Background Research

- Artificial Neural Networks
 - Computing systems whose model architecture is inspired by biological neural networks [1].
 - Capable of improving task performance without task-specific programming.
 - Show excellent performance at classification based tasks such as face recognition [2], text recognition [3], and natural language processing [4].
- Deep Learning
 - A subfield of machine learning that focuses on algorithms inspired by the function and structure of the brain called artificial neural networks. The method used to allow computers to learn through a process called training.
- Transfer Learning
 - Retraining a pre-existing neural network on a new data set to perform a specific task.
- Face Recognition Software
 - Software capable of identifying a person from a digital image or video frame.

Research Goals and Objectives

- Compare the performance of the retrained AlexNet to VGG-Face [6] for face recognition using high and low resolution images at different distances.
- Develop a robust facial recognition pipeline to implement on to the humanoid robotic platform NAO.

Approach

- Retrain AlexNet on the CASIA-WebFace dataset to configure the neural network for face recognition tasks.
- Acquire an input image using NAO’s camera or a high resolution camera to run through the convolutional neural network.
- Extract the features of the input image using the neural networks AlexNet and VGG-Face
- Compare the features of the input image to the features of each image in the people database.
- Determine whether a match is detected or if the input image is a photo of a person who does not exist in the database.
- Evaluate the overall performance of each neural networks’ ability to perform face recognition tasks.

How it Works

Figure 2: Facial Recognition Pipeline utilizing NAO

<table>
<thead>
<tr>
<th>Output</th>
<th>Should The System Recognize You?</th>
<th>Does The System Recognize You?</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive (TP)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>True Negative (TN)</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>False Positive (FP)</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>False Negative (FN)</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

Figure 3: Shows the different outcomes that occur when testing face recognition.

Results

- VGG-Face Shows better results in every performance benchmark measured compared to AlexNet, although AlexNet is able to extract features from an image 800% faster than VGG-Face
- Resolution of the input image does not have a statistically significant impact on the performance of VGG-Face and AlexNet.
- AlexNet’s performance decreases with respect to distance from the camera where VGG-Face shows no performance loss.
- Both frameworks show excellent performance when eliminating false positives.
- Performance Charts shown below.

Future Research and Applications

- Implement multi face recognition from a single image, and utilize more complex classification methods.
- Perform additional complex recognition tasks such as face expression recognition, text recognition and object recognition.
- Security Applications: espionage, defense, homeland security, surveillance.
- Medical Applications: MRI image Processing.

References