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ABSTRACT

This paper provides a detailed comparison of the differences in parameters derived for a star cluster from its color–
magnitude diagrams (CMDs) depending on the filters and models used. We examine the consistency and reliability
of fitting three widely used stellar evolution models to 15 combinations of optical and near-IR photometry for the
old open cluster NGC 188. The optical filter response curves match those of theoretical systems and are thus not
the source of fit inconsistencies. NGC 188 is ideally suited to this study thanks to a wide variety of high-quality
photometry and available proper motions and radial velocities that enable us to remove non-cluster members and
many binaries. Our Bayesian fitting technique yields inferred values of age, metallicity, distance modulus, and
absorption as a function of the photometric band combinations and stellar models. We show that the historically
favored three-band combinations of UBV and VRI can be meaningfully inconsistent with each other and with
longer baseline data sets such as UBVRIJHKS. Differences among model sets can also be substantial. For instance,
fitting Yi et al. (2001) and Dotter et al. (2008) models to UBVRIJHKS photometry for NGC 188 yields the
following cluster parameters: age= {5.78 ± 0.03, 6.45 ± 0.04}Gyr, [Fe/H] = {+0.125 ± 0.003, −0.077 ±
0.003} dex, -m M( )V = {11.441 ± 0.007, 11.525 ± 0.005}mag, and AV = {0.162 ± 0.003, 0.236 ±
0.003}mag, respectively. Within the formal fitting errors, these two fits are substantially and statistically different.
Such differences among fits using different filters and models are a cautionary tale regarding our current ability to
fit star cluster CMDs. Additional modeling of this kind, with more models and star clusters, and future Gaia
parallaxes are critical for isolating and quantifying the most relevant uncertainties in stellar evolutionary models.

Key words: methods: statistical – open clusters and associations: individual (NGC 188)

1. INTRODUCTION

Stellar evolution is a mature field with numerous successes,
perhaps the most important of which is the ability to determine
star cluster ages. These ages are the basis for our understanding
of the star formation histories of the Milky Way and other
galaxies and provide a cornerstone of modern astrophysics.
Yet, the ages that we derive for star clusters suffer from well-
known observational and theoretical uncertainties (e.g.,
Kurucz 2002; Asplund et al. 2009; Pereira et al. 2013), as
well as difficulties in matching observations to theory (e.g.,
Flower 1996; von Hippel et al. 2002; Dotter et al. 2008). We
focus on these data–model comparisons, which have histori-
cally been exacerbated by subjective fitting techniques and an
unknown sensitivity on filter choice. Generally, researchers
adjust a handful of model parameters, testing for their impact in
color–magnitude diagrams (CMDs), until a good match is
found. This approach is subjective, as different research groups
matching the same multi-band data set to the same models
might not derive matching cluster parameters. Furthermore,
different groups studying the same cluster may differ in their
choice of photometric bands. Yet, the sensitivity of cluster
parameters to different filter combinations remains poorly
constrained, though past studies (e.g., Figure 10 of Sarajedini
et al. 1999; Grocholski & Sarajedini 2003) indicate that stellar
modeling results do depend on the choice of photometric
bands.

In this paper, we refine the data–model interface by
employing an objective Bayesian fitting technique and using

it to study the sensitivity of fits between stellar models and
common subsets of UBVRIJHKS photometry. We focus our
investigation on the old open cluster NGC 188 because of the
available, extensive, high-quality photometry and the high-
quality proper-motion and radial-velocity data, which enable us
to remove most non-cluster members and binaries from the
CMD. By focusing on one cluster, we can perform an extensive
CMD analysis with many filter combinations and three stellar
evolution codes, yet our results are necessarily limited to
clusters with parameters similar to NGC 188. Needless to say,
this approach ought to motivate similar studies with a broad
suite of stellar evolution models and wide range of stellar
clusters.
We first describe the photometry, radial velocities, and

proper motions for NGC 188 in Section 2. We then present the
Bayesian statistical technique used for our analysis in Section 3,
and apply it to different photometry band combinations in
Section 4. Our results and conclusions, with a view to future
investigations and an extension of this analysis to other
clusters, are presented in Sections 5 and 6, respectively.

2. OBSERVATIONS

For observational data of NGC 188, we rely on the
homogenized UBVRI photometry of Stetson et al. (2004),
which was derived from nearly a dozen independent observa-
tional studies, combined with cluster membership probabilities
from four proper-motion studies. The sheer number of previous
photometric and astrometric studies of NGC 188 over the last
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50 years (Sandage 1962; Cannon 1968; Eggen & San-
dage 1969; Upgren et al. 1972; McClure & Twarog 1977;
Caputo et al. 1990; Dinescu et al. 1996; von Hippel &
Sarajedini 1998; Sarajedini et al. 1999; Platais et al. 2003)
demonstrates the considerable interest in this cluster largely
because it is well-populated, relatively unreddened, and one of
the oldest known open clusters. We supplement the optical
photometry with 2MASS JHKS photometry from Skrutskie
et al. (2006).

Along with photometry, we take advantage of the multi-
epoch radial-velocity data from Geller et al. (2008, 2009; and
additional observations from the continuation of their radial-
velocity survey). This radial-velocity sample contains at least
three observations for nearly every solar-type star from ∼1.5
mag below the cluster turn-off up to the tip of the giant branch
(∼0.95–1.15M) within a 1° diameter region centered on
NGC 188 (corresponding to a radius of ∼17 pc or roughly 13
core radii), and spans a monitoring baseline of more than a
decade for many stars. The radial-velocity data enable us to
further remove non-cluster members and many of the cluster
binary stars in what is otherwise a busy, field-star-contaminated
CMD. The radial-velocity survey’s ability to detect binaries
depends primarily on the orbital periods because of the
monitoring baseline of the survey, and is also sensitive to the
binary mass ratios, eccentricities, and orbital inclination (see
Geller & Mathieu 2012). Monte Carlo completeness analysis
indicates that 63% of solar-type binaries with orbital periods
<104 days (of all mass ratios, eccentricities, and inclinations)
are detected in this survey, whereas very few with longer
periods are detected. Geller & Mathieu (2012) estimate the
hard-binary versus soft-binary boundary for NGC 188 to be
about 106 days, so presumably some fraction of long-period
solar-type binaries remain undetected. Yet, removing this large
sample of binaries is particularly useful for accurate cluster
quantities because such binaries can confuse the location of the
main sequence turn-off and substantially broaden the main
sequence. Our analysis technique (see below) includes fitting
binaries of all mass ratios (regardless of orbital periods,
eccentricities, etc.), yet our results are more accurate when we
can remove these binaries in advance.

We obtain a well-populated CMD with 248 stars, each with
full UBVRIJHKS photometry and a variety of cluster member-
ship metrics, by combining the optical photometry and proper-
motion data from Stetson et al. (2004) with the infrared
photometry from Skrutskie et al. (2006), as well as the radial-
velocity measurements from Geller & Mathieu (2012),
including all star-by-star uncertainties in every parameter.
Figure 1 shows the CMD for NGC 188.

We considered multiple ways to incorporate both the proper-
motion and radial-velocity cluster membership probabilities for
this study, though none are ideal. Simply multiplying these
independent probabilities yields very low membership prob-
abilities (i.e., ~20% or less) for some stars, potentially due to
uncertainties in one set of data or another. This reduces the
importance of those stars to the fit. The alternative of taking the
greatest cluster membership value would neglect potentially
important information contained in whichever method was
ignored. We explored a few other techniques of combining
cluster memberships. Fortunately, our tests with various data
sets showed that the results were insensitive to the specific
techniques used to combine membership probabilities. As a
result, we employ a simple arithmetic mean of the proper-

motion and radial-velocity probabilities for our cluster
membership probabilities.

3. STATISTICAL METHOD

For the purposes of this study, we require an objective and
precise technique to fit stellar isochrones to cluster photometry.
The software suite Bayesian Analysis of Stellar Evolution with
9 Parameters5 (BASE-9) fits our requirements well. (For a full
discussion of the method, software, and the capabilities of
BASE-9, see von Hippel et al. 2006; DeGennaro et al. 2009;
van Dyk et al. 2009; and Stein et al. 2013) BASE-9 compares
stellar evolution models (listed below) to photometry in any
combination of photometric bands for which there are data and
models. Of particular benefit for our study, BASE-9 accounts
for individual errors for every data point, incorporates cluster
membership probabilities from proper motions or radial
velocities, and cluster metallicity from spectroscopic studies.
As per above, we incorporated membership probabilities from
both proper motions and radial velocities using an arith-
metic mean.
BASE-9 uses a computational technique known as Markov

chain Monte Carlo (MCMC) to derive the Bayesian joint
posterior probability distribution for up to six parameter
categories (cluster age, metallicity, helium content, distance,
and reddening, and optionally for white dwarf studies, a
parameterized initial–final mass relation) and brute-force
numerical integration for three parameter categories (stellar
mass on the zero-age main sequence, binarity, and cluster
membership). The last three of these parameter categories
include one parameter per star, whereas the first six parameter
categories refer to the entire cluster. This study includes no
white dwarfs and we therefore do not use the initial–final mass
relation. Additionally, among the isochrone sets we employ,
there is a fixed relationship between metallicity and helium
content. We are also not concerned with the individual stellar
masses in this study. BASE-9 marginalizes over the parameters
that are not of direct interest to us, yielding four cluster-wide
parameters (age, metallicity, distance, absorption) pertinent to
this work.
BASE-9 allows us to take advantage of prior information,

where available, to constrain parameters. For this problem, the
results are insensitive to the exact choice of reasonable priors.
We chose priors with a Gaussian shape in the logarithmic
quanitities with mean values from the photometric study of
Sarajedini et al. (1999), specifically [Fe/H] = −0.03, -m M( )V
= 11.44, and AV = 0.3. Yet, we set the uncertainties on these
priors to be broad enough that they would not unreasonably
constrain our fits given our current knowledge of these values,
specifically σ([Fe/H]) = 0.3, s -m(( M)V) = 0.3, and s A( V)
= 0.1. We performed sensitivity tests on these priors and found
that reasonable values for these prior standard deviations
yielded negligible differences compared to the variation caused
by different filter combinations.
We have adopted the stellar evolution models of Girardi

et al. (2000), Yi et al. (2001), and Dotter et al. (2008). The
Girardi et al. (2000) isochrones span an age range of 63Myr to
nearly 18 Gyr from metal-free stars up to [Fe/H] = +0.2. The Yi
et al. (2001) isochrones span 1Myr to 20 Gyr from [Fe/
H] = −3.7 to nearly +0.8. The Dotter et al. (2008) isochrones
span 250Myr to 15 Gyr over a metallicity range of

5 BASE-9 is freely available from the second author.
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[Fe/H] = −2.5 to +0.5. All of these parameter ranges easily
bracket NGC 188, which has near solar abundance and is
approximately 6 Gyr old.

4. RESULTS

4.1. Posterior Probability Distributions and Best-fit Isochrones

It is common practice to run MCMC routines such as BASE-
9 (von Hippel et al. 2006) long enough to collect 10,000
uncorrelated samples. In many cases, if the MCMC steps are
too small, the excursions through parameter space are
correlated, yielding fewer independent samples. In such a case,
we then keep only every nth iteration, where n is set such that
subsequent stored iterations are uncorrelated. While there is no
well-defined number of appropriate samples, 10,000 is usually
more than sufficient to determine the shape of every posterior
distribution function, including those with extended tails or
multi-modality. At the other extreme, the Central Limit
Theorem dictates that approximately 30 uncorrelated samples
are sufficient for a normal distribution (e.g., Hogg &
Tanis 2005). Before running a particular data set against a
specific set of models, we do not know if the posterior
distributions will be Gaussian shaped or more complex, so we
take the conservative approach and initially assume complex
posterior distributions and run BASE-9 for 10,000 uncorrelated
iterations.

Each of the uncorrelated samples from BASE-9 is an
allowable fit of a particular family of stellar evolution models
to the cluster data, given the photometric errors, probabilities of
membership, etc. In order to obtain the posterior probability
distributions for the four cluster parameters of interest (age,
[Fe/H], ( -m M)V , AV), we marginalize the sampling history
derived by BASE-9 by binning along the parameter axis of
interest. Many of these distributions are nearly Gaussian in
shape; however, some are substantially non-Gaussian. The root
cause of the non-Gaussian distributions is that stellar evolution

is intrinsically nonlinear, so that, for example, Gaussian errors
in photometry do not propagate as Gaussian errors in cluster
age. One of the strengths of the Bayesian technique is that it
recovers the posterior parameter distributions, which provide
an informative indication of uncertainty that often cannot be
captured with a simple (frequentist) best-fit parameter with
error bars. Figure 2 presents posterior probability distributions
for two different filter combinations.
As an example of the fits derived by BASE-9, we overplot in

Figure 1 an isochrone derived from the mean parameters for the
Yi et al. (2001) stellar evolution models fit to the UBVRI data
set, the posterior distributions of which are plotted in the four
panels on the left in Figure 2. These particular distributions are
symmetric, so the mean and median cluster parameters are
essentially identical. In some cases they are different, yet
typically with the precision of this technique and the quality of
this data set there are no differences to the human eye between
isochrones based on the mean versus the median fit. The
Bayesian approach also reminds us that there is no single best
fit isochrone, but rather a range of probabilistically acceptable
isochrones. It is the distribution of these acceptable isochrones
that forms the posterior distributions. Any overplotted
isochrone is at best just a representative example drawn from
that distribution. In fact, isochrones created from summary
statistics such as mean or median parameters may not be truly
representative if the distributions are substantially non-
Gaussian because that simultaneous combination of parameters
may fit the data with low probability.

4.2. Differences Among Commonly Used Filters

Before embarking on a detailed comparison of model fits as
a function of subsets of the adopted UBVRIJHKS filters, we
take a brief look into the subject of filter prescriptions. Because
observatories have different versions of these filters and stellar
isochrones do not include all such possible filters, we sought to
check the sensitivity of BASE-9 fits to a few filter prescrip-
tions. Specifically, we test three variations on the B filter from
Bessell (1990) and Maiz-Apellaniz (2006) by using BASE-9 to
fit simulated UB, UBV, and UBVRI photometry based on these
filter prescriptions. These sensitivity tests are clearly not
exhaustive. Rather, they are meant to provide an estimate of
the sensitivity isochrone fits have to filter prescriptions.
We employed Girardi et al. (2000) models, available at

http://stev.oapd.inaf.it/cgi-bin/cmd (see Bressan et al. 2012), to
generate isochrones with Z= 0.0144, Y= 0.27387, [M/
H] = −0.01, and age= 6.41 Gyr, along with either of the two
B filters of Bessell (1990) or the B filter of Maiz-Apellaniz
(2006). These model parameters are almost identical to one set
of our NGC 188 fits (see the next section). To these isochrones,
we added a distance modulus of 11.38 and offset the absorption
for all bands according to Table 3 of Cardelli et al. (1989) for
AV = 0.17. We then created approximately the same number of
simulated stars along this sequence as we have stars in our
NGC 188 database and added appropriately sized photometric
errors.
We recovered the four cluster parameters for these simulated

clusters with BASE-9. Table 1 presents a comparison among
these fits, with offsets between any particular fit and the fit to
the first Bessell prescription for that filter combination.
Uncertainties derived from combining in quadrature the one
standard deviation ranges for both posterior probability
distributions are listed in parentheses. The differences between

Figure 1. CMDs for NGC 188 in a range of optical bands. The point types
correspond to the assigned cluster membership probability for each star (filled
circles have membership probabilities greater than 0.9, open circles indicate
between 0.7 and 0.9 probability, open squares show probabilities less than 0.7).
These probabilities result from the arithmetic mean of membership probabil-
ities from Stetson et al. (2004; based on proper motions) and Geller et al.
(2008; based on radial velocities). The data are overplotted with the mean fitted
isochrone (solid line) found by BASE-9 in its UBVRI photometry fit to Yi et al.
(2001) models (see Section 4).
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the two Bessell fits in the UB case are zero within the errors.
They are statistically significant in the UBVRI case, but small.
For the UBV case, the differences are substantial and amount to
1.03 ± 0.12 Gyr, though the other cluster parameters are more
stable. The differences between the fit to the first Bessell
B-filter prescription and that of Maiz-Apellaniz is substantial
and statistically significant in all three cases, particularly for
ages. These differences arise from assuming that the B filter
used in the simulated observations is the same as the B filter
used in the fit, highlighting the importance of incorporating the
correct filter prescriptions whenever possible, and particularly
when deriving absolute cluster parameters.

While filter prescriptions fundamentally matter, we defer
related studies to a future paper given that the comparisons
among filters presented in the next section are differential. We
have a high-quality data set that undoubtedly suffers small
systematics (estimated by Stetson et al. 2004 to be ⩽0.02 mag
for the optical data). We will use subsets of filters from this
same data set repeatedly and compare these data to the same
models, looking for differences among fits as a function of filter
within a given stellar model set.

4.3. Cluster Parameters as a Function of Selected Filters

We fit three widely used stellar evolution models (Girardi
et al. 2000; Yi et al. 2001; Dotter et al. 2008) to 15
combinations of optical/near-IR photometry. These three
isochrone sets consistently rely on Johnson-Cousins UBVRI
as defined by Bessell (1979, 1990). We acknowledge a filter

mismatch with the Yi et al. (2001) and Girardi et al. (2000)
models for which a KS filter response is not available. Because
the JHK age constraints are not as reliable as those at optical
wavelengths, due partly to the lack of isochrone morphology
information in these red bandpasses, we do not report JHK fits
nor attempt a KS to K transformation, which would introduce
additional uncertainty.
Our BASE-9 fits produced too many fits to present all the

posterior distributions. Additionally, we require summary
statistics in order to compare among these models and filters.
Therefore, we adopt box-and-whisker plots to provide both
summary statistics and capture the degree of non-Gaussianity
in the distributions. In box-and-whisker plots, the central line
delineates the median of the distribution and the box edges
indicate the 25th and 75th percentiles. The whiskers extend out
to the most extreme non-outliers, and outliers are plotted
individually. A data point is considered an outlier if it is smaller
than - -q q q( )1

3

2 3 1 or greater than + -q q q( )3
3

2 3 1 , where q1
and q3 are the 25th and 75th percentiles, respectively.
In Figures 3 through 6, we plot the derived cluster

parameters for NGC 188 for each of the three stellar evolution
models and each of the 15 filter combinations of our study.
Focusing first on Figure 3, we see that the Dotter et al. (2008)
models converge to ages that are internally consistent within
the full range of age posterior distributions, except for VRI.
Fewer of these fits are consistent within ±1 σ, with VRI, UB,
and VI being the clearest examples. Though the entire posterior
distribution for VI is wide, its systematic offset from most of
the other filter combinations is troubling given the common use

Figure 2. Left: posterior probability distributions for log age, [Fe/H], -m M( )V , and AV using UBVRI photometry and Yi et al. (2001) isochrones. Right: posterior
probability distributions for these same cluster parameters based on UBVRIJHKS photometry and Yi et al. (2001) isochrones. The log age distribution is noticeably
skewed, which is also the case with the Dotter et al. (2008) models.

Table 1
Fitted Parameter Offsets as a Function of the Mismatch between the Physical and Model Filter Prescriptions

Filters Prescription Δ(age) Δ([Fe/H]) Δ -m M( ) Δ(AV )
(Gyr) (dex) (mag) (mag)

UB Bessell 2 −0.04 (0.13) 0.01 (0.012) −0.03 (0.014) 0.06 (0.041)
UB Maiz-Apellaniz −0.38 (0.14) −0.03 (0.011) −0.02 (0.019) 0.33 (0.040)
UBV Bessell 2 1.03 (0.12) 0.03 (0.006) −0.07 (0.012) −0.13 (0.013)
UBV Maiz-Apellaniz 1.64 (0.06) 0.05 (0.005) −0.09 (0.011) −0.14 (0.009)
UBVRI Bessell 2 0.11 (0.06) 0.01 (0.004) −0.02 (0.008) −0.03 (0.005)
UBVRI Maiz-Apellaniz 0.42 (0.05) 0.05 (0.003) −0.05 (0.007) −0.04 (0.005)

Note. All values are relative to the first Bessell prescription.
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of this filter pair. The age fits based on the Yi et al. (2001)
results show two age families that are again broadly consistent
within the full posterior ranges, though not within ±1σ in many
cases. The age fits based on the Girardi et al. (2000) models are
displayed only for completeness. These models do not
incorporate Equivalent Evolutionary Points (EEPs; Bertelli

et al. 1994), and so BASE-9 has difficulty interpolating these
models, particularly on the sub-giant branch and base of the red
giant branch. This causes artificially narrow age locking in
about half of all cases. These model fits are still useful,
however, as they show that even with a fixed (and reasonable)
age, different filter combinations may yield different values for
the other cluster parameters (see below), which further tests the
reliability of fits as a function of the filter combination that one
employs. Because of the EEP issue with the Girardi et al.
(2000) models, we do not report the fitted values based on
these models in the conclusions or abstract.
Which ages are most reliable? Because stellar structure

models are better at predicting bolometric luminosity than Teff ,
which is not a physical quantity in any case, and because stellar
atmosphere models are imperfect, we expect stellar evolution
models to more poorly predict flux in a particular passband
than the sum of all available passbands. The full range of
optical and near-IR filters from U through KS does not complete
the stellar spectrum, of course, but for G and K stars, which
dominate NGC 188ʼs CMD, the vast majority of the flux is
within these filters. We therefore take the UBVRIJHKS fits as
our reference standard and expect that they will yield more
accurate results than any other combination of filters with less
wavelength coverage. We derive significantly different ages
from fitting Dotter et al. (2008) models (mean= 6.45,
median= 6.45, q1= 6.43, q3= 6.48, σ= 0.04, all in Gyr)
and Yi et al. (2001) models (mean= 5.78, median= 5.79,
q1= 5.76, q3= 5.81, σ= 0.03, all in Gyr). Figure 3 also shows
that while the distributions for some fits can be extremely
narrow, with the central 50% of the distribution spanning less
than 0.1 Gyr for a cluster ∼6 Gyr old or a precision better than
2%, different age fits within a model set can span nearly 1 Gyr
in some cases, though they typically differ by ∼0.4 Gyr.
Figure 4 shows that the fitted metallicity distributions display

patterns similar to those of Figure 3, though the offsets in
metallicity are now so small that most are below the resolution
limit of current spectroscopic analyses. In this case, the
differences are astrophysically unimportant, yet demonstrate
that more filters tend to yield tighter metallicity constraints and
that some filter combinations can provide statistically distinct
fits at least for some models. For example, the BVIK, BVI, and
VRI Dotter et al. (2008) solutions differ significantly from the
other precise fits, as do two of these three combinations with
the other two stellar evolution models. It is also evident that the
BVI fit is not just the linear multiplication of the BV and VI fits.
Figure 5 presents distance moduli fits for these model and

filter combinations. In the full eight-filter cases, the fitted
precisions are excellent, with 50% of the posterior distribution
spanning ⩽0.009 mag. Yet, clearly, distances cannot be derived
this precisely when the distance moduli vary by 0.1–0.2 mag
among different filter and isochrone fits.
Finally, Figure 6 presents absorption (AV) fits. For NGC

188, AV is typically modest at ∼0.2 mag. The UBV and UB fits
tend to be the least consistent with all the other filter
combinations, which is to be expected because the U band is
the most sensitive to interstellar absorption. On the other hand,
it is surprising that the UBV and UB fits are mutually
inconsistent for all three isochrone sets and that while UB fits
yield high absorption, UBV appears to yield overly low
absorption. Instead, these results more likely indicate that
models in U and B yield poorer fits to the data, likely due to the

Figure 3. Box-and-whisker plots for age across 15 photometric band
combinations. Top: Dotter et al. (2008) isochrone models; middle: Yi et al.
(2001) isochrone models; bottom: Girardi et al. (2000) isochrone models.
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narrow wavelength baseline and the difficulty of obtaining
good stellar atmospheres in the near-ultraviolet.

5. DISCUSSION

NGC 188 is one of the best-studied clusters on the sky. It has
modest reddening, a well-constrained metallicity, and reliable
cluster membership probabilities. In addition, this data set
contains little photometric contamination from binaries,

making it a good test case for the sensitivity of isochrone fits
to various filter combinations. Figures 3 through 6 demonstrate
that different filter combinations can yield meaningfully
different ages and distances. Specifically, we find that the
two wide-baseline filter combinations UBVRIJHKS and UBVRI
generally yield consistent results. The infrared filters are thus
less essential. There is somewhat weaker consistency between
UBVRIJHKS and UBVRI on the one hand and UBJHKS, UBVR,

Figure 4. Similar to Figure 3, but for [Fe/H].
Figure 5. Similar to Figure 3, but for -m M( )V .
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and UBVI on the other hand, or among the latter three
combinations. The other filter combinations yield less con-
sistent results, though these deviations may often be lost in the
widths of their substantially larger posterior distributions. Of
particular historical note are the filter combinations UBV, used
extensively for photo-electric photometry, and VRI, used
extensively for CCD photometry. In this study, we find that
UBV fits are consistent with the eight-filter fits in age,

somewhat less consistent in metallicity and distance, and most
inconsistent in absorption. The VRI fits are substantially less
consistent with the eight-filter fits than the UBV fits for all four
of these cluster parameters. At this point we can only affirm
that these results apply to NGC 188 and probably other solar
metallicity clusters with similar ages. We do not expect these
same disparity patterns for younger clusters whose bluer stars
drive the age fits and where bluer filters play a driving force in
isochrone fitting. Additionally, the consistency of the fits may
be improved for globular clusters because low metallicity
atmospheres are easier to model.
The inconsistencies inherent to isochrone fitting also high-

light that stellar models still suffer from incomplete treatment
of important physics. Because any stellar evolution model has a
specific relationship between turn-off mass and age, and
because mass is precisely connected to luminosity, the other
three cluster parameters can act as free parameters, at least
within some constrained bounds. To match the luminosity of
the turn-off, BASE-9 can adjust the distance with appropriate
additional adjustments in absorption and metallicity. The
freedom of adjusting multiple cluster parameters may bury
the evidence that would be most helpful in determining which
stellar models and which wavelength ranges are most
problematic. In principle, highly constrained isochrone fits for
a wide range of clusters with different ages and metallicities
may reveal the magnitude of the underlying physical problems,
whether they are assumptions about convection at the base of
the giant branch, line blanketing in stellar atmospheres, or
perhaps other physics that we may be less concerned about.
In any case, the European Space Agency’s Gaia satellite

mission heralds a new era where at least one large source of
uncertainty, cluster distances, can be highly constrained with
great precision and accuracy. Locking down cluster distances
with reliable parallaxes to 24 μ (as expected for a V ⩽ 15 star
with G star colors; see http://sci.esa.int/gaia/47354-fact-sheet)
could constrain the distance to NGC 188 (at ∼2 kpc)
considerably. There are 27 stars in our CMD with V⩽15
and 83 stars with V⩽15.5. The expected parallax accuracy of
4.8% per star at 2 kpc improves by at least a factor of

- »27 1 5, and could be more than 10 times higher once all
observed stars are properly included, meaning that the distance
to NGC 188 will be known to at least 0.5–1%. This
corresponds to an uncertainty of 0.01–0.02 mag in distance
modulus, which is more than an order of magnitude
improvement over the range of the fits in Figure 5.

6. CONCLUSIONS

Using the Bayesian statistical stellar evolution package
BASE-9, we fit the well-studied old open cluster NGC 188 for
age, [Fe/H], -m M( )V , and AV under 15 different photometry
regimes using a range of filters and wavelength baselines. We
argue that employing all eight filters, and thus the widest
baseline, yields the most precise and accurate fits. The five-
filter UBVRI combination was nearly as good. However, other
filter combinations often gave inconsistent results with each
other and with the eight-filter results. These inconsistencies can
span 1 Gyr, though 0.4 Gyr differences, or ∼6%, are more
typical for NGC 188.
Differences among the model sets can also be substantial.

Specifically, fitting Yi et al. (2001) and Dotter et al. (2008)
models to the eight-filter data yields the following mean cluster
parameters: age= {5.78 ± 0.03, 6.45 ± 0.04}Gyr, [Fe/

Figure 6. Similar to Figure 3, but for AV .
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H] = {+0.125 ± 0.003, −0.077 ± 0.003} dex, -m M( )V
= {11.441 ± 0.007, 11.525 ± 0.005} mag, and AV = {0.162 ±
0.003, 0.236 ± 0.003} mag, respectively. With such small
formal fitting errors, these two fits are substantially and
statistically different. The differences among fitted parameters
using different filters and models is a cautionary tale regarding
our current ability to fit star cluster CMDs.

Our case study of NGC 188 should be extended to other
stellar clusters to cover the widest range of cluster parameters.
In doing so, the match between the filter response functions for
the theoretical evolutionary models and the actual observations
must be confirmed to eliminate a common source of systematic
error.
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