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In recent years, the capabilities and potential value of unmanned autonomous systems 

(UAS) to perform an extensive variety of missions have significantly increased.  It is well 

comprehended that there are various challenges associated with the realization of 

autonomous operations in complex urban environments.  These difficulties include the 

requirement for precision guidance and control in conceivably GPS-denied conditions as 

well as the need to sense and avoid stationary and moving obstructions within the scene. 

The small size of some of these vehicles restricts the size, weight and power consumption 

of the sensor payload and onboard computational processing that can accommodated by 

UAS. 

This thesis analyzes the development and implementation of terrain mapping, path 

planning and control algorithms on an unmanned ground vehicle.  Data from GPS, IMU 

and LIDAR sensors are fused in order to compute and update a dense 3D point cloud that 

is used by an implicit terrain algorithm to provide detailed mathematical representations of 
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complex 3D structures generally found in urban environments.  A receding horizon path 

planning algorithm is employed to adaptively produce a kinematically-feasible path for the 

unmanned ground vehicle.  This path planning algorithm incorporates obstacle avoidance 

constraints and provides a set of waypoints to be followed by the unmanned ground vehicle.  

A waypoint controller is designed and implemented to enable the vehicle to follow the 

waypoints from the path planner.  Open-loop experiments are provided with an unmanned 

ground vehicle in order to demonstrate terrain generation with real sensor data. Closed-

loop results are then presented for a simulated ground vehicle in order to demonstrate the 

performance of the receding horizon path planning and control algorithms using the terrain 

map generated from the open-loop experiments. 
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CHAPTER 1 Introduction 

1.1 Terminology 

 The meaning of autonomous is somewhat unclear and open to much debate.  This 

work will describe an autonomous vehicle as a mobile robot that can explore and operate 

within an urban environment with minimal human cooperation.  Terms such as robot and 

intelligence have a wide range of implications. These terms will be characterized in order 

to define the autonomous vehicle examined in this work.  The term robot evokes various 

images.  The movie industry has made robots popular and depicts the concept of robots in 

numerous motion pictures such as Iron man, Dhoom2 and Transformers.  However these 

mythical cases are not an accurate representation of the robots that presently exist and work 

today. 

 For this research, the term robot will depict an unmanned ground vehicle (UGV).  

The autonomous UGV gathers information from onboard sensors, processes these data and 

then reacts to this information.  To an outside observer, the robot would appear to be 

autonomously making decisions focused around the circumstances it experiences in its 

surroundings. 

1.2 Motivation 

 Urban pursuit and related missions impose unique requirements on autonomous 

systems frameworks. Since an outside communication link is not always available or 

practical for providing control commands to the vehicle, unmanned vehicles must have the 

capacity to operate autonomously.  In particular, the constrained payload available to small 

aerial systems poses a great challenge to the system design.  A tradeoff between flight 
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execution, sensors and processing assets must be found.  Since communication with these 

unmanned system cannot be assured at all times, sensor process and decision making must 

be done onboard for successful operation in obstacle strewn environments such as hilly 

terrain, woodlands or urban areas. These capabilities require the incorporation of sensing 

and control methodologies for obstacle avoidance, path planning and control that consider 

the complexities of the whole UAV system. 

1.3 Literature Review  

 Over the previous decades, UAVs have been progressively utilized for an extensive 

array of applications [1]; for example observation, reconnaissance, surveying and mapping, 

spatial data securing, and geophysics investigations.  Therefore, the navigation of 

unmanned aerial vehicles is of considerable interest.  The limited payload of small aerial 

system poses a great challenge to the system design. The Global Positioning System (GPS) 

is an essential navigational sensor modality utilized for the vehicle direction and guidance 

[7, 8].   Nonetheless, a comprehensive study alluded to as the Volpe report [9] discusses 

vulnerabilities of GPS related with signal interruptions. These interruptions can be caused 

by RF interference, ionosphere interference, jamming or spoofing. This report inspired 

many strategies to mitigate the vulnerabilities of the current GPS navigation convention.   

 Another widely used navigation sensor used for calculating the position of the 

vehicle [10-13] is the IMU (inertial measurement unit).  It is composed of accelerometers, 

magnetometers and angular rate sensors.  Accelerometers measure the sum of linear 

acceleration, typically in three orthogonal axes, due to the vehicle motion and the 

acceleration due to gravity.  The direction of the local magnetic field is measured by 

magnetometers.  A measure of the three dimensional rate of rotation of the body (i.e., 
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angular velocity) is provided by angular rate sensors. An orientation estimate is typically 

computed using the direction of the earth’s gravitational and magnetic vector along with 

the angular rates, but there are drawbacks associated with using an IMU alone for 

navigation.  First, there is quadratic growth in position drift error due to the double 

integration of acceleration data containing bias and random noise. Similarly, the integration 

of angular rate data to estimate orientation is also subject to the accumulation of drift error. 

To mitigate these errors, IMU are commonly fused with GPS in a navigation filter, 

providing improved accuracy.  An inertial navigation system (INS) with GPS depends on 

the quality of the GPS signal but the GPS signal can be vulnerable to interference and 

spoofing as discussed earlier.  Therefore, alternative navigational sensors are of interest for 

GPS-denied navigation. In addition, alternative sensing modes are required in order to 

sense and avoid obstacles within complex operational environments.  

  Recently, airborne and space-based laser altimetry has developed as a promising 

strategy to capture precise digital elevation data with LIDAR sensors.  An ever increasing 

range of applications has taken advantage of the high accuracy and dense sampling 

provided by LIDAR sensors, which have the advantages of low computational load and 

high processing rates [22-25].  Moreover, LIDAR is not constrained by lighting conditions.  

These sensors, therefore, have been employed to form dense point clouds for different 

applications [28, 29, and 30].  A 3D point cloud can be used by different methodologies to 

map the environment and to provide obstacle avoidance constraints.  Some collision 

avoidance methods for UAVs are based on potential field methods that model obstacles as 

repellants and waypoints as attractors [32, 33].  Considerable research has been done on 

the problem of obstacle avoidance for mobile ground robots [34, 35].  For collision free 
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robot guidance, two safety properties: passive safety (no collision can happen when the 

robot moves) and strong passive safety (the robot further maintains sufficient maneuvering 

distance from obstacles to avoid collisions) were studied [35].  In another work, the point 

cloud from LIDAR sensors was used to generate 3D mathematical representations that 

basically provide the information about the obstacles in the environment [37]. 

Many algorithms have been tested for path planning of autonomous vehicles. These 

are categorized as path planning and trajectory planning algorithms. Path planning entails 

generating an obstacle free path to avoid collision based on set of criteria [38, 39]. 

Trajectory planning plans the movement of the robot along the planned path.  One path 

planning approach that is receiving considerable attention in the literature is receding 

horizon control.  The receding horizon methodology has the ability to incorporate obstacle 

avoidance constraints as well as input and state constraints. The receding horizon algorithm 

solves an optimal control problem over a finite time horizon, after which a new optimal 

control problem is solved.  This process continues until the objective is achieved.  

Therefore, the receding horizon algorithm provides the ability to incorporate new data into 

the planning and control of the vehicle. The stability of receding horizon control methods 

requires careful consideration compared with conventional (infinite horizon) optimal 

control approaches, but is now a well understood issue [40].   

There are many examples in which receding horizon methods were employed to 

plan and control the trajectory of the autonomous vehicles [41, 42].  An important 

characteristic feature of the receding horizon method is that it involves re-planning after 

short time intervals, making it possible to consider new information frequently.  In another 

work, this approach was employed to plan the movement of an autonomous UAV along a 
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2D straight line path avoiding obstacles by re-planning every time it received new data 

[43].  In the majority of the above studies, the obstacles are assumed to be known a priori 

or estimated online by an obstacle detection algorithm. 

1.4 Existing Autonomous vehicles 

 The two main applications of UAVs or UGVs are military use and civilian use. 

1.4.1 Military Applications 

 In the previous decade, because of world conflicts and the quick progression of 

innovation, there has been an extraordinary military interest in self-governing or 

autonomous vehicles.  In the future, the U.S. military would like to have a large portion of 

its battle force provided by unmanned independent vehicles.  Autonomous vehicles are a 

favored weapon system because of their productivity, information accumulation capacities 

and assurance of human life.  UAVs have the potential to perform intelligence, surveillance 

and reconnaissance (ISR) missions. Their application has extended to electronic assault, 

strike mission, concealment and demolition of enemy air resistance (SEAD/DEAD), battle 

pursuit and salvage (CSAR).  

 Two well-known unmanned aerial vehicles are the U.S. Air Force’s Predator and 

Global Hawk.  The Predator is intended to provide steady discernment, reconnaissance and 

surveillance.  This UAV is controlled from a ground control station (GCS), through a 

satellite connection, from it is given missions by a human operator.  While the Predator has 

the ability to perform battle missions, a human operator makes an official determination to 

fire on a target.  The Predator’s capacity to assault ground targets and protect troops from 

danger has demonstrated its value to the U.S. military [3].  Another example, the Global 

Hawk, is solely an observation and surveillance UAV that was assembled for high altitude, 
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long endurance missions. Furnished with complex radar and sensing systems, it can supply 

responsive and persistent information from many places inside enemy territory, day or 

night, with little concern for climate [4].   

 Autonomous vehicles are likewise being utilized at sea by the U.S. Navy and on 

the ground by the U.S. Army.  Providing a ground vehicle with the ability to adjust to its 

surrounding and maintain strategic distance from obstructions is a challenging task. 

1.4.2 Consumer Applications 

 As innovation advances and becomes less expensive, the number of applications of 

autonomous vehicles will increase.  As a rule with innovation, what was at one time a top 

of the line, top secret military application eventually enters the commercial market in a 

totally distinctive capacity.  As an example , the global positioning system (GPS) was 

created in the 1970’s entirely for the military but today is broadly utilized for automobile 

navigation, mail and bundle following and many other commercial applications. A similar 

trend is occurring with autonomous vehicles. For example, Roomba is an autonomous 

vacuum cleaner designed and made by iRobot, which costs around $250. iRobot claims 

Roomba can keep a house vacuumed with next to no human intervention.  Another example 

of a civilian autonomous robot is Robomower.  Friendly Robotics asserts that a customer 

can schedule the Robomower to cut their yard when desired [6].  These products seem 

at face value to be extraordinary answers for unremarkable assignments but there are issues 

with both of them.  Lamentably, both of these items fail to meet expectations.  They are 

not particularly clever machines.  For example, both these robots explore their 

surroundings in an irregular manner.  They make headway until they experience an 

obstruction, then they make a turn arbitrarily and proceed until another obstruction is 
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encountered.  In a basic domain, for example a rectangular room or a round yard with few 

obstructions, this strategy can be effective.  In complex environments, however, these 

systems end up being wasteful and ineffective.  Surveys of these robots assert that when 

they were utilized in complex world settings, they would end up not vacuuming the entire 

room or leaving portions of grass unmowed.  Clearly a superior guidance approach must 

be concocted for these scenarios.   

1.5 Technical Objectives 

 This thesis emphasizes the system integration of algorithms for sensor fusion, 

mapping, path planning and controls for an unmanned ground vehicle (UGV) operating in 

a complex urban environment, with future extensions to an unmanned air vehicle (UAV).  

A key objective of the thesis is to provide a systems-level investigation of the different 

component algorithms required in the closed-loop system. These algorithms include sensor 

fusion to generate navigation and point cloud data, 3D implicit terrain representations of 

the scene, receding horizon path planning with obstacle avoidance constraints and a 

waypoint controller to enable the vehicle to follow the planned path. The following 

objectives are achieved in this thesis: 

1) Generate detailed navigation data from the unmanned ground vehicle using 

IMU and GPS sensors.  

2) Create a 3D point cloud from processed LIDAR data and generate a 3D 

representation of the environment using 3D implicit terrain algorithms. 

3)  Implement a receding horizon algorithm to adaptively plan a path through the 

scene while enforcing obstacle avoidance constraints provided by the 3D terrain 

map. 
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4) Develop and implement a UGV controller to enable the UGV to follow the 

planned waypoints.  

5) Perform open-loop experiments with data collected from a UGV operating in a 

complex environment as well as closed-loop simulations of a UGV model 

navigating in a complex scene.  

 

Figure 1.1: - Overview of an Autonomous System for UGV 

The vehicle would commonly be instrumented with one or more traditional 

navigation sensors such as inertial measurement unit (IMU) (i.e. accelerometers and rate 

gyros) and GPS unit.  A typical UAS payload might also incorporate a laser rangefinder or 

a line-scan LIDAR unit.  Because the vehicle has an onboard LIDAR or rangefinder, a 

point cloud can be produced from LIDAR measurements and an estimate of the inertial 

position and orientation of the vehicle.  The 3D point cloud, which is computed in an 

inertial reference frame, is utilized to produce a detailed 3D terrain map, which gives 

obstacle avoidance constraints to receding horizon path planner.  The receding horizon 

module computes the path points that minimize a cost functional over a finite time horizon 
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while incorporating obstacle avoidance constraints.  The control is connected over a subset 

of this horizon after which another optimization problem is performed to generate the next 

set of path points for the vehicle.  Along these lines, the receding horizon methodology can 

incorporate new data from the updated obstacle map in the next path planning iteration.  A 

controller is designed to drive the robot to the points planned by the receding horizon 

algorithm to reach its target point. The controller receives new waypoints at every time 

interval until the goal is achieved.  

1.6 Organization of this Thesis 

This thesis is organized as follows: 

 Chapter 2 discusses the unmanned ground vehicle (UGV) and sensors used in 

this research. 

 Chapter 3 provides details about the different reference frames and coordinates 

transformation required for navigation and the sensor fusion algorithms used to 

generate a LIDAR based point cloud. 

Chapter 4 discusses the implicit terrain algorithms used to represent 3D urban 

terrain features based on LIDAR measurements and also provides the 

formulation of the receding horizon path planning algorithm with obstacle 

avoidance constraints. 

 Chapter 5 introduces a simulation model of the ground robot and develops a 

waypoint controller in order to navigate the vehicle to follow the planned path.  

 Chapter 6 provides open-loop experimental results in which these algorithms 

have been applied to data gathered from the UGV sensors as it traveled through 
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a complex scene.  Closed–loop simulations are then provided and the 

performance of the algorithms is discussed 

 Chapter 7 provides conclusions and future recommendations. 

 

  



 
 

21 
 

CHAPTER-2 

Unmanned Ground Vehicle and Sensors 

 This chapter provides a detailed description of the unmanned ground vehicle and 

onboard sensor suite that was employed in this research.  The sensor suite includes a 

MicroStrain 3DM-GX3-45 inertial navigation system (INS), a Hokuyo UTM-30LX line-

scan LIDAR unit, and a Global sat BU-353 GPS receiver.  Data from these sensors were 

fused to estimate the inertial position and orientation of the vehicle and to compute a 3D 

point cloud from which a terrain map of the environment was adaptively generated. 

2.1 Unmanned Ground Vehicle 

 The unmanned ground vehicle is a completely robotized vehicle that can travel on 

a specific predefined course with minimal human intercession. The ground vehicle used in 

this work is a Corobot four wheeled robot that has an onboard computer. Figure 2.1 shows 

several views of the Corobot unmanned ground vehicle. 

 

Figure 2.1a Corobot Unmanned Ground Vehicle 
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Figure 2.1b: Top view of the Corobot with sensors 

 The Corobot is instrumented with sensors, which are integrated with its hardware 

in order to record and process the sensor measurements.  The ultimate goal is to enable the 

Corobot to operate autonomously in urban environments using the current position and 

desired waypoints generated by the receding horizon path planning algorithm.  A controller 

(discussed later) is designed to generate commands to the motors in order to move the robot 

towards the next desired waypoint.  The Corobot is Linux and Windows compatible, and 

Linux is required to be set up for the initial use. The sensors are integrated with the Corobot 

using Robot Operating System (ROS).  The Corobot is intended for simple access, 

dismantling and reassembly for including and changing of equipment and parts.  Because 

of its open structure, the Corobot is sensitive to debris. Operation under outdoor lighting 

conditions should represent no issue to the Corobot; however water will cause damage 

because the unit is not waterproof. The Corobot can connect to a local wireless network, 

which enables communication with the robot from a networked desktop, laptop or, 
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depending on network connections, from anywhere on the Internet.  To drive the Corobot, 

the Corobot control panel is interfaced with a keyboard or joystick.  Figure 2.1b depicts an 

overhead view of the Corobot with the integrated sensor suite, and Figures 2.1c through 

2.1e provide several other views of the vehicle.  

 

Figure 2.1c: Left side power selector switch and power connectors 

 

Figure 2.1d: Right side power and reset buttons 
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Figure 2.1e: Rear view of the Corobot 

2.2 GPS Receiver 

 The global positioning system (GPS) is a space based global navigation satellite 

system that provides reliable positioning and time information in all weather and anywhere 

on or near the earth.  GPS was established in 1973 by the U.S. Department of Defense.  

The GPS consists of a constellation of 27 earth orbiting satellites (24 in operation and three 

extra in case one fails).  A GPS receiver locates four or more of these satellites, computes 

the distance to each satellite, and uses this information to deduce its location.  The 

advantages of using GPS for navigation include its accuracy in determining position and 

the fact that GPS receivers are lightweight and inexpensive.  A shortcoming of GPS is that 

the signal is often unavailable in urban and mountain areas, as well as indoor and 

underground environments.  GPS signals are also vulnerable to interference and spoofing. 

They have a low update frequency, which is normally 1-10 Hz, which is 1-2 orders of 

magnitude lower than that of a standard INS.        
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Figure 2.2 GlobalSat BU-353 GPS receiver 

 The GPS receiver used for this work is the GlobalSat BU-353.  This GPS receiver 

has the following features: 

1) Its bottom is non slippery and waterproof 

2) It has the capability to predict satellite position for up to 3 days in advance 

3) Low power consumption 

4) It has a built in patch antenna 

Each row of the GPS data file corresponds to a position measurement.  The data file has 4 

columns corresponding to [Time stamp (ms), Geodetic Latitude 𝜆𝐷(deg), Longitude 

𝜑𝐷(deg), Altitude h (m)].  Note that the GPS measurement provides position relative to the 

WGS-84 ellipsoid.  Therefore, the altitude is approximately equivalent to height above sea 

level. 

2.3 Inertial Navigation System 

 An inertial navigation system (INS) is an electronic device that uses a combination 

of accelerometers, gyroscopes, GPS, and magnetometers to measure the vehicle’s position, 

velocity, orientation and angular velocity.  The INS contains an inertial measurement unit 

(IMU), which measures acceleration utilizing one or more accelerometers and measures 
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rotation using one or more rate gyroscopes. Furthermore, many INS incorporate 

magnetometer data in a navigation filter in order to reduce drift in the orientation (i.e., roll, 

pitch, and yaw) angles that are calculated from integrating noisy rate gyro data.  The 

position of the vehicle can be calculated directly from IMU data in a process known as 

dead reckoning, but typically GPS data are incorporated into a navigation filter to reduce 

drift in the position estimates.  An advantage of IMU sensors is that their data sampling 

rate is high (on the order of 50 Hz) compared to that of GPS (on the order of 1-10 Hz). 

  For this thesis research, a Microstrain 3DM-GX3-45 INS sensor, as shown in 

Figure 2.3, was used.  This INS consists of a triaxial accelerometer, a triaxial gyro, a triaxial 

magnetometer and a temperature sensor.  It additionally has an installed processor that runs 

a navigation filter to provide static and dynamic orientation and inertial position estimates. 

 

Figure 2.3 Microstrain 3DM-GX3-45 GPS Aided Inertial Navigation System 

The 3D-GX3-45 provides a range of navigation related output quantities.  Fully calibrated 

inertial measurements include acceleration, angular rates, magnetic field, delta theta and 

delta velocity vectors, Euler angles (pitch, roll and heading), rotation matrix and 

quaternion.  
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2.4 LIDAR 

 LIDAR (light detection and ranging) is a remote sensing innovation that measures 

3D point clouds of the earth’s surface.  Some airborne LIDAR instrumentation utilize a 

laser scanner with up to 400,000 pulses of light per second.  At the point when an airborne 

laser is pointed at a focused region on the ground, the light emission is reflected by the 

surface.  A sensor records this reflected light to measure the range.  Laser range 

measurements are fused with vehicle position and orientation information in order to 

generate a dense, detail-rich collection of 3D elevation points known as a “point cloud.” 

 The LIDAR used in this work was the Hokuyo UTM-30 LX line-scan LIDAR, 

pictured in Figure 2.4.  This line-scan sensor rotates the laser about a single axis in order 

to produce planar scans of the surrounding environment. 

 

Figure 2.4 Hokuyo UTM-30LX Line-Scan LIDAR 

Features of the Hokuyo UTM-30LX LIDAR include 

1) Minimum range of 10 mm 

2) Maximum range of 60 m 
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3) Scan angle of 270 degrees 

4) Scan rate of 25 ms (40 scans/sec) 

5) Mass of 210g 

6) Angular resolution of 0.25 degrees 
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Chapter -3 

Data Processing and Sensor Fusion 

 This chapter discusses the algorithms required for processing the GPS, INS, and 

LIDAR data in order to compute the position and orientation of the vehicle as well as 

generating a 3D point cloud.  In order to construct a terrain map, the LIDAR measurements 

must be expressed in a common inertial reference frame.  The computation of this LIDAR-

based point cloud entails transforming the LIDAR measurements, which are collected with 

respect to the LIDAR sensor, to the inertial frame using the estimated position and 

orientation of the ground vehicle.  The reference frames and coordinate transformations 

required for this analysis are also provided in this chapter. 

3.1 Reference Frames 

 Several different reference frames are utilized in the sensor fusion algorithms 

discussed in this chapter.  These reference frames, illustrated in Figure 3.1, include a local 

geodetic (North-East-Down) frame G, which for the purposes of this ground robot 

application serves as an inertial reference frame, a body reference frame B that is fixed 

within the vehicle (i.e., the coordinate axes move with the vehicle), and a sensor frame S 

that is fixed within each sensor.     
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Figure 3.1 Geodetic (NED), Body, and Sensor Reference Frames 

In Figure 3.1, 𝑟𝑏⃗⃗  ⃗ represents the position of the vehicle center of mass (CM) relative to the 

origin of the inertial frame and  𝑟𝑠⃗⃗  denotes the position of the sensor relative to the vehicle 

CM.  The coordinate axes of the geodetic, body, and sensor frames are defined as follows.  

Local Geodetic (Inertial) Frame G 

 𝑔1̂ corresponds to local North 

 𝑔2̂ corresponds to local East  

 𝑔3̂ corresponds to local Down 

Body Fixed Frame B 

 Origin is located at the vehicle CM 

 𝑏1̂ is pointed out the front of the vehicle 

 𝑏2̂ is pointed out the right side of the vehicle 

 𝑏3̂ is pointed downward, completing the orthogonal triad 

Sensor Fixed Frame S 
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 Origin is collocated with the LIDAR sensor 

 
1̂s  is pointed out the front of the sensor  

 
2ŝ  is pointed out the right side of the sensor 

 3ŝ  is pointed downward, completing the orthogonal triad 

3.2 Coordinate Transformations 

 
Given the reference frames defined in the previous section, it is necessary to define 

the coordinate transformations required to express data in these different reference frames.  

These coordinate transformations take the form of rotation matrices that transform data 

representations from one reference frame to another.  

Given the measured roll φ, pitch θ, and yaw ψ of the vehicle, the rotation matrix 

𝑅𝐺
𝐵  defining the transformation from the geodetic (inertial) reference frame to the body-

fixed reference frame is defined in terms of 3 single-axis rotations. The first of these is a 

rotation about the ĝ3 axis by the yaw angle, as shown in Figure 3.2. This rotation uses the 

usual convention that yaw is measured clockwise from the North.  

 
Figure 3.2 Rotation about the ĝ3 (local down) axis by the yaw angle 

The transformation matrix defining this rotation is given by 
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1 1

2 2

33

f̂ ˆcosψ sinψ 0 g

ˆ ˆf = -sinψ cosψ 0 g

ˆ ˆ0 0 1 gf

 
   

     
    
         

 

The next rotation is about the 2f̂  axis by the pitch angle, as shown in Figure 3.3. This 

rotation uses the convention that an upward pitch angle is considered positive. 

 

Figure 3.3 Rotation about the 1f̂  axis by the pitch angle Ɵ 

The transformation matrix defining this rotation is given by 
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The final rotation is a rotation about the 2f̂  axis by the roll angle, as shown in Figure 3.4. 
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Figure 3.4 Rotation about the 1ĥ  axis by the roll angle φ 

The transformation matrix defining this rotation is given by 
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The transformation matrix 𝑅𝐺
𝐵 from the local geodetic (inertial) frame to the body-fixed 

frame is then composed from the three single-axis rotations as follows: 

𝑅𝐺
𝐵 = [

1 0 0
0 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑
0 −𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

] [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1

] 

The inverse rotation matrix (i.e., rotation from the body fixed frame to the inertial reference 

frame) is defined as 𝑅𝐵
𝐺 , which is given by 𝑅𝐵

𝐺 = (𝑅𝐺
𝐵)𝑇.  

 Similarly, given the roll, pitch and yaw (𝜑𝑠, 𝜃𝑠, 𝜓𝑠) of the sensor frame relative to 

body fixed frame, which are functions of how the sensors are mounted on the vehicle, the 

rotation matrix defining coordinate transformation from the body fixed frame to the sensor 

frame is calculated as 

𝑅𝐵
𝑆 = [

1 0 0
0 𝑐𝑜𝑠𝜑𝑠 𝑠𝑖𝑛𝜑𝑠

0 −𝑠𝑖𝑛𝜑𝑠 𝑐𝑜𝑠𝜑𝑠

] [
𝑐𝑜𝑠𝜃𝑠 0 −𝑠𝑖𝑛𝜃𝑠

0 1 0
𝑠𝑖𝑛𝜃𝑠 0 𝑐𝑜𝑠𝜃𝑠

] [
𝑐𝑜𝑠𝜓𝑠 𝑠𝑖𝑛𝜓𝑠 0
−𝑠𝑖𝑛𝜓𝑠 𝑐𝑜𝑠𝜓𝑠 0

0 0 1

] 

In general each sensor has a unique position and orientation relative to the origin of the 

sensor frame. These are function of the how individual sensors are mounted.  We define 

the following relative position vectors.  

Lr


 = position of the LIDAR relative to the sensor frame origin 

INSr


 = position of the INS sensor relative to the sensor frame origin  

GAr


 = position of the GPS receiver antenna to the sensor frame origin 
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Defining references frame fixed to each individual sensor, the rotation matrices that define 

the transformation from the sensor fixed reference frame to the individual sensor frames 

can be defined in terms of the roll, pitch and yaw of each sensor relative to the sensor 

frame. These angles are a function of how each sensor is mounted. Therefore, we define 

the following rotation matrices. 

𝑅𝑆
𝐿(𝜑𝐿,𝜃𝐿 , 𝜓𝐿) = orientation of the LIDAR relative to the sensor frame 

𝑅𝑆
𝐼𝑁𝑆(𝜑𝐼𝑁𝑆, 𝜃𝐼𝑁𝑆, 𝜓𝐼𝑁𝑆) = orientation of the INS sensor relative to the sensor frame 

𝑅𝑆
𝐺𝐴(𝜑𝐺𝐴,𝜃𝐺𝐴 , 𝜓𝐺𝐴) = orientation of the GPS antenna relative to the sensor frame 

In this ground vehcile application, the rotation matrix 𝑅𝐵
𝑆  (rotation of body fixed frame to 

the sensor frame) reduces to the identity matrix because the sensors are mounted on the 

vehicle so they are aligned with the body fixed axes.  For this work, the origin of sensor 

frame was selected to be collocated with the origin of the LIDAR. The LIDAR, INS, and 

GPS sensors are mounted with the same alignment; therefore, the rotation matrices 

(𝑅𝑆
𝐿 , 𝑅𝑆

𝐼𝑁𝑆, 𝑅𝑆
𝐺𝐴) all reduce to the identity matrix. 

 

 

 

3.3 Position Calculations 

 The latitude, longitude and altitude are measured with respect to geodetic 

coordinates providing the position of the GPS receiver relative to the WGS-84 ellipsoid. 

An earth centered, earth fixed reference frame E can be defined at the center of the earth 

as follows: 
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Figure 3.5a Earth centered, earth fixed frame E (origin at center of Earth) 

 

Figure 3.5b The longitude 
D 

from an overhead view of the Earth 

 

Figure 3.5c The geodetic latitude 
D 

and altitude h from a side view of Earth 
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 Given the GPS measurements (geodetic latitude, longitude and altitude), it is 

desirable to compute the vehicle position with respect to a local geodetic (North, East, 

Down) reference frame. A NED reference frame can be defined from the initial GPS 

measurement (𝜆𝐷,0, 𝜑𝐷,0, ℎ0) by first expressing the initial GPS location in the Earth-

centered, Earth-fixed (ECEF) frame.  Then the rotation matrix that transforms the ECEF 

frame into a local NED frame can be defined, and the origin of the NED frame is located 

at the initial ECEF location of the vehicle center of mass. All subsequent GPS 

measurements can then be referenced to this local NED frame.  

3.3.1 Computing the initial GPS position in the ECEF frame  

 The initial GPS location can be expressed in terms of the ECEF reference frame as 

follows: 

   0,GPS,ECEF 0 D,0 D,0

a
X = + h cos λ cos φ

χ

 
 
   

 

 

   2

0,GPS,ECEF 0 D,0

a
Z = 1- e + h sin λ

χ

 
 
   

where 

a = 6378137 m (semi-major axis of the WGS-84 ellipsoid) 

𝑒2= 0.00669438 (square of the eccentricity of the WGS-84 ellipsoid) 

χ = √1 − 𝑒2𝑠𝑖𝑛2(𝜆𝐷,0) 

3.3.2 Local NED Frame Coordinate Transformation  

 

   0,GPS,ECEF 0 D,0 D,0

a
Y = + h cos λ sin φ

χ
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 The rotation matrix 𝑅𝐸
𝐺 defining the transformation from the ECEF reference frame 

to a local NED reference frame, where the North-East plane is tangent to the surface of the 

WGS-84 ellipsoid at the origin, can be defined in terms of three single-axis rotations.  The 

first rotation is about the ECEF 
3

ê  axis by the initial longitude 𝜑𝐷,0 as shown in Figure 

3.6. 

 

Figure 3.6 Rotation about 
3

ê  axis by initial longitude φD,0 

The rotation about the 
3

ê  axis by the initial longitude 𝜑𝐷,0 is given by the following matrix: 

1 D,0 D,0 1

2 D,0 D,0 2

3 3

ˆ ˆe cosφ sinφ 0 e

ˆ ˆe = -sinφ cosφ 0 e

ˆ ˆe 0 0 1 e

     
        
         

 

The next rotation corresponds to a rotation about the 2ê  axis by the initial latitude 𝜆𝐷,0, 

which is given by the matrix  

1 D,0 D,0 1

2 2

3 D,0 D,0 3

ˆ ˆe cosλ 0 sinλ e

ˆ ˆe = 0 1 0 e

ˆ ˆe -sinλ 0 cosλ e

     
    
     

         
 

After the second rotation, we have an Up North East reference frame.  In order to obtain a 

North East Down frame, the direction of the upward axis must be reversed and the 
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coordinate axes must be reordered.  These operations are achieved by the following 

transformation: 

1 1

2 2

3 3

ˆ ˆg 0 1 0 e

ˆ ˆg = 0 0 1 e

ˆ ˆg -1 0 0 e

     
         
          

 

3.3.3 Locating the Origin of the Local NED Frame   

 The origin of the local NED frame is located at the position of the vehicle CM when 

the initial GPS measurement is taken. The position in the ECEF reference frame can be 

computed as  

 
0,cm 0,GPS

ECEF E G B E G B S

0,Cm 0,cm 0,GPS G 0,B S G 0,B S GA

0,cm 0,GPSECEF ECEF

X X

r = Y = Y - R R r + R R R r

Z Z

   
   
   
   
   

 

                                                                                        Position of GPS w.r.t vehicle CM  

where 

𝑅𝑂,𝐵
𝐺  = initial rotation from body-fixed to local NED reference frame (derived from the 

initial orientation angles) 

B

Sr   = position of the sensor frame origin relative to the CM, expressed in the body-

fixed reference frame. 

𝑅𝑆
𝐵 = rotation from sensor frame to body-fixed reference frame (computed from the 

mounting angles of the sensor box) 

S

GAr = position of the GPS antenna relative to the sensor frame origin, expressed in the 

sensor reference frame. 

3.3.4 Expressing the GPS position in the Local NED Frame  
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 The local NED position of the vehicle CM at each time step is computed by 

subtracting the position of the GPS antenna relative to the CM: 

 
cm

G G G B G B S

CM cm GPS B S B S GA

cm G

X

r = Y = r - R  r + R R r

Z

 
 
 
 
 

 

where 𝑅𝐵
𝐺   denotes the rotation from the body-fixed to the local NED reference frame, which 

is derived from the vehicle orientation angles at each time step. 

3.4 INS Orientation Calculations 

 Orientation measurements are obtained from the Microstrain 3DM-GX3-45 INS 

sensor. The measurements (𝜑𝑚, 𝜃𝑚, 𝜓𝑚) provide the orientation of the INS sensor relative 

to the local geodetic (inertial) frame, from which we can then compute the orientation of 

the vehicle relative to the geodetic frame. The rotation matrix defining the transformation 

from the geodetic frame to the orientation sensor frame is computed as  

𝑅𝐺
𝐼𝑁𝑆 = [

1 0 0
0 𝑐𝑜𝑠𝜑𝑚 𝑠𝑖𝑛𝜑𝑚

0 −𝑠𝑖𝑛𝜑𝑚 𝑐𝑜𝑠𝜑𝑚

] [
𝑐𝑜𝑠𝜃𝑚 0 −𝑠𝑖𝑛𝜃𝑚

0 1 0
𝑠𝑖𝑛𝜃𝑚 0 𝑐𝑜𝑠𝜃𝑚

] [
𝑐𝑜𝑠𝜓𝑚 𝑠𝑖𝑛𝜓𝑚 0
−𝑠𝑖𝑛𝜓𝑚 𝑐𝑜𝑠𝜓𝑚 0

0 0 1

] 

As mentioned previously, the origin of the sensor frame is collocated with the origin of the 

LIDAR sensor frame.  Therefore, given the rotation matrices 𝑅𝑆
𝐼𝑁𝑆 (orientation of the INS 

frame relative to the sensor frame) and 𝑅𝐵
𝑆  (orientation of the sensor frame relative to the 

body fixed frame), the rotation matrix describing the orientation of the body fixed frame 

relative to the local geodetic (NED) frame is given by 

𝑅𝐺
𝐵 = 𝑅𝑆

𝐵𝑅𝐼𝑁𝑆
𝑆 𝑅𝐺

𝐼𝑁𝑆 

For this work, the INS sensor is aligned with the LIDAR, and the LIDAR is aligned with 

the vehicle.  Therefore, 
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RS
B = RINS

S = I 

RG
B = R𝑮

INS 

Hence, φ = 𝜑𝑚 , 𝜃 = 𝜃𝑚, and 𝜓 = 𝜓𝑚.  That is, the vehicle orientation angles are 

equivalent to the orientation angles measured by the INS sensor. 

3.5 LIDAR Point Cloud Calculations 

 The LIDAR reference frame is defined with the origin located on the LIDAR 

sensor. The LIDAR x axis ( 1l̂  axis in Figure 3.5) is fixed along the sensor boresight, the y 

axis ( 2l̂  axis in Figure 3.7) is pointed 90 degrees to the right of the sensor and the z axis is 

pointed downward (i.e., into the page). 

 

Figure 3.7 LIDAR Reference Frame 

Since the Hokuyo UTM-30LX is a line-scan LIDAR, all the measurements are in the 1l̂ -

2l̂  plane shown in Figure 3.7. The position vector of a LIDAR point measurement is given 

in the LIDAR reference frame as 

 

 

 
az

az

ψ azP

P P ψ azL

P L

d cos ψx

r = y = d sin ψ

z 0

  
  

   
   
   

 

The LIDAR point measurement in the local geodetic (NED) frame is then computed as 
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P

G G G B G B S G B S L

P P Cm B S B S L B S L P

P G

X

r = Y = r + R r + R R r + R R R r

Z

 
 
 
 
 

 

where 

G

Cmr = position of the vehicle CM, expressed in the local geodetic (NED) reference 

frame 

S

Lr = position of the LIDAR relative to the sensor frame origin, expressed in the sensor 

reference frame (note that this is zero since the LIDAR frame is collocated with the 

sensor frame in this application) 

𝑅𝐿
𝑆 = rotation from the LIDAR reference frame to the sensor reference frame, derived 

from how the LIDAR is mounted relative to the sensor frame. 

In this manner, each LIDAR point measurement is expressed in terms of a common 

reference frame, the local geodetic (NED) frame.  This generates a dense collection of data 

points in the inertial frame, known as a point cloud, from which a 3D terrain map of the 

environment can be constructed. 
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Chapter 4 

Terrain Mapping and Path Planning 

 4.1 3D Terrain Representations from Point Cloud Data 

 The point cloud generated from LIDAR measurements is used to generate a terrain 

representation of the environment. This thesis considers two methodologies that are based 

on mathematical learning theory developed by researchers at the University of South 

Carolina. Mathematical learning theory is a zone of parametric statistics that can be viewed 

as a converging of nonlinear approximation theory, adaptive tree algorithms and statistical 

estimation.  A vital characteristic of learning algorithms is that they do not require 

information regarding the underlying probability distribution describing the full scenario.  

The first terrain mapping approach utilizes a mathematical learning algorithm to build 

adaptive, multiresolution terrain representations from point cloud data [36].  This approach 

generates a piecewise constant terrain representation over rectangular or triangular sub 

domains, but linear interpolation can be applied to obtain continuous piecewise linear 

representations. This approach is well suited for real time implementations because it is 

fast and recursive in nature.  The only disadvantage with this approach is that it has 

tendency to cover the point cloud data with a terrain skin, which provides a functional 

representation that is not sufficient to represent certain 3D terrain features.   

 The second methodology uses implicit terrain algorithms to represent 3D features 

in the environment. It is able to represent 3D surfaces with a high level of detail; however, 

this algorithm is not recursive in nature (that is, the whole terrain representation must be 

regenerated every time new point cloud data are obtained).  Basically, the implicit terrain 

algorithm fits a 3D isosurface around the point cloud data.  The computation of the 
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isosurface is achieved by first producing a tetrahedral occupancy grid depending on the 

data distribution.  An unsigned distance is then calculated from the cell vertices to the data 

within the cell in order to generate a 3D surface that embodies the data for each tetrahedral 

occupancy cell.  The implicit terrain algorithms can be applied in navigation systems in 

order to generate representations of complex 3D terrain features. These algorithms are used 

to provide obstacle avoidance constraints to a receding horizon path planning algorithm.   

 The representation of the environment by these implicit terrain algorithms depends 

on three key parameters:  the depth parameter, occupancy parameter and isolevel 

parameter. The depth parameter is used to describe the minimum size of the occupancy 

cells that will be used for the representation of the 3D terrain. The occupancy parameter 

defines the minimum number of data points that must occupy a cell before it is further 

subdivided into smaller cells. The isolevel parameter determines the distance of isosurface 

from the point cloud data.  In other words, the isolevel parameter basically specifies the 

size of the isosurface that encapsulates the data.  The isolevel parameter can be varied 

according to the resolution required to capture specific 3D terrain features since it provides 

the resolution of the complex 3D structure (that is, it specifies to what level of detail a 

particular feature can be resolved).  A lower value of the isolevel parameter is better for 

the resolution of small features like people or vehicles, but it often results in holes or gaps 

in the terrain representations of larger structures such as buildings.  Hence a higher value 

of the isolevel parameter is required for larger structures because it produces a smoother 

and more continuous surface, which best fits larger complex structures.  

 A test was performed to investigate the effect of varying the isolevel parameter on 

a specific point cloud data set, the results of which can be seen in Figure 4.1.  This figure 



 
 

44 
 

shows the terrain representations obtained from LIDAR data collected from the unmanned 

ground vehicle as it traversed a path over relatively flat terrain.  During this experiment, 

the vehicle passes between two orange traffic cones on either side of the path.  The point 

cloud data were processed using the implicit terrain algorithm with isolevel parameters of 

0.5 and 0.1.   

 

(a) Terrain: isolevel 0.5 
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(b) Terrain: Isolevel 0.1 

 

(c) Terrain: Isolevel 0.5 (Different View) 
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(d) Terrain: Isolevel 1.0 (Different view) 

Figure 4.1 Effect of Varying the Isolevel Parameter 

 It is clear from Figure 4.1 (c) and 4.1 (d)  that a better resolution for small objects 

(cones) is obtained using a smaller value of the isolevel parameter, but the smaller isolevel 

parameter also results in gaps in the representation of the ground terrain (see Figure 4.1(b)).  

The larger isolevel provides better representations of larger structures or the full 

environment because it provides a smoother and more continuous terrain surface.  

 

4.2 Receding Horizon Path Planning Algorithm  

 Receding horizon control (RHC), otherwise called model predictive control (MPC), 

is a modern control algorithm that started to receive considerable attention in the 1980’s.  

Essentially, with RHC, an optimization problem is solved over a finite time interval to 

determine a plan of action over a fixed time horizon.  In RHC, the planner incorporates the 
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goal and constraints as components of an optimal control problem. RHC can also 

incorporate new information, constraints, future references and assessments of future 

disturbances. In this work, RHC is implemented as a path planning algorithm, which 

computes path points for the UGV that are passed to a waypoint controller. 

 The receding horizon path planning algorithm employed in this work computes a 

path that minimizes a mission based cost functional and incorporates obstacle avoidance 

constraints derived from the 3D terrain representation [43].  Therefore, with this approach, 

the vehicle travels a path that minimizes a cost function (low fuel consumption, minimum 

time of travel, etc.) subject to obstacle avoidance constraints.  As discussed earlier, the 

RHC algorithm computes an optimal path over a finite time horizon. A part of this path is 

executed and meanwhile new information is accumulated by the sensors, the 3D terrain 

map is upgraded and a new optimal path is then computed. In this way, the vehicle path is 

planned over a sliding window in time until the vehicle attains its goal, which is a specified 

destination waypoint in this study.  The autonomous navigation system is designed in such 

a manner that it generates the points or planned path to the control system, which in return 

generates the required control commands for the vehicle to follow the desired trajectory. 

Hence, in this work, RHC is used to generate a path that minimizes a cost functional subject 

to obstacle avoidance constraints derived from the 3D terrain map so that the vehicle can 

attain a target final waypoint.  
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Figure 4.2 Candidate Path Points for Two-Dimensional Path Planning 

 The receding horizon path planning algorithm involves producing an arrangement 

of candidate path points for a certain interval of time and then determining the optimal 

sequence of path points within that horizon.  Basically, the candidate points are arranged 

in a tree like structure such that there are different layers of points, and for moving from a 

point in one layer to another layer, there are multiple options available.  In two dimensions, 

the important parameters are Np, Nc, 𝜓ℎ  and d, where Np is number of planned points, Nc 

is number of path points to be followed, 𝜓ℎ is the maximum horizontal angle between the 

candidate points in the next layer and d is the distance between points in consecutive layers.  

Figure 4.2 shows the multiple layers of candidate 2D paths radiating from a vehicle situated 

at the origin and oriented due north.  In this example, for every point in a given layer, there 

are 3 choices for moving to the following layer corresponding to heading changes of -15°, 
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0°, and 15°.  Therefore, in this example, there is a 300 maximum horizontal angle (𝜓ℎ) 

between candidate points in the next layer with an angular resolution of 150, and the 

distance d is 5 meters between points in  consecutive layers.  With these parameters, there 

are a total of 3𝑁𝑝 candidate two-dimensional paths.  

 The augmentation of this approach to 3D is straightforward and involves selecting 

a maximum vertical path angle 𝜓𝑣  and a vertical angular resolution. If these two parameters 

are set equal to the horizontal angles as in the above scenario, there are 9 decisions from a 

given path point to the next and a total of 9𝑁𝑝 candidate paths. An important point to be 

noted here is that vehicle kinematic constraints can be applied through an appropriate 

choice of the path planning parameters. That is, the parameters can be chosen so that all 

candidate paths are within the maneuvering capabilities of the vehicle. 

 The mission objective of navigating the unmanned ground vehicle from a starting 

point A to a target location B can be cast as an optimization problem subject to path 

constraints for obstacle avoidance.  The UGV equations of motion can be written as a 

system of nonlinear, coupled ordinary differential equations: 

Ẋ (t) = F(X (t), U (t), t)                                               (1) 

X (0) = 𝑋0 

The vector X(t) represents the ground vehicle state vector and U(t) denotes the control 

input.  Obstacles (i.e., the terrain map) are estimated from sensor measurements Y(t), given  

by  

Y(t) = O (X(t); χ, t)                                                       (2) 

The observation operator O defines the output Y and its dependence on the vehicle states 

and the surrounding environment.  The trajectory of the ground vehicle is constrained such 
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that it does intersect any obstacle within the environment. The symbol χ is used to express 

the subset of 𝑅3, three-dimensional space, occupied by obstacles. We denote  

𝜒(X, Y, Z) = 1        if (x, y, z) ∈ χ                                       (3) 

𝜒(X, Y, Z) = 0          otherwise 

Therefore, the path of the vehicle is subject to the constraint 

(PX)(t) = (𝑋𝑐(𝑡), 𝑌𝑐(𝑡), 𝑍𝑐(t))                                             (4) 

In Eq. (4), P is an operator that selects specific states from the state vector X.  This 

constraint enforces the requirement that the center of mass of the vehicle (𝑋𝑐, 𝑌𝑐, 𝑍𝑐), which 

is subset of the vehicle state vector, must not intersect any of the obstacles.  

 The receding horizon path planning algorithm associated with the objective of 

navigating the UGV from a starting point  AAA ZYX ,,  to a goal location  BBB ZYX ,, is 

then formulated as the following optimization problem: 

 Find the path points   H

i

k

i

k

i

k

i

k NkZYXP ,,1 ,,,   that minimize the cost 

functional  

 

subject to the constraints 

   

i

k

i

k PP 1,          k = 1,…NH                             (obstacle avoidance) 

i

k

i

kP                      k = 1,…NH           (set of candidate path points) 

 AAA

i ZYXP ,,0                                                 (initial condition) 

This optimization problem is solved from i = 0,…N, where N is the number of path 

planning steps required to reach the goal location B.  After each path planning optimization, 

which provides NH path points, the first NC < NH path points are passed to a waypoint 



 
 

51 
 

controller, which computes the control inputs required to drive the UGV through the path 

points.  The UGV travels through the NC path points, during which time it collects new 

sensor data, updates the terrain map, and then solves a new optimization problem to 

compute the next set of path points.  This process continues until the UGV reaches the goal 

location B. 

 

Figure 4.3 Path Planning Scenario (Goal Location B) 

 This path planning algorithm was implemented by planning a series of trajectories 

using the receding horizon algorithm.  This implementation minimizes a cost function that 

incorporates weighted terms for approaching the objective mission point B subject to 

obstacle avoidance constraints based on the 3D implicit terrain map.  The obstacle 

avoidance constraints are implemented by first checking that, for every available path, the 

path points are no less than a distance 𝑑𝑠 from the from the 3D terrain surface, which 

indicates that the candidate path points are clear of obstacles by at least a margin of safety 

𝑑𝑠.  Then, all the paths that fulfill this requirement are ranked in order of increasing cost. 

Beginning with the minimal cost path, a higher resolution set of points is created along the 
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straight segments connecting the path points, and then the obstacle avoidance constraints 

are checked for each of these intermediate points.  This procedure addresses the possibility 

that an obstacle may exist between two successive path points. If by chance none of the 

candidate paths fulfill these constraints, the algorithm returns a command to the vehicle to 

either stay in place to gather extra information or to change direction in an attempt to find 

a path that satisfies the requirements.  
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Chapter 5 

Modeling and Control of the Unmanned Ground Vehicle  

5.1  UGV Kinematics  

 The unmanned ground vehicle (UGV) used for this work is a differential drive robot 

with four wheels. The movement of the wheels on the same side of the vehicle is the same; 

hence for the ease of calculation, the equations of motions can be calculated for two tires 

representing either side of the vehicle.  The two wheels are modeled as mounted on a 

common axis and can be moved independently in both the forward and backward 

directions.  For the rolling motion of the robot, the velocity of each wheel can be varied 

but there must be common point for both wheels about which the robot can rotate.  This 

point is called the instantaneous center of curvature.  

 

Figure 5.1 Differential Drive Kinematics for the Unmanned Ground Vehicle 
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The rate of rotation 𝜔 about the instantaneous center of curvature must be same for both 

the wheels.  Hence we can write: 

𝜔 (𝑅 +
𝑙

2
) =  𝑉𝑟                                               5.1 

𝜔(𝑅 − 𝑙/2) = 𝑉𝑙                                               5.2 

where 

l = distance between the center of the two wheels 

𝑉𝑟  = translational velocity of the right wheel 

𝑉𝑙  = translational velocity of the left wheel 

R = distance from the instantaneous center of curvature to the midpoint between the 

wheels 

c = instantaneous center of curvature 

From equation 5.1 and 5.2, 

𝑅 =
(
𝑙

2
)(𝑉𝑙+𝑉𝑟)

(𝑉𝑙−𝑉𝑟)
                                      5.3                                              

𝜔 = (𝑉𝑙 − 𝑉𝑟)/𝑙                               5.4 

From these equations, four cases can be derived:  

1) If 𝑉𝑙 = 𝑉𝑟, the robot moves in a straight line (linear motion) with no rotation.  

In this case, we obtain R  and 𝜔 = 0. 

2) If  𝑉𝑙 = −𝑉𝑟 , the vehicle rotates about the midpoint of the wheel axis. 

3) If  𝑉𝑙 = 0, the vehicle rotates about the left wheel in which case R = l/2.  

4) If  𝑉𝑟= 0, the vehicle rotates about the right wheel in which case R = l/2. 

 The current position of the robot is denoted as (x, y) and the heading angle   is 

defined as the angle between the position vector and the x axis.  The values of 𝑉𝑙 and 𝑉𝑟 



 
 

55 
 

can be used to vary the position and orientation of the robot.  The location of the 

instantaneous center of curvature c can be determined as  

c = [x – R sin (θ), y + R cos (θ)] 

At time t + dt, the pose of the robot is given by:  

[
�̇�
�̇�

θ̇

] = [
cos (𝜔𝑑𝑡) −𝑠𝑖𝑛(𝜔𝑑𝑡) 0
𝑠𝑖𝑛(𝜔𝑑𝑡) 𝑐𝑜𝑠(𝜔𝑑𝑡) 0

0 0 1

] [

𝑥 − 𝑐𝑥

𝑦 − 𝑐𝑦

θ
] + [

𝑐𝑥

𝑐𝑦

𝜔𝑑𝑡
] 

5.2 Controller  

 As discussed earlier, the receding horizon algorithm is used to plan the path to be 

followed by the ground robot. Waypoints along the planned path are then passed to the 

UGV controller, which drives the vehicle through each waypoint. Hence, the controller 

was designed to accept waypoints from the RHC path planner and generate the control 

commands required to travel through those waypoints. The controller designed for this 

work outputs left speed, right speed and time to the robot. This controller was implemented 

and tested in Simulink using a simulation model of a differential drive robot similar to the 

Corobot UGV.  

Figure 5.3 shows the Waypoint Controller generating left and right speed. The PI controller 

is fed with the information from RHC, INS and GPS. So once it has RHC path points, UGV 

heading and UGV position, it outputs the Left speed, right speed and time (seconds). 

Further this information is sent to Torque Actuator Command which in turns generate right 

and left torque(to the UGV wheels). 
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Figure 5.2 Feedback Control Law for the Unmanned Ground Vehicle 
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Figure 5.3 Waypoint Controller Generating Left and right torque 

 

 To check the functionality of the controller and simulation model, a set of path 

points was passed to the controller and simulation model in order to simulate the ability of 

the controller to drive the vehicle through the waypoints.  (In practice, these points would 

be provided by the receding horizon path planning algorithm). The simulation results, 

shown in Figure 5.5, demonstrate that the vehicle successfully travels through the 

waypoints.   
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(a) Position of Vehicle at t = 20 s 

 
(b) Position of Vehicle at t = 40 s 
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(c) Position of Vehicle at t = 60 s 

 

(d)  Position of Vehicle at t = 80 s 
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(e) Position of Vehicle at t = 100 s 

 

(f) Position of Vehicle at t = 120 s 

Figure 5.5 Position of Ground Vehicle at Different Time Intervals. 
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Chapter 6 

 Experimental and Simulation Results 

 A series of experimental and simulation studies were performed in order to 

demonstrate and evaluate the performance of the GNC algorithms applied to the unmanned 

ground vehicle.  An initial open-loop experiment was conducted in which the UGV was 

manually controlled to drive a straight path on level terrain with two cones on either side 

of the path serving as obstacles.   The purpose of this experiment was to confirm the 

functionality of the terrain mapping algorithms for a relatively simple test case.  Then, a 

second open-loop experiment was conducted in which the robot slowly traveled on a 

curved path with multiple obstacles in the area in order to test the terrain mapping 

algorithms on more complex terrain.  Finally, a set of closed-loop simulations was 

performed in which the UGV planned a path and autonomously drove through the planned 

waypoints to arrive at a target location.  In these simulations, the terrain data derived from 

the second set open-loop experiment was used to provide the obstacle avoidance 

constraints for the path planning algorithm.  

6.1 Open-Loop Experiment #1 

 Two open-loop experiments were run with the unmanned ground vehicle (UGV) 

driven around different locations on the Embry-Riddle Aeronautical University campus.  

The first experiment was a relatively simple case in which the UGV was driven along a 

straight path with two cones serving as obstacles.  The two cones were placed on the side 

of the sidewalk and the UGV was driven between them.  This relatively simple case was 

used to verify the proper functioning of the sensor fusion and terrain algorithms.  Figures 

6.1.1 – 6.1.3 show the UGV path and the cones that were placed in the scene.   Figure 6.1.1 
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shows the view from an onboard camera while Figures 6.1.2 and 6.1.3 provide an overhead 

view of the path.  In these figures, the red line shows the path driven by the UGV, and two 

X marks in Figure 6.1.3 denote the places where cones were placed. 

 

Figure 6.1.1: View of Overall Path from the Camera on the UGV 
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Figure 6.1.2: Overhead View of Path taken by the UGV on the ERAU Campus (red line 

shows the path) 

 

Figure 6.1.3:  Zoomed-in View of UGV Path 
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Figure 6.1.4: Ground Vehicle Track with Sample Images from the UGV Camera 

 

Figure 6.1.4 provides a detailed view of the path taken by the UGV.  The sample images 

were collected by the camera mounted on the UGV.  It is important to note that, for this 

work, the images taken by the camera on the UGV are not used for navigation but are 

instead just used for giving a detailed view of the scenario as shown in the figure. 



 
 

65 
 

 

Figure 6.1.5:  LIDAR Measurements with UGV Path (shown in red) 

 

Figure 6.1.6:  GPS Latitude and Longitude Measurements 
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Figure 6.1.7:  NED Position of the Vehicle CM 

 

Figure 6.1.8:  Orientation (Roll, Pitch, and Yaw) Measurements 
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(a)  3D Terrain Representation at t = 10 sec 

 

(b)  3D Terrain Representation at t = 20 sec 
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(c)  3D Terrain Representation at t = 40 sec  

Figure 6.1.9:  3D Terrain Representation at Different Time Intervals 

 

Figure 6.1.10:  Complete 3D Terrain Representation with Vehicle Path (shown in red) 
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Figure 6.1.11:  Front View of Complete 3D Terrain Map 

 

(a) Terrain: Isolevel 0.1 
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 (b) Terrain: Isolevel 0.5 

 

(c)  Terrain: Isolevel 0.1 
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(d)  Terrain: Isolevel 0.5 

Figure 6.1.12:  Effect of Varying Isolevel Parameter on Terrain Representation 

 

 Figures 6.1.5 – 6.1.8 illustrate the GPS, LIDAR, NED position, and orientation 

measurements obtained during the open-loop experiment. It includes computing the 

location and orientation of the vehicle relative to a local NED (inertial) reference frame., 

and the LIDAR data in Figure 6.1.5 has been registered to the NED frame.  All the data 

were recorded with a global time stamp but at different sample rates. Therefore, resampling 

of the data was required in order to perform the analysis. The computations were based on 

the derivations in Chapter 3.  The LIDAR measurements with the vehicle path in red is 

shown in Figure 6.1.5.  The LIDAR points were registered to the local NED reference 

frame using the GPS and orientation data that were resampled at at the same interval as the 

LIDAR data. Figure 6.1.6 shows the GPS latitude and longitude measurements. GPS data 

were sampled at approximately 8 Hz. A local NED reference frame was defined at the 
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initial location of the vehicle CM, which was computed from the initial GPS measurement 

as shown in Figure 6.1.7. The NED position was computed from the GPS  and orientaion 

data, after resampling these data via linear interpolation. Figure 6.1.8 shows the orientation 

measurements. As the data were collected from the ground vehicle, there was not much 

variation in roll and pitch measurements. Figure 6.1.9 illustrates the 3D terrain 

representation at different time intervals.  It shows the build up of 3D terrain as the data 

are collected during the run.  In each figure, the path is shown in red and the terrain has 

been constructed from the LIDAR points collected up to that point. Figure 6.1.12 shows 

the variation in 3D terrain representation as a result of varying the isolevel parameter. As 

discussed previously, this parameter determines the distance of isosurface from the point 

cloud data.  In other words, the isolevel parameter basically specifies the size of the 

isosurface that encapsulates the data. 

6.2  Open-Loop Experiment #2 

 In the second open-loop case, the UGV path was curved with numerous obstacles 

in the scene. Figures 6.2.1 – 6.2.3 depict the path taken by the UGV during this open-loop 

experiment.   

 

Figure 6.2.1:  View of Overall Path 
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Figure 6.2.2:  Overhead View of UGV Path from Google Earth (path shown in red) 

 

Figure 6.2.3:  UGV Track with Sample Images from the Onboard Camera 
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Figure 6.2.4: LIDAR Measurements with UGV Path (shown in red) 

 

Figure 6.2.5:  Inertial Position of the Vehicle CM 
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Figure 6.2.6:  Latitude and Longitude GPS Measurements 

 

 Figure 6.2.7:  Orientation Measurements 
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(a) 3D Terrain Representation at t = 7 sec

 

(b)  3D Terrain Representation at t = 15 sec 
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(c)  3D Terrain Representation at t = 25 sec 

 

(d) 3D Terrain Representation at t = 35 sec 
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(e)  3D Terrain Representation at t = 40 sec 

Figure 6.2.8:  3D Terrain Representation at Different Time Intervals (vehicle path 

shown in red) 

 

Figure 6.2.9: Overhead View of 3D Terrain Representation with UGV Path (shown in red) 
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Figure 6.2.10:  Oblique View of 3D Terrain Representation 

 

Figure 6.2.11: Alternative View of 3D Terrain Representation 
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Figure 6.2.12:  Alternative View of 3D Terrain Representation 

 

 Figure 6.2.4 – 6.2.7  illustrate the GPS, LIDAR and  orientation measurements. It 

includes computing the location and orientation of the vehicle relative to a local NED 

(inertial) reference frame, and registering the LIDAR data to the NED frame.  All the data 

were recorded with global time stamp but at different sample rates.  Therefore, resampling 

of the data was required in order to perform the analysis.  The computations were based on 

the derivations in the Chapter 3.  The LIDAR measurements with path in depcited in red is 

shown Figure 6.2.4. The LIDAR points were registered to the local NED reference frame 

using the GPS and orientation data that were resampled at at the same interval as the 

LIDAR data.  Figure 6.2.6 shows the GPS latitude and longitude measurements, which 

were sampled at approximately 8 Hz.  A local NED reference frame was defined at the 

initial location of the vehicle CM, which was computed from the initial GPS measurement 

as shown in Figure 6.2.5. The NED position was computed from the GPS  and orientaion 

data, after resampling these data via linear interpolation. Figure 6.2.7 shows the orientation 
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measurements. As the data were collected from the ground vehicle, there is not much 

variation in roll and pitch measurements.  Figure 6.2.8 illustrate the 3D representation at 

different time intervals. It shows the build up of 3D terrain as the data are collected during 

the run.  Each figure shows the vehicle path in red and the terrain map that has been 

constructed from the LIDAR points collected up to that point. Figures 6.2.9 – 6.2.12 show 

overhead, oblique and alternative views of the 3D terrain representation. 

 

6.3 Closed-Loop Simulation Results 

 Closed-loop simulations were performed using the UGV simulation model and 

waypoint controller discussed in Chapter 5.  The environment used for the closed-loop 

simulations was chosen to be equivalent to the location used for the second set of open-

loop experiments.  The 3D terrain map generated from processed LIDAR data from the 

second open-loop experiment was used to provide the obstacle avoidance constraints for 

the path planning algorithm.  A starting point and target location were set within the terrain 

map generated from open-loop measurements, and the receding horizon path planner was 

used to plan a path for the UGV to travel to the target.  Path points from the receding 

horizon algorithm were passed to the waypoint controller, and the simulation continued 

until the goal location was achieved. 

 The receding horizon algorithm was implemented on the set of terrain data 

generated from the second open-loop experiment.  In an initial test, the path planner was 

employed without the waypoint controller in order to demonstrate the functionality of the 

receding horizon algorithm.  For implementing this algorithm, a goal location B was placed 

in the scene as shown in Figure 6.3.1.  The path planner was run at different points along 
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the open-loop UGV trajectory from the second open-loop experiment.  The purpose of this 

test was to confirm that the path planning algorithm would select appropriate waypoints to 

guide the UGV to the target location based on different positions along the open-loop path.   

 In this implementation, the receding horizon parameters were set so that, for each 

path planning step, 3 points were planned at a distance of 1 m apart with the objective of 

navigating the ground robot to the goal location.  Figure 6.3.1 represents a sample in which 

the planned and executed points are shown with a goal location selected at [-10, -10, 0] m.  

The 3D terrain representation of the environment was produced from open-loop LIDAR 

measurements, which provided obstacle avoidance constraints for the path planner.  The 

receding horizon algorithm was used to plan waypoints in order for the UGV to achieve 

the mission, which was to reach point B. The number of planned points in each path 

planning interval was set to 𝑁𝑃 = 4, and the number of control points (i.e., the number of 

points to be executed before replanning) was set to 𝑁𝐶 = 2.  Hence the path planner would 

plan 3 points and execute 2 of them followed by the planning of 3 points again and 

executing 2.  This process continued until the goal location was achieved.   

 Figure 6.3.2 provides an overhead perspective of several of the path planning steps 

used.  In each of the plots, the red points indicate the points that the UGV has already 

traveled through, yellow points denote the set of 3 planned points, and the green points 

denote the path points that would be executed by the waypoint controller (a subset of the 3 

planned points). The values of the other receding horizon parameters are d = 1 m, 𝜑ℎ =

900, ∆𝜑ℎ = 150, where d is the distance between the planned points, 𝜑ℎ is the maximum 

horizontal cone angle (which limits the maximum allowable angle between consecutive 
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path points), and ∆𝜑ℎ is the horizontal angular resolution (which determines the angular 

spacing between path options). 

 

Figure 6.3.1:  Overall Path Scenario with Target Set at [-10, -10, 0] 

 

(a) Path Planning Decision at t = 10 sec 
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(b)  Path Planning Decision at t = 20 sec 

 

(c) Path Planning Decision at  t-= 30 sec 
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(d) Path Planning Decision at t = 40 sec 

 

(e) Path Planning Decision at t = 50 sec 



 
 

86 
 

 

(f) Path Planning Decision at t = 60 sec 

 

(g) Path Planning Decision at  t = 70 sec 
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(h) Path Planning Decision at t = 80 sec 

 

 

(i) Path Planning Decision at  t = 90 sec 
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(j) Path Planning Decision at  t= 100 sec 

Figure 6.3.2:  Receding Horizon Path Planning Decisions at Several Points 

 The results in Figure 6.3.2 demonstrate that the receding horizon algorithm was 

functioning properly.  A closed-loop simulation was then performed in which a starting 

location A and a goal location B were selected within the environment.  The receding 

horizon algorithm was used to derive the waypoints that would be required to drive the 

UGV towards the goal while avoiding obstacles as provided by the 3D terrain map.  The 

waypoint controller was used to control the vehicle so that it passed through the required 

waypoints.  In this example, the starting point A was set to be the origin and the goal 

location B was set at [-10, -10, 0] m.  Figure 6.3.3 shows the simulated UGV path and 

waypoints at different time intervals during the simulation.  In this case, the receding 

horizon algorithm planned 3 points and 2 of these were executed by the controller before a 
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new set of points were planned.  The results in Figure 6.3.3 show only the planned points 

that were followed by the waypoint controller at each time interval.  

 

 

(a) Initial Three Points Planned by RHC to Reach the Target (t = 10 sec) 

 

(b)  Path Planning at t = 20 sec 
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(c)  Path Planning at t = 40 sec 

 

 

(d)  Path Planning at t = 60 sec 
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(e) Path Planning at t = 80 sec 

 

 

(f) Path Planning at t = 100 sec 
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(g) Path Planning at t = 110 sec 

 

Figure 6.3.3:  Simulated Movement of the UGV through the RHC Points at Various Times. 

 

 It is clear from Figure 6.3.3 that the target location was achieved successfully by 

the simulated UGV following the waypoints generated by the receding horizon path 

planner.  The target was achieved without the UGV colliding with any obstruction in the 

scene. The yellow terrain regions in the figure show the obstacles in the terrain. White 

points are the points planned by receding horizon algorithm towards the goal.   
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Chapter 7 

Conclusions 

7.1 Concluding Remarks 

 This thesis has effectively investigated the technical objectives, which were 

focused on the implementation of guidance, navigation, and control algorithms to enable 

the autonomous operation of an unmanned ground vehicle (UGV) in complex 

environments. The details of the hardware and sensors required to implement these 

algorithms were discussed.  Sensor fusion and integration of sensors on the UGV to 

estimate the vehicle position and orientation and to compute a LIDAR-based point cloud 

were successfully completed.  The main contributions of this work are the testing and 

implementation of 3D implicit terrain algorithms to represent the environment based on 

the point cloud generated by processed sensor data and receding horizon path planning 

algorithms, which incorporated obstacles avoidance constraints derived by these terrain 

representations.  The testing of these algorithms was done experimentally by mounting the 

sensors on a Corobot UGV and driving the UGV around campus.  Finally, a simulation 

model of this ground vehicle was developed to check the functionality of the controller 

designed to generate the commands to navigate the vehicle to follow the waypoints 

provided by the receding horizon path planning algorithm. The results presented in this 

work, which are based on open-loop experiments and closed-loop simulation, demonstrate 

the successful systems level integration of these algorithms into a GNC system and the 

performance of this GNC system for the UGV application. 
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7.2 Future Recommendations 

 Although the results presented in this work have demonstrated the effectiveness of 

the 3D terrain mapping and receding horizon path planning algorithms, this research could 

be further developed in a number of ways. 

1) The full closed-loop control system designed in this thesis can be implemented 

experimentally on an unmanned ground vehicle. 

2) These GNC algorithms should be investigated for real-time implementation, which 

is particularly important for fixed wing UAVs that do not have the ability to stop 

and wait for data to be processed.  Towards this goal, the learning algorithm 

proposed in [37] can be further researched as an alternative to the 3D implicit terrain 

algorithms for representing urban environments.  This learning algorithm is 

recursive and fast, which making it ideal for real-time applications. 

3) This research can be extended to consider moving obstacles, which requires the 

development of a different class of reactive collision avoidance control laws.  

4) The testing and implementation of these algorithms can be extended to quadcopters 

or micro air vehicles.  

        The requirements for real-time applications present interesting trade-offs to be 

investigated between the onboard sensor payload and processing that can be 

accommodated by a particular vehicle with the complexity of GNC algorithms that can be 

implemented in real time.  The challenging task of providing robust navigation solutions 

for an unmanned vehicle in situations where obstacles are present using environmental 

mapping and path planning would benefit a diverse range of applications requiring UAS 

navigation in remote, distant and undiscovered territories. 
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