
Doctoral Dissertations and Master's Theses

Fall 12-2014

Development of a System Architecture for Unmanned Systems Development of a System Architecture for Unmanned Systems

Across Multiple Domains Across Multiple Domains

Charles Randall Breingan Jr.
Embry-Riddle Aeronautical University

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Automotive Engineering Commons, and the Mechanical Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Breingan, Charles Randall Jr., "Development of a System Architecture for Unmanned Systems Across
Multiple Domains" (2014). Doctoral Dissertations and Master's Theses. 264.
https://commons.erau.edu/edt/264

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons.
For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1319?utm_source=commons.erau.edu%2Fedt%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=commons.erau.edu%2Fedt%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/264?utm_source=commons.erau.edu%2Fedt%2F264&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

Development of a System Architecture for
Unmanned Systems across Multiple

Domains

by

Charles Randall Breingan, Jr.

A Thesis Submitted to the College of Engineering Department of Mechanical Engineering

in Partial Fulfil lment of the Requirements fo r the Degree of Master of Science in

Mechanical Engineering

Embry-Riddle Aeronautical University

Daytona Beach, Florida

December 2014

iii

Acknowledgements

 I would like to express my appreciation and thanks to my advisor Professor Dr. Patrick Currier,

you have been a tremendous mentor for me. I would like to thank you for encouraging my research and

for allowing me to grow as a research scientist. Your advice on both research as well as on my career

have been priceless. I would also like to thank my committee members, Dr. Reinholtz and Dr. Butka for

serving on my thesis committee.

 I need to express my deepest appreciation to my advisers and friends Dr. Charles Reinholtz and

Dr. Brian Butka. Thank you Dr. Reinholtz for your continuing support and advice throughout my

education. Your confidence in me has meant a lot to me and has encouraged me to strive to be a better

student and a better engineer. Thank you to Dr. Butka for providing opportunities for me to participate

in fascinating research projects that I wouldn’t otherwise have had a chance to work on. The projects

that we have done together through our research have provided invaluable experiences and fantastic

education and insight. Thank you for pushing me to try hard and perform better, even when I was

perfectly content with taking the easy road to the end of a project.

 I also have to thank my friends and colleagues in the Robotics Association. Specifically,

Christopher Hockley, Christopher Sammet, and Gene Gamble, who I worked with for many years, have

always helped me through the challenges that I have faced, both technical and personal. Even when we

disagreed, we could always discuss the differences of opinion and come to a reasonable compromise. I

have never worked with more talented or dedicated individuals, and I doubt I ever will.

 Lastly, I need to convey my thanks to my family. Without their support, I never would have

made it to where I am today. Their love and support has been an integral part of my success throughout

my college career and I know that I can count on them as I move into my professional career.

iv

Abstract

Researcher: Charles Randall Breingan, Jr.

Title: Development of a System Architecture for Unmanned Systems across Multiple Domains

Institution: Embry-Riddle Aeronautical University

Degree: Master of Science in Mechanical Engineering

Year: 2014

 In the unmanned systems industry, there is no common standard for system components,

connections, and relations. Such a standard is never likely to exist. Needless to say, a system needs to

have the components that are required for the application, however, it is possible to abstract the

common functionality out of an individual implementation. This thesis presents a universal unmanned

systems architecture that collects all of the common features of an unmanned system and presents

them as a set of packages and libraries that can be used in any domain of unmanned system operation.

The research and design of the universal architecture results in a well-defined architecture that can be

used and implemented on any unmanned system. The AUVSI student competitions are specifically

analyzed and it is shown how this universal architecture can be applied to the challenges posed by the

competitions in different domains.

v

Table of Contents
Chapter 1 Introduction... 1

1.1 Background ... 1

1.2 Literature Review .. 3

Chapter 2 System Requirements ... 10

2.1 User Stories ... 10

2.2 Domain Specific Requirements ... 11

2.2.1 Unmanned Aerial Vehicles ... 12

2.2.2 Unmanned Ground Vehicles .. 13

2.2.3 Unmanned Surface Vehicles .. 14

2.2.4 Unmanned Underwater Vehicles ... 15

2.3 Classification of Autonomy ... 16

2.3.1 Perception .. 16

2.3.2 Intelligence ... 18

2.3.3 Independence ... 20

Chapter 3 U2SA Architecture Specification ... 22

3.1 Architectural Design Pattern ... 22

3.2 Logical Architecture .. 24

3.2.1 Service Interfaces ... 29

3.2.2 Abstract Services .. 34

3.2.3 Core Services .. 40

3.2.3 Messaging Data Models ... 45

3.3 Implementation Architecture ... 59

3.3.1 Interface Layer ... 61

3.3.2 Abstract Layer .. 62

3.3.3 Core Layer .. 62

3.3.4 Interaction Layer .. 62

3.4 Process Architecture ... 63

3.5 Deployment Architecture ... 64

3.5.1 Packaging ... 65

3.5.2 Processing Distribution .. 68

3.5.3 Process Availability... 68

Chapter 4 Scenarios and Implementations .. 70

4.1 Intelligent Ground Vehicle Competition ... 70

4.1.1 U2SA Implementation .. 72

vi

4.1.2 U2SA Advantages ... 76

4.2 RoboBoat Competition ... 78

4.2.1 Sensing ... 80

4.2.2 Perception .. 81

4.2.3 Intelligence ... 82

4.2.4 Control ... 85

4.2.5 Actuation .. 86

4.3 RoboSub Competition ... 86

4.3.1 Sensing ... 88

4.3.2 Perception .. 88

4.3.3 Intelligence ... 89

4.3.4 Control ... 91

4.3.5 Actuation .. 91

4.4 Student Unmanned Aerial Systems Competition ... 92

4.4.1 Sensing ... 94

4.4.2 Perception .. 95

4.4.3 Intelligence ... 95

4.4.4 Control ... 96

4.4.5 Actuation .. 97

4.5 U2SA FlightGear Implementation ... 98

4.5.1 Interfaces ... 99

4.5.2 Services .. 100

4.5.3 Lessons Learned ... 104

4.6 U2SA Ground Vehicle Implementation ... 104

4.6.1 Interfaces ... 105

4.6.2 Services .. 106

4.6.3 Hardware ... 109

Chapter 5 U2SA Analysis .. 111

5.1 Requirements Traceability .. 111

5.2 Principles of a SOA .. 116

5.2.1 Standardized Service Contracts ... 116

5.2.2 Service Loose Coupling .. 117

5.2.3 Service Abstraction .. 117

5.2.4 Service Reusability ... 118

5.2.5 Service Autonomy .. 118

vii

5.2.6 Service Statelessness ... 119

5.2.7 Service Discoverability ... 119

5.2.8 Service Composability .. 119

5.3 Limitations... 120

Chapter 6 Conclusions.. 122

Chapter 7 References ... 124

Chapter 8 Appendices .. 126

8.1 List of Acronyms .. 126

viii

Table of Figures
Figure 1: 4+1 View Model ... 9
Figure 2: Component Breakdown ... 26
Figure 3: Inheritance Diagram .. 28
Figure 4: Service/Message Dependency Diagram .. 47
Figure 5: U2SA Data Model ... 48
Figure 6: State Information Data Model ... 50
Figure 7: Goal Information Data Model .. 52
Figure 8: Waypoint Data Model .. 53
Figure 9: Object Description Data Model ... 54
Figure 10: Point Cloud Data Model ... 56
Figure 11: Shape Description Data Model with Example Shapes ... 57
Figure 12: Navigation Point Data Model ... 58
Figure 13: Actuator Command Data Model .. 59
Figure 14: U2SA Package Diagram .. 60
Figure 15: Implementation Layer Diagram ... 61
Figure 16: Data Flow Diagram ... 64
Figure 17: IGVC Data Flow Diagram .. 71
Figure 18: RoboBoat Data Flow Diagram .. 80
Figure 19: RoboBoat State Diagram .. 85
Figure 20: RoboSub Data Flow Diagram ... 87
Figure 21: RoboSub State Diagram ... 90
Figure 22: SUAS Data Flow Diagram ... 94
Figure 23: FlightGear Implementation Data Flow Diagram .. 101
Figure 24: UGV Implementation Data Flow Diagram ... 105
Figure 25: UGV Implementation Hardware .. 109

 List of Tables
Table 1: Architecture Comparison .. 8
Table 2: Potential UAV Inputs ... 12
Table 3: Potential UAV Outputs .. 13
Table 4: Potential UGV Inputs ... 13
Table 5: Potential UGV Outputs .. 14
Table 6: Potential USV Inputs ... 14
Table 7: Potential USV Outputs .. 15
Table 8: Potential UUV Inputs ... 15
Table 9: Potential UUV Outputs .. 16

 1

Chapter 1

Introduction

1.1 Background

In the engineering domain, there are an infinite number of solutions to any given problem.

However, from time to time, a solution is accepted as being standard practice and most solutions going

forward tend to align with the accepted standard. Every time that such a standard has been adopted, it

has bounded the technology forward by allowing new development to build upon the existing

technology. When original processor architectures were standardized by Intel, all of the machines using

those processors were interoperable. It was much easier to write a program on one processor and

distribute that program to other users with the same processor. When USB became a standard it

allowed manufacturers to create many different peripherals to attach to any machine that implements

the USB standard. The input and output capabilities of computers have expanded dramatically since the

USB standard was adopted.

This type of accepted solution has not yet come about in the field of unmanned systems. There

are many different types of architectures that are designed to do a specific task. Examples of such

architectures are systems that have been custom designed to fly an airplane, or to drive a car, or to pilot

a boat. However, each time one of these systems is designed, it is done from the ground up. While there

are many similarities between these systems and how they make decisions, not much software is reused

from applications. A significant amount of engineering overhead is added to every design project by not

adopting an architectural standard for unmanned systems.

 2

The purpose of this study is to propose a standard architecture, the Universal Unmanned

Systems Architecture (U2SA), for unmanned systems that can apply to all of the different domains in

which unmanned systems operate. The architecture is capable of supporting the simplest one

dimensional unmanned systems, like elevators and conveyors belts, as well as the most complicated

unmanned systems, like artificial intelligence.

Each domain of unmanned systems is vastly different in terms of sensors, actuators, and

missions. However, there are also many similarities between the domains. A universal architecture that

extracts all of the common functions of an unmanned system is necessary for the progress of the

unmanned systems industry. If this architecture can encapsulate the common functionality while still

allowing for domain specific and implementation specific interfaces, then the unmanned systems

developed from this architecture will be able to build off of the previous work and simply add new

features rather than reinventing the wheel. The U2SA will provide the common baseline architecture

that could be utilized by any unmanned systems project that is looking to expand on functionality that

already exists.

This thesis will propose a universal architecture that can be applied to each of the 4 primary

unmanned systems domains. The architecture may also be able to support domains outside of the

primary four, such as space vehicles or underground robots, however these domains are not analyzed.

The architecture will extract the software and system components that are necessary to develop an

unmanned system from any domain. It will also specify the connections between components and the

configuration properties of the components and the connections. In chapter 2, the requirements that

are used to design the architecture are described. Chapter 3 will present the 4 architectural views that

are necessary to describe a system architecture. In chapter 4, applications in the different domains of

unmanned systems will be analyzed and a solution that is built from the U2SA will be proposed for each

 3

problem area. Chapter 5 will describe how the U2SA has met the requirements and is designed within

the principles of a typical system architecture. Chapter 6 will offer conclusions and identify areas of

future research for unmanned systems.

1.2 Literature Review

 The Joint Architecture for Unmanned Systems (JAUS) was developed as part of a Department of

Defense (DoD) initiative in 1998 [1]. JAUS was meant to create the standard for unmanned system

architectures by which all current and future unmanned system developers would create their products.

The JAUS specification was created to allow developers the freedom to not only create new systems, but

also to incorporate legacy systems into the new JAUS architecture. For this reason, the JAUS standard

was defined as a system of nodes and components and JAUS specified only the data interaction between

systems, nodes, and components. Certain nodes and components are defined in the JAUS standard and

each node and component is responsible for a specific set of operations. However, not all applications

may require the types of operations that are required by JAUS components. Additionally, JAUS nodes

and components need to be aware of the other nodes and component IDs or the communication

between modules will fail. JAUS had a well-defined communication protocol that can be useful to any

number of application, but the process architecture may have been defined too rigidly for practical use

in a system design process [2]. The DoD abandoned JAUS in 2012 because it was not being utilized by

vendors. It is important to note that the concepts behind JAUS have contributed greatly to the U2SA.

Some systems, like the ArduPilot, utilize the MAVLink data protocol which is an extension of the

protocol contained within JAUS [3]. Extending the JAUS protocol gives MAVLink a good start at creating

a well-defined protocol. One of the biggest advantages of MAVLink over JAUS is that MAVLink support

blind publishing of messages where a software module does not need to know about other software

modules in the system. However, the ArduPilot software only has one monolithic piece of software and

 4

the concept of inter-process communication is not possible in a single process. Thus, the MAVLink

protocol is only utilized for communicating with outside entities like a ground control station.

The National Institute for Standards and Technology has published the 4D/RCS Reference Model

Architecture for Intelligent Unmanned Ground Vehicles in 2002 [4]. The 4D/RCS presents a layered

approach to an unmanned ground vehicle implementation for the Army Research Laboratory Demo III

program. The layers of the 4D/RCS includes the Battalion Map, Platoon Map, Section Map, Vehicle Map,

Subsystem Map, Entity Images, and Signal States layers. Each layer plans vehicle operation for the next

time step that is defined for that layer. At the extremes of the layers, the Battalion Map plans for the

next 24 hours whereas the Signal States layer plans for the next 0.05 seconds. These layers are

specifically designed for multi-vehicle operation in an environment. The 4D/RCS then breaks down an

individual vehicle’s implementation of the architecture. For any given ground vehicle there are 4

processes that are continuously executing: behavior generation, world modeling, sensory processing,

and value judgment. Each process communicates with each of the other processes resulting in highly

coupled process modules. The 4D/RCS presents a highly coupled process architecture and leaves out the

logical architecture for software components and data models. The coupling, timing constraints, and

lack of architectural depth may be the reason that the 4D/RCS has received criticism over the years since

its inception. [5]

One of the most prevalent autopilot solutions in the hobby industry is often overlooked as a

valuable solution by academic research. The ArduPilot system is an open source hardware and software

application that was originally designed to control fixed wing hobby aircraft. Since its initial

development, the ArduPilot has expanded to include rotorcraft, multi-rotors, and ground vehicles [5].

Each of the different applications are compiled onto the ArduPilot hardware which is an ATmega 2560

microprocessor. Since the ArduPilot is built onto the ATmega, these projects are limited to a single

 5

thread of execution. ArduPilot projects are also limited to 8 PWM inputs, 8 PWM outputs, and 14 digital

General Purpose I/O (GPIO). The software of the ArduPilot is purely sequential and utilizes a series of

highly coupled functions that share the same memory space and access variables globally.

 In 2013, Breingan and Currier presented a paper on creating an Autopilot Architecture for

Advanced Autonomy [6] at the AUVSI Unmanned Systems, North America conference. This paper

proposed the Embry-Riddle Autopilot Solution for Multiple Unmanned Systems (ERASMUS) Architecture,

an autopilot architecture for aircraft to allow for future integration into the national airspace. ERASMUS

was designed for implementation on an Android smartphone or other Java processor. The U2SA

proposed in this thesis is a direct descendent of ERASMUS. After the publication of this paper, ERASMUS

was implemented for research of this thesis and the U2SA is the refinement of the ERASMUS

architecture.

 Throughout the years of unmanned systems development, many government and private

agencies have tried to define levels of autonomous behavior. These agencies include the DoD Joint

Program Office, the Army Maneuver Support Center, National Institute of Standards and Technology,

Army Future Combat Systems, and the Air Force Research Laboratory [7] [8] [9] [11]. In 2005 the DoD

assembled a group of researchers to create the Autonomy Levels For Unmanned Systems (ALFUS) [8].

This group developed metrics for determining levels of autonomy. The 3 degrees of measuring

autonomy are mission complexity, environmental difficulty, and human independence. These

dimensions are a good start to the problem of classifying autonomy, however they have one flaw that

makes them inadequate for this study. The flaw with these dimensions is that they are not in reference

to the system, but the environment outside of the system. A system can be programmed to do one

specific complex mission very well and would therefore have a high score for mission complexity.

Likewise, a system can be designed for a complex environment, but not really be able to handle

 6

different, or even more simple terrains and environments. Lastly, a system could score very highly in the

human independence for one task, but score very poorly on a different task than what it was designed

to do.

 The Air Force Research Lab (AFRL) also developed metrics for measuring the autonomy of an

unmanned system. In 2002 AFRL published a paper titled “Metrics Schmetrics” [8] was presented as a

first step towards standardizing the classification of autonomy. This scheme of classification defined 11

levels of autonomy with level zero being remotely piloted vehicles and level ten being fully autonomous

[10]. Each level has a rigid definition of how the system perceives, analyzes, makes decisions, and acts.

The Autonomous Control Logic metrics were a good first step in defining autonomy, however the

metrics are specifically designed for military UAV applications. Using terms like “battlespace” and

“inferred threat tactics” to describe a level of autonomy somewhat limits the usefulness of these

metrics outside of military applications. Additionally, the rigidness of the levels limits the ability to

communicate the ability of a more advanced perception algorithm if the decision making is limited.

 A summary of the different system architectures discussed here is shown below in

 7

Table 1. The features outlined in the table below are discussed above as advantages and disadvantages

of each architecture definition and will be used late in this thesis to define what features the U2SA

should provide.

 8

Table 1: Architecture Comparison

 JA
U

S

4
D

/R
C

S

A
rd

u
P

ilo
t

ER
A

SM
U

S

U
2

SA

Computing Architecture

Language Independent

Processor Independent

Distributed

Communication

Protocol Definition

Data Definition

Development

Low Coupling

Common Feature Definitions

Abstract Message Addressing

Plug-and-Play Algorithms

Scalable Interfaces

Architecture Description

Logical Architecture

Implementation Architecture

Process Architecture

Deployment Architecture

The U2SA will be defined in the Rational Unified Process (RUP) [8] style of architecture

specification. The RUP style was first described by Philippe Kruchten in 1995 [9]. Kruchten describes the

4+1 style, which was later adopted as the RUP, as an architecture-centered, scenario-driven, iterative

development process. In the RUP style there are 4 primary sections that approach the architecture from

 9

a different perspective, or view, and each subsequent view builds on the previous view. These views are:

the Logical View, Implementation View, Process View, and Deployment View. The last view of this style

is a scenario view, or the use case view, where different scenarios are played out using the architecture

defined in the first 4 views. The 4+1 view model and the view dependencies are shown in Figure 1.

Figure 1: 4+1 View Model [12]

 10

Chapter 2

System Requirements

 The U2SA will define an architecture that software and system developers can utilize to create

their unmanned systems. The primary stakeholders in the U2SA are the engineers and developers that

will implement the architecture in their application. Thus, a majority of the effort in designing the

architecture should be to meeting the developers’ needs for an unmanned system.

2.1 User Stories

 A common way to capture system requirements is to collect user stories from the end users of

the system [10]. A user story is a natural language description of a piece of functionality that the end

user would like to have. User stories are usually in the format of “As a <role>, I want <desire> so that

<benefit>.” This type of requirement solicitation is very useful for collecting, not only the requirement,

but also the sentiment behind the end users story and the benefit that the requirement provides to the

project. The following user stories have been collected from student researchers at Embry-Riddle,

researchers in industry, and from personal experiences to help define exactly what this architecture

needs to specify.

1. As a leader of a development team, I would like the developers to be able to create independent

software modules in different programming languages so that development is faster and easier

for the developers.

2. As a developer, I would like a well-defined communication protocol for the data that needs to

be communicated between software modules so that modules can be developed independently.

 11

3. As a system engineer, I would like the software to be processor and computer architecture

independent so that the system can be ported to a new computer without additional

development.

4. As a system engineer, I would like the software modules to maintain the lowest coupling

possible so that modules can be developed or modified independently.

5. As a system engineer, I would like the software modules to run seamlessly on a distributed

computing platform with minimal configuration so that the end user doesn’t have to spend time

configuring each module when process distribution changes.

6. As a leader of a development team, I would like the common features of a software module to

be defined and abstracted so that developers do not spend time re-implementing already

implemented functionality.

7. As a leader of a development team, I would like the communication between software modules

to be lowly coupled so that modules do not need to be aware of other modules within the

system.

8. As a system engineer, I would like to be able to seamlessly pick and replace navigation

algorithms like sensor filtering, path planning, and control systems so that different algorithms

can be tested quickly and efficiently.

9. As a system engineer, I would like to add a new sensor or actuator to the system without having

to change my state estimation, world modeling, or control algorithms and code base so that the

development time in adding a new device is reduced.

2.2 Domain Specific Requirements

 The U2SA should support unmanned systems from all of the different domains of operation, and

it must be able to support the four primary domains. The primary domains are Unmanned Ground

 12

Vehicles (UGV), Unmanned Aerial Vehicles (UAV), Unmanned Surface Vehicles (USV), Unmanned

Underwater Vehicles (UUV), and every amalgamation of the above. Therefore, before designing the

architecture, a list of domain specific requirements must be created in order for the architecture to

sufficiently support each domain without infringing on overall functionality.

2.2.1 Unmanned Aerial Vehicles

 A UAV operates in 6 degrees of freedom and must be able to communicate movement

information for each of those dimensions. UAVs have a unique requirement of needing to distinguish

between a ground reference frame and an air reference frame. UAVs require location and attitude

sensing which they can get from Global Positioning Systems (GPS) and Inertial Measurement Units

(IMU). A UAV requires, not only ground speed, but also air speed, angle of attack, barometric pressure,

and, as airspace integration continues, it will need to sense or communicate location data with other

aircraft. A UAV could use Radio Detection and Ranging (RADAR) or Automatic Dependent Surveillance-

Broadcast (ADS-B) to detect other aircraft in the area for avoidance purposes. In addition to these

inputs, a UAV has numerous outputs. Depending on the widely varied types of aircraft, different control

surfaces need to be commanded and manipulated, as well as various types of propulsion. UAVs also

typically have other peripherals that are needed to complete whatever task or mission they are

currently attempting. Peripherals may include cameras, gimbals, and dropping/releasing items or

ordnances.

 To summarize a UAVs potential input requirements:

Table 2: Potential UAV Inputs

GPS Wind Speed and Direction

IMU RADAR

 13

Airspeed ADS-B

Barometric Pressure Camera

To summarize a UAVs potential output requirements:

Table 3: Potential UAV Outputs

Control Surfaces Propulsion

Gimbal Control Video Streams

Peripheral Control

2.2.2 Unmanned Ground Vehicles

 A UGV can operate in as little as 1 physical dimension and as many as 3 physical dimensions.

UGVs stand out from the other domains in that there are typically many more obstacles on the ground

than there are in the air on in most waterways. A UGV usually requires highly accurate location

solutions, magnetic heading, and detection and ranging to obstacles in its environment. In some

implementations, UGVs will need to process millions of data points per second from cameras, Light

Detection and Ranging (LIDAR), and ultrasonic sensors. A ground vehicle can also use various sensors to

determine how fast it is going or how far it has moved.

To summarize a UGVs potential input requirements:

Table 4: Potential UGV Inputs

GPS LIDAR

IMU RADAR

Camera Encoders

 14

Ultrasonic IR Range Detectors

To summarize a UGVs potential output requirements:

Table 5: Potential UGV Outputs

Wheel Speed Steering Direction

Transmission Shifting Brakes

Gimbal Control Video Streams

Peripheral Control Manipulators

2.2.3 Unmanned Surface Vehicles

 Many Unmanned Surface Vehicles are similar to UGVs in the types of sensors and the types of

controls that they use. USVs can be made to be differentially controlled much like a 2 wheeled ground

vehicle. However, USVs sometimes require more information about the environment than UGVs. A USV

might need to know the water current speed and direction or the wind speed and direction. Both of

these environmental aspects will affect the way that the system behaves and maneuvers more so than is

the UGV domain.

To summarize a USVs potential input requirements:

Table 6: Potential USV Inputs

GPS LIDAR

IMU RADAR

Camera Thrust Sensors

Ultrasonic IR Range Detectors

 15

Wind Sensors Current Sensors

To summarize a USVs potential output requirements:

Table 7: Potential USV Outputs

Thrust Commands Steering Direction

Transmission Shifting Video Streams

Gimbal Control Manipulators

Peripheral Control

2.2.4 Unmanned Underwater Vehicles

 UUVs are complicated platforms because they often need to operate holonomically through the

water. Sensing under water is also difficult because systems need to be water resistant while not

impacting the view or the return characteristic of the sensor. Thus, UUV sensors are fairly limited. In

shallow waters, UUVs will use Doppler Velocimetry Logs (DVL) for speed and location data. UUVs can

also use cameras, sonar, current sensors, and pressure sensors for depth. The outputs from UUVs are

usually thrust commands to control the system in the 6 degrees of freedom.

To summarize a UUVs potential input requirements:

Table 8: Potential UUV Inputs

DVL IMU

Magnetometer Current Sensors

Camera Thrust Sensors

To summarize a UUVs potential output requirements:

 16

Table 9: Potential UUV Outputs

Thrust Commands Video Streams

Gimbal Control Manipulators

Peripheral Control

2.3 Classification of Autonomy

 When designing a universal unmanned system architecture, it is important to take into account

the simplest unmanned systems, as well as the most complex unmanned systems. In order to ensure

that a majority of unmanned systems can be supported by the U2SA, the different levels of autonomy

must be analyzed and taken into account during the design of the U2SA.

 As discussed above in the literature review, there has been significant research into classifying

different levels of autonomy. This classification as part of the U2SA will build upon the work previously

done in this area to build a more unified classification system that focusses on the unmanned system’s

abilities, rather than focusing on the environment in which a system operates, as some other

classifications have done.

2.3.1 Perception

 In many cases of autonomy it is important for a system to recognize objects in the environment

so that it can determine how to interact with them. In the case of the Man Who Mistook His Wife for a

Hat [15], the author Oliver Sacks presents a case study of a man who had lost his sense of perception.

The man was still very intelligent. He still had all five senses of a human, but his brain could not

characterize or categorize objects in his environment. When the doctor handed him a glove, the man

was able to describe the glove in terms of the texture, the color, the fact that it had five pouches at the

end, but he could not associate the word glove, or even the function of a glove, with the object that he

 17

was holding. The man frequently needed help with things, his wife was crucial in making sure he could

get dressed in the morning and eat his breakfast. In this case, the man who lost his perception was still

highly intelligent, but he had lost some part of his autonomy. He could no longer operate completely

independently. For these reasons, we find that perception of the environment is a primary metric for

autonomy, in humans and robotics.

1. No Sensing

In this level of sensing there are no sensors attached to the system and no continuous inputs

from the internal system or the external world. With no sensor data, there is nothing to process,

there is nothing to perceive except a priori knowledge of the environment.

2. Discrete

This level of sensing includes sensors that are relevant for the mission and the system collects

data describing the external world, but there is no grouping or classification. The system

operates solely on discrete data points returned from the sensor. It does not try to perceive the

whole picture, or the object as a whole.

3. Grouped

At this level, systems will be able to sense objects in the environment and group nearby data

points. Here, the system reads data from the sensors and can group similar data points that

seem to be part of the same object. The system could determine: ‘there is a blob over to my

right that is X size and Y distance away.’ But it does not determine what that blob is. The system

interacts with all blobs in the world model the same way (ex. always avoid or always seek).

4. Classification

This level of perception is not only grouping nearby sensor data points into clusters or blobs, but

also determining what that blob is. This level of perception would include a limited set of pre-

 18

programmed object characteristics that would allow the system to determine if the cluster of

data points is one of the pre-programmed objects. (ex. Red buoy vs green buoy).

5. Static Learning

Learning new objects would allow the system to expand its’ object library from level 4

perception. This type of learning would require teaching with numerous data points and a

specific learning mode. The system would not be able to learn new objects for classification on

its own.

6. Dynamic Learning

The system would have the ability to learn to classify new objects in the environment through

normal operation. This level of learning would be equivalent to an adult human seeing an object

for the first time and then being able to recognize that object again in the future.

2.3.2 Intelligence

 With perception a system can obtain information about the external world from internal a priori

knowledge or sensors that observe the environment. However, the next stage of autonomy is deciding

what to do with that information. Consider the way that humans take in information and then make

decisions based on that information. Humans make plans, draw conclusions, and act on the information

that is given to them. The ability to make decisions is an important part of an unmanned system’s

operation. The complexity of the decision making process makes up the intelligence aspect of

autonomy.

1. No Decisions

At this level of intelligence, the system is not capable of making decisions. The system operates

on pre-programmed maneuvers based on time. No sensor data is taken into account. This is

lowest level of intelligence.

 19

2. Static Response

Systems at this level of intelligence operate in static environments with known objects and

obstacles. When it sees a certain type of object it performs a preprogrammed maneuver.

3. Memory

At this level of intelligence, the system can maintain memory of the environment. In a dynamic

environment being able to remember the area that is no longer within sensor range is integral

to intelligence. In this level of intelligence memory might be in static or dynamic environments.

4. Projection

This level of intelligence allows the system to operate in a dynamic environment where objects

are moving. This level of intelligence would allow the system to determine what an object is

doing and how fast it is doing it; thus being able to plan for where objects will be at time of

interception.

5. Static Task Learning

The fifth level of intelligence includes the ability to learn how to do new tasks. A system at this

level could watch a person perform a task and learn how to accomplish the task. The system will

have a learning mode during which it observes a task being done and an operation mode where

is duplicates the procedure that it observed during learning.

6. Dynamic Task Learning

At the highest level of intelligence, a system will be able to develop a new solution to a problem

without guidance from a higher intelligence. There is no “learning mode” at this level of

intelligence, the system is constantly observing and maintaining memory of the things that it

sees.

 20

2.3.3 Independence

 The third dimension of measuring autonomy, is the independence of the system. How well can a

system operate on its own without intervention? The ability to operate independently from human

intervention is crucial for autonomy. As with all of the dimensions of autonomy, the highest level

considered is that of a human. Thus, consider a human that lives on their own who must collect food,

build shelter, and maintain their health. Likewise, an autonomous system at the highest level should be

able to survive on its own by collecting resources, whether that is by plugging itself into a wall socket as

some robots do or moving into sunlight to collect solar power. It also must be able to protect itself by

detecting environment and conditions that it can’t go into and avoiding hazards. A highly autonomous

system should also be able to monitor its own health and determine when it needs help and seek out

assistance from another intelligent system that can provide assistance that is needed. It is important to

note that even humans can’t live completely independently. At some points, even humans require help

and intervention from other intelligent systems.

1. Tele-operation

The lowest level of independence is none at all. A system that cannot operate on its own would

fall into this category. A human, or other intelligent system must control its actions through

some kind of remote control.

2. Stabilized

At this level a system can operate independently when performing simple tasks like driving in a

straight line, or flying flat and level. Any other operations would be done by the human. The

system should also detect maneuvers that are beyond its capabilities and prevent the user from

performing those actions.

3. Task Autonomy

 21

For level three of independence, the system should be able to perform its task largely without

human intervention. However, the system is reliant on the human to initiate a task/mission. A

task is determined by the application. Tasks may consist of line/path following, manipulating an

object in the environment, or doing a sequence of these tasks.

4. Health Reporting

This level of independence requires that the system be able to perform most of its task

independent of a human operator. This level also requires that a system can monitor its own

health and status and make reports to a human operator. The system makes no determination

of when a problem exists, but simply reports the fuel or battery levels as numbers to the

operators.

5. Problem Detection

For level five independence, a system must be able to determine when it has an issue and

determine the best course of action to correct the issue. The system should be able to

determine when energy levels are low or if a subsystem is not operating correctly. Once it has

determined that something is wrong, it will reject commands from the operator that cannot be

completed due to failing subsystems.

6. Self-Preservation

At the highest level of independence, the system can find resources that it needs to survive, like

power. It must be able to determine dangerous situations or environments and avoid damaging

itself. It must be able to monitor its health and even potentially repair or replace broken

subsystems within itself.

 22

Chapter 3

U2SA Architecture Specification

One of the primary requirements for the U2SA is that it be modular, lightweight, and easily

adaptable for different types of processing hardware, sensor streams, and different navigation and

control algorithms. A system that is aligned with U2SA should also provide the capabilities to operate

anything from the simplest unmanned system to the most complicated unmanned systems. To achieve

these goals, the system needs to be a modular, fully threaded, event driven application.

In order for the U2SA to be truly universal, it must support all of the different type of platforms,

the processors that they might use, and the different programming languages. Therefore, the U2SA

must be programming language independent, platform independent, and processor independent. The

following architecture documentation is written for modern object oriented programming languages

that include, but are not limited to, C++, Java, and Python.

3.1 Architectural Design Pattern

 There are many different system architectural patterns that exist and could utilized to design an

unmanned system. These architecture patterns include, but are not limited to, Event-Driven

Architecture, Blackboard Architecture, Model-View-Controller Architecture, and Service Oriented

Architecture. Each architectural pattern has its advantages and disadvantages, but to meet the

requirements of the U2SA, a Service-Oriented Architecture (SOA) was chosen.

A SOA will allow an aligned system to be modular and easily adaptable. A SOA is a system that is

designed such that a large software project is broken down into smaller pieces that run independently

 23

and operate as services. These services provide one piece of the overall functionality that is necessary

for the larger system to operate.

The benefits of a SOA are numerous. One major benefit of a SOA is that services can be added,

removed, or changed without affecting any of the other services in the system. This allows designers to

break the overall problem of “controlling an unmanned system” into smaller, more manageable

problems that can be addressed by team members in parallel and in any order.

In any engineering paradigm there are standards and best practices that should be followed to

achieve the highest level of functionality while expending minimal resources. In terms of a system

architecture, it should comply with the basic principles of SOA design. While there are no industry wide

standards for SOA designs, there are a handful of researches who have published principles of service

oriented design. One such researcher is Thomas Erl who wrote the SOA: Principles of Service Design

textbook [11]. In his book, Erl proposes eight core principles for service oriented design. These principles

are:

1. Service contract – A service contract is the definition of the functionality that each service

provides and how that functionality is accessed. A service implementation must stick to this

contract exactly or other services that are attempting to use the contacted interfaces will fail.

2. Service Loose Coupling – Coupling is the measure of how strongly one service depends on

another service. Ideally, all services in a SOA can operate without any other services running.

The inputs to activate a service’s functionality can come from anywhere and go to any other

services without inherent knowledge of the other services that exist in the system.

3. Service Abstraction – A service should abstract away any parts of the internal service

functionality that a user does not need access to. Things that are common among all services

 24

within a system should be abstracted to a higher level, like the service contract, to allow for

minimal development time and maximum reuse.

4. Service Reusability – A service that implements any type of useful functionality should be

distributable for other projects to utilize. Reusable services have a well-defined communication

interface that can handle many different types and representations of data.

5. Service Autonomy – Services should be designed with a specific piece of functionality that can

operate on its own without overlapping with other services functionality. A service should be

able to run standalone on a system without any other software running to achieve autonomy.

Even if the service doesn’t produce any output until an input is received, the service can still be

considered autonomous.

6. Service Statelessness – Each service should be designed to operate as a temporary resource

only. When a service’s functionality is initiated by some input, the data from any previous

execution should not alter the way that the service responds to the new data inputs.

7. Service Discoverability – A service should not only be able to find other services operating in the

system, but also what functionality other services offer and how to access that functionality.

8. Service Composability – Services, while autonomous, cannot operate an entire system alone.

Each service is a part of the larger system begin designed and thus, each service should be easily

integrated into the system as a whole.

3.2 Logical Architecture

 The logical architectural view shows what functionality the system should provide. This view will

show a decomposition of the primary objective into the lesser objectives which can be operated and

managed independently. These lesser objectives will form functional services in our system. The services

will be modeled as classes of an Object Oriented Programming (OOP) language in the Unified Modeling

 25

Language (UML). Once the services are defined, common functionality from all services will be

abstracted to a high layer of the architecture.

 The primary problem that is being addressed by the U2SA is that of controlling an unmanned

and autonomous system. A fairly large problem such as this can be decomposed into various smaller

chunks of functionality (services) that can be abstracted away from each other to provide the loosely

coupled, modular design that is desired for the U2SA. The decomposition will result in services that are

independent, simple problems that need to be solved in order for the whole problem to be solved. Thus,

the decomposition begins with the question “what does it take to operate an unmanned system?” To

adequately control an unmanned system, it must be able to sense, plan, and act. However, while these

are a decomposition of the overall problem, they are still large problems to solve themselves.

Consequently, a second level of decomposition must be made. The decomposition is shown below in

Figure 2. The sensing problem can be decomposed into two smaller problems. These are collecting

sensor data and coalescing sensor data. The planning problem can be decomposed into three small

problems which are: goal management, obstacle management, and creating a path through the

obstacles towards the goal. Lastly, the acting problem can be broken down into the problems of

controlling physical behavior, and commanding the actuators to achieve the desired physical behavior.

 26

Unmanned System

Sense

Collect Sensor Data

Coalesce Sensor Data

Plan

Goal Management

Obstacle Management

Path Planning

Act

Control System

Actuator Control

Figure 2: Component Breakdown

 From this, a collection of services can be identified. Breaking down the diagram further, there

are 5 core services that are integral to the operation of the system. These core services can be

implementation independent and created for one application and shared with another. There are also

two services that would need to be implemented independently for each type of device that they are

connecting to. For this reason, they are considered abstract services as the U2SAS will only provide the

basic outline for these services and they must be implemented further for each individual application.

The 5 core services are State Estimator, Mission Management, World Modeling, Path Planning, and the

Control System. The 2 abstract services are Sensor and Actuator. Each of the services that are required

are described below.

In addition to these 7 services, there are certain interfaces that each service must implement.

Each service must be able to communicate with the other services. The ideal way for services to

communicate asynchronously without increasing coupling is a publisher/subscriber framework. For the

 27

logical architecture, the publisher and subscriber interfaces need to be defined; while the other aspects

of inter-process communication will be discussed below in section 3.4 Process Architecture. Pursuant to

user stories 5 and 6, each service must also implement a configuration interface and a logging interface.

The services and interfaces that are defined in the logical architecture are shown below in Figure 3.

Also included in the logical architecture are the data models for the messages that are passed

between the services. To be a complete architecture, the U2SA must define the sets of data that are

communicated in between services through the publisher/subscriber framework. The common features

of a data message will ab abstracted into a U2SA Data class and then each data model will extend and

add fields and functionality to the U2SA Data class.

 28

<<Interface>>

Publisher

-registerPublisher(dataType : U2SAData) : boolean

U2SAService : Thread

<<Interface>>

Subscriber

-registerSubscriber(dataType : U2SAData) : boolean

Sensor

State Estimator

Mission Manager

World Modeling

Path Planner

Control

+isRunning() : boolean
+run() : void
+stop() : void

-callback(data : U2SAData) : boolean

-threadId : int
-running : boolean

+getModuleName() : String

<<Interface>>

Configurator

-getVariable(variableName : String) : primitive

<<Interface>>

Logger

-log(logMessage : String)

-log : File

-properties : HashTable

-unregisterSubscriber(dataType : U2SAData) : boolean

Exteropceptive Sensor

Proprioceptive Sensor

<<Interface>>

Communicator

-beginCommunication() : boolean

-publish(data : U2SAData) : boolean
-unregisterPublisher(dataType : U2SAData) : boolean

Actuator

-setVariable(variableName : String, value :
primitive) : boolean

-sensorName : String

-actuatorName : String

Figure 3: Inheritance Diagram

 29

3.2.1 Service Interfaces

 The service interfaces are designed to meet the standard service contract. The standard service

contract outlines the functionality that every service in the system should implement. Interfaces do not

contain implementations, only definitions of the functionality that needs to be implemented in a service

that claims to implement that interface. All of the interfaces in this section must be implemented in a

service to be U2SA compliant.

3.2.1.1 Configurator

The Configurator interface is the highest level entity in the U2SA. Every class and service in U2SA

implements the Configurator interface. This interface will define the functionality that will allow services

to read variables and parameters from a configuration text or xml file on the system and utilize those

variables during execution. In many languages it is important to distinguish between different types of

variables. A configuration file for the U2SA must not only specify the name and value of a variable, but

also the type of the variable so that the configurator can correctly parse the variable and the services

can identify how to use the variable in their implementation.

Parameters

The configurator itself cannot implement its own functionality, therefore it doesn’t have a

configuration file. Thus, properties that are necessary for configuration must be specified as constants in

the Configurator class.

Definitions

 getVariable(variableName : String) : primitive

This function will allow the classes and services to retrieve a primitive data type from the

configuration hash table. The function will return a primitive value of type integer, double,

 30

Boolean, or String. How the hash table and properties file works will be language dependent,

and thus the type of the return will be implementation specific.

 setVariable(variableName : String, value : primitive) : Boolean

The set variable function is used to update variables in the hash table. After updating the table,

the new values should be written to the configuration file to ensure variable persistence. The

function will return a Boolean value that is true if the table was successfully updated and written

to file and false if an error occurred during this process. If false is returned, the service should

write the error to the log file using the logger interface.

 enumerateFields() : ArrayList<[String, primitive]>

Every service module that implements the configurator must have the ability to broadcast a list

of the internal fields that can be set remotely by another process or service. This will allow a

user to collect the list of configuration variables and view their current values, and make the

best decisions during tuning about which fields to alter.

3.2.1.2 Communicator

The communicator interface will define the data variable and functionality that is required to

communicate with the other services in the system. The communication management system is

described below in section 3.4 Process Architecture. If network ports are used, the communicator

interface will have a socket variable. If shared memory is being used, the communicator should contain

a shared memory reference variable.

Parameters

This interface will implement the configurator interface which will allow the Communicator

interface to get service variables from the service properties file. Any properties that are required for

communicating with the system services can go in the configuration properties file for the service.

 31

Definitions

 beginCommunication() : Boolean

This interface will provide a default implementation of the begin communication function. This

function will set up any class variables that are required for communicating with the system

services. This function will open any ports, or set up memory buffers, etc. that are necessary for

communication

3.2.1.3 Publisher

 The Publisher interface will specify the functionality that is required to broadcast messages to

any other services in the system that are listening for the type of data that the service is transmitting.

Parameters

This interface will implement the configurator interface which will allow the Publisher interface

to get service variables from the service properties file. Any properties that are required for publishing

on the communication channel can go in the configuration properties file.

Definitions

 registerPublisher(dataType : U2SAData.class) : Boolean

Any class implementing the publisher interface will have the register publisher function which

a class will call on itself during instantiation. This function will initiate communication with the

communication manager and register itself as a publisher of the U2SA Data class. This function

will return a Boolean result that is true if the registration was successful or false if the service

was not able to register with the communication manager.

 unregisterPublisher(dataType : U2SAData.class) : Boolean

This function will communicate with the communication manager and remove itself from list

of broadcasters. This function will return a Boolean result that is true if the service successfully

 32

removed itself from the broadcaster list and false if the communication with the

communication manager was unsuccessful.

 publish(data : U2SAData) : Boolean

Published messages that are the U2SA Data type will automatically be passed to services that

are listening for that data type. The return value will be a Boolean value that is true if the

message was successfully published onto the communication channel and false if the

communication channel failed to broadcast the message.

3.2.1.4 Subscriber

The Subscriber interface includes the functionality that is required to receive messages from

other services in the system that are broadcasting the type of data that the service is listening for.

Parameters

This interface will implement the configurator interface which will allow the Subscriber interface

to get service variables from the service properties file. Any properties that are required for subscribing

to the communication channels can go in the configuration properties file.

Definitions

 registerSubscriber(dataType : U2SAData.class) : Boolean

Classes that implement subscriber must have the register subscriber function which a class will

call on itself at the time of instantiation. This function communicates to the communication

manager and registers itself as a listener for the U2SA Data type that is passed to this function.

The return value will be a Boolean result that is true if the registration was successful or false if

the service was not able to register with the communication manager.

 unregisterSubscriber(dataType : U2SAData.class) : Boolean

 33

This function will communicate with the communication manager and remove itself from list of

listeners for the type of U2SA Data that is passed to this function. The return will be a Boolean

result that is true if the service successfully removed itself from the listeners list and false if the

communication with the communication manager was unsuccessful.

3.2.1.5 Logger

The Logger interface provides the default logging functionality that all services require. The

default logging functionality will allow all U2SA services across the system to have a standard logging

format for easy reading and post-mission analysis.

Parameters

This interface will implement the configurator interface which will allow the Logger interface to

get service variables from the service properties file. Any properties that are required for logging

information can go in the configuration properties file. Property variables that should exist in the

properties file should include the highest level of logging to write to file and the path to where the log

file will be written.

Definitions

 log(level : LogLevelEnum, logMessage : String) : void

The log interface provides a function for logging a string message with a certain priority level.

The LogLevelEnum should include the following levels: debug, info, warn, and error. More levels

can be added if necessary. When called, the default implementation should first check to see if

the log file for the service already exists; if not, it should create the file. It should then open the

file, write a time stamp, the log level, and the log message string to the file in a new line. If

memory in the system is not a concern, it should keep the file open for quicker writing, but flush

the file after each call to the log function.

 34

3.2.2 Abstract Services

 The abstract services are classes in the system that do not actually run. They only provide

implementations and datasets that are required by all of the classes in the system that are of that type.

The largest abstract class is the U2SA Service class which implements all of the interfaces listed above

and thus provides the service contract for the U2SA. The other abstract classes, sensor and actuator,

must implement the common functionality for those types of software modules. For example, if all

sensors need to have a unique name, the variable should be defined in the Sensor class and the method

for populating that field should be implemented in the Sensor class. This way, developers of a sensor

service will be able to use the same variable name between services and the implementation is

abstracted from the service developer. The abstract classes that still need to be implemented further

are shown in orange on the above Figure 3.

3.2.2.1 U2SA Service

The U2SA Service class is an abstract class that specifies the service contract that all services in the

system must abide by. By implementing the service contract functions in the U2SA class, all subclasses of

the U2SA will have the same functionality and thus, making changes to the service contract can be made

easily in the U2SA Service class and those changes will be propagated to all of the services in the system.

The U2SA service implements a number of interfaces that are described above. However, there are

a number of additional functions that must be implemented by every service to conform to the service

contract. These functional pieces include:

 Discovery – At instantiation, the U2SA service will subscribe to a communication channel for service

discovery. When a new discover message is received by the service, it should respond to the

discovery request with a discovery response that includes the service name, the service type, and

the service status. This will allow U2SA services to find all the other services in the system and

 35

determine what modules are available. Also, the discovery services could be used as a heartbeat to

determine if services are still alive.

 Functionality Discovery – After a service is aware of other services, it may be necessary to figure out

what functionality that service provides. On the same discovery channel, a service could request a

specific service to enumerate the data channels that it publishes and subscribes to. This would allow

for truly robust data communication. Instead of coupling two independent services by making them

talk only to each other, this would let service A find a service B that publishes the type of data that

service A is looking for without service A needing to know anything about service B.

 Stop – At Instantiation, the U2SA service should subscribe to a communication channel for stop

commands. A stop command will have a flag for specifying all services in the system, or just one

service enumerated by name. If the stop all flag is not set, then the stop command must specify a

service by its name which can be found through the discovery interface. When a stop command is

received the service should stop looping and close all of its resources. This will allow the user to

implement a single publishing service to stop all of the services in the system, or just select services.

 Configuration Enumeration – In order to easily configure a service remotely, each service must

implement a configuration enumeration interface. When the U2SA service is instantiated, it should

subscribe to a configuration enumeration communication channel. A configuration enumeration

request is published to this channel that includes a service name. The service with that name will

respond with the list of all variables in its configurator and their current value. Ideally, this will be

done by a user interface that can then list all of the configuration variables for the user to change

 Configuration Change – After the configuration enumeration, a user may want to change one of the

configuration variables. Therefore, a U2SA service must subscribe to a configuration change

communication channel. A configuration change message must include the name of the service with

the variable that will be changed, the name of the variable, and the new value. When a U2SA service

 36

receives a configuration change message, the variable will be updated in the configurator and saved

to the configuration file to ensure persistence.

Parameters

Any properties that are required for all U2SA Services will go in the configuration properties file.

The only globally required attribute for sensors in the U2SA is the service name.

Inputs

A standard U2SA Service will have a number of different inputs. Those specified in this U2SA

document are: discovery requests, stop commands, configuration enumeration requests, and

configuration change requests.

Outputs

 The outputs from a U2SA service will include: discovery responses that include the service name,

type, and status, and configuration enumeration responses that contain the service variables and their

current values.

3.2.2.2 Sensor

The Sensor services can take one of two forms: a proprioceptive sensor or an exteroceptive

sensor. These two different subclasses of the Sensor class are defined separately below.

Parameters

Any properties that are required for sensing can go in the configuration properties file. The only

globally required attribute for sensors in the U2SA is the sensor name. Since the State Estimator

subscribes to messages by data type, the State Estimator will receive all state information messages

through the same interface. Sensors must include their unique name in the state information message

 37

so that the state estimator can process the data appropriately based on which sensor is the originator of

the message.

Inputs

Sensor objects have an external connection to a sensor through some digital medium like serial,

I2C, SPI, TCP, UDP, etc. The sensor service is responsible for reading the data in from the sensor and

processing the data into a U2SA format that can be transmitted to other services.

Outputs

A Sensor service will output a stream of either State Information data or a stream of object

descriptions depending on which Sensor subclass it extends.

3.2.2.3 Exteroceptive Sensor

An Exteroceptive Sensor service will collect data from the environment and process that data

into zero or more object description messages. An exteroceptive sensor can collect data from a device

like a laser range finder and group data points into object descriptions and send those object

descriptions down the pipe to the World Modeler. Alternatively, the service could collect data from the

sensor and pass each laser data point as a separate object description. The amount of pre-processing

that is done will be implementation specific and is left up to the developers.

Parameters

Any properties that are required for exteroceptive sensing can go in the configuration properties

file. No globally recognized exteroceptive sensor variables are specified in the U2SA.

Inputs

Inputs will be sensor streams through proprietary formats over various types of communication

mediums. The Exteroceptive Sensor service is responsible for defining the variables and making

 38

connections with external devices over TCP, UDP, Serial, or some other digital interface. Once

communication is established, the Exteroceptive Sensor will utilize the channel to collect and process

the data coming from the sensor.

Outputs

Once the Exteroceptive Sensor service has processed the data stream and identified the objects

that need to be mapped, it will output an Object Description messages for each object in the field of

view and the frame of reference that is relevant to the current tasks.

3.2.2.4 Proprioceptive Sensor

A Proprioceptive Sensor service will collect data from the system itself and process that data

into state information messages. A proprioceptive sensor service will collect data from a device like a

GPS or IMU, populate the necessary fields in a state information message, and send the state

information down the pipe to the state estimator for further filtering and analysis.

Parameters

Any properties that are required for proprioceptive sensing can go in the configuration

properties file. No globally recognized proprioceptive sensor variables are specified in the U2SA.

Inputs

Inputs will be sensor streams through proprietary formats over various types of communication

mediums. The Proprioceptive Sensor service is responsible for defining the variables and making

connections with external devices over TCP, UDP, Serial, or some other digital interface. Once

communication is established, the Proprioceptive Sensor will utilize the channel to collect and process

the data coming from the sensor.

 39

Outputs

Outputs will be state information messages. The state information message is defined below in

section 3.2.3 Messaging Data Models. As not all sensors have data for all dimensions of the state

information, only state information fields that are collected by the sensor should be set to values to

conserve bandwidth and make it easier to process at the State Estimator.

3.2.2.5 Actuator

An actuator service will provide an interface to a real-world physical device that can change the

state of the system or the environment. In order to make the U2SA as broadly applicable as possible, the

different types of actuators and the data that is required to command them are not specified in this

architecture. The actuator class must be extended for each type of actuator and interface that the

system uses.

Parameters

Any properties that are required for all types of actuators can go in the configuration properties

file. The only globally required attribute for actuators in the U2SA is the actuator name. Since the

Control System publishes messages by data type, all actuators will receive all actuator commands.

Actuators services should only execute on actuator messages that are specified for them by using their

unique name specified in the configuration file.

Inputs

The inputs for an actuator service will contain actuator commands from the control system. The

Actuator commands will be addressed to a specific actuator using the Actuator name. Each actuator

must check the actuator name field and only process the command if it is addressed to itself.

 40

Outputs

Outputs from this service will be proprietary messages over some digital medium. The outputs

will be dependent on the type of actuator, the manufacturer, and the function and range of the

actuator.

3.2.3 Core Services

 The Core Services are those services that are required on every U2SA system. The core services

are the services that were derived above in the functional breakdown of the unmanned system

problem. They are shown in green in the above Figure 3. These services will be executable threads that

will run in an implementation of the U2SA.

3.2.3.1 State Estimator

The State Estimator accepts state information from the various Proprioceptive Sensor services in

the system. When new data comes in from one of the sensors, the State Estimator will calculate the best

estimate for the state of the system. The state of the system includes the location, rotation, speed, and

acceleration of the system, as well as the speed through the fluid, like airspeed or speed through the

current in water.

Parameters

Any necessary parameters for a state estimation algorithm should be specified through the

configurator interface file.

Inputs

The inputs for the State Estimator come from the Proprioceptive Sensor services in the system.

The messages from the proprioceptive sensors will include some subset of the state information data,

which subset is specified by a presence vector in the data message. The State Estimator will extract the

 41

data from the message for the fields specified by the presence vector and filter the new data with

previous data from the same sensor and data from other sensors to create the best estimate.

Outputs

The output of the State Estimator is the best estimate of the state of the system. After receiving

data from the sensors, the State Estimator will filter the data and combine the data from the different

sensors to create the best estimate and transmit that information over the communication channel so

that other services can receive the current state of the system.

3.2.3.2 Mission Manager

The Mission Manager is responsible for maintaining a list of goals and completion criteria for the

task that the system is assigned to accomplish. Goals can be specified as location/attitude/time

waypoints, sensor objectives, or custom tasks.

Parameters

Any necessary parameters for mission management should be specified through the

configurator interface file. The mission information like waypoints, objects, thresholds, etc. will be

specified in terms of an XML file. The XML entries will have the name of a class of a goal object, like

“Waypoint”. The Goal Object and a couple of basic Goal Object extensions are described below in

section 3.2.3 Messaging Data Models. Inside of the class tag there will be tags for each of the fields that

are necessary to build a Goal Description object of that type. Any additional Goal Description classes

that are made as an extension need to be document such that the Mission Manager can parse the

information and build an object from the XML mission description file. For example, one entry in the

XML file might be a Waypoint. Inside of that Waypoint XML entry will be the Unique Identifier (UID) of

the goal, the reference frame of the waypoint, and at least one of the dimensions that are specified in

the Waypoint class. An example waypoint XML is shown below:

 42

<waypoint>
 <name>1</name>
 <next>2</next>

<reference>Global</reference>
 <x>10</x>
 <y>15</y>
</waypoint>

Inputs

Inputs to the Mission Manager are completion reports for mission goals and mission goal

updates. When a Mission Goal is received by the Mission Manager it will compare the goal to the goals

that already exist in the list of goals. If the goal already exists in the list of goals, the Mission Manager

will update the existing goal with the new information that was received. If the goal did not already exist

in the list, then the Mission Manager will add it to the list of goals and another goal in the system will

have to be updated to point to the new goal. Otherwise, the new goal will only exist in the list and never

be attempted or completed.

Another input to the Mission Manager is command changes. The Mission Manager must be able

to accept commands to change to a new goal even if the Path Planner is not yet finished with the

current goal.

Outputs

The Mission Manager will output a list of all current mission goals. If a location waypoint is being

tracked, then the single waypoint is the current mission goal. However, if there are multiple mission

objectives that the system can choose from, the Mission Manager will send all of the available options

and allow the Path Planner to decide the best route to complete all mission objectives.

3.2.3.3 World Modeler

The World Modeler is responsible for collecting information from exteroceptive sensors and

filtering all of the data. The World Modeler will then aggregate a map of objects in the environment that

 43

have been identified. The U2SA supports simple local maps or complex mapping algorithms that keep all

history of data and calculates probabilistic locations of objects in the environment.

Parameters

Any necessary parameters for an obstacle management algorithm should be specified through

the configurator interface file. A priori obstacle information like boundaries, buildings, roadways, etc.

will be specified in an XML format. The XML format will be much like the format defined for the Mission

Manager above. Each XML entry in the configuration file will have the name of a class of object. The

object entry in the XML will contain a tag for each of the necessary fields for that type of object. The

object description classes are describe below and any additional object descriptions that are made as an

extension of the Object Description class needs to be document such that the World Modeler can parse

the information and build an object from the XML data. For example, one entry in the XML file might be

a point cloud. Inside of that point cloud will be a list of 2 or 3 dimensional points that specify the object.

The XML entry will also contain the UID and the reference frame that the object is specified in. An

example XML entry for a circular object in the environment is shown below:

<Circle>
 <uid>Circle1</uid>

<x>4</x>
 <y>8</y>
</Circle>

Inputs

Sensor streams from all of the exteroceptive sensors will be passed to the World Modeler. Initial

filtering and processing of the sensor data should happen at the sensors’ service and the sensor will pass

object descriptions to the World Modeler. Object descriptions can include, but are not limited to, point

objects, point clouds, shape descriptions, object trajectories, object.

 44

Outputs

The World Modeler will output a list of object descriptions that are relevant to the mission

tasks. To reduce dependency between services, multiple streams can be published if different data is

needed at different times in a mission and listeners of these streams can subscribe and unsubscribe as

needed.

3.2.3.4 Path Planner

The Path Planner is fundamentally a state machine that will change state based on current

mission goals. Each state will represent a different type of mission goal and contain the logic that is

required to complete that task given the filtered sensor data streams. For systems that have subsystems

like arms or other manipulators, the Path Planner must generate navigation points for each of the

subsystems that must move for the current task.

Parameters

Any necessary parameters for an obstacle management algorithm should be specified through

the configurator interface file.

Inputs

The Path Planner will take in filtered state information streams from the state estimator module

and filtered object descriptions from the world modeler. It will also accept mission information streams

from the mission manager.

Outputs

Output streams will be in the form of navigation commands, which are defined below in the

messaging models, in the local frame to the control system module. The Path Planner will also output a

mission information stream that will be used to alert the Mission Manager of completed tasks and goals.

 45

3.2.3.5 Control System

The Control System service will calculate the actuator commands from the drive point generated

by the Path Planner. Ideally, the Control System will discover which actuators exist in the system, the

extents that the actuators can go to, and how those actuators influence the state of the system. While

this could be done with the U2SA, it is also possible to abstract the actuator commands to a 0-100%

range and implement the actuator services to interpret that percentage in the way makes sense for that

actuator such as angle, speed, distance, etc.

Parameters

Any necessary parameters for an obstacle management algorithm should be specified through

the configurator interface file.

Inputs

The control system will accept navigation points in the local frame from the path planner for the

different subsystems of the unmanned system.

Outputs

The output from the control system will be a stream of actuator commands. The actuator

commands will have a range from -100-100% and the name of the actuator that should receive the

command. The output stream will be a software communication bus on which all actuator services will

receive all actuator commands and only parse the commands that are addressed to that actuator

services’ name.

3.2.3 Messaging Data Models

 There are many services in the U2SA that need to communicate with each other. In order to

guarantee communication between two separate modules, both modules must have the same data

model. The data models specified here can be added to or adapted for different applications because

 46

the U2SA does not define a standard communication protocol for all system interoperability. There are

plenty of solutions out there for system interoperability communication protocols like JAUS, STANAG

4586, or MAVLink.

 The messages that are specified in the U2SA data model include the State Information, Goal

Information, Object Description, Navigation Point, and Actuator Command messages. The services that

utilize these messages are shown below in Figure 4 where blue modules represent services and green

modules represent message classes. Each message class must also be serializable so that the message

object can be turned into a byte array and sent over various communication channels. Thus, each

message class must extend the U2SA Data abstract class.

 By making services not dependent on each other, but on the information that is transmitted

between them, a robust and lowly coupled dependency architecture is created within the U2SA. This

data model dependency is ideal because it allows any service module to be easily replaced by a

completely different service that broadcasts the same data model. Developers can then create and use

software in the loop or hardware in the loop simulators much more easily than having a separate full

system implementation for simulation. This type of dependency also allows developers to add new fields

and information to the data flow, or modify existing data models, in a single central location.

 47

Figure 4: Service/Message Dependency Diagram

3.2.3.1 U2SA Data

 This abstract class provides the definition of functionality that all messages in the system must

conform to. Depending on the type of communication channel that is being used in the system, the

U2SA Data class may need to be implemented differently. The data class should provide a function that

will translate the class object into a serial stream of bytes that can be transmitted across the

communication channels. Various headers, pointers, checksums may also be required depending on the

communication channel.

 48

U2SA Data

+serialize() : byte[]
+enumerateFields() : [(name : String, value : primitive)]

+systemID : String
+timestamp : long

Figure 5: U2SA Data Model

Parameters

 There are two globally recognized parameter fields that are specified by the U2SA: the system ID

and the timestamp. The system ID must exist within every message in the U2SA so that messages can be

transmitted to a service outside of the system and maintain interoperability. By utilizing the system ID, a

ground station or another unmanned system could receive any of the systems messages and associate

multiple messages over time.

 U2SA Data must also have a field for the timestamp that indicates when the message was

generated. This timestamp will allow systems to filter messages based on when they were sent or if the

message is stale. The timestamp may also be useful if a system needs to integrate or differentiate over a

time step.

Definitions

 serialize() : byte[]

The serialize function is a function that every message needs to have. Therefore, it is created in

the U2SA Data so that every message has the same implementation of the function. Serialize will

take the message class and create a byte array that contains all of the data that the object

represented. This byte array can then be sent over most digital communication protocols, or

written to memory or hard disk.

 enumerateFields() : (name : String, value : primitive)

 49

The hardest part of two systems communicating is sharing a common data model. With the

enumerate fields function, U2SA data objects will be able to share their data model with other

services and modules in the system. Thus, a user interface or other service could potentially

subscribe to a data set that it knows nothing about, but a user, or an intelligent service, could

parse the data for a field name that describes the type of data that it is looking for. The

enumerate fields function will return an array or list of tuples that contain the string name of

the field, and the current value of the field.

3.2.3.2 State Information

 The State Information object will represent all of the information about the state of the system

in terms of location, attitude, speeds, and accelerations. State Information will also include information

about the fluid that the system is operating in. While fluid information is an environmental

measurement, it affects the state of the system more so than it affects the world model. Thus, the speed

of the fluid, whether it is air, water, or vacuum, is included in the State Information object.

For simplicity, it was important to encapsulate all of the information that the state estimator

would publish into one message. This is the reason that the State Information class has so many fields. It

was designed to support the output of all proprioceptive sensors and the state estimator. Any fields that

are not used should be left as null. The presence vector field is a binary indicator of whether a particular

field is populated. The lowest bit of the presence vector will be 1 if the x field is populated and 0 if it is

not populated. Likewise, each of the fields will have a bit in the presence vector so that services

receiving this message can determine which fields are populated without any foreknowledge of the

service that sent the message. This ensures that the lowest service coupling possible is achieved in

systems that implement the presence vector. Also, a field for the reference frame is necessary for

 50

systems that might have data streams that come in different frames of reference like body fixed,

inertial, earth fixed, etc.

State Information

-x : double
-y : double
-z : double
-xDot : double

-zDot : double
-yDot : double

-xDoubleDot : double

-zDoubleDot : double
-yDoubleDot : double

-xSigma : double
-ySigma : double
-zSigma : double
-xDotSigma : double

-zDotSigma : double
-yDotSigma : double

-xDoubleDotSigma : double

-zDoubleDotSigma : double
-yDoubleDotSigma : double

-phi : double
-theta : double
-psi : double
-phiDot : double
-thetaDot : double
-psiDot : double
-phiDoubleDot : double
-thetaDoubleDot : double
-psiDoubleDot : double
-phiSigma : double
-thetaSigma : double
-psiSigma : double
-phiDotSigma : double
-thetaDotSigma : double
-psiDotSigma : double
-phiDoubleDotSigma : double
-thetaDoubleDotSigma : double
-psiDoubleDotSigma : double

-fluidxDot : double
-fluidyDot : double
-fluidzDot : double
-fluidxDoubleDot : double
-fluidyDoubleDot : double
-fluidzDoubleDot : double
-fluidxDotSigma : double
-fluidyDotSigma : double
-fluidzDotSigma : double
-fluidxDoubleDotSigma : double
-fluidyDoubleDotSigma : double
-fluidzDoubleDotSigma : double

-presenceVector : long-sensorName : String -referenceFrame : String

Figure 6: State Information Data Model

Parameters

 When creating an instance of the State Estimator object, the sensor name and some subset of

the above fields should be specified. The presence vector should be automatically calculated when using

class setter functions.

 In a body fixed reference frame, the +x axis is through the front of the vehicle, the +y axis is

through the left side of the vehicle, and the +z axis is through the bottom of the vehicle. Positive

rotation in phi is roll about the x axis towards the +y axis. Positive rotation in theta is pitch about the y

axis away from the +z axis. Positive rotation in psi is yaw around the z axis in the direction from +x to +y.

 51

 There are many other frames of reference that can be used but must be defined by the

implementations. A geographic reference frame will need to include latitude, longitude, mean sea level

altitude or actual ground level altitude, and magnetic or true heading. To use a Universal Transverse

Mercator (UTM) reference frame, the location dimensions are in meters and the reference frame string

must contain the UTM zone that the system is operating in.

Definitions

 If multiple reference frames are being used in a system, the State Information should also

implement functions to convert between the reference frames. Instead of using an additional class, all

conversion should be done within the State Information class so that developers can simply call a

function on a populated State Information object to get the location in the local frame or get the

location in the earth fixed frame without passing any parameters. This function is not included in the

U2SA definition because it may not be necessary for all unmanned system implementations and it would

be impossible to account for all of the different reference frames.

3.2.3.3 Goal Information

 The Goal Information message is used to convey information about the mission from the

Mission Manager to the Path Planner. Since each mission and task is different, the U2SA can not specify

all of the ways that goal information can be specified. Therefore, the Goal Information message is an

abstract class that must be extended for each goal in the mission. Location waypoints are a common

mission goal and there is a waypoint message specified by the U2SA. However, other tasks, like

interacting with objects in the environment must be specified by a new class extending the Goal

Information object that the developers create for each task.

 52

Goal Information

-complete : Boolean
-uid : String
-nextUids : ArrayList<String>

Figure 7: Goal Information Data Model

 A new subclass of the Goal Information object must add a goal description, and the completion

criteria for that goal. The completion criteria are going to be different for each of the different types of

goals in a mission. For example, the system could be required to get within some distance of an object in

the environment. This type of goal would require a reference to the type of object that the system is

looking for so that the Path Planner can get that information from the World Modeler. It would also

require a distance threshold that could be used to determine if the system is close enough to consider

the goal complete.

Parameters

 Each goal must have a unique identifier (UID) so that the path planner can distinguish between

the different goals. These unique identifiers can be numbers indicating sequential goals, or the UID can

be a string that describes the task, like “Takeoff” or “Pick up object.” Every Goal Information object must

also have a completion flag to indicate whether the task has been completed. If the Mission Goals are

not sequential, or there are multiple options for the next goal in succession, there must be a list of the

UIDs that can come next in the sequence. This will allow the Mission Manager to loop through the list

and determine what the next goals to be published are.

Definitions

 There are no globally recognized functions that are needed for every type of mission Goal

Information object.

 53

3.2.3.4 Waypoint

 The Waypoint messages is the only subclass of the Goal Information message specified in the

U2SA. Waypoints are locations in 3 dimensional space. In order to ensure maximum reusability, this

waypoint includes the 3 dimensional location of the waypoint, the 3 dimensional orientation that the

system should be in when it reaches the waypoint, and the time at which the waypoint should be

reached. A waypoint must also have thresholds for completion. When the system is within the threshold

distance, the Path Planner will consider that waypoint complete and report completion to the Mission

Manager.

Waypoint

-x : double
-y : double

-theta : double
-psi : double

-z : double
-phi : double

-time : long

-horizontal Threshold : double
-vertical Threshold : double

-referenceFrame : String

-presenceVector : int

Figure 8: Waypoint Data Model

Parameters

 At creation of a waypoint object, some subset of the fields x, y, z must be specified, as well as

the horizontal threshold value. The other fields are optional based on an implementations’ system

needs. The presence vector in the Waypoint class is similar to the presence vector in the State

Information class. The location, rotation, and time fields are all optional and thus, must have a bit in the

presence vector to indicate if the optional field is populated.

 54

Definitions

 There are no globally recognized functions that are needed for every type of Waypoint object.

3.2.3.5 Object Description

 An Object Description message contains information about some object or obstacle in the

environment. The object description class is an object message that can be used for single point sensors

like ultrasound or IR sensors. However, it can take two other, more detailed forms of subclasses: a point

cloud, or a shape description. The fields that are required by both point clouds and shape descriptions

are specified here in the Object Description class.

Object Description

-x : double

-z : double
-y : double

-uid : String

-level : String
-type : String

+distanceTo(Point p) : double

+referenceFrame : String

Figure 9: Object Description Data Model

Parameters

 The Object Description object must have at least the unique identifier, the type, and the x, y,

and z fields populated. The type of the object can be an enum type if objects within the environment are

known ahead of time. The type should be used to categorize objects in the environment that the system

needs to react to differently such as a barrel that the system must avoid or a gate that the system must

navigate through. The level field, while not required, is useful for specifying if the object description

should be avoided at all costs, should be avoided if possible, or if the object is just a hindrance that may

need to be calculated for. The level field will be null if not used. The x, y, and z fields are used to specify

 55

the center point of the object. These fields are useful for determining if the object is something that the

system needs to take into account when planning a path or if the object is out of the area of interest and

therefore no more processing of that object information is needed.

Definitions

 Each of the different subclasses of Object Description will describe shapes differently. Therefore,

each sub-class must implement the function that calculates distance from the parameter, type Point, to

the closest point of the object. This will allow the Path Planner to determine if the closest point of the

object is too close to the path for the system to maneuver around.

 Typically, a sensor will report information in the local frame centered at the sensor. If the

systems engineers of a project decide to put the objects into a global reference frame, then the Object

Description message will need to be built in the global reference frame and the message will need to

have a function for converting the global frame into the local frame given the current location of the

vehicle.

3.2.3.6 Point Cloud

 A Point Cloud object extends the Object Description message and adds new fields that are useful

for describing an object through an array of points. Point Clouds are a common data format for

exteroceptive sensors like laser range finders or stereovision cameras. A Point object must be specified

with an azimuth, elevation, and distance to the point.

 56

Figure 10: Point Cloud Data Model

Parameters

 A Point Cloud depends on the Point class which specifies a point in 3D space. The Point Cloud

message must have a list of points that includes at least one point.

Definitions

There are no globally recognized functions that are needed for every type of Point Cloud object

that are not covered in the Object Description super class.

3.2.3.7 Shape Description

 A Shape Description object is the second Object Description subclass. However, it is also an

abstract class that needs to be extended for each shape description that are relevant to the system. The

shape descriptions are useful for saving bandwidth over a point cloud. A shape description will define a

shape like a circle, a rectangle, a cube, etc. that will represent an area in the real world space that the

system must be treated as the object description type.

 Any shape that be described in geometry, can be defined in a shape description message. The

below Shape Description Data Model, in Figure 11, shows some of the shapes that can be made by

extending the Shape Description message. Since there are infinitely more shapes that could be defined

in one, two, or three dimensions with or without a time aspect, the U2SA architecture leaves it up to the

 57

implementation to include and create whatever shapes are necessary to describe objects in the

environment that the system might interact with.

Figure 11: Shape Description Data Model with Example Shapes

Parameters

 A Shape Description object must have a type field that can be a string or an enum that defines

what type of shape it is so that world modelers and path planners can interpret the shape appropriately.

Shape descriptions must also contain a center point to define where the object is in the environment.

The different types of shapes that can be extended will also have various parameters that are required

and must be determined at implementation.

Definitions

 There are no globally recognized functions that are needed for every type of Shape Description

object that are not defined in the Object Description super class.

3.2.3.8 Navigation Point

 A Navigation Point object is a 3 dimensional coordinate in the body fixed reference frame that

specifies where the system should attempt to navigate to over the next time step. The navigation point

will be used for system navigation to move through the environment, but it will also be used for

 58

subsystem movement like manipulators or gimbals. The Navigation Point fundamentally serves as the

error vector that can be used by a control system.

Navigation Point

-point : Point

Point

-x : double

-z : double
-y : double

-referenceFrame : String

Figure 12: Navigation Point Data Model

Parameters

 A Navigation Point must reference a point in the real world body fixed reference frame. The

location in the Point object specifies the next point along the path that the system must navigate to over

the next time step.

Definitions

There are no globally recognized functions that are needed for every type of Navigation Point

object.

3.2.3.9 Actuator Command

 An Actuator Command message is sent by the control system to all of the actuators in the

systems and the actuator that the message is addressed to through the actuator name will respond by

moving or accelerating, depending on the type of actuator, to the percentage specified in the message.

Additional extensions of the Actuator command can be created if necessary, however, it will result in

higher coupling between the Control service and the actuator services.

 59

ActuatorCommand

-actuatorName : String

PercentageCommand

-percentActuation : double

Figure 13: Actuator Command Data Model

Parameters

 An Actuator Command message must specify the name of the actuator that the command is

intended for so that the actuators can parse only the necessary messages. One extension of the

Actuator Command is the Percentage Command that contains the percentage that the actuator should

move to. The percentage can be a speed or a location.

Definitions

There are no globally recognized functions that are needed for every type of Actuator Command

object.

3.3 Implementation Architecture

 The Implementation architecture shows the software organization that should be used in the

implementation of the system architecture. When designing for maximum reusability, the packages of

software must be laid out in logical groupings such that one package could be packed into a library and

shared without significant software rework. The layout of the software implementation architecture is

shown below in Figure 14. The U2SA defines 6 packages for implementation which are the interfaces

package, the abstract package, the core package, the messages package, and the sensors and actuators

package.

 60

Figure 14: U2SA Package Diagram

 Due to the fact that these packages have different implementation independence, the packages

are separated into 4 distinct layers of implementation. The first layer is the most implementation

 61

independent and the fourth layer is the most implementation specific. The four implementation layers

are shown in Figure 15. These layers are arranged in the image below, from top to bottom, in the order

of increasing implementation dependence. Thus, the Interface Layer is the easiest to create once and

distribute for use in many U2SA implementations. Only systems that use the same sensors and actuators

can utilize the same Interaction Layer implementation.

Figure 15: Implementation Layer Diagram

3.3.1 Interface Layer

 The Interface Package is the first layer of implementation and contains all of the classes that

define the service contract. These classes should be the easiest to implement and distribute for use in

many systems. The base classes in the interface package are the configurator and the logger. Also inside

of the interface package is the communication package. The communication package should contain the

communicator, publisher, and subscriber interfaces. This package can be created for different types of

communication protocols and implementations and distributed as a self-contained package for use in

other systems. This level of implementation would ideally be created once and distributed with little to

no changes with future versions of the U2SA.

 62

3.3.2 Abstract Layer

 The Abstract Layer is the next level of implementation. The Abstract Package should contain the

U2SA service class which implements the service contact for use in all of the subclasses that extend the

U2SA class. It should also contain the abstract sensor and actuator classes to be used when creating new

sensor and actuators services. While only some of the message set is abstract, all of the messaging data

models should be included in the Messages Package within the Abstract Layer because the

communication data models are at a higher level of implementation than the core services. This level of

implementation would be created and distributed with only minor modifications to data models in

future versions.

3.3.3 Core Layer

 The Core Layer contains the core services that are required for a U2SA implementation. The

services are the State Estimator, the Mission Manager, the World Modeler, the Path Planner, and the

Control System. Since there are so many different types of algorithms for each of these services, and

they vary widely from a simple system to a complex system, this package will be fairly volatile from one

level of autonomy to another. Each level of perception, intelligence and independence may require a

slightly different implementation of these services which is why they are at level 3 implementation.

However, once an algorithm is implemented using the pre-defined data model of the U2SA, it can easily

be shared and reused across other applications that use the same algorithm.

3.3.4 Interaction Layer

 The Interaction Layer contains the packages for interacting with the environment and they are

the most implementation specific. The Sensor and Actuator packages don’t directly define any classes

because they are completely dependent on implementation. These packages should be filled with

extensions of the sensor and actuator abstract classes. Once a sensor or actuator class is created for a

 63

specific device that interacts with the environment, it can easily be reused by various applications that

require the same interaction device. However, because every unmanned system and every mission

requires different types of interaction devices, the Sensor and Actuator packages, and the Interaction

Layer of software will be significantly different even though some modules may be shared between

implementations.

3.4 Process Architecture

 The Process Architecture shows the different threads of execution of a system and contains

important information about concurrency, reliability, and performance. There are many different ways

that a system can run asynchronously. Concurrency is a field of study all in itself, and is difficult to

express for all current and future systems. For this reason, the Process Architecture must be carefully

designed to allow hard and soft real time systems as well as non-real time systems.

 A Process Architecture should specify the communication channels and the medium of

communication. For maximum reusability, a medium of communication is not defined in the U2SA.

There are numerous different software libraries and message oriented middleware packages that can

provide the communication channels required for system operation. A Message Oriented Middleware

(MOM) is a sound solution to the messaging layer by providing a higher level of abstraction and a higher

level of interoperability than an individual messaging implementation. Some example MOMs that could

be used to support the messaging layer are: IBM MQSeries, RTI Data Distribution Service, PeerLogic

Pipes, Qt pipes, Apache ActiveMQ and the messaging of the Robot Operating System.

 The data model for the U2SA messages is created above in the Logical Architecture, however,

the Process Architecture must also specify the flow of data in the system. The inputs and outputs of the

services are mapped to communication channels and services that subscribe to the same type of data

that is published by another service create a connection. These connections are necessary for the flow

 64

of data, but provide no coupling between specific service implementations which makes the

asynchronous publish/subscribe architectural pattern ideal for the U2SA. The flow of data through the

system from Sensors to Actuators is shown below in Figure 16.

Proprioceptive
Sensor 1

...

State Estimator

Path PlannerMission Manager

Control

Actuator 1 Actuator 2 Actuator n...

Exteroceptive
Sensor 1

...

World Modeler

Exteroceptive
Sensor 2

Exteroceptive
Sensor n

Proprioceptive
Sensor 2

Proprioceptive
Sensor n

Object Description

State Information

Goal Information

Navigation Point

Actuator Command

Legend

Figure 16: Data Flow Diagram

3.5 Deployment Architecture

 The Deployment Architecture shows how the software is packaged for distribution and how the

software executes across a network of processing nodes. Due to the reusability requirement of the

U2SA, the deployment architecture must have little impact on the actual implementation of a U2SA

system.

 65

3.5.1 Packaging

 The packaging of the software defines how it should be used to distribute to other users. One of

the biggest advantages to the U2SA is that services can be reused across multiple applications. Thus, the

packaging of the U2SA software will be broken into three types of distribution packages. Each

distribution package will contain some subset of functionality that is required for the U2SA to operate

and allow for maximum reuse across systems. The three types of distribution packages that will be

discussed here are the Template Distribution Package, the Data Model Distribution Package, and the

Individual Service Distribution Package.

3.5.1.1 Template

 The first level of packaging in the U2SA must be a Template distribution. This distribution

package should be distributed at an organization level such that organizations that are developing

multiple unmanned systems need to implement this functionality only once and continually reuse it

from one project to the next. The templates will provide the structure and the implementation of

universal interfaces that are required for all of the services in a U2SA system. The Template Distribution

Package will allow developers at the service level to design and create services that are compliant with

an organization wide standard without knowing the lower level details of how the communication

channels, logging, or configuration modules actually operate.

 The highest level of implementation abstraction, as shown above in the Implementation

Architecture, are the parts of the U2SA that must be implemented by every service in the system.

However, these interfaces do not provide any useful functionality on their own. In order to encapsulate

a useful template for developers to build on, the Interface Layer and the Abstract Layer outlined in the

Implementation Architecture should be packaged as one distribution package. These packages of

software represent the template that future development should comply with and the templates can

 66

then be updated periodically if necessary and redistributed to the teams developing compliant systems

for integration into service implementations.

 When updating the Template Distribution Package, developers must be aware of the impact

that a redistribution will cause on every project within an organization. By adding a single required

method to the template, every system that updates to the new distribution will immediately break until

the required method is implemented. For this reason, require functionality must be thoroughly defined

before a template is distributed. Updates to the Template Distribution Package should be limited to self-

contained updates that do not need to be implemented in service that complies with the template.

3.5.1.2 Data Model

 The Data Model Distribution Package contains all of the data types that are required for

communication within the systems. This distribution package will contain the U2SA Data abstract class

and the Messages Package described in the Implementation Architecture above.

 Each message that extends the U2SA Data class will have the serialization function built in. Thus,

the communication package in the template distribution package must be designed to accept the

serialized U2SA Data Objects. This will allow any systems carrying the same Data Model Distribution

Package will be able to communicate with each other and interoperate.

 When making changes to the Data Model Distribution Package, it is important for developers to

understand the implications of changes to the data model. To add a field to the data model would not

have an impact on systems designed to a previous version of the data model. However, removing or

renaming a field in the data model would require rework of every service that uses the type of data that

was modified. This kind of change to the data model could cause services to reference a field that no

longer exists and cause a fault. For this reason it is important that services are compiled with the version

 67

of the data model that will exist on the system at run time so that developers can be made aware of

missing fields during compilation.

3.5.1.3 Individual Service

 In unmanned systems development, the algorithms that make up the services of the U2SA

should be where most of the work effort is focused. The backend communication channels and data

management should work seamlessly without developers spending significant time configuring the

system. Due to the fact that the services are the most detailed and time intensive part of development,

the U2SA services are designed for maximum reusability so developers don’t have to recreate an

algorithm for each individual project.

To maximize reusability, every service should be packaged separately. Within an organization

that is developing U2SA compliant systems, an algorithm, like a Kalman Filter, or Dijkstra’s Algorithm,

etc. can be implemented and tested as a standalone service and then shared with other U2SA projects

that share the same Template and Data Model distributions. Services can then be used and reused as a

black box implementation. Ideally, a systems integration developer will never need to be aware of

underlying code in a service. A systems integration developer would select the algorithms that best fit

their application from a library, install the services, and the communication connections should create

themselves and the system should operate in accordance with the algorithms selected without any

detailed knowledge of the service’s underlying software.

One of the biggest advantage of this type of distribution package is that any changes that need

to happen within a service can be made without affecting any other packages of software. As long as the

type of data that is subscribed to and broadcast by a service doesn’t change, then changes to the service

do not affect the other services.

 68

3.5.2 Processing Distribution

 One of the critical user story requirements is that services should be able to execute

independently on a distributed processing system. In the U2SA, the user should not have to configure

any parameters to execute services on separate processors within the same network. Services should be

able to discover each other and publish and subscribe to a message from any host on the network

without knowing the specific IP/port information for the host service that provides the message.

Therefore, a U2SA system must implement the Process Architecture such that the subscribing and

publishing of message across the middleware occurs through some central messaging broker that can

handle publish/subscribe request or handle routing messages across the network.

3.5.3 Process Availability

 While it is not required for every unmanned system to have a Health and Status Monitoring

(HSM) system, it is highly recommended for the U2SA. A truly robust service will never fail. However, it

is unlikely that ever service in a system can be completely robust. Therefore, a health and status

monitoring system should be implemented as part of a system that desires a high level of fault

tolerance.

 To implement a HSM system, the implementation must add an interface that is implemented by

the U2SA service that is responsible for publishing a health status message at some interval. The desired

interval is implementation specific, but the developers should consider how long after a service

becomes inoperable will the system suffer catastrophic failure. In some applications it could take

minutes before either the system, the environment, or personnel are harmed or it may take minutes, or

hours, or it may never cause any harm to itself or others.

 In addition to the HSM interface for each service, a new service needs to be created to subscribe

to every services HSM publications. Depending on the desired behavior, the HSM service can attempt to

 69

restart a service that has failed, it could alert the user that something has failed, or it could execute a

failsafe maneuver to ensure the safety of everyone involved.

 70

Chapter 4

Scenarios and Implementations

The last section of a RUP architecture specification is the scenarios section. A RUP architecture

specification provides a blueprint for the software implementations. The scenarios section should

identify how the blueprint can be applied to the various use cases that the architecture was designed

for. The U2SA was designed to be applicable to every different type of unmanned system across the four

domains of land, sea, air, and underwater. Thus, each domain should present a different scenario that

shows how the domain tasking can be accomplished using the U2SA. Specifically, each scenarios will

trace back to the Robotics Association at Embry-Riddle’s entries into the Association for Unmanned

Vehicle Systems International (AUVSI) Student Competitions. The competitions that will be analyzed

include the Intelligent Ground Vehicle Competition (IGVC), RoboBoat Competition, RoboSub

Competition, and the Student Unmanned Aerial Systems (SUAS) Competition. The Embry-Riddle designs

were analyzed and the scenarios show how the designs could be implemented as a U2SA compliant

system. In addition to the scenarios, this section will present an implementation of the U2SA and

present the results of that system’s operation.

4.1 Intelligent Ground Vehicle Competition

 The Intelligent Ground Vehicle Competition is one of the longest running student unmanned

systems competitions. The competition is designed to have an autonomous ground vehicle navigate

through GPS waypoints while avoiding complex obstacles traps and staying within the bounded area. For

a large part of the course, the area is bounded on either side by white lines painted on the ground that

the vehicles must stay between. Towards the end of the course, the vehicle must say between sets of

 71

red and green flags. The obstacles consist of construction barrels, garbage cans, and construction

sawhorses.

 The U2SA can be applied to a vehicle designed to compete in IGVC. The blueprint laid out by the

U2SA can be applied to an IGVC robot design in 5 vertical layers of implementation. The layers are

sensing, perception, Intelligence, control, and actuation. The general data flow of a UGV designed to

meet the U2SA standard is shown below in Figure 17. The figure shows a standard implementation of a

UGV for IGVC. Dashed lines in the figure indicate potential data flows that could be utilized for more

complex implementations of a UGV for IGVC. The standard and potential data flows are describe below

in the layer descriptions.

GPS/INS

State Estimator

Path PlannerMission Manager

Control

Motor
Interface

Camera

World Modeler

Laser Range
Finder

Magnetometer

Object Description

State Information

Goal Information

Navigation Point

Actuator Command

Legend

Encoders

Figure 17: IGVC Data Flow Diagram

 72

4.1.1 U2SA Implementation

 The U2SA implementation for a UGV can be broken down into 5 layers: sensing, perception,

intelligence, control, and actuation. The sensing layer includes all of the proprioceptive sensors and

exteroceptive sensors. The perception layer includes the State Estimator and any exteroceptive sensor

processing services that are developed beyond the core implementation. Intelligence includes the Path

Planner, the World Modeler, and the Mission Manager. The control layer includes the Control System

services. The actuation layer contains the motor interface service which may, depending on the type of

motors, collect encoder data and transmit the velocity information to the State Estimator.

4.1.1.1 Sensing

The GPS, IMU, and encoders are all types of state sensors. The service implementation for these

sensors would subclass the Proprioceptive Sensor class. The GPS would populate the location, altitude,

speed, and heading portions of the State Information message, as well as the standard deviations for

each field that is available and pass that information on to state estimator service. The IMU would

populate the speed and acceleration fields for the orientation part of the State Information message.

The encoders should populate the X and Y speed fields of the state information message and pass that

on to the State Estimator service.

Additional sensors, such as the LIDAR, RADAR, Cameras, Ultrasonic, or IR Range sensors would

be subclasses of the Exteroceptive Sensor service. Each of these services should also process the

incoming data from the sensors and extract object descriptions and pass the descriptions on to the

world modeler. There may be certain timing requirements for a systems response or scan rate that

might require that an additional processes service be created to collect the data from the Exteroceptive

Sensor service and process it on a separate thread.

 73

The Camera service should identify the white lines painted on the ground and build an object

description. The white lines can be describe in several different ways. The lines could be broken up into

discrete points that capture the outline of the line or they can be described as a geometric line by

specifying two endpoints, or a multi-point line.

4.1.1.2 Perception

The State Estimation algorithm is fairly straight forward for a simple UGV. With a high enough

accuracy of GPS and magnetometer data, the State Estimator should subscribe to the data from the GPS

and the magnetometer and build a new State Information object that contains the position data from

the GPS and the heading data from the magnetometer and publish that new State Information to the

services that subscribe to it. Additional filtering could be done on heading using GPS heading, or on

location using inertial measurement from an IMU or encoders if necessary. However, the sensors on

board the ERAU ground vehicles are typically high enough accuracy that the filtering will make little

difference. A ten centimeter deviation in the GPS position on a one meter wide vehicle is not an extreme

error that always need to be accounted for if the obstacles are spaced widely apart. If additional filtering

is required, the information from the encoders, IMU, and the deviation could be supplied to a wide

variety of filters. Many different state filters could be implemented in the State Estimator like a Kalman

filter, an Alpha-Beta filter, a Bayesian Estimator, and many others.

The World Modeler can take many forms for a UGV. For the most part, Embry-Riddle ground

vehicles do not maintain a persistent map of the environment, but reacts only to the data that the

sensors can collect at any given instant. This can easily be implemented in a World Modeling service.

The World Modeler would have memory stores for objects from the camera and objects from the LIDAR.

Every time a new message comes in from the camera or the LIDAR, the World Modeler would simply

 74

overwrite any previous data in the memory stores and pass on the new information to the Object

Description subscribers.

For a more complex World Modeler that maintains memory of the environment, the camera

and LIDAR services would have to identify the type of object and its location and assign a unique ID to

each object. When the World Modeler gets new information for either sensor, it will need to compare

that object to every other object in the data store to ensure that it is not entering duplicate object into

the world model. In this case, the World Modeler would most likely need to subscribe to the State

Information message so that it can assign a global position to the objects instead of just a local position.

The Object Description message has a reference frame field just for this purpose so that systems can

handle objects from different reference frames correctly.

4.1.1.3 Intelligence

 The intelligence layer contains the Mission Manager and the Path Planner. The Mission Manager

is fairly simple for IGVC because the goals are a simple sequential list of waypoints, and the waypoints

do not update while the system is running. The waypoints will be specified with a threshold distance

that the system must be within to consider the goal completed.

 The Path Planner for an IGVC UGV can take many different forms depending on the strategy of

the system developers. The Path Planner could be a simple reactive algorithm that collects the State

Information from the State Estimator and the Waypoint Goal from the Mission Manager and calculate

the distance and direction for the vehicle to get to the waypoint. Once the distance and direction are

calculated, the vector would be modified to account for the objects that the Mission Manager has

published that stand between the vehicle and the waypoint.

 A more advanced UGV would utilize all map data stored in the World Modeler and create an

optimal path for the vehicle to travel. Interestingly, the same path planning algorithm could be used for

 75

this complex path planner or the simple path planner that only uses visible objects. The difference for

this type of path planning would be in the World Modeler. A Path Planner could be written to plan a

path around all of the objects that it receives from the World Modeler, and thus, to add global path

planning considerations, only the World Modeler would have to be changed.

4.1.1.4 Control

 The Control System is responsible for taking a drive point in space and calculating what the

wheel speeds need to be over the next time step to get the vehicle there. The most common control

algorithm in IGVC UGVs is a PID. The U2SA supports PID implementations as well as many other control

algorithms. For any control system, the service, upon receipt of a new drive point, would calculate the

wheel commands that are required to get the system to that point.

4.1.1.5 Actuation

Outputs for a UGV would be various types of Actuator subclasses. To control something like

wheel speed, an Actuator service subclass would be created for each wheel hardware interface. The

actuator command would be a percentage from -100%-100%. Where -100% is full reverse and 100% is

full forward, and 0 velocity at 0%. The Actuator service subclass would translate that command into the

proprietary format necessary to send to the motor controller.

The actuation layer depends heavily on how the software is connected to the hardware. Each

hardware interface should have its own service. So if each of the two wheels in a differential steered

vehicle has a serial port, then there should be two services: one for left wheel and one for right wheel.

However, if the two wheels in an IGVC UGV are connected on the same communication bus, only one

Actuator service is required. The Actuator service would open up the serial port or other communication

channel, set necessary baud and other parameters, and then when a new wheel command is received,

the service would send it over the hardware communication channel.

 76

 In the Embry-Riddle UGVs, smart motors are typically used which not only accept commands

over serial but also publish encoder readings over the same serial interface. Because only one service

can open the serial port, the actuator service would have to be written such that not only are commands

sent to the motors, but sensor data is collected from the motors. The Actuator service could then

register as a publisher of State Information and send the velocity data to the State Estimator. This shows

one of the benefits of the U2SA very well. If the developers originally write the Actuator service to only

send out commands, it is then quick and easy to modify the service to read the encoder data and publish

the data. Nothing in the State Estimator needs to be changed to accept the new information, it will just

receive the encoder data.

4.1.2 U2SA Advantages

 There are a number of advantages of the U2SA over existing UGV architectures. Specifically,

compared to a platform like the ArduRover, the U2SA allows for a wider range of sensors and easier

substitution of sensors or algorithms. The U2SA also allows a system to operate asynchronously which is

an advantage over a device like the ArduRover. Additionally, the U2SA has an advantage over a JAUS

implementation in that U2SA service are more loosely coupled, allowing for more dynamic system

configurations.

 The ArduRover is compiled specifically for an ArduPilot board with an ATmega2560

microprocessor. The problem with this design is that the ArduRover then depends on the hardware

implementation and is limited to the 8 PWM inputs, 8 PWM outputs, and 14 digital General Purpose

Input/Output (GPIO) [5]. The ArduRover is also limited to simple digital and analog inputs and digital

outputs. These problems do not exist in a U2SA implementation because the U2SA requires a computer

processor with an operating system. The peripherals that can be connected to an embedded computer

are the same as what can be connected to a desktop computer. Therefore, adding a new network or

 77

USB peripheral to a U2SA system is as easy as writing a new service to parse the communication

protocol and publish the data on the MOM, whereas on the ArduRover, network and USB peripherals

are not an option. The U2SA can be implemented on most computer platforms and the choice of

platform is left to the developer depending on what types and how many peripherals the systems needs

to connect to.

 The ArduRover code has highly coupled software modules within their systems. In ArduRover,

due to the constraints imposed by the microprocessor, the software is written as a monolithic

sequential program. Many variables are used globally and can be accessed and modified by any of the

pieces of software within the ArduRover platform. The U2SA handles this problem by breaking

functionality down into independent services that run concurrently. Such concurrency and independent

modules are not possible on an ArduPilot board with the ATmega processor. Due to the level of service

abstraction defined in the U2SA, it is not possible for a piece of software, like one of the sensor services,

to interfere or change the program variables of the Mission Manager. This is an advantage because

services are lowly coupled and are allowed to execute their piece of functionality independently without

interference from other pieces of software.

 Consider the scenario where a UGV developer wants to add a new obstacle sensor to the

platform. In the case of the ArduRover, the new sensor is limited to an ultrasonic range finder without

writing new software and modifying existing software. Connecting the new sensor to the data flow in an

ArduRover is a grueling task that requires detailed knowledge of how the ArduRover works and how the

path planning algorithms work. In the U2SA, this is not the case. To add an ultrasonic range finder to a

U2SA system, a developer will create a new service to read in the data from the sensor, calculate if the

sensor sees an object, and determine how far away the object is from the sensor. The configuration of

the sensor service will contain the configuration of where on the vehicle the sensor is located and the

 78

service can then put the distance measurement into an object description message in the local

reference frame. The service then publishes that message and no new development needs to be done. If

the World Modeler was designed to the U2SA specification, then it will be able to accept the new

stream of object descriptions and include those new objects in the outgoing messages to the Path

Planner. Because the ArduRover software is designed specifically for the hardware and sensors that are

sold with the ArduPilot, the path planning algorithm was designed for the specific inputs from those

sensors. To add a new object sensor, the ArduRover code must be reworked and possibly a whole new

algorithm implemented to allow for new sensor

In JAUS, a component in the system needs to know detailed information about the other

components that are expecting the data from the first component. A component, or service, that

publishes a message must know the network address, port, system ID, node ID, and component ID of

every other component that is requesting the published message. The MOM that is required by the

U2SA will direct and route message traffic as needed and service will not need to maintain information

in memory about the recipients of the messages.

4.2 RoboBoat Competition

 The RoboBoat Competition in 2013 was a complex challenge consisting of many different tasks

and subtasks that needed to be completed. The first mandatory task was to navigate through two sets

of buoys as fast as possible. After the speed challenge, the boat must navigate through 10 to 15 sets of

orange and green buoys. The boat will know that it has reached the end of the buoy channel once it

reaches a large blue buoy. After exiting the buoy channel, the system has the option of choosing to do

any of the optional tasks. The more tasks completed, the higher the system will score in the

competition. One of the tasks is to identify colored rings suspended vertically on the shore. The system

has to shoot a Nerf dart through one of the rings with a specific color that is given to the team at the

 79

beginning of their turn in the water. Another task consists of two buttons suspended above the water.

There is a white buoy submerged next to one of the buttons. The system must press the button that is

closest to the submerged buoy. The third task is identifying a target on the shore that is a few degrees

hotter than the adjacent targets. The system must detect the “hot target” and report the GPS

coordinates of that target to the judges over the provided Wifi network. The most complex task involves

docking the boat at a station, deploying a subvehicle onto the dock, and retrieving a hockey puck from

the deck surface. The sub vehicle must make it back onto the boat before the boat undocks.

The U2SA can be applied to a vehicle designed to compete in the RoboBoat Competition. As

with many robots, the design can be laid out in 5 vertical layers of implementation. The layers are

sensing, perception, Intelligence, control, and actuation. The general data flow of a USV designed to

meet the U2SA standard is shown below in Figure 18. The figure shows a standard implementation of a

USV for the RoboBoat Competition. Dashed lines in the figure indicate potential data flows that could be

utilized for more complex implementations of a UGV for IGVC. The standard and potential data flows are

describe below in the layer descriptions.

 80

GPS/INS

State Estimator

Path PlannerMission Manager

Control

Thruster
Interface

Camera

World Modeler

Magnetometer

Object Description

State Information

Goal Information

Navigation Point

Actuator Command

Legend

Thrust Wind/Current

Figure 18: RoboBoat Data Flow Diagram

4.2.1 U2SA Implementation

4.2.1.1 Sensing

 For each sensor in the system, a new service should be created that connects to the sensor over

its hardware interface and communicates with the sensor to collect the data that is available. For the

GPS and Magnetometer, the same services could be used from IGVC if the sensors are the same and use

the same protocol. Thrust sensors, probably a load cell, would connect to an analog to digital converter

and a Thrust sensor service would read the digital signal and convert that information into an

acceleration that can be passed to the State Estimator. Integration of the velocity data to discern

position should take place in the State Estimator. Wind and current sensor services would collect data

from the sensors over a digital communication line, and fill in the fluid speed fields of the State

 81

Information message. This data would be combined with other velocity data in the State Estimator to

determine the ground speed of the vehicle.

The GPS, IMU, thrust, wind and current sensors are all types of state sensors. The service

implementation for these sensors would subclass the Proprioceptive Sensor class. Most of the sensors

act the same way that they would for a ground vehicle. The differences are the wind and current

sensors. Those sensors would populate the fluid speed fields in the State Information message. The fluid

speed would have to be calculated based on the vehicle’s profile considering sail area above the water,

and the displacement in the water.

 In maritime applications, it is often more important to recognize an object’s color. Thus, one of

the three defined types of Object Description must be extended to create a new object description

message. Since there are so many different colors of buoys in the RoboBoat Competition, it would make

sense to create a new Buoy class that extends shape description, specifies the shape of a sphere, and

adds a field for color. The color should be an enumeration field that allows for orange, green, yellow,

blue, and any other colors that could be buoys. A U2SA RoboBoat would also need to create object

description classes for the hula-hoops on the land, the hot targets on the land, the hockey puck, and the

red buttons on the surface of the water.

4.2.1.2 Perception

 To achieve perception in a RoboBoat system, the Camera service, or an additional image

processing service, must process the images that come in from the camera and detect the different

types objects that object descriptions were created for. Each image must be process for the types of

objects that the system could expect to see and create an object description class that best represents

the object in the environment.

 82

The system may only want to identify certain types of objects during certain phases of the

competition. Thus, the Camera service, or the camera processing service, may want to register to the

Mission Planner’s Goal Information messages so that the image processing can change states and only

look for certain types of objects. Alternatively, a different image processing service could be written for

each type of object that the system is looking for and all of these services could run in parallel on the

most recent image. This would be very processor intensive. So, again, it may be necessary to have the

image processing services subscribe to the goal information messages and only process an image if the

system is in the correct phase of the competition. All of these different solutions are readily supported

by the U2SA and developers have the freedom to create the system that they desire without any undue

complexities imposed by the system architecture.

4.2.1.3 Intelligence

 The intelligence of the RoboBoat resembles a finite state machine. Each phase of the

competition is looking for different objects in the environment. A state diagram is shown below in Figure

19. The diagram shows the different states that the system must operate in and the transitions that

must be made from one state to another. The transition conditions are controlled by the Mission

Manager while the actual evaluation of the conditions and state transitions are handled by the Path

Planner.

The RoboBoat has many decisions to make in a single competition run. The transitions for the

speed gate and the buoy channel are known ahead of time. However, the transition to the different task

states are open ended and can be changed depending on a team’s strategy. A team may only want to do

2 of the 4 tasks and then return to the dock through the buoy channel. Thus, in the state diagram, there

is a diamond that represents the task decisions. After each task, the system should evaluate how close

the other tasks are, how long each task might take, probability of completion, and other factors to

 83

determine which task should be done next or if the system should start the ending sequence by

returning to the dock. If there are multiple tasking options, like in RoboBoat, a U2SA Mission Manager

should publish all currently available Goal Information messages, and the decision of which task to

attempt next should be calculated in the Path Planner. This is because the Path Planner already has

information about the environment map and the state of the system. To calculate the best path

between goals in the Path Planner will reduce coupling of modules by ensuring that the Mission

Manager does not need access to new sets of data.

The transition conditions must be specified in the Goal Information objects. For each task, a

different Goal Information subclass must be made and specified in the Mission Managers mission

configuration file. Multiple conditions may need to be specified. An example Goal Information subclass

would be for the HulaHoop Goal class that require either 6 Nerf bullets are fired, or a timeout of 90

seconds at the station. The HulaHoop Goal class would need a field to store how many shots have been

fired and a field for the timestamp of when the system arrived at the station. This object would be

created by the Mission Manager as it reads the mission configuration file when the system is initialized.

When the Path Planner gets the Goal Information message that contains the HulaHoop Goal class, the

Path Planner will change states to the Hula-Hoop state. In the Hula-Hoop state, the Path Planner will

navigate to the Hula-Hoop station, usually through a GPS waypoint. Once the system has arrived at the

waypoint, the Path Planner will set the timestamp field in the HulaHoop Goal object. Also, any time that

the Path Planner sends a control command to fire the Nerf gun, it should increment the value in the

HulaHoop Goal object. Lastly, while in the Hula-Hoop state, the Path Planner needs to check the time

elapsed and the shot count and if either of those surpass the threshold constants specified in the

HulaHoop Goal class. If either threshold is surpassed, the Path Planner will set the completed field to

true and publish it back to the Mission Manager.

 84

In addition to the normal USV outputs, a RoboBoat competitor would have to also control a sub-

vehicle that could be deployed onto the dock to retrieve the hockey puck. There are a number of ways

that this could be handled by a U2SA application. The sub-vehicle could transmit all of its sensor data

back to the main platform through the middleware, the main platform would process the information as

part of its own service implementations, and then the main platform would transmit actuator

commands back to the platform. This solution may not be reasonable for a time sensitive

implementation like Embry-Riddle’s entry which used a Quadrotor aerial vehicle as the sub-vehicle. In

this case, the quadrotor should have its own implementation of the U2AS services for sensing, planning,

and control. However, the mission manager would reside on the main boat platform and only when the

boat is ready to deploy the sub-vehicle would the mission manager publish the tasking information for

the quadrotor. At which point, the quadrotor would respond by commencing its procedures for

navigating to the dock and retrieving the hockey puck.

 85

Dock Speed
Gate

Buoy
Channel

Hula-
Hoops

Button
Task

Hockey
Puck

Hot Target
Reverse

Buoy
Channel

Dock

Traveled
through

second gate

System within some
distance of the Blue Buoy

Figure 19: RoboBoat State Diagram

4.2.1.4 Control

 The Control System is responsible for taking a drive point in space and calculating what level of

thrust to produce from each motor. Typically a RoboBoat system will utilize a PID controller like in a UGV

to get the system into a certain position over the next time step of execution.

 86

4.2.1.5 Actuation

Actuator services would mostly operate in the same manner described above in the IGVC

input/output section. The difference in the Control service and the Actuator services are that instead of

wheel speed, a surface vehicle would send thrust values to the Actuator which in turn would translate

that into the proprietary message necessary to communicate with the speed controllers.

4.2.2 U2SA Advantages

 The advantages for the U2SA in a maritime environment are numerous when compared to

existing architectures. The ArudPilot system does not currently have a solution for maritime

applications. While the ArduPilot could navigate a boat through a series of waypoints, it does not

support the types of peripheral devices that are required for more complex maritime applications. This

is largely because a maritime application would require camera feeds or high fidelity LIDAR data to

detect obstacles in the water, which the ArduPilot hardware could not process. There is also no

mechanism in the ArduPilot to feed in a series of obstacles from an external source. In the U2SA, any

service can publish Object Description messages to the Path Planner, but in the ArduPilot there is no

public interface to the path planning algorithm to allow external Object Descriptions to be taken into

account.

4.3 RoboSub Competition

 The RoboSub Competition is a fully autonomous underwater unmanned vehicle. The

competition is made slightly more difficult than IGVC and RoboBoat because there is no easy way to

determine a global position underwater through something like GPS. The tasks for RoboSub include

navigating through colored gates underwater, bumping specific color buoys underwater, following visual

cues to navigate in a specific direction, and more. There are also different colored hoops underwater

that the sub must shoot a torpedo through and different bins on the bottom of the pool that the sub

 87

must drop markers into. The sub must be able to determine the correct hoop and bin based on colors

and markings. There are also two rings floating on the surface of the pool. One of the rings has a device

that sends out an audible ping every few seconds. The sub should surface inside of the ring that has the

pinger for extra points.

The U2SA can be applied to a vehicle designed to compete in the RoboSub Competition. The

same five layers of implementation described above for the IGVC and RoboBoat vehicles apply to a

RoboSub vehicle as well. The general data flow of a UUV designed to meet the U2SA standard is shown

below in Figure 20. The figure shows a standard implementation of a UUV for the RoboSub Competition.

DVL

State Estimator

Path PlannerMission Manager

Control

Thruster
Interface

World Modeler

Magnetometer

Object Description

State Information

Goal Information

Navigation Point

Actuator Command

Legend

Pressure ThrustFront Camera Front Camera

Figure 20: RoboSub Data Flow Diagram

 88

4.3.1 U2SA Implementation

4.3.1.1 Sensing

 The IMU, DVL, magnetometer, thrust, wind and current sensors are all types of state sensors.

The service implementation for these sensors would subclass the Proprioceptive Sensor class. The DVL

would provide velocity in three dimensions that would be passed to the state estimator which could

integrate the velocity over time to collect position information. The IMU, magnetometer, thrust, wind

and current sensors would all operate similarly to the above descriptions for IGVC and RoboBoat.

4.3.1.2 Perception

 The perception layer of a RoboSub system is very similar to that of a RoboBoat system. Most of

the tasks involve observing objects and interacting with the environment. Due to the fact that the

RoboSub does not have a simple or cheap solution to localization, like a GPS, most of the localization

and state determination depends on observing the environment. Therefore, the perception layer

focuses heavily on processing the camera feeds and only slightly on the state sensors.

 For each task in the competition, the developers need to build object description classes that

represent all of the relevant information needed to describe the object in the environment. For objects

like the orange and green gates, the developers could use a standard Point Cloud object that contains a

UID that specifies the gate object and a single point in space that specifies the center of the gate. The

processing of the image data to identify the gates can be done in the camera service itself or in an

additional processing service. That is left up to the developer for implementation. Other objects can be

described similarly with just a single point. Object description messages should contain only enough

information for the Path Planner to act on. Extraneous data will only bog down the communication lines

between services and add additional processing to each service that utilizes the information. So if the

 89

image processing service can boil down the object to single point, then it will be easier to develop an

effective World Modeler and Path Planner.

4.3.1.3 Intelligence

 The intelligence layer for a RoboSub system includes the Mission Manager and the Path Planner

services. Once again, the Path Planner is a finite state machine that will change states when different

tasks have been completed. The competition usually flows from one task to the next and it is difficult

for a system to bypass any task because of the pathways laid out on the pool floor. There are two

instances of the sub having a choice of which task to do next. Those are when the sub can choose to

shoot the torpedo or drop the marker, and when the sub can choose to do the pinger task or the

manipulation task. The various task states and their transitions are shown below in Figure 21.

 90

Dock
Orange

Gate
Floor Path

Traveled through
orange gate

Path seen

Control
Panel

Floor Path Underwater
buoy bumped

Green
Gate

Path seen

Floor Path

Traveled through
green gate

Marker
Drop

Torpedo
Shoot

Floor Path

Manipulation
Task

Pinger

Path seen

Path seen

Both tasks
complete

Both tasks
complete

Stop

Right path seen

Left path
seen

Both tasks
complete

Both tasks
complete

Figure 21: RoboSub State Diagram

 A U2SA implementation competing in RoboSub would have to implement this state machine in

the Path Planner and create mission goal classes for each of the different tasks. For example, the goal

class to describe the orange gate task would contain the reference to the type of object that the system

should be looking for, in this case, the UID of the orange gate which could be as simple as “orange gate.”

The orange gate goal object would also have a field to indicate where the system should be relative to

 91

the object. In the case of the orange gate the destination should be a few feet beyond the center of the

gate. This way, when the image processor locates the center of the gate (relative to the center of the

vehicle), passes that to the World Modeler, which in turn passes the center of the gate to the Path

Planner, the Path Planner can calculate a path to get the vehicle from where it is relative to the gate, to

the desired position beyond the gate and transmit a drive point to the control system.

4.3.1.4 Control

 The Control service for a RoboSub is very similar to that described above in the IGVC and

RoboBoat Control sections. Typical control systems for RoboSub entries are PID controllers that

calculate the thrust setting for the motors based on a filtered stream of heading and distance errors.

Any type of modern control system can be implemented in the U2SA provided that the control system

accepts the vehicles location error and puts out a control signal to send to the thrusters.

4.3.1.5 Actuation

 Actuator services would mostly operate in the same manner described above in the RoboBoat

section. Additional outputs for the RoboSub might include mechanisms to launch the torpedoes or drop

the markers. These would be binary controls and operate as a 100% command means launch/drop, and

anything less than 100% means do not launch. The torpedo/marker Actuator sub-classes would translate

the -100%-100% command into whatever hardware command is necessary to perform the operation,

like generating a PWM pulse on a digital pin.

4.3.2 U2SA Advantages

 The U2SA provides a few key advantages for underwater applications. These advantages include

the ability to operate without a state estimator, creating custom goals with custom completion criteria,

and the ability for the World Modeler to change which sets of objects are being broadcast based on the

mission goal.

 92

 The U2SA provides an easy solution for handling systems without a State Estimator. Systems like

ArduPilot utilize GPS waypoints as goals and therefore cannot operate without a State Estimator. In the

U2SA, it is possible to specify a mission goal based on proximity to an object in the local frame. In this

case a State Estimator is not required at all because path planning and navigation calculations occur

based on the objects in the world model.

In a system like the ArduPilot, creating mission goals is a complicated procedure involving a

multistep process that requires modification of multiple software files between the ardupilot source

code and ground station source code. In the U2SA, it is easy to create a new type of Mission Goal object,

specify the goal in the Mission Manager XML file, and write a new state in the Path Planner for handling

that type of object.

Another advantage of the U2SA is that the World Modeler or the Exteroceptive Sensor services

can subscribe to the mission goals from the Mission Manager and change behavior based on the current

task. The World Modeler may only want to publish object descriptions that are relevant to the current

task. Likewise, an image processing service may only want to execute a certain algorithm based on the

current task. An example would be when the RoboSub is performing the buoy task, the image processor

does not need to be searching for the orange gate. The U2SA allows this to occur so that processing load

and the amount of data transferred is limited to only necessary information.

4.4 Student Unmanned Aerial Systems Competition

 The SUAS Competition is the only AUVSI competition where human operators are allowed in the

loop for the competition mission scenario. However, the more hands off the human operators are, the

higher the team scores. The SUAS competition requires a fixed wing or rotorcraft vehicle to take off

autonomously, fly through a series of GPS waypoints, and then search an area for targets laid out on the

ground. The targets are pieces of plywood that have been painted different colors and marked with

 93

different alpha-numeric characters. The system, preferably autonomously, should report the target

locations, the target color, the target orientation, the alpha-numeric character, the alpha-numeric

character’s color, and the target orientation to the judges. The competition also requires that teams be

able to update their flight plan mid-mission and add additional search areas.

 The SUAS competition provides an interesting challenge to the U2SA because the human

operators must be able to interact with the system while it is competing. This means that the system

must add an additional service on the Ground Control Station (GCS) computer. Having a network-ready

message oriented middleware is crucial here or the developers will have to define their own protocols

for communicating with services onboard the aircraft. The data flow for a typical Embry-Riddle SUAS

platform is shown below in Figure 22.

 94

GPS/INS

State Estimator

Path PlannerMission Manager

Control

PWM
Interface

World Modeler

Magnetometer

Object Description

State Information

Goal Information

Navigation Point

Actuator Command

Legend

PressureCamera

Ground Control
Station

Figure 22: SUAS Data Flow Diagram

4.4.1 U2SA Implementation

4.4.1.1 Sensing

 A majority of the sensing layer is made up of state sensors to determine the platforms location,

orientation, altitude, air speed, and ground speed. There are many aspects of the vehicle’s motion that

must be taken into account when flying. Much more so than on the ground or in the water. The GPS/INS

and magnetometer services operate in the same way that they would on a ground vehicle, boat, or

submarine. The pressure sensor may consist of two different pressure readings. One for the airspeed

and one for the barometric pressure. The airspeed pressure reading should go into the State

 95

Information xDot, yDot, and zDot field. This will be important to the State Estimator in the perception

layer.

 The SUAS platforms do have a camera as a sensor, but it does not general contribute to the path

planning or control. The system does not detect obstacles or goals using the camera. The camera is

strictly used for surveillance and intelligence gathering. The only time that the camera will affect a U2SA

system is by possibly adding a waypoint to the Mission Manager where it believes an object of interest is

and determines that a closer look is needed.

4.4.1.2 Perception

 The pressure sensors operate very differently in an aircraft than they do on a ground vehicle or

boat. The system uses differential barometric pressure to determine altitude. This may mean that an

additional data line needs to be made from the GCS to the pressure sensor or the state estimator so that

the GCS can report the barometric pressure at ground level and the aircraft can accurately calculate it’s

altitude above ground. An aircraft will also use pitot static pressure to determine the airspeed of the

vehicle, which in turn will allow the system to calculate the wind speed and direction by comparing the

airspeed to the ground speed provided by the GPS. This information can be calculated in the State

Estimator and passed on to the Path Planner through the fluid speed fields.

4.4.1.3 Intelligence

 The Path Planning and Mission Manager algorithms for the intelligence layer is usually fairly

straight forward for an SUAS platform. The mission goals consist simply of GPS waypoints and there are

no obstacles to avoid in the air, at least not yet in the SUAS Competition. Special types of mission goals

could be defined for takeoff and landing procedures, however in many Embry-Riddle SUAS systems in

the past, the takeoff and landing were just additional waypoints in the flight plan at varying altitudes.

 96

To improve on previous systems, creating a new type of mission goal for search areas would be

highly useful for various UAV missions. The search area mission goal will specify the outline of an area

that the system needs to search for targets. The Path Planner will then communicate with the World

Modeler to determine what areas have been seen, and at what resolution have they been seen. This

would require a new type of Object Description message to be transmitted from the World Modeler that

contains the pertinent information about the image. The Path Planner can then calculate a path around

the search area to ensure the highest quality coverage of the area without the user having to specify

hundreds of waypoint goals in the mission configuration to cover the search area.

In a more complex scenario, where sense and avoid is required, the Exteroceptive Sensor

services would report locations of other aircraft to the World Modeler and keep those locations updated

as new location reports come in from the ADS-B and RADAR systems. The Path Planner would receive

the aircraft locations as a Moving Sphere Object Description message. The sphere will specify the buffer

area that the aircraft needs to maintain between itself and the other aircraft in the air. The Object

description will also have to contain the information about the trajectory of the other aircraft. The Path

Planner then has to calculate a path to the goal while avoiding an interception with the other aircrafts

buffer envelope.

4.4.1.4 Control

 The control for an aircraft tends to be more complex than that for a ground vehicle. Instead of

calculating PID control loops on two wheels or two thrusters, an aircraft has to take into account the

point that it wants to travel to, the altitude, the airspeed, and the ground speed. On the Paparazzi and

ArduPilot autopilots, the control is handled through cascading PID control loops. While the control

system may be more complex than the other domains, the U2SA is still capable of supporting the control

 97

system. The only input to the control is a drive point in front of the vehicle and the only output is the

motor speed and the control surface positions.

4.4.1.5 Actuation

The actuation layer for an SUAS platform is also fairly straight forward like the intelligence layer.

On many aircraft the output signals to servos and to typical electronic speed controllers are a standard

PWM servo pulse. This signal is easy to generate with any microcontroller hardware or even many

embedded computer processors.

4.4.2 U2SA Advantages

 The U2SA provides advantages for many types of UAVs and aerial missions. The advantages

include sense and avoid capability, reusable algorithms between fixed wing and rotorcraft, and

autonomous search and find capabilities.

 The ArduPilot is a very successful hobby platform that can successfully operate a number of

different aircraft from fixed wing to rotorcraft. However, one of the drawbacks for the ArduPilot is that

it currently does not have a method, or hooks for future development of a sense and avoid algorithm.

The ArduPilot source code would need a major overhaul in order to accommodate an avoidance

algorithm and the hardware would need modifications to accept sensor data from a RADAR or ADS-B.

The U2SA already has the hooks for the World Modeler to maintain information about other aircraft in

the environment, and a well written generic avoidance algorithm from another domain could be reused

for planning a path to avoid the other aircraft.

 One of the challenges of aerial vehicles is that fixed wing tend to have different

implementations than rotorcraft, like in the ArduPilot. In the U2SA, all of the core services can stay the

same between rotorcraft and fixed wing vehicles. The only software that needs to change between

different types of aircraft is the kinematics and dynamics of the vehicle in the control system. In some

 98

types of control algorithms, the dynamic and kinematic equations can be abstracted to outside of the

actual Control service.

 Another advantage of the U2SA over other implementations is that for searching algorithms, the

World Modeler can maintain a map of the ground area that has been seen and at what ground

resolution was achieved. If a certain area has not been covered to the highest resolution possible, it may

be advantageous to autonomously add additional waypoints so that high resolution images can be

collected for that area. Through this algorithm, the system could ensure that the entire search area is

seen at some minimum resolution, a feature that does not exist in other implementations like ArduPilot,

Paparazzi, or Piccolo autopilots.

4.5 U2SA FlightGear Implementation

 In the early stages of the U2SA development, the architecture was called ERASMUS. The

ERASMUS architecture was defined and presented at the 2013 AUVSI Unmanned Systems North

America Conference [6]. During the development of ERASMUS and after the paper was presented, the

architecture was implemented as an Oracle Java application to run on an embedded Linux processor,

the ODroid-X. The ERASMUS implementation running on the ODroid communicated with the FlightGear

flight simulator and read and wrote data from the simulator’s network interface. The services in the

system, conforming to the U2SA, then processed the data and passed the information on to the next

service in the chain. The data propagated down the chain until it reached the Control service which then

published the flight commands for aileron, elevator, rudder, and throttle back to the simulator service

for transmission back to FlightGear. With FlightGear running on one computer in the network,

simulating a Cessna 172, and the U2SA implementation running on the ODroid, the U2SA successfully

piloted the Cessna through a series of 10 waypoints, including autonomous takeoff.

 99

 One of the key aspects of the U2SA and ERASMUS was to create a universal architecture that

can run on any operating system from Linux, Windows, Mac, or Android. This is why Java was chosen for

the FlightGear Implementation. The FlightGear implementation was written in Oracle Java with only

basic classes that are included in Java. In Android, the Dalvik compiler can handle most, if not all, of

Oracle’s Java code. Thus, the FlightGear implementation should be able to run on all of the different

platforms that it was designed for.

4.5.1 Interfaces

 The service contract for this implementation included a communication protocol for inter-

service communication and a configuration interface. The logger interface was not added until a later

implementation of the U2SA.

4.5.1.1 Communicator

The communication interface was created in house instead of using a third party middleware.

The communication structure of the system required a central message broker called the

Communication Manager which was a separate service in the system which contained routing tables for

the different types of messages that could be transmitted between services. When a service wanted to

receive State Information messages, they sent a subscribe message to the Communication Manager and

the Communication Manager sent a message to all publishers of that message. When new publishers of

the message are created, they inform the Communication Manager and the Communication Manager

responds with the list of all current subscribers in the system. Although all of the services in this

implementation were meant to be on the same processor, the Communication Manager was designed

to route communication over the network through UDP. Any services that were running on another

machine only needed to know the IP address of the Communication Manager, and they could subscribe

and publish the same way as if they were on the same machine as the other services.

 100

4.5.1.2 Configuration

The Configurator interface was implemented for this version of the U2SA as well. The

Configurator was a HashTable that looked up values based on a string name for the variable. The

configuration file was an XML file that specified a configuration variable as a “variable” tag that

contained attributes for the name, type, and value of the variable. The type was necessary so that the

Configurator could correctly parse the information contained in the value field. An example variable is

the Communication Manager IP address. It had to be a String and therefore could not be parsed the

same way that a number is parsed. The entry in the configuration file is shown here:

<variable name="COMMUNICATION MANAGER IP" type="string" value="localhost"/>

4.5.2 Services

 Each implementation of the U2SA will have different services. The services that are necessary to

interface with the FlightGear simulator and control a Cessna 172 are the following: Simulator, State

Estimator, Mission Manager, Path Planner, and Control services. The data flow of the services is shown

below in Figure 23.

 101

State Estimator

Path PlannerMission Manager

Control
Object Description

State Information

Goal Information

Navigation Point

Actuator Command

Legend

Simulator

Ground Control
Station

Figure 23: FlightGear Implementation Data Flow Diagram

4.5.2.1 Simulator

 The Simulator service was created to communicate with the FlightGear flight simulator over the

TCP/IP network interface through a custom defined protocol in the FlightGear configuration. There were

two custom protocols, which were defined in XML files in the FlightGear installation directory that

specify the output and input protocols. The output protocol for FlightGear includes the latitude,

longitude, altitude, roll, pitch, and heading of the aircraft. The input protocol included the aileron

command, the elevator command, the rudder command, and the throttle command.

 FlightGear was configured to broadcast the data in the output message at 10Hz and the

Simulator service was written to read and parse the data as it was coming in from FlightGear. The

Simulator service then built a State Information message from the data that was included in the

FlightGear output message and set the reference frame to lat/lon coordinates. The Simulator service

then published the State Information message on communication channel zero.

 102

 When the Control service publishes commands for the control surfaces and the throttle, the

Simulator service will take those commands, between -100%-100%, and convert them into the input

message format that FlightGear requires for the command of the controls. The Simulator service will

then send the messages over the TCP/IP connection to FlightGear.

4.5.2.2 State Estimator

 The State Estimator service for the FlightGear implementation is fairly simple. There is only one

source of proprioceptive sensor information, the FlightGear simulator. The accuracy of data received by

the simulator also doesn’t have any deviation or inaccuracy. Therefore, the State Estimator was written

as a pass-through service for the information received by the Simulator service. When a new message

from the Simulator comes in to the State Estimator, the State Estimator checks the presence vector of

the inbound message. Any fields that are populated in the inbound message are copied over to an new

outgoing message. After each field is checked and copied, the State Estimator publishes the new

message.

4.5.2.3 Mission Manager

 The Mission Manager operates in the FlightGear implementation as described above in the

architecture description. The Mission Manager first reads in a list of goals, in this case Waypoints, from

an XML file. This implementation only supported 3 dimensional waypoints with latitude, longitude, and

altitude. So the waypoints in the file looked like the following:

<waypoint>

<y>37.466189</y>

<x>-121.134548</x>

<z>3000</z>

</waypoint>

 103

From these XML descriptions of waypoints, the Mission Manager was able to create a list of

waypoints in memory that represented the 3 dimensional points in space that the system should fly to.

The order in which the Mission Manager executed the waypoints was determined by the order in which

the waypoints were entered into the XML file. In this implementation there was no way to change which

waypoint was currently being tracked. The system would forever loop through the series of waypoints

until either the services stopped or FlightGear stopped.

4.5.2.4 Path Planner

 The Path Planner for the FlightGear implementation took the current waypoint in as a goal, and

the current state of the system. It then calculated the difference between the two points in the x, y, and

z dimensions. It then projected that difference vector onto the two dimensional x-y plane and shortened

it to a unit vector. The z differential was bounded between 1000 feet and 10 feet and scaled so that

±1000 feet or greater was full climb and ±10 feet or less was hold altitude. Everything between 1000 and

10 feet was scaled to the range 0 to 1.

4.5.2.5 Control

 The Control service took in unit vectors from the Path Planner and converted those vectors into

aileron, elevator, rudder, and throttle commands. The control algorithms were proportional controllers

for altitude and for heading. The altitude differential from the Path Planner was mapped directly onto

the elevator command. The desired direction, calculated through the x-y unit vector, was scaled from -

180 through 180 to a range of 0 through one and mapped directly onto the aileron command. The

control algorithms successfully commanded the control surfaces to achieve the desired attitude as long

as the system didn’t go over about 40 degrees of bank.

 104

4.5.3 Lessons Learned

 In this implementation there was one configuration file for every service running on that

machine. This made the configuration file quite long and difficult to read. It was determined through this

testing that a more highly cohesive configurator was needed. In the most recent version of the U2SA

presented in this thesis, the configurator was defined as being specific to each service. In future

implementations of the U2SA, all services will have their own configuration files with only the variables

that are relevant to that service, but all of the services will have the same standard for specifying the

configurations.

The implementation was not a demonstration of advanced control algorithms, but rather that

the U2SA was a capable architecture and could be applied to aerial vehicles. For the purposes of the

demonstration, the Control service with proportional controls were capable of keeping the aircraft in

the air and maneuvering through waypoints. However, for a real application where the aircraft needs to

hit waypoints with high accuracy, the control algorithms need to be heavily modified.

4.6 U2SA Ground Vehicle Implementation

 Shortly after the FlightGear implementation was created, a new implementation was designed

to handle a vehicle in the real world, rather than just a simulator. It was necessary to show that the

U2SA was not only capable of handling vehicle from multiple domains, but also that a large number of

the software services could be reused from one implementation to the next. Therefore, a UGV was

created to run a new implementation of the U2SA.

 For this implementation it was desired to show that the architecture was capable of operating

not just on the Linux ODroid, but also on an Android device. The software for the FlightGear

implementation was written specifically to be used on any device that runs Java. The only new piece

that needed to be written for an Android device is an application wrapper.

 105

 Other than the application wrapper, very little had to be changed from the FlightGear

implementation above. The State Estimator, Mission Manager, and Path Planner all stayed the same

through this new implementation of the U2SA. The developers did not have access to a camera or

LIDAR, so obstacles are not taken into account in this implementation. The flow of data through the

services is shown below in Figure 24.

State Estimator

Path PlannerMission Manager

Control
Object Description

State Information

Goal Information

Navigation Point

Actuator Command

Legend

IOIO Interface

Figure 24: UGV Implementation Data Flow Diagram

4.6.1 Interfaces

 Android only allows one application to run on the processor at a time. Therefore it was

necessary to encapsulate all of the services into one android application. To do this, each of the services

were transformed into Java Thread classes that implement the runnable function. For future

implementations, the U2SA Service super-parent class should extend the Java Thread class to allow for

service encapsulation in other programs.

 106

4.6.1.1 Communicator

 The communication interface that was designed for the FlightGear implementation is easily

reused for the UGV implementation. This shows one of the largest benefits of the U2SA architecture.

The higher level modules are easily reused from application to application without need for

reconfiguration or recoding. The communicator interface is a plug and play solution that can easily be

applied to any system within an organization.

4.6.1.2 Configurator

 The configurator can also be reused from the FlightGear implementation. Although in future

versions of the U2SA, the configurator must be extended so that each service has its own configuration

file as described above.

4.6.1.3 Logger

 The UGV implementation of the U2SA is the first instance of the logging interface. The logger is

set up so that each U2SA service has its own log file. Logs from all of the services are stored in the same

directory and logs all have the same file format. The Logger is created in the constructor of the U2SA

Service class, so each service that subclasses U2SA Service will have the ability to call the log function

anywhere in the code without the added complexity of creating the file, putting data into the right

format, or knowing where the file location is. All of that is handled by the Logger interface which makes

the developer’s job significantly easier.

4.6.2 Services

 The services for the UGV implementation of the U2SA is very similar to that of the FlightGear

implementation described above. The Control service had to be changed because there were fewer

control loops to control a ground vehicle than an air vehicle. The Simulator service also had to be

replaced with a new hardware interface service.

 107

4.6.2.1 IOIO Interface

 The Simulator service from the FlightGear interface was responsible for collecting sensor data

and writing actuator commands. However, none of that interaction was with a real system. For the UGV

run by an Android smartphone, a real hardware interface was needed. To connect to hardware, a IOIO

Bluetooth GPIO board was purchased and connected to the smartphone. The IOIO Interface service is

responsible for connecting to the IOIO board over Bluetooth, reading the sensor data over the serial

ports, and transmitting data to the digital GPIO pins to generate motor commands.

 The Sensors for UGV are a GPS and a Magnetometer that each communicate over a TTL Serial

data line. If the computer actually had multiple serial interfaces, each of these sensors would have their

own service. However, since the IOIO has multiple serial ports, but only connects to the phone over one

Bluetooth channel, the sensor data is streamed into the U2SA implementation through a single IOIO

Interface service. After collecting the information from the IOIO, the IOIO Interface service broadcasts

the State Information message for the State Estimator to receive.

 Additionally, the control outputs need to go to a motor controller through a PWM signal. Again,

the IOIO can be used to generate the two PWM signals for the motor controller. Thus, the IOIO interface

class must also have an outbound connection to the IOIO to send PWM duty cycles to the motor

controller.

4.6.2.2 State Estimator

 The State Estimator from the FlightGear implementation above was designed for reuse in

systems that don’t need to do any filtering on the sensor data coming in. In this implementation, the

State Estimator takes every incoming State Information message and checks the presence vector for the

fields that are populated. The populated fields are copied into a new outgoing message and published

on the communication channel.

 108

4.6.2.3 Path Planner

 The Path Planner service is surprisingly the same exact service implementation as in the above

FlightGear implementation. The unit vector that describes the direction towards the waypoint is more

than sufficient for the Control service to create appropriate motor commands to navigate through

waypoints. The waypoints specified in the Mission Manager either omit the altitude field, or set it as

zero. In either case, the Path Planner calculates an altitude differential of zero and sends that onto the

Control service.

4.6.2.4 Mission Manager

 The Mission Manager is also the same as in the FlightGear implementation because the goals for

an aircraft are the same as the goals for a ground vehicle, just simple waypoints. However, the UGV can

only navigate through 2 dimensional waypoints whereas the aircraft navigates through 3 dimensional

waypoints. Having designed the Mission Manager for parsing 3 dimensional location, 3 dimensional

orientation, and time on target attributes, the Mission Manager as implemented can handle waypoints

for any type of navigation goal in the global or local reference frame.

4.6.2.5 Control

 Aside from the hardware interface, the Control algorithm is the only thing that really changed

from the above implementation. The control loops for a ground vehicle are clearly different from the

control loops for an aircraft, so this service was rewritten completely for this implementation.

 The Control service for the UGV implementation takes the unit vector drive point calculated by

the Path Planner, and calculates wheel commands that will get the vehicle from the current position to

the unit vector position. A proportional controller for each wheel was enough to effectively maneuver

the system through waypoints during the testing of the U2SA implementation.

 109

4.6.3 Hardware

 The UGV Implementation required certain hardware in order to actually navigate through

waypoints. The UGV Implementation leveraged an existing platform developed by the Robotics

Association called Mini-Molle. The Mini-Molle came with a differentially steered chassis with a castor

wheel in the front, a PWM driven motor controller, batteries, and a power distribution system that

delivered 5V for control logic. The brain of the UGV implementation was an HTC Rezound Android

Smartphone. It was programmed using the services and interfaces described above in Android Java.

 The hardware motor controller and the smartphone needed to be connected through an

interface that could communicate with both. The interface that was chosen was an IOIO board as

described above. The IOIO allowed the phone to connect over Bluetooth and transmit PWM commands

through the provided Java library. The IOIO and peripheral interfaces are shown below in Figure 25.

Figure 25: UGV Implementation Hardware

 Originally, the UGV Implementation utilized the GPS and the magnetometer within the phone to

navigate through waypoints. This proved to be very challenging because of the lack of accuracy of the

phone’s sensors. The phone was a couple of years old at the time of implementation, so this lack of

 110

accuracy should not eliminate smartphones from future development options. However, for this

application additional sensors were required and an external GPS sensor and an external magnetometer

were attached to the IOIO on two of the available serial ports. The GPS was a 3D Robotics GPS with a

uBlox LEA6 signal processor. The magnetometer was a Sparton Electronics SP3004D smart compass.

These sensors provided much higher accuracy and allowed the system to smoothly navigate through

waypoints.

 In addition to the IOIO and the additional sensors, the UGV implementation hardware also

included an RC receiver and transmitter so that the user could safely drive the robot around and switch

between autonomous and manual control. To switch between autonomous and manual control the

auxiliary switch on the controller was mapped to a PWM pin on the RC receiver and that pin was

connected to a hardware PWM multiplexor (MUX). The default side of the MUX was for the manual

control and, when the auxiliary switch was flipped, the MUX would switch to pass through the PWM

commands from the IOIO.

 All of the hardware in addition to the software developed under the U2SA successfully operated

the Mini-Molle and continuously navigated it through a series of waypoints through multiple tests.

 111

Chapter 5

U2SA Analysis

 The system architecture presented above in Chapter 3 was designed to meet the developer and

user requirements to make unmanned systems development quicker and more straightforward

approach to the systems engineering process. To ensure that this architecture provides the functionality

that is required by the developers, this chapter will analyze the user story requirements, the domain

specific requirements, as well as an analysis of SOA best practices.

5.1 Requirements Traceability

 The U2SA was designed specifically to meet the requirements presented above in Chapter 2.

Those requirements are the basic purpose of the U2SA; to provide a simple, easy to use and easy to

implement system architecture that will propel unmanned systems development by making it faster to

create and implement and unmanned system design.

 The first user story requires the system to not only be programming language independent, but

it requires that the software modules, or services, could be written in many different programming

languages. The U2SA meets this user story by providing the logical structure of the data communicated

between services in the system without specifying how that data is communicated. The development

team can determine what medium to transmit the data to other software modules based on what

interfaces are supported by the selected programming language. The U2SA would allow for each service

to be written in a different language if so desired by the development team.

 The second user story requires that the system provide a well-defined communication protocol

for the data that is transmitted between the software modules. The U2SA provides data models for each

 112

of the communication channels in the system. The data was abstracted from any single implementation

and accounts for many of the factors that are required in all of the unmanned system domains. It is

important to note that the U2SA does not provide a byte-for-byte protocol definition, merely the data

that needs to be communicated in order to successfully operate an unmanned system. This leaves the

development open to whatever protocol best fits the system application. If the system has limited

bandwidth, the developers can implement a bit stuffed protocol. Alternatively, if the system is not

limited for bandwidth, the developers can utilize built in Object serialization to transmit an entire object

without any need to develop a binary protocol for communication. In either case, the information that is

transmitted are the same in the U2SA.

 The third user story deals with processor dependence of an implemented system. In order to be

truly universal, an unmanned system’s control logic needs to be able to execute on any type of

hardware. It is impossible to produce truly processor independent software, however, processor

independence can be maximized by serving the most common types of processors for the application. In

the case of an unmanned system, common processors include full PC multithreaded processors,

embedded ARM processors, and microcontrollers. The U2SA can run on any processor that is executing

an operating system like Window, Linux, or Mac. The U2SA could also run on a network of

microcontrollers. This provides an advantage to the U2SA over similar applications like the ArduPilot

that are designed for a specific set of hardware and processor.

 Software coupling is a critical aspect of the software design process and is the crux of the fourth

user story. In other similar application described above in the literature review, many of the

architectures had high software coupling by enforcing multiple communication interfaces from a single

software module. The number of inputs and outputs of a software module should be as close to 1 as

possible to maintain low coupling. The U2SA provides service definitions that have few inputs and

 113

outputs. The most highly coupled service in the U2SA is the Path Planner that relies on the current state,

the world model, and the current mission goals and outputs the stream of drive points. The coupling of

the Path Planner is significantly reduced however by providing the filtering of sensor data through the

State Estimator and the World Modeler. All of the other service communicate using only one or two

types of messages, thus providing low coupling throughout the system.

 As future unmanned systems become more complex, it may be necessary, as it already is in

some instances, to distribute the system’s control logic among many processors in a network.

Applications like the ArduPilot are not capable of supporting distributed systems because the monolithic

software architecture is inflexible. JAUS and the U2SA are capable of supporting distributed systems.

The difference between the two is that JAUS requires configuration of the system because each

software module needs to know the address for each of the modules that are requesting data. The U2SA

calls out for a message oriented middleware that works on a topic type so that the software modules do

not require configuration to communicate their data to the other services in the system.

 One of the pitfalls of the other architectures discussed in Chapter 1 is that none of them provide

a logical architecture view that shows the common pieces of a software module. It is widely accepted

that a development team should reduce the amount of software that is duplicated throughout the

system and that is what the sixth user story requires of the U2SA. The services were analyzed for pieces

of functionality that each service needed access to like configuration, logging, and the communication

interfaces. These common pieces were abstracted to the U2SA Service class that each service must

extend in the U2SA. This abstraction provides the service contract that is discussed below. It ensures

that each service in the system does these operations in the exact same way and reduces the amount of

software duplication in the development.

 114

 The seventh user story goes along the same lines as the fourth user story. Coupling should be

kept low throughout the system to ensure ease of implementation and maintenance. The fourth user

story, discussed above, involves the coupling of the individual classes within the software components,

whereas this user story concerns the level of detail that each service must know about the other

services in the system. As discussed throughout this thesis, the U2SA requires a MOM that is capable of

operating on topic types rather than specifically addressing the other modules in the system. The U2SA’s

MOM requirement helps users to abstract the services from each other and ensures that no service

needs to know any specific information about the other services in the system. Meeting this user story

gives the U2SA a big advantage over similar architectures in terms of system complexity and time spent

on configuration.

 The eighth user story requires that a user be able to pick and replace an algorithm without

modifying any of the other services in the system. This requirement depends on the system meeting the

second and seventh user stories above. By defining the data transmitted between services and the

abstract nature of the MOM, a path planning algorithm or world modeling algorithm can be written in a

new service implementation without affecting the old implementation. Thus, by simply stopping the old

service and starting the new service, the system can completely replace an algorithm without ever

interfering with the operation of the system.

One of the biggest drains on design and development of an unmanned system is considering all

of the possible inputs and outputs that are currently needed, or will be needed in the future. Through a

U2SA compliant system, this drain on the development life cycle is eliminated. With a publish/subscribe

framework for message flow, a software module does not need to be aware of the other software

modules in the system and can just wait for new messages to appear. However, to handle new sources

 115

or destinations of messages, a developer must carefully create the state estimator, mapping, and

control algorithms.

 The State Estimator must be designed such that each sensor that publishes State Information

data has some unique ID so that the State Estimator knows where the data is coming from. When a

message comes into the State Estimator from a source that has never published before, the State

Estimator will have to register that sensor and, depending on the state estimation algorithm, it may

have to keep track of data over time from that specific sensor. A state estimation algorithm can use the

data and deviation fields in the State Information message to filter all of the incoming data and combine

the data into a best estimate. A State Estimator algorithm must be carefully designed to

programmatically scale to handle a varying number of sensor input streams.

 Any type of mapping algorithm should be able to handle different types of exteroceptive data

streams. The object description message is a common interface that all sensors will create and transmit.

It is the responsibility of the sensor, or some intermediate service, to decipher the incoming sensor

streams and turn them into object description message. The object description messages will be

interpreted by the mapping algorithm and inserted into a map model according to the mapping

algorithm design. A mapping algorithm may need to keep track of objects over time if the objects are

moving, or are necessary goals to reach. There are two ways that a mapping algorithm could keep track

of objects over time. If the sensors are capable of keeping track of objects from one environment scan

to the next, then the sensor can populate the UID field in the object description message and the

mapping algorithm can associate the new data points to the already existing data points collected for

that UID. Also, the mapping algorithm could keep track of objects over time by using the source of the

object description to associate new messages with old messages from the same sensor and calculate

 116

how much it has moved. This can also be used to supply environment information to a Simultaneous

Localization and Mapping (SLAM) algorithm.

 Control algorithms are more difficult to make universal than the state estimator and the

mapping algorithms. It is necessary for a control algorithm to know about the actuators that exist in the

system and how they influence the system’s movement through the environment. However, it may be

possible with the U2SA that the developer does not need to modify the control algorithm code when a

new actuator is added. When the actuator services are turned on, they could publish a message that the

control system is listening to. This messages would contain the actuators name and how that actuator

affects the state of the system. It may be necessary to include which subsystem, like system state or

manipulator state, the actuator affects in the message if there are numerous subsystems that need to

be controlled. The control algorithm can then utilize the information about how each actuator affects

the state of the system and create a model of the vehicle and create commands to get the system into

the desired state.

5.2 Principles of a SOA

 The principles of a Service Oriented Architecture are described above in Chapter 2. These

principles, proposed by Thomas Erl [11], are the 8 foundational constraints on a SOA design. Each of the

principles should be addressed as part of the SOA design process. The U2SA was designed with each of

the principles in mind and this section will expand on how the U2SA has met the standard for SOAs.

5.2.1 Standardized Service Contracts

As described above in Chapter 2, the standard service contract is an important requirement for

any SOA. Ensuring that each service operates the same way and makes the functionality known is critical

to any system operating with a SOA. This criticality is not different in the U2SA.

 117

The U2SA supplies a well-defined service contract that ensures that each service implements the

same type of configuration, logging, communication, and identification. This architecture creates the

service contract through the super parent of all service classes in the system, the U2SAService class. The

U2SA service class implements each of the interfaces that are necessary to ensure that the system is

easily created and maintained over many years of service in an unmanned system. The U2SAService

class provides the contract that ensures that new services can be added to the system easily and allow

the new services to discover other services and communicate with other services without any need for

extra configuration on the developer’s part.

5.2.2 Service Loose Coupling

Low coupling is a difficult goal to reach in development of an unmanned system. Each service is

highly dependent on the other services higher in the data flow producing their data. If the State

Estimator isn’t running then the state information will never be updated and new commands will never

be propagated to the actuators. However, the dependency can be reduced to the point where a service

does not directly depend on another service, but only that the data exists in the communication

channels. This is what the U2SA does to provide loose service coupling. A service in a U2SA system is

dependent on an event to perform its tasks. The event is triggered by the receipt of a new message. The

loose coupling comes into play here because, in most cases, the service does not care where the data

came from.

5.2.3 Service Abstraction

 Abstraction comes down to the idea that information that is not required, is hidden from the

users. In the case of a service, the information and implementation inside of a service can, and should,

remain hidden from the outside services until a message is created that contains the necessary

information. The U2SA has a high level of service abstraction due to the fact that the information

 118

flowing in and out of services is defined in the data models. The information about how a service

operates internally is not necessary for the outside service. If the World Modeler is an occupancy grid, or

a Bayes tree, or a local reference pass through, the service output is the same. The data may be

different for different algorithms, but the Object Description format is the same and any service on the

network can subscribe to the messages and parse the data without knowing anything about the internal

structure of the service.

5.2.4 Service Reusability

The U2SA provides a seamless way to reuse services across multiple systems. Due to the fact

that the data model presents a standard template for communication, any service can be a drop in

solution. As long as a service is designed to the U2SA, it can be reused across multiple platforms. A

sensor service may be reused on systems that utilize the same sensors; A Path Planner may be reused

between domains with similar navigation requirements, as shown above in the FlightGear and the UGV

implementations of the U2SA.

5.2.5 Service Autonomy

Service autonomy deals with the reliability and predictability of a service to execute on a system

without influence from other pieces of software in the system. Needless to say, a U2SA service does

depend on a runtime environment and some form of multi-threaded operating system. However, the

U2SA still achieves a high level of service autonomy because any services in the system should not

directly affect the operation of other services. Each service is run as its own process within the operating

system and, likely, its own runtime environment. If one service fails, it does not have any adverse effects

on the other services in the system, thus achieving a high level of service autonomy.

 119

5.2.6 Service Statelessness

The principle of service statelessness implies that services must remain stateless as long as

possible and return to a stateless configuration as soon as activity has stopped. Unfortunately, this is

one principle that the U2SA cannot fully meet. The services can maintain session statelessness because

they are designed to be asynchronous and not highly coupled to the other services. However, the

activity of operating an unmanned system is highly dependent on the service logic containing states.

Therefore, the system must maintain some level of context state. An example is that the Path Planner

must be able to process incoming data differently for each of the tasks within a mission, and thus

maintain a context knowledge of the system as a whole. While the U2SA does not meet this principle, it

does not pose a huge setback to the system architecture as a whole.

5.2.7 Service Discoverability

One of the big advantages of the U2SA over other universal architecture definitions is that

service do not need to discover each other. The low service coupling in the U2SA allows services to

operate without knowledge of other services in the system. The MOM handles the communication

channels and the services blindly publish their data onto the MOM. As long as the U2SA required

services are in place, the data will flow without services being aware of the other services in the system.

5.2.8 Service Composability

Service Composability drives the fundamental purpose of the U2SA. Each of the services in the

system can operate on their own, however without an input stream, the service will never execute its

logic. Each service in the flow of data is necessary for the successful operation of the system. Each

service contributes a small piece of functionality, a small calculation that is used to operate a much

larger system as a whole.

 120

5.3 Limitations

The U2SA, while an improvement on existing architectures, may not be ideal in all unmanned

systems development. There are certain limitations that are imposed by the U2SA that developers need

to be aware of. The limitations of the U2SA include the dependence on a multithreaded processor, a

lack of a byte level protocol definition, and shortcomings in the object description classes.

The U2SA is capable of supporting many different computer processor architectures. As long as

there are enough threads in the system to execute each service, the U2SA can run on that processor.

However, this does limit the ability of the U2SA to run on lower level hardware like a microcontroller.

The U2SA could not be implemented on an Arduino board like the ArduPilot. It could be implemented

on a network of Arduinos, one for each service, but not a single Arduino. The U2SA was designed for

future expansion of unmanned systems, and considering the growing complexity of missions and tasks,

the U2SA became a more complex architecture that required multithreaded processing. There are

various advantages to the multithreaded processor like process timing and process encapsulation.

However, there are also disadvantages including higher power consumption, higher thermal output, and

generally a larger footprint. The tradeoff between multithreaded and single-threaded processors was

analyzed for the development of the U2SA and it was determined that the advantages of the SOA and

the MOM were greater than the advantages of executing on a single-threaded processor.

 A system cannot be built and cannot function without a well-defined and robust

communication protocol. If the various pieces of software in the system cannot communicate with each

other, then data will not flow and the system will not perform its tasks. The U2SA provides a data

definition for services and systems within a U2SA implementation, however, it does not provide a byte

level or bit level protocol definition for how that data is transmitted. A byte for byte definition was

intentionally left out of the U2SA for a number of reasons, but developers need to be aware of the

 121

missing protocol as a limitation of the U2SA when selecting an architecture to develop their system. One

of the reasons for not including the binary protocol is that certain applications may require a specific

protocol like JAUS, MAVLink, or STANAG 4586 for reasons beyond the scope of this architecture.

Alternatively, a system may have limited bandwidth and require more compressed bit packing than

some other application. By not providing the binary protocol, the U2SA avoids specifying a compressed

data stream that is unnecessary for a high bandwidth application. It also avoids specifying a data stream

that isn’t compressed enough for a low bandwidth application. The U2SA leaves the binary protocol

selection up to the system developers so that they may make the best decision based on their

application requirements.

 The U2SA was developed as an improvement on the ERASMUS baseline, and therefore, it has

inherited some of the limitations of the ERASMUS architecture. Specifically, the ERASMUS architecture

was originally developed as an autopilot solution for a UAV. In the aerial domain, there are not many

obstacles that a system needs to avoid, and if there are obstacles, the system does not need detailed

information about the object because aircraft should give such large leeway that the shape, color,

texture, etc. of the object isn’t necessary. Thus, the U2SA has expanded the navigation half of the

architecture, but also had to define the objet description and world modeling half of the architecture

from scratch. This presents itself as a limitation of the Object Description classes and its subclasses.

Specifically, the Object Description data model and its subclasses are only a small subset of potential

object descriptions. It is left up to the developers of a U2SA implementation to create the object

description classes that are relevant for the desired application. Additionally, the Object Description

class lacks a method of describing moving objects in a dynamic environment. The development of the

U2SA did not tackle the problem of defining a universal way of describing a moving object or its

projected future motion. This is a limitation of the U2SA and should be addressed by future work in the

area.

 122

Chapter 6

Conclusions

In the unmanned systems industry there has been a consistent lack of a universal architecture

for unmanned systems across many domains. There needs to be a definition of the common features of

the systems among different domains so that developers can cease to re-implement existing code every

time a new system is developed. Such an architectural definition will propel the unmanned systems

industry forward in much the same way that the invention of C programming propelled the

development of software applications forward. By defining the common functionality and abstracting

that functionality to a set of functional libraries will allow developers to focus on the underlying

algorithms of the unmanned system that they are developing.

The U2SA provides the high level architecture for the operation of an unmanned system while

leaving the lower level, implementation specific decisions up to the developers to fit the U2SA to their

application. A SOA was chosen to provide independence in the implementation of new software

modules and algorithms. It provides the method that developers should use to abstract the common

features through a parent class that implements the service contract. The U2SA removes the inter-

service dependency of sharing addressing information by incorporating a publish/subscribe framework

for the MOM. The U2SA defines the data models for communicating between services and the flow of

the data through the system, from sensing to actuation and all of the steps in between.

 This thesis not only defined the U2SA through various architectural representations, but it also

shows how the architecture can be implemented in the 4 different domains: land, sea, air, and

underwater. Some domains like ground vehicles and aerial vehicles may not need to make any

modifications to the U2SA or the data structures presented here. In other domains like surface vehicles

 123

and underwater vehicles, additional development on object description messages may need to be done

in order to meet the mission and application requirements.

This thesis also shows the implementation of the U2SA in 2 different applications. The

FlightGear implementation was developed to show that the U2SA could be utilized to communicate as a

software in the loop simulation with the intent to eventually integrate the U2SA into a real aircraft like

the Embry-Riddle SUAS platform. As future work for the U2SA, a hardware interface service could be

created for the FlightGear implementation and incorporated into an aircraft to demonstrate that no

software within the system needs to be changed except the outermost services. The flow of data and

logic would remain the same in a real application running different sensor and actuator services.

The UGV implementation shows that the U2SA system can be implemented on a real world

system as well. It also showed that the U2SA could be implemented on an Android device. The Android

device connected to the IOIO board over Bluetooth and was able to read sensor data in from the GPS

and magnetometer and output PWM commands to the motor controller to successfully drive the UGV

through a series of waypoints. Due to the limited budget of the implementation, a LIDAR or similar

object detection device was not able to be acquired for this testing. Future work on this system should

involve incorporating object detection and world modeling.

 124

Chapter 7

References

[1] Society of Automotive Engineers, "JAUS Service Interface Definition Language," 2014.

[2] S. Rowe and C. Wagner, "An Introduction to the Joint Architecture for Unmanned Systems (JAUS),"

Ann Arbor, MI.

[3] QGroundControl, "MAVLink Micro Air Vehicle Communication Protocol," [Online]. Available:

http://qgroundcontrol.org/mavlink/start. [Accessed 15 November 2014].

[4] J. S. Albus, "4d/RCS A Reference Model Architecture for Intelligent Unmanned Ground Vehicles,"

Proceedings of SPIE, vol. 4715, 2002.

[5] S. Balakirsky, A framework for planning with incrementally created graphs in attributed problem

spaces., IOS Press, 2003.

[6] 3D Robotics Inc., "APM 2.6," [Online]. Available: http://store.3drobotics.com/products/apm-2-6-

kit-1. [Accessed 15 November 2014].

[7] C. Breingan and P. Currier, "Autopilot Architecture for Advanced Autonomy," in AUVSI Unmanned

Systems North America Conference, Washington, D.C., 2013.

[8] B. T. Clough, "Metrics, Schmetrics! How The Heck Do You Determine A UAV’s," Air Force Research

Laboratory.

 125

[9] H.-M. Huang, K. Pavek, B. Novak, J. Albus and E. Messina, "A Framework For Autonomy Levels For

Unmanned Systems (ALFUS)," in AUVSI Unmanned Systems North America, Baltimore, MD, 2005.

[10] E. Sholes, "Evolution of a UAV Autonomy Classification Taxonomy," Aviation and Missile Research,

Development, and Engineering Center (AMRDEC).

[11] A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz and M. Goodrich, "Common Metrics

for Human-Robot Interaction," Carnegie Mellon University Robotics Institute, 2006.

[12] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord and J. Stafford,

Documenting Software Architecture, Boston, MA: Addison Wesley, 2011.

[13] P. Kruchten, "Architectural Blueprints - The 4+1 View Model of Software Architecture," IEEE

Software, vol. 12, no. 6, pp. 42-50, 1995.

[14] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, Addison Wesley, 2013.

[15] O. Sacks, The Man Who Mistook His Wife For A Hat, Touchstone, 1998.

[16] T. Erl, Principles of Service Design, Boston, Ma: Pearson Education, 2008.

 126

Chapter 8

Appendices

8.1 List of Acronyms

Table of Acronyms

ADS-B Automatic Dependent Surveillance Broadcast

DDS Data Distribution Service

DoD Department of Defense

ERASMUS Embry-Riddle Autopilot Solution for Multiple Unmanned Systems

GCS Ground Control Station

GPIO General Purpose Input/Output

GPS Global Positioning System

HSM Health and Status Monitoring

IGVC Intelligent Ground Vehicle Competition

IMU Inertial Measurement Unit

JAUS Joint Architecture for Unmanned Systems

LIDAR Light Detection and Ranging

MOM Message Oriented Middleware

MUX Multiplexor

OOP Object Oriented Program

PWM Pulse Width Modulation

RADAR Radio Detection and Ranging

RUP Rational Unified Process

SLAM Simultaneous Localization and Mapping

SOA Service Oriented Architecture

SONAR Sound Detection and Ranging

SUAS Student Unmanned Aerial Systems Competition

U2SA Universal Unmanned Systems Architecture

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UID Unique Identifier

UML Unified Modeling Language

USV Unmanned Surface Vehicle

UUV Unmanned Underwater Vehicle

 127

8.2 Standard Specification

8.2.1 Scope
This architecture standard covers the software
components, the communication model, and the
relationships between the software
components.

8.2.2 Terminology
8.2.2.1 Service – A service is a piece of
standalone software that contains a subset of
functionality for the system operation.

8.2.2.2 Message – A message is a data model
that contains fields of data and a set of functions
that can be executed on that data.

8.2.2.3 Class – A class is a software
implementation for a collection of fields and
functions that are associated by virtue of
functionality.

8.2.3 Libraries
8.2.3.1 U2SA Library – The U2SA library contains
the service contract and the templates for all
services in the system. This library is developed
at the organization level and is distributed to all
projects within the organization. The
U2SAService class is defined in this library and
must implement the communication interface,
the logger interface, and the configuration
interface.

The communication interface is responsible for
communication channel creation, subscribing,
publishing, and message receipt. When a new
message is received, it should call the abstract
callback function of the U2SAService class and
pass the new message data as a parameter.

The logger interface is responsible for creating a
log file at service creation and defines a log
function in the U2SAService that writes the
string parameter to the log file with the time
stamp, service name, and thread ID.

The configuration interface is responsible for
reading in a configuration file at the time of
service creation. It also receives updates in the

communicator’s callback function and writes
those updates to the configuration file.

The U2SAService class must contain the
following abstract functions for sub-classes to
implement:

 callback(U2SAData data) : void

 kill() : void

 run() : void

The U2SAService class must contain an
implementation for the following functions for
sub-classes to call upon:

 log(String message) : void

 registerPublisher(String channelName) :
void

 registerSubscriber(String channelName)
: void

 publish(String channelName, U2SAData
data) : void

 getServiceName() : String

 isRunning() : Boolean

 getThreadID() : int

The U2SAService class must contain the
following variables:

 threadID : int

 running : Boolean

8.2.3.2 Data Model Library – The data model
library contains all of the classes that represent
the messages in the U2SA system. Each message
has a set of fields of primitive data types that
create a model for the information that needs to
be conveyed. If a message has optional fields, a
presence vector must exist in the object and the
least significant bit of the presence vector
indicates if the first optional field is populated
and the nth bit of the presence vector indicates if
the nth optional field is populated.

Each message object must implement the
serialize function which converts the data into a
series of bytes for transmission to another
service or system.

 128

The new message class must also have an
implementation for the following functions:

 serialize() : byte[]

8.2.4 Service Implementation
To create a new service to execute within a U2SA
system, a new class must be created that
extends the U2SAService class located in the
U2SA Library. A new service must then
implement the abstract functions of the
U2SAService class described above.

The kill function must be implemented in the
service and must close out any open resources
and set the ‘running’ variable to false.

Software that must run continuously is
implemented in the run function of the new
service. The run function should utilize the
Boolean ‘running’ variable contained in the
U2SAService class to determine if a loop should
continue. Timing of the continuous software
should be handled in the new service
implementation.

Software that only executes as a response to the
receipt of a message is implemented in the
callback function. When the callback function is
called, it should switch based on the type of the
data message. Each of the generic messages
defined in the U2SA that may be received by the
service must be handled in the callback function.
If more detailed messages are created for the
application, they should be handled as a subset
of the superclass that the message is built from.
The callback function should also handle a
default or else case so that if a message is
received that is not handled, it is logged for
debugging purposes.

8.2.5 Message Extension
To create a new message object to add
additional functionality to a U2SA system, the
new message model must extend an existing
message model or the U2SAData class.

To extend an existing message model, the new
message model must add new fields to
distinguish itself from the existing model. When

a service receives the new message model, it
may treat it the same as the parent message
model. This may occur if the service was not
created to handle the new message model. This
inheritance is necessary for backward
compatibility.

Using the parent class’ functions through a super
operator will allow the new message to add onto
the existing functionality and inherit any changes
made to the parent class.

	Development of a System Architecture for Unmanned Systems Across Multiple Domains
	Scholarly Commons Citation

	tmp.1478272666.pdf.YfteW

