Mie Scattering Diagnostic

Tilden Roberson, Clayton Birchenough, Christopher Swinford, Sophie Jorgensen
Embry-Riddle Aeronautical University Department of Mathematics, Daytona Beach, FL in collaboration with…
National Security Technologies, LLC

Background

One way to explore special nuclear material properties is to study how a metal surface breaks up into ejected particulates after it is shocked by a high explosive. To understand the physical processes that govern these ejected particles, it is necessary to measure the size distribution of them. This is troublesome because the particles travel at many kilometers per second and the whole experiment occurs so quickly, high speed measurement systems are required to measure the data. The diagnostic being investigated relies primarily on Mie Theory, a solution to Maxwell’s equations that describes the scattering of light by a sphere.

Question and Challenge

Question: Can we measure the distribution of particle sizes that are emitted from a metal surface when it is shocked by explosives using Mie Theory?

Challenge: Using a technique from the air quality industry used to measure aerosol particulates and provided with a MATLAB code for simulating scattering from particles, (1) determine whether or not the code accurately simulates the particles being ejected. Then, after determining whether the diagnostic code is performing as expected and correctly forward modeling the light scattering, (2) determine how many fiber optic sensors should be used in the system and where they should be positioned in order to most accurately capture the particle distribution.

Results

After investigating and experimenting with the provided code, it was decided to also implement the Weibull distribution (in addition to the already implemented Lognormal distribution) as a possible distribution for the ejected particles. The Weibull distribution was chosen for its use in describing ground, milled, and/or crushed particles.

Recommendations

For future work, it is recommended that the importance of smaller angles and their significance in accurately reconstructing distributions be further understood and quantified. Analysis should also be done with regards to quantifying how the diagnostic handles uncertainties of the indices of refraction.

Acknowledgements

Figures 1 through 4 are courtesy of National Security Technologies, LLC.

Industrial Liaisons: Dr. Marylesa Howard and Dr. Aaron Luttman
National Security Technologies, LLC

Advisor: Dr. Mihhail Berezovski

“PIC Math is a program of the Mathematical Association of America (MAA) and the Society for Industrial and Applied Mathematics (SIAM). Support is provided by the National Science Foundation (DMS-1345499).”