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Airline seat pricing is divided into different fare classes. The goal of an 
airline is to sell tickets at the highest fare possible, thus yielding a maximum profit 
for the airline. Managing optimal ticket sales is a science, with substantial potential 
payoffs, although it is time-consuming and expensive as the revenue management 
system is developed (Groves & Gini, 2015). Once developed, the revenue 
management system is updated on a frequent basis to account for existing 
reservations as well as expected future reservations, as part of a continuous 
improvement optimization effort. A revenue management system identifies 
opportunity costs where the airline may sell available full fare seats to high 
spending customers, and available discounted fare seats to customers with low-
spending habits. As an example, a customer may request a discounted fare for a 
specific fare flight. This request is contingent, given seat number limitations, and 
the possibility of the airline selling the same seat at the full fare rate (Collins & 
Thomas, 2013).  

 
The problem becomes evident as airlines must decide whether or not to 

accept a reservation offer at either a discounted fare or delay the acceptance of a 
reservation until later when the seat will change from discounted to full fare and 
sell the ticket at a much higher price. If the airline manages to sell the seat at the 
full fare price, they generate extra revenue, but if for some reason the seat does not 
sell before departure, the airline generates no revenue and loses on the opportunity 
to at least have been able to generate some revenue at the discounted fare class. 
Hence the need for airlines to be able to accurately forecast demand for the high 
paying customers who will purchase the seats at the full fare price, thus realizing 
potentially substantially higher payoffs (Szopinski & Nowacki, 2015). 
  

Review of Literature 
 

Revenue management (RM) began within the airline industry in the 1970s 
using manual acceptance or rejection of booking requests. This mode of operation 
continued until computerized reservation systems automated the booking process. 
Littlewood (1972) describes the early work he performed in applying mathematical 
models to the development of revenue management in the airline industry. The 
author stresses that non-constrained demands for fare classes are independent, that 
the initial share of the total market non-constrained demand by the airline is the 
same for all fare classes and finally, that lower fare class booking limits are reached 
(Littelwood, 1972). The Flight Transaction History File (FTHF) used in this 
research recorded several variables and attributed data for a flight, such as: 

 
a) The passenger name records (PNRs) logging the number of passengers 

booked 
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b) The number of days the reservation was made prior to the scheduled flight 
departure 

c) The time at which the transaction was made in minutes past midnight 
d) Several codes; 10, 20, 40, 12, and 70 indicating Booking, Cancellation, No 

show, Stand-by, and Departed load, respectively 
e) Number of tickets sold per Code 
f) Boarding point (departure airport) 
g) Off point (arrival airport) 
h) Class of fare 
i) The PNR number indicating the number of bookings per number of days 

before departure 
j) Ticket type, indicating whether ticker was a youth or reduced rate 

 
Even though several statistical interpretations could be extracted from the 

FTHF such as demand forecasting, several factors prevented the accurate 
interpretation of data. First, the FTHF data were too large to store in any available 
system at the time. Second, passengers’ booking lead times varied considerably 
from year to year and could be misleading. Thirdly, the flight numbers and flight 
times were often changed from year to year with no apparent flight to use for 
comparison (Littlewood, 2005). The author saw the need to develop a mathematical 
model to forecast demand by day and by sector given prior knowledge of forward 
bookings. The model that was derived provided an estimate 𝐷𝐷� of the demand for 
the sector if 𝐵𝐵 passengers are booked on a given sector at a certain time before 
departure. 
 

𝐷𝐷� = 𝐵𝐵(1 − 𝑐𝑐)� + 𝑆̂𝑆  [Eq. 1] 
 

Where 𝑐̂𝑐 and 𝑆̂𝑆 are estimates of the passengers’ cancellation rate and the number of 
subsequent arriving passengers respectively (who book in the period between the 
time considered and departure, and fly). Furthermore, Littlewood (2005) used 
additional information derived from the FTHF as well as calculated information to 
modify his forecasting model for a particular day. The information gathered with 
day of the week and the seasonal indices normalized, included: 
 

a) Mean cancelation rate 
b) Smoothed error of the cancelation rates 
c) Smoothed absolute error of the cancelation rates 
d) Seven weekly indices 
e) Smoothed error of each of the day of week indices 
f) Mean subsequent passengers 
g) Trend in subsequent passengers 
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h) Smoothed error or subsequent passengers 
i) Smoothed absolute error of subsequent passengers 
j) Smoothed absolute error of subsequent passengers 
k) 2-period indices showing the seasonal variation in subsequent passengers 

  
As a result, the modified estimated daily demand model is indicated as 
 

𝐷𝐷� = 𝐵𝐵(1 − 𝑐𝑐)� + 𝑆̂𝑆𝑑̂𝑑𝑖𝑖  [Eq. 2] 
 

where 𝐷𝐷� is the demand for a sector in a particular day i, 𝑐̂𝑐 is the estimated 
cancelation rate (calculated by interpolation if necessary), 𝑑̂𝑑𝑖𝑖 is the estimated day 
of the week index for day i, and 𝑆̂𝑆 is an estimate of subsequent passengers (also 
calculated by interpolation if necessary), based on the estimated trend and seasonal 
indices (Littlewood, 2005). The author goes on to further clarify that one limitation 
as a result of these calculations lie in the extrapolation of data where a future manual 
intervention in response to necessary changes may render extrapolated data as 
inaccurate. As such, human input was still required for a decision making process 
that entailed accepting or rejecting a passenger reservation according to the fare 
price at booking time, in order to minimize the possibility of overbooking a flight. 
Littlewood (2005) discussed the probability of turning away a high yield customer 
(overbooking) as well as the probability of turning away a low yield customer. For 
example, he discusses a useful method of controlling fares with a long booking lead 
time if the sole objective is to maximize revenue by flight, and the mean revenue 
obtained from a high-yield passenger is R and from a low-yield customer is r, and 
P is the maximum probability losing a high-yield passenger, then low-yield 
passengers should continue to be accepted as long as 
 

𝑟𝑟 ≥ (1 − 𝑃𝑃)𝑅𝑅   [Eq. 3] 
or 

(1 − 𝑃𝑃)  ≤  𝑟𝑟
𝑃𝑃
   [Eq. 4] 
 

Interpreting equations 2-4, to maximize revenue, low-yield passengers should 
continue to be accepted until (1 − 𝑃𝑃) reaches the value of the ratio of the mean 
revenues from low-yield and high-yield passengers. It is therefore understood that 
if the acceptance of low-yield passengers is stopped sooner, a higher standard of 
service will be offered to high-yield passengers. Similarly, if the acceptance of low-
yield passengers is stopped later, a lower standard of service will be offered to high-
yield passengers.  
 
 A demand constraint was noted in a study by Khoo & Teoh (2014), to ensure 
that travelers’ demand could be met satisfactorily. The demand constraint could be 
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expressed as  
 
∑ (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛,𝑂𝑂𝑂𝑂

𝑡𝑡 ) �𝑓𝑓𝑛𝑛,𝑂𝑂𝑂𝑂�𝐷𝐷𝑡𝑡𝑆𝑆,𝐴𝐴𝑡𝑡𝑖𝑖 �� ≥ (1−∝)𝐷𝐷𝑡𝑡𝑆𝑆𝑛𝑛
𝑖𝑖=1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 = 1,2, … ,𝑇𝑇, 𝑆𝑆 = 𝑠𝑠1, 𝑠𝑠2, … 𝑠𝑠𝑘𝑘 

 [Eq. 5] 
 
for a particular seat in an origin-destination flight of a specific period. In this case, 
a particular seat  1−∝ is the confidence level or service level, to meet stochastic 
demand. A dynamic programming model was adopted to solve as simpler, smaller, 
sub-problems for each operating period, and determine the optimal solution. When 
stochastic demand is considered, the probabilistic component captures demand 
uncertainty, providing a more accurate solution (Khoo and Teoh, 2014). 
 

In a study by Jorge-Calderon (1997) the demand model for scheduled airline 
services for the entire network of European international routes in 1989 concluded 
that, overall, demand is price inelastic concerning the unrestricted economy fare. 
The study indicates that in short distance routes, airlines have made their highly 
discounted fares more widely available, probably to counter competition by other 
modes of transportation. As distance increases, discounted fares are used less, 
probably due to a lesser availability, which results in a higher proportion of price-
sensitive traffic paying the unrestricted economy fare, thus making demand more 
elastic (Jorge-Calderon, 1997). 
 

Airline seat allocation is contingent upon the demand for a particular fare. 
The demands for a fare class are allocated as the lowest fare class arrive first, and 
seats are booked for this class until a fixed time limit, or the demand is exhausted. 
Sales to this fare class are then closed, and sales to the class with the next lowest 
fare begin and this process repeats until the fares sell out. One other notation is that 
some fare classes may not open at all, depending on the airplane capacity, fares, 
and demand distributions. Further complications are introduced by factors such as 
multiple-flight passenger itineraries, interactions with other flights, cancellation 
and overbooking considerations, and the dynamic nature of the booking process in 
the lead-time before flight departure. At any time during the booking process, the 
observed demands in the fare class currently being booked and in lower classes, 
convey no information about future demands for higher fare classes. This excludes 
the possibility of basing a decision to close a fare class on such factors as the time 
remaining before the flight. 
 

One of the first optimization methods to calculate booking limits was the 
expected marginal seat revenue heuristic approach of Belobaba (1987) which was 
an extension Littlewood's (2005) rule. A seller wishes to sell various goods by a 
deadline, for example, the end of a season. Further potential buyers enter over time 
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and can strategically time their purchases. Within each period, the profit-
maximizing mechanism awards units to the buyers with the highest valuations 
exceeding a sequence of cutoffs (Board, & Skrzypacz, 2016). Similarly, airlines 
wish to sell out the remaining available seats at the highest possible price. The 
optimal allocation of seat inventory is usually carried out among fare classes with 
a known projected demand forecasted distribution for each class with the aim at 
increasing the efficiency of revenue systems and enhancing customer satisfaction 
(Vardi et al., 2016, 20-37). Aside from demand forecasts, the optimization model 
also required fare inputs at leg and booking-class level (Poelt, 2016). 

 
Assumptions and Limitations 

 
Our model is comprised of a seat pricing plan for an Economy fare 

consisting of two types of fare classes suitable for low-cost airlines. The Economy 
fare can be purchased either as a discounted fare or full fare value. The method that 
is used in this model illustration is the same as the standard nomenclature airlines 
use. We will abbreviate departures as D and arrivals as A. For illustration and 
calculation purposes in our model; we will assume that the airline sells two types 
of main cabin fares, a discounted ticket O, and a full fare ticket Y. All ticket fares 
are assumed to be roundtrip flights. We will abbreviate Departure/Arrival/Fare-type 
as DAF. Also, we will provide an actual ticket fare price. The discounted fares were 
priced more than 60 days in advance, and the full fares were priced as late as a few 
days within departure. All flights are assumed to be booked as round-trip fares 
returning to their origin within a few days’ time. This assumption in the model 
allows for the more holistic itinerary originating and ending at the same airport. 

 
The forecasted demand was developed to complete setting up the model. 

We will assume that the same type of aircraft is used for all legs of the trip for 
simplicity of the model constraints, in this case assuming an Airbus A320 with a 
126 seat capacity in the Economy class. It is more than likely that a passenger will 
travel through a hub enroute to the final destination, and for this reason, we will 
also declare Atlanta as a hub in our model for completeness. The realistic addition 
of a hub will add to the complexity of seat allocations for each leg of the flight in 
our model. The model includes a list of ticket price fares for each leg, class, and a 
seat demand forecast for each leg of the trip. 

 
Another assumption of relevance in the formulation of the model is the 

inevitable fact that, for one reason or another, some passengers will cancel their 
planned flight. Some passengers will fall into the category of no-show and thus 
miss their flight. Airlines anticipate expected cancellations and no-shows and make 
an effort to fill these anticipated, empty seats, with some oversold seats for each 
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flight. This model considers the forecasted demand that may be modified to match 
actual demand when validating the model with actual data.  

 
Additional revenue may be generated from customers using the discounted 

fare as many of these low-cost airlines enforce stricter carry-on and luggage weight 
restrictions on discounted fare class ticket holders. This model is mathematically 
solved using a linear programming method, from a seat-sale perspective only. For 
example, a full fare ticket may allow an extra carry-on bag. Most low-cost airlines 
allow discounted pricing on added luggage, meals, and seat selection capability, if 
prepaid.  

 
For simplicity of understanding the basic model and the dynamics involved 

in structuring a linear program that optimizes seat allocation for maximum revenue, 
free fare upgrades and loyalty program fares were excluded. Rewards type 
parameters can be embedded into this simple model and refined to include sales 
timelines when considering rewards and loyalty programs. These types of revenue 
generators may be added as part of a more complex model that includes more 
revenue-generating possibilities. 

 
Methods 

 
For an airline reservation system to operate optimally, an airline must 

determine how many discounted fare class seats and how many full fare class seats 
to make available for purchase in the Economy section’s main cabin. This model is 
especially suitable for low-cost airlines offering only economy fare tickets. In 
Figure 1 we are depicting a route with four possible final destinations for an airline. 
A passenger may depart, arrive, and terminate a flight, from any one of the three 
airports in our model. The airport abbreviations for Phoenix, Atlanta, and Daytona 
Beach will be P, A, and D respectively.  

 
The discounted fare will be denoted as O and the full fare as Y. Possible 

passenger itineraries departing from Phoenix (P), could terminate in Atlanta (A) or 
Daytona Beach (D). These itineraries will be denoted as PAO, PAY, PDY, and 
PDO, respectively. Possible passenger itineraries from Atlanta could terminate in 
Phoenix or Daytona Beach. These itineraries will be denoted as APO, APY, ADO, 
and ADY. Possible passenger itineraries from Daytona Beach could terminate in 
Atlanta or Phoenix. These itineraries will be denoted as DAO, DAY, DPO, and 
DPY. 

 

6

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 5 [2018], Iss. 3, Art. 7

https://commons.erau.edu/ijaaa/vol5/iss3/7
DOI: https://doi.org/10.15394/ijaaa.2018.1251



 

 

 
 

Figure 1. Revenue Management Model with Four Possible Legs 
Source: Images licensed under Creative Commons 
https://commons.wikimedia.org/wiki/File:Airport_symbol.svg 
http://www.stockpicturesforeveryone.com/2011/08/aircraft-sketches-and-silhouettes.html 

 
 
Table 1 depicts the different types of Departures and Arrivals. There are six 

possible discounted fare classes and six possible full fare classes. Thus, a possible 
of 12 departure-arrival fare legs is necessary to include all of the possible legs 
originating from the three airports. For example, a flight departing from Phoenix 
and arriving in Atlanta with a discounted fare class will have DAF code of PAO, 
as shown in DAF 1. The cost of each fare, along with the projected seat Demand 
Forecast is also shown for completeness. The Demand Forecast data represent the 
baseline or expected demand of passengers in each one of the twelve possible flight 
itineraries. Naturally, the demand forecast is higher for discounted-fare seats 
compared to full-fare priced seats as the sale of the available seats becomes 
available at a considerable timeframe before the actual flight takes place. From 
Table 1 we can generate a complete list of equations to construct our mathematical 
model as a linear programming problem. 

 
We compose our model as a sub-problem to maximize revenue, in this case, 

by selling a seat at the highest possible price. In order to construct our linear 
programming mathematical problem, we must formulate the objective function so 
that we maximize its value with the cost of each seat in each of the four possible 
legs of a trip, thus yielding the highest possible revenue with the sale of each seat, 
until all seats are sold. The constraints account for all departing flights covering all 
possible legs of a trip having no more than 126 available seats at any given flight. 
We must also construct the projected demand forecast for each possible leg of a 
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trip. Finally, we must impose a non-negativity restriction for all of our values as 
they must be greater than or equal to a zero possible value.  

 
Table 1 
Itinerary Fares and Projected Demand Forecast 
 

DAF Departure Arrival Fare 
Class 

DAF 
Code 

Fare 
Cost 

Demand 
Forecast 

    1 Phoenix Atlanta O PAO $330 72 
    2 Phoenix Daytona Beach O PDO $314 56 
    3 Atlanta Phoenix O APO $330 68 
    4 Atlanta Daytona Beach O ADO $257 45 
    5 Daytona Beach Atlanta O DAO $257 40 
    6 Daytona Beach Phoenix O DPO $338 50 
    7 Phoenix Atlanta Y PAY $611 29 
    8 Phoenix Daytona Beach Y PDY $617 22 
    9 Atlanta Phoenix Y APY $611 34 
  10 Atlanta Daytona Beach Y ADY $597 12 
  11 Daytona Beach Atlanta Y DAY $597 32 
  12 Daytona Beach Phoenix Y DPY $678  9 

 

Note: sourced from Data Adapted from Koursaris & Marion, 2018 
 
The mathematical model is solved as a system of linear equations using the 

simplex method, an algorithm that derives an optimal solution using a finite number 
of steps, devised by the American mathematician George Dantzig (Cottle, 2006). 
The simplex method uses a large number of iterations to find possible, feasible, 
essential solutions until an optimal solution is found, whenever it exists. As the 
given configuration is solved, a transformation is applied by using Gaussian 
elimination, and the process repeats as many times as necessary until an optimal 
solution is found. The formulation for this model can be found in the appendix. 

 
Results and Discussion 

 
The revenue management problem was solved using POM-QM Linear 

Programming Decision Science software for the optimal solution as shown in 
Figure 2. The optimal solution results show that the maximum revenue the airline 
can generate is $160,558 and should allocate the following number of Economy 
discounted fare, O, and full fare, Y, seats for each one of these legs: 

 
 72 O seats to PHX-ATL 
   3 O seats to PHX-DAB 
 68 O seats to ATL-PHX 
 12 O seats to ATL-DAB 
 35 O seats to DAB-ATL 
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 50 O seats to DAB-PHX 
 29 Y seats to PHX-ATL 
 22 Y seats to PHX-DAB 
 34 Y seats to ATL-PHX 
 12 Y seats to ATL-DAB 
 32 Y seats to DAB-ATL 
   9 Y seats to DAB-PHX 

 
For example, as our computerized solution in Figure 2 depicts, to generate 

a maximum revenue of $160,558, taken into consideration the flight departing from 
Phoenix, the airline should allocate 75 (72+3) discounted fare seats and 51 (29+22) 
full fare seats, for a total of 126 available seats. Similarly, all Atlanta outbound 
flights will have 80 discounted fare seats and 46 full fare seats allocated for a total 
of 126 available seats. Lastly, our optimal solution indicates that all outbound 
flights from Daytona Beach should have 85 discounted fare seats and 41 full fare 
seats allocated for a total of 126 available seats. 

 

 
Figure 2. Revenue Management Seat Pricing Plan Model Optimal Solution 
Note: POM-QM (2010) Decision Sciences software to complete our work. 
 
 The results also reveal other essential decision-making pieces of 
information in the calculated dual values. The binary value conveys the additional 
revenue that can be generated should an additional seat of a specific class become 
available after all projected demand seats have been sold out. Examining the binary 
value results from our model solution, the most revenue that can be generated is 
$421 should an additional DAB-PHX full fare class seat becomes available after all 
nine projected demand seats have been sold out. The next most desirable revenue-
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generated value would be $354 should an additional ATL-PHX full fare class seat 
becomes available. The least desirable revenue-generated values would be those 
with $0 binary values, in the case of our model results the three legs, PHX-DAB, 
ATL-DAB, and DAB-ATL, all discounted fare class values. 
 

Summary and Conclusions 
 
 This study investigated a linear programming problem to depict the optimal 
revenue management seat pricing and allocation plan model for a low-cost airline 
offering full fare and discounted fare economy class seats using a set of given 
constraints to construct the mathematical set of equations affecting revenue 
generation. The revenue management plan’s objective was to maximize the 
airline’s potential revenue in the Economy class section given a full fare and 
discounted fare economy class seats for a low-cost airline company. In order to 
calculate the maximum possible revenue that an airline can generate from the sale 
of the available seats, several constraints had to be taken into account. One 
constraint was the seating capacity of the type of airplane flown for each leg. For 
simplicity of the model, we used the same type aircraft for all possible legs, an 
Airbus A320 with a seating capacity of 126 in the Economy section. Other 
constraints were the fare costs for each seat in both the discounted fare and full fare 
classes. A third constraint taken into account was the projected demand forecast.  
  

Our results concluded the maximum revenue that can be generated from our 
model, given the fare cost and demand forecast, is $160,558. The exact number of 
recommended seats allocated for each specific fare-type was calculated. For 
generating additional revenue, the optimal solution contained the type of seat to 
target with the highest binary value, as they become available, or in anticipation of 
cancellations and no-shows. Additional data may be imputed into the model as 
more criteria and constraints add to the complexity of the model. Finally, our 
recommendation is to revise the model frequently for currency and up-to-date 
optimal value calculations. 
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                       𝑀𝑀𝑀𝑀𝑀𝑀 330𝑃𝑃𝑃𝑃𝑃𝑃 + 314 𝑃𝑃𝑃𝑃𝑃𝑃 + 330𝐴𝐴𝐴𝐴𝐴𝐴 + 257𝐴𝐴𝐴𝐴𝐴𝐴 + 257𝐷𝐷𝐷𝐷𝐷𝐷 + 338𝐷𝐷𝐷𝐷𝐷𝐷

+ 611𝑃𝑃𝑃𝑃𝑃𝑃 + 617𝑃𝑃𝑃𝑃𝑃𝑃 + 611𝐴𝐴𝐴𝐴𝐴𝐴 + 597𝐴𝐴𝐴𝐴𝐴𝐴 + 597𝐷𝐷𝐷𝐷𝐷𝐷 + 678𝐷𝐷𝐷𝐷𝐷𝐷 
 

  Subject to: 
 

  𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 126 Departing Flights from Phoenix 
 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴𝐴𝐴 ≤ 126    Departing Flights from Atlanta 
 𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 126    Departing Flights from Daytona Beach 

 𝑃𝑃𝑃𝑃𝑃𝑃 ≤    72   Projected Demand Forecast PAQ 
 𝑃𝑃𝑃𝑃𝑃𝑃 ≤    56   Projected Demand Forecast PDQ  
 𝐴𝐴𝐴𝐴𝐴𝐴 ≤    68   Projected Demand Forecast APQ 
 𝐴𝐴𝐴𝐴𝐴𝐴 ≤    45   Projected Demand Forecast ADQ 
 𝐷𝐷𝐷𝐷𝐷𝐷 ≤    40   Projected Demand Forecast DAQ 
 𝐷𝐷𝐷𝐷𝐷𝐷 ≤    50   Projected Demand Forecast DPQ 
 𝑃𝑃𝑃𝑃𝑃𝑃 ≤    29   Projected Demand Forecast PAY 
 𝑃𝑃𝑃𝑃𝑃𝑃 ≤    22   Projected Demand Forecast PDY 
 𝐴𝐴𝐴𝐴𝐴𝐴 ≤    34   Projected Demand Forecast APY 
 𝐴𝐴𝐴𝐴𝐴𝐴 ≤    12   Projected Demand Forecast ADY 
 𝐷𝐷𝐷𝐷𝐷𝐷 ≤    32   Projected Demand Forecast DAY 
 𝐷𝐷𝐷𝐷𝐷𝐷 ≤      9   Projected Demand Forecast DPY 

 
 𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃,𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴𝐴𝐴,𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷𝐷𝐷𝐷𝐷 ≥ 0  Non-

negativity constraints 
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