

r – (z – zo)2/2� 2
z – (t – to)2/2� 2

t ], where
Ao is peak acceleration, �r and �z are horizontal and verti-
cal half widths (standard deviations), respectively, and �t is
the temporal half width. The source is positioned at ro = 0
km and zo = 12 km, where to corresponds to its maximum
in time. This form of source differs notably from the oscilla-
tory sources used by Snively and Pasko [2008] and Snively et
al. [2010] to excite gravity waves, near specific periods and
wavelengths, with minimal excitation of acoustic waves.

[13] For real convective systems, superposed radiating
sources produce a broad spectrum of interacting waves,
which propagate in a four-dimensionally varying atmo-
sphere. Case studies here describe only small fractions
of realistic spectra, under ideal conditions, and are con-
structed to illustrate the observable signatures of the waves
of interest:

[14] Case study I is specified by �r = 5 km, �z = 3 km,
and �t = 60 s, where peak forcing occurs at to = 300 s, with
amplitude Ao = 0.125 N kg–1. As the full width at half maxi-
mum corresponds to a 2.355 min duration, the source excites
a spectrum of acoustic and gravity waves near periods �A
and �N. This source is slightly shorter in time scale than the
fast “plume” sources investigated by Vadas [2013].
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Figure 2. OH airglow (a) intensity and (b) temperature response for Case I forcing and (c) intensity and (d) temperature
response for Case II forcing, showing greater acoustic wave intensity.

[15] Case study II is specified by �r = 10 km, �z=
3 km, and �t = 20 s, where peak forcing occurs at to=
100 s, with amplitude Ao = 0.04166 N kg–1 (resulting in a
maximum pressure perturbation �1% at its center). As the
full width at half maximum corresponds to a short 47.1 s
duration, the source is more effective in exciting a spectrum
of infrasonic-acoustic waves. Due to its short time scale, its
amplitude is reduced by a factor of 3 from Case I. Such a
short duration updraft may not be realizable in isolation; it is
here used to increase the separation in time scales between
gravity and acoustic waves, by more effectively producing
acoustic waves at shorter periods.

3. Results
[16] Figure 1b depicts early temperature perturbations for

Case I, at simulation time t = 600 s. The more gradual
forcing in Case I radiates long period (�2–4 min), long
vertical wavelength (�50 km), acoustic waves at modest
amplitudes of � ˙2 K. At later times, the gravity wave
response becomes significant. The temperature perturbations
by the acoustic waves (not shown) in the thermosphere are
approximately tens of kelvin.

[17] Figure 1c depicts early temperature perturbations for
Case II, at simulation time t = 400 s. The impulsive forc-
ing produces a stronger acoustic wave response, with MLT
temperature perturbations of � ˙8 K. As anticipated in
section 2.3, the acoustic waves have shorter periods (�1–
2 min) and shorter vertical wavelengths (�30 km) than those
in Case I. Gravity wave perturbations in the stratosphere are
initially weak, near the limit of the figure’s dynamic range.
The larger horizontal scale of the Case II source yields more
directive acoustic waves, with less curvature of phase fronts.

[18] Figure 2 illustrates the temporal evolution of OH(3,1)
vertically integrated intensity (Figures 2a and 2c) and BWTs
(Figures 2b and 2d), here used as a proxy for rotational
temperature. Figures 2a and 2b (Case I) reveal similarities
in structure and periods of the leading acoustic waves and

trailing gravity waves. The acoustic waves are more promi-
nent in the Figures 2c and 2d (Case II), with multiple acous-
tic oscillations preceding the arrival of the gravity waves.
The acoustic waves are refracted and weakly reflected
through the MLT and propagate radially outward at greater
velocity than the gravity waves.

[19] Figures 3a and 3b illustrate acoustic and gravity wave
signatures at r = 0, and the relationship between mea-
sured OH intensity and temperature. For Case I (Figure 3a),
the modeled airglow signatures reveal �3.5 min periodic-
ity of “precursor” acoustic waves, which are followed by
the shortest �5.5 min gravity waves. The faster source in
Case II (Figure 3b) leads to a greater separation between the
acoustic waves with period of �2 min and gravity waves
�5.5 min. The transitions between waves are clearest in
BWT: the relative temperature perturbations decrease as the
gravity wave passes after �800 s. Despite carrying sig-
nificant temperature perturbations (Figure 2d), the acoustic
waves produce Krassovsky ratios ((ıI/NI)/(ıT/ NT)) �1, i.e.,
they exhibit temperature and intensity perturbations that are
in-phase with similar amplitudes. The gravity waves are
more effective than the acoustic waves at perturbing inte-
grated intensity (ratio >1). This is a consequence of the
large vertical wavelengths of acoustic waves, which pro-
duce opposite perturbations above and below the OH layer
peak that “cancel” when integrated vertically [Snively et al.,
2010]; off-zenith viewing may thus be beneficial, resulting
in reduced cancelation via constructive integration, along
certain paths.

[20] Figures 3c–3f depict spatial airglow “images,” con-
structed by interpolating the axisymmetric solutions onto a
Cartesian x-y plane. Initial acoustic wave signatures are vis-
ibly similar in both Figures 3c and 3e: The acoustic waves
form radial “disk” perturbations near the axial centers as
they penetrate into the airglow layer. The trailing gravity
wave signatures are similar in both cases (Figures 3d and
3f). However, in Case II (Figure 3f), thin concentric rings
associated with dispersing acoustic waves are apparent at
weak amplitude.

4535



SNIVELY: ACOUSTIC WAVE AIRGLOW SIGNATURES

-200 x = 0 km 200 -200 200

-2
00

y 
=

 0
 k

m
20

0

-200 200 -200 200

(e) Case II @ t = 400 sec (f) Case II @ t =  100 sec 1

x = 0 km

(c) Case I @ t = 600 sec (d) Case I @ t = 1300 sec 

AW

Acoustic Wave (AW)

GW

AW

Gravity Wave (GW)

x = 0 km x = 0 km

-2
00

y 
=

 0
 k

m
20

0

Simulated OH(3,1) Intensity Images

0 500 1000 1500
−4

−2

0

2

4
Intensity
Temperature

0 500 1000 1500
−4

−2

0

2

4

~5.5 min

~3.5 min

~2 min

~5.5 min

P
er

tu
rb

at
io

n 
(%

)

Simulation Time (sec)

OH(3,1) Intensity and Temperature 
Vertically-Integrated @ r = 0 km

(a) Case I

(b) Case II

P
os

iti
on

 y
 (

km
) 

 

Position x (km)  

Figure 3. OH airglow intensity and temperature response
at r = 0, for (a) Case I and (b) Case II, showing acoustic
waves preceding the arrival of the highest frequency grav-
ity wave signal. Simulated OH airglow intensity “image,”
for Case I at (c) early and (d) later times, where acoustic
and gravity waves dominate, respectively, and for Case II at
(e) early and (f) later times, showing acoustic waves rapidly
dispersing away as outer concentric rings surrounding the
gravity wave signature.

4. Discussion and Conclusions
[21] For Case I, the more gradual forcing produces acous-

tic and gravity waves at similar amplitudes and periods. It is
hypothesized that similar weak acoustic signatures may exist
at detectable amplitude (�1%) in presently available data,
although unambiguous identification may be difficult. For
Case II, the more rapid (but less realistic) forcing produces
strong acoustic waves at shorter periods �2 min. These
“precursor” signatures are visibly distinct from the trailing
gravity waves and would appear in airglow imagery as a
brightening or dimming of a radially-extended region (here
�75 km radius) prior to onset of concentric ring gravity
wave signatures. Confirmation of either event would require

identification of acoustic periodicities near the radial center.
Acoustic waves may not necessarily arrive prior to grav-
ity waves; indeed, they may be forced intermittently by an
evolving storm.

[22] The modeled acoustic wave perturbations are local-
ized and short-lived, detectable only above their sources,
and passing within minutes of onset. They are less effec-
tive at perturbing vertically integrated OH intensity than
gravity waves, yielding small Krassovsky ratios, but suffi-
ciently intense that fast imaging systems [e.g., Hecht et al.,
2007; Taylor et al., 2010] may resolve their signatures
under favorable conditions. The predicted zenith intensity
and temperature perturbations are as large as a few percent
of ambient.

[23] Meteorological sources of acoustic waves are not
well characterized, such that actual expected amplitudes
are not yet known. However, if (or if not) unambiguously
identifiable, acoustic waves may provide new insight into
the characteristics and evolutions of tropospheric sources
and the amplitudes and energetics of acoustic waves in the
MLTI above.
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