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Structural health monitoring (SHM) has become ipéissable for reducing
maintenance costs and increasing the in-servicactgf a structure. The increased use
of lightweight composite materials in aircraft stiwres drastically increased the effects
of fatigue induced damage on their critical strogf@omponents and thus the necessity
to predict the remaining life of those componeb@mage prognosis, one of the least
investigated fields in SHM, uses the current dansgee of the system to forecast its
future performance by estimating the expected lagdnvironments. A successful
damage prediction model requires the integratiorectinologies in areas like
measurements, materials science, mechanics ofialat@nd probability theories, but

most importantly the quantification of uncertaiimyall these areas.
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In this study, Affine Arithmetic is used as a metHor incorporating the
uncertainties due to the material properties ihefatigue life prognosis of composite
plates subjected to cyclic compressive loadingseiibadings are compressive in
nature, the composite plates undergo repeatedihgekhloading of the delaminated
layer which induces mixed modes | and Il statestiefss at the tip of the delamination in
the plates. The Kardomateas model-based predievois used to predict the growth of
the delamination, while the integration of the eféeof the uncertainties for modes | and
Il coefficients in the fatigue life prediction mdds handled using Affine Arithmetic. The
Mode | and Mode Il interlaminar fracture toughnassd fatigue characterization of the
composite plates are first experimentally studeedhtain the material coefficients and
fracture toughness, respectively. Next, these netacoefficients are used in the
Kardomateas law to predict the delamination lengitike composite plates while using
Affine Arithmetic to handle their uncertainties. last, the fatigue characterization of the
composite plates during compressive-buckling logslis experimentally studied, and the
delamination lengths obtained are compared witlptkedicted values to check the

performance of Affine Arithmetic as an uncertaiptgpagation tool.
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Chapter 1

I ntroduction

1.1 Significance

As mankind’s technological imagination has beconwmerof a reality in modern
society, many engineering materials and structsgstems have been progressively
developed and have become increasingly complicatédough these advanced systems
have helped us in shaping our society and haveiggdvmuch convenience, they
occasionally result in unexpected blemishes andecaatastrophic failures. The possible
causes for these failures could vary; however, soiniiee structural failures might be due
to inaccurate design, miscalculated analysis, amdémufacturing mistakes. Also, due to
the repeated use and aging of the materials,gufatirack may initiate and propagate with
time, leading to structural failure in these sysefor some structures that require high
reliability, the severity of the fatigue damage s identified and the remaining useful
life should be accurately predicted for decisiorkimg. Damage prognosis, as investigated
in this paper, is related to forewarning of any esichble structural failures through

embedded sensor systems and data analysis.

The methods in prognosis are usually classified datta-driven, model-based and

hybrid method [1-3]. The data-driven predictionbased on the data collected from



structural health monitoring (SHM). This methodderno work generally for short term
prediction and is usually not reliable for longnteprediction under realistic service
conditions, due to different uncertainties from emi@ properties, manufacturing process,
loading conditions, measurement errors as well @wenical evaluations [4]. It also
requires a costly learning process for every neeratpnal condition. The model-based
method, on the other hand, uses the physics afréadpproach (mathematic model) that
allows accurate and both short and long term ptiedis. However, one of the drawbacks
of this method is the rarity of model based equetitor some of the failure mechanisms.
The hybrid method is an approach combining thegenethods and is relatively new in
the prognosis fields. The general components @maag)e prognosis process are shown in
Figure 1.1. Because of the importance of uncestaintany prediction method, the
prognosis methods explained above can really noisbd for serious and accurate health
monitoring without coupling them to a tool that Wiropagate the uncertainty of the

parameters these methods are based on into thietpresl computed.
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1.2 Sourcesof Uncertainty
Damage prediction in engineering structures inwlveree different types of

uncertainty — physical variability, data uncertgiabd model uncertainty — as discussed in

[5].

Physical variability: The external loading state on aircraft structtmenponents
under service conditions depends on multiple factguch as air flow, friction, air pressure
and the weights of the different components. Theabdity of those factors are the reason

for the stochastic nature of the loading stateaimage prediction.

Also material properties are affected by many fectsuch as manufacturing
process, sample composition, micro-structure, matxecture and the errors in
measurements. The material mechanics parametdrsasutacture toughness, threshold
stress intensity factor, and the material Pari©ogad coefficients are all dependent of the

factors cited above and should be treated as randoiables.

Data uncertainty: The uncertainty in crack inspection data, inahgdicrack
detection and measurement uncertainty due to #hefuson-destructive evaluation (NDE)
techniques, usually has a large impact on damaaggiqpion. The probability distributions
or range of values of some material propertieatained from experiments and may be
sparse or noisy. The loading data gathered mighy seame measurement errors due to

the environmental conditions they have been medsare



Model uncertainty and errors: Different physics based models exist to predict
specific damage characterization in more or lessrate ways. The errors induced by
these different models, as well as the uncertamtiie choice of the right method for a
specific damage state of loading conditions, shduddconsidered. These errors and
uncertainties, whether deterministic or stochasticur at different stages of the
prediction and may be combined in a linear, nomlingerative or nested manner. In the
case of the Kardomateas law studied in this woddehuncertainty usually comes from
the uncertainty in the law coefficients suchCGasCy, m, mi, Kic, Kiie. The uncertainty
of those parameters can be represented throughpitwdiability distribution or their

range of values.



Chapter 2

Review of the Relevant Literature and M ethodology

Model-based prognosis for crack growth has bedneadgtinvestigated, as well as
different ways of handling uncertainty, since tlygics models for fatigue crack growth
have been relatively well established comparedherdailure mechanisms. Kulkarni and
Achenbach [6] presented a methodology to predictrmarack-initiation, using a
probabilistic method and the data from a pre-crd@iage monitoring system. Orchard
and Vachtsevanos [7] suggested an online partittlerimg algorithm to handle the
uncertain parameters for the crack growth of an @0H-otor gearbox. Leerd al. [8]
studied the prognosis of crack damage under variabiplitude loading, using Huang’s
crack growth model and a particle filter algorithior the estimation of uncertain
parameters. Crossal. [9] proposed prognosis based on Bayesian theoithé equivalent
initial flaw size and crack growth. Ling and Mahade [10] presented a Bayesian
Methodology to integrate the model-based prognosisg the Paris Erdogan law with
online and offline SHM data in which the uncertgidue to loading conditions is handled
by a Bayesian autoregressive integrated movingagee(ARIMA) model. Worden and
Manson studied the damage prognosis in an isotropterial using the Paris Erdogan law
as the crack growth model [11]. They also studiredamage prognosis in a composite
material using the Kardomateas delamination lay. [h2both studies, Interval Arithmetic

is used to handle the uncertainty due to the mbdséd parameters. These results were



compared to a case where a Monte Carlo analysisused to handle those parameters

uncertainty.

This work, will examine the fatigue damage progsaasi rectangular composite
plates with an initial delamination, subjected t&le compression loading. First, the
Kardomateas law is used as a damage growth mod¢hamlamage conditions it describes
is explained. Then a general overview of AffinetAmetic as well as its integration into
the Kardomateas Law is explained. Affine Arithmesicised to derive some mathematical
equations that integrate the uncertainty of the ehpdrameters in the Kardomateas law.
The resulting equations can directly help to coraghe lifetime range of the specimen,
given the upper and lower values of the uncertaraqmeters. The Kardomateas law is built
around different parameters characterizing, the dognd Mode Il interlaminar fracture
and fatigue. For that reason, the next part of wosk is built around the experimental
characterization of Mode | and Mode Il interlamirfeacture and fatigue of composite
plates in order to determine the Kardomateas lararpaters as a range of values. The
characterization of the mixed Modes | and Il delzaion growth in composite plates
under cyclic compression is then experimentallyn@rad. The delamination lengths are
obtained using Thermal Imaging on the compositdepldo accurately observe the
delaminated layers. Affine Arithmetic is then usdgth the Kardomateas law to predict the
delamination length in the same composite plate=d ua the experiments and the

prediction is compared to the experimental results.



Chapter 3
Interval Arithmetic and Affine Arithmetic M ethod

In this chapter the usual method for computatioth witerval or range of values
(Interval Arithmetic) is described and its mainwhbeacks discussed. The concept of
Affine Arithmetic is then described as well as tezivations of Affine Arithmetic for the

prognosis field.

3.1 Interval Arithmetic and Affine Arithmetic Concepts
The basic concepts and derivations of Affine Arigtimused in this section are

derived and well explained in [13].

Most of the uncertainty propagation tools are basgethe use of the probability
distributions of the uncertain parameters rathantineir range values. One of the main
drawback in the use of interval methods in numédaoantification, and more precisely
in uncertainty quantification, is that the ranggneation with standard Interval
Arithmetic (IA) is usually too large, especially@mplex expressions or iterative
computations. The inherent assumption of IA, naptéigt all the uncertain parameters
vary independently over their given range, is uguait true when dealing with
uncertainty. That is, there are usually mathemhtetationships between some or all of
the uncertain parameters. For that reason, thevaiteomputed by interval arithmetic
may be much wider than the exact range of the ctedpguantity. This problem is

known as the “dependency problem”.



Affine Arithmetic (AA) is a self-validated numericeomputation method that
aims to solve the dependency problem in intervalmatations. AA keeps track of first-
order correlations between uncertain parametergrenflinction computed. These
correlations are automatically exploited in anyragiens of AA that leads to the
computation of much better interval estimationstttee ones with Interval Arithmetic.
Also, AA implicitly provides a geometric represetida for the joint range of related

guantities that can be exploited to increase thei@ficy of the interval method.

3.1.1 TheDependency Problem in Standard Interval Arithmetic
In Interval Arithmetic, quantities are represenbgdntervals and basic operations
and functions are extended to operate on interiralBA, a quantity xe R is represented
by an interval »€ [a,b], such that < x < b. Basic arithmetic operations can be

extended to intervals:

[a,b] +[c,d] = [a+c,b + d] (3.1)

[a,b] - [c,d] = [a—d,b — c] (3.2)
[a, b] X [c,d] = min(ac, ad, bc, bd), max(ac, ad, bc, bd)] (3.3)
[a,b] I [c,d] = [a,b] x [1/d,1/c] (withc,d # 0) (3.4)

It should be added that the lower bounds are raidde/nwards and the upper bounds
upwards. With the interval formulas for the bagierations and functions, any complex
operation or function can be computed by combitingge basic operations.

Overestimation happens frequently when a funcfi@ontains repeated variables in its
9



formulation because the basic operations of IA gi@bove assume that all the variables
are independent. When the variables have some depeies between them, not all of
the combinations of values given by IA will be vhlThe computed interval by IA will
usually be smaller than the exact interval. Thisatelency problem gets worse with
more complex functions. A simple but extreme exangsllA computation happens
when we consider the functigifx) = x — x. The exact value of that function{id}.

However, using IA operations formula for subtractgives:

Assumingx € [a,b] , x —x = [a,b] — [a,b]

= [a—b,b — a]

+ 0

We see that the diameter of the computed intesvilice the diameter g, b], instead

of being zero. An example that shows the usualestenation of IA is:

f(x) =20 —-x)(20 + x),withx € [-3,3]

Using IA addition formula we have:

(20 — x) = [17,23]

(20 + x) = [17,23]

(20 — x)(20 + x) = [289, 529]

10



The exact interval of being[391, 400] with a diameter of 9 whereas the IA computed
interval diameter is 240, we can see the difficoltyA in dealing with repeating

variables.

When we rewritex) = (20 — x)(20 + x) = 400 — x? , using |A gives :

x> =xx*x=[-9,9]

—x?2 =[-9,9]

400 — x2 = [391,409]

The new computed interval now has-nhow a diamet&Bafthich is far better than 240.

We see then the effect of repeating variables eraticuracy of IA.

3.1.2 Affine Arithmetic Concepts
While Interval Arithmetic represents quantitiestwiitervals, in Affine

Arithmetic a quantityr is represented by its affine form:

X =x9+x18 + %28, + -+ x,8, (3.5)

which is a function of the noise symbajsand the floating-points coefficients. Each
noise symbok; is a real parameter whose value is restrictad td—1, +1] and is
independent from the other noise parameters. Tagiriig-point coefficienk, is called
the central value of the affine forfn The other floating-points coefficiemts..., x,, are
called the partial deviations linked to the noisegmeters,,..., &,. The number of noise

parameters depends on the affine form. In faceddfit affine forms (representing
11



different quantities) can use a different numbena@te symbols, while some affine
forms may share some noise parameters with otfieedbrms. Depending also on the
accuracy of the quantity expressed by AA or its plaxity, the same quantity can be
expressed with just one noise symbol (simplest één) or with many more. Moreover
affine forms provide the quantity expressed alsmierval bounds: A quantity
expressed by Eq. (2.1) will have an interval bound [x, — 1y, xo + 72 ], with

e = |x1| + -+ + |xy|, also called the total deviation ®f Conversely, ifc € [a, b], then

x can be expressed with its simplest affine form:

X =x9+ x5 (3.6)
xo=bB+a)/2andx; = (b—a)/2 (3.7)
b=(xy+ x1)/2 anda = (xq — x1)/2 (3.8)

Egs. (3.5), (3.6), (3.7) and (3.8) show that AA,qaot only input or output quantities as
interval bounds but also can be used for diffelevels of accuracy and complexity. But
most importantly, as we shall see presently, afionms give additional information that

can be exploited to further bound the joint ranfguantities.

3.1.3 Affine Arithmetic with Dependent (Uncertain) Quantities
The key property of AA for uncertainty computatigrthat two or more affine
forms can share noise symbols. A noise synapad shared when it appears with non-
zero coefficient in all affine forms in considerati When this happens, the quantity

defined by those affine forms are not completetependent: they have a partial

12



dependency for each noise symbol shared by theiedbrms. This dependency can be

measured by the corresponding partial deviations.

For example, let’s consider two quantitieandy defined by the affine forms:
X =x9+x1& + X8, + -+ x5,
J=Yo+yi1& +y26+ -+ Ynén

Anytime x; andy; are both non-zero, the valuesxoandy are partially dependent. Even
though the affine forms above imply thaandy have aifferent interval bond of values,
x € [xo— Ty, xo + 1] andy € [y, — 1, ¥ + 73], the partial dependency implied by the
shared noise symbols implies that the joint rangé Zandy is not simply the rectangle

R = [xg — 1, %o + 1] X [¥o — 13, %0 + 1] In fact the joint range is
Z={(x,y): & €U,i=1,..n}.

In other words, Z is the image of the hypercteunder the affine transformation

R™ - R?, given by :

xo) (x1 xn) r
+ (&1, &)

<yo Vi o Vn (B En)

Therefore, Z is a Zonetope (convex polygon) thaeistrally symmetric with respect to

the point &, , y,), the image of the origin (0,...@R™". In general, the joint range of

affine forms is a zonotope R™, that is, a centrally symmetric convex polytopeRit.
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This geometric information provided by AA has imriegd applications in geometric
modeling. LetC be a parametric curve given py I, where T is a subinterval of I. By
representing € T as an affine form and computidfgt) = (x(¢),y(t)) fort € T with
AA, we obtain, as explained above, a zonotope Zdbatains P. To get a simpler
enclosure for P, we compute the rectangle of mihwidth that contains Z. If we do this
for a covering of the domain I, we get a coverih@ dy rectangles (see Figure 3.1).
When these coverings are organized hierarchioakyget a multi resolution
representation that can be used to solve sevevatgfeic problems on C efficiently. In
Figure 3.2 the rectangle approximation of a ciwi Affine Arithmetic and Interval
Arithmetic with the same tolerance are compared.

a |
—\\II L__“} :\\J k____}

- \-__ - \'\:__ .

Figure 3.1. Approximation of a Parametric Curvelvitectangles Using AA [13].
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Figure 3.2. Comparison of Rectangle Approximatiba €ircle Computed with Interval

Arithmetic (left) and with Affine Arithmetic (rightUsing the Same Tolerance [13].

3.1.4 Computing with Affine Arithmetic
As with IA, computations in Affine Arithmetic areedormed by first extending
basic operations (addition, subtraction) and fumgito affine forms and then combining
these operations to compute complex operationgmmtibns. It is necessary to note that

Affine Arithmetic’s basic operations are only adiit and subtraction.
Given two quantities andy defined by the affine forms:
X =xg+x18 +x28 + -+ xp8,
V=Yotyi&1 + Y28+ + Ynén.
and three real numbessf and p we have

af + By +u = (axo + Byo + W) + (ax; + By )e + -+ (ax, + Byn)en  (3.9)
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Extending non-affine operations (operations othantaddition/subtraction) requires the
use of a good approximation and an extra term tmtahe error of the chosen

approximation.

Suppose we have to compute a non-affine operafibmoovariablesy = f(x,y). Given
x andy defined by Eq. 3.5, we want to compute and affionen w consistent wittx and
¥y and that preserves the information provided byntlhe much as possible. First, we

write w as a function of the noise symbolskiandy:

w = f*(&, ..., &) (3.10)

with f*: U™ = R. In generalf™ is not an affine function of;, ..., &,. So, we

approximatef* overU™ by an affine functiorf ¢ with error bounds:

lf*(eq, e €n) — f2(&q, o, €0) | <6 foralley,...,e, € U

With f%(eq, ..., &,) = Wo + W& + Wy + -+ + wy g, , We obtain finallw = f(x,y)

expressed in it affine form:

w = Wo + W1&1 + Wy &y + -+ Wnén + Wk €k

with w, = § andg, is a new noise symbol. The real challenge of Afoifind an affine

approximationf that is easy to compute but which has a smalf étro

It should be noted that the introduction of therter, ¢, to represent the non-affine part

of f*(¢q, ..., &,) implies a loss of information. From this point ¢ime noise symbad,
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will be implicitly assumed to be independentgf..., &,, when in fact it is a non-affine

function of them.

For simplicity, the formulas above, for both affimed non-affine operations, do not take
into account rounding errors. In practice, thouglinding errors are handled by adding a
new noise symbol or by absorbing them into the @ygpration error termw, ¢, in the

case of non-affine operations. More details aremiv [14].

3.1.5 Sdection of a Good Affine Approximation
As said above, to compute with Affine Arithmetice wiust find a good affine
approximationf for each primitive non-affine operatign When we writef* as a

function of the noise symbols in the input forghandy,

fa(gl, ...,gn) =Wy + W1 &1 + Wy &y + -+ Wnén,

we see that there are n+1 degrees of freedoméartthice off ¢, corresponding to the
choices olw,, ... ,w,. For simplicity we usually consider only approxiinas /¢ that

are themselves affine combination of the input ffnandy:

fe=az+B9+p (3.11)

This simplification reduces the number of paranseterdetermine from n+1 to just three.
For univariate functiong(x), the restriction is in fact harmless because #s &ffine
approximationf® is indeed of the formX + p. In any case, the error term for the

restricted approximation is still quadratic on #iee of the input ranges.
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There are two basics approaches to finding a giotapproximation to a non- affine

univariate function: minimize the error or minimittee range.

To minimize the error, we select the affine appnmadion that has the smallest
possible error over the given input interval. Taine approximation is then the best
approximation in the Chebyshev (minimax) senses @pproximation is optimal in the
sense that it minimize the measure of the polyttgfaed by the affine forms andy
andw. In other words it preserves the maximum inforora@boutt, y and w. However,

the best approximation does not necessarily havsrtiallest range fov alone.

At the end, the choice of which affine approximatio use depends on the application

and on the function to approximate.

One important primitive operation that is not dthg@vailable in affine basic operations
and that needs to be approximated is multiplicatitere we consider division as a

multiplication(x/y = x X 1/y).

Given two affine forms

X =xg+x16 +x28 + -+ xp8,

Y =yo+ Y18 + Y262 + o+ Y.

their product is

18



n n
xy= (xo + z xigi) : <3’o + z yigi)
i=1 i=1
n n n
= XpYo t+ Z(xo)’i + Yox;) & + Z Xi € Z Vi€i
i=1 i=1 i=1

We can then write the following rule for the affifeem of multiplication:

(xoyi + Yoxi) & + Wieg,
1

XY= xoyo t+

n
L=

where

lwi | = ) &€ U,

n n
§ Xi& . Z Yi&i
i=1 i=1

is an upper bound for the approximation error,efsiie. The simplest bound is

n n
Wy = leil -Z|J’i|.
i=1 i=1

(3.12)

which is at most four times the error of the béBha approximation, but is very easily

computed.

3.1.6 Affine Arithmetic with the Dependency Problem

Let’s return to the examples in Section 3.1.1 tecghhow Affine Arithmetic

works on the dependency problem.
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fx)=x—x

Using the affine form ok in Eq. 3.5,

X =x9+x16 + X8, + -+ xp8,

fX)=x—x
= (xg + X161 + X365 + -+ x,6,) — (X9 + X181 + X238 + -+ xX,6p)

=0,

which gives the exact result fx). With AA, the substraction formula actually
recognizes that in this case the operands arellyctioj@ same quantity because they share
the same noise symbols with the same coefficiamd:at just two quantities that happen

to have the same range of possible values.

f(x) = (20 —-x)(20 + x),withx € [-3,3]

First writing x in the simplest AA form as in Eq. (3.6),

f=x0+x1€1, &1 eU

with xo = (=3 +3)/2 =0 andx; = (-3 — (3))/2 = -3

5C\'=0_381

(20 —x) =20+ 3¢

(20 + x) =20 — 3¢

(20 — x)(20 + x) = 400 — 9¢,
20



Using Egs. (3.7) and (3.8) to transform the affioren into an interval range of values

F(x) € [391,409]

So AA gives a diameter of 18 while previously |IAvgaa diameter of 240.

These simple examples show that AA can easily cegld even when no attempt was
made to exploit the additional information on joiahges provided by using more noise

symbols for the affine form of.

3.2 Affine Arithmeticin Prognosis Field

We have seen in the previous section that Affinghfretic can be a great tool
for uncertainty propagation. The addition and saditon operations are simple to use for
guantities in their affine form and there is nodhéar approximations. Also in their affine
forms it is simple to keep track of the dependdmetyveen the uncertain parameters,
which is one of the main requirements for the posimfield. However, the necessity to
look for affine approximation functions when muligation or division operations are
needed or when complex combinations between thertaie parameters are required for
the computation of uncertainty makes Affine Arithtraaifficult for numerical
computations-but and also not competitive againsetainty propagation methods like

the Monte Carlo analysis.

In this work an experimentation is done, with defiént methodology for Affine

Arithmetic, specifically for the prognosis field tmt only avoid the need of approximate
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affine functions in the case of multiplication (dion) operations but also to challenge

propagation methods like the Monte Carlo analysis.

3.21 Affine Arithmetic Applied to Paris Erdogan L aw

The Paris Erdogan Law equation for constant ang#ifoading is:

da _ cakym 3.13
dn - ( . )
with
_ a
AK =Y(a)AoVma and a = > (3.14)

The parameter€; andm, depend on the microstructure of the material,taedefore

they can vary depending on the position in the ispet and the specimen samples
chosenC andm can be seen then as the uncertain parametersig'sPaw. The effects

of the variation for these uncertain parameterthercrack length and thus the lifetime of
the specimen are the driving force of this sectidre paramete¥ (a) depends on the
geometry of the structure, and its value for thedeént assumptions below, can be found

in [15].
Replacing Eq. (3.14) into (3.13) gives:

da . m

- = c(Y(a@)AovVma) (3.15)
All the parameters are assumed to be known by thege. Assuming that C and m are

independent (no noise symbol shared in their AAresgion), we have:
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a=la,ay] =a; +aye (3.16)
C=[C,Cyl=Ci+ Crey (3.17)
m = [m;, my] = my + mye, (3.18)
We know that increases with time. So its noise symlachlso increases with time.

Note that from now on, for any variabtehat has a dependency relationship with a; if
is increasing whea increases, its noise symbol will be replacedHeyand by— &

otherwise. For any functiofi(x), the derivative of with respect withe will be called

fx-

Plugging Egs. (3.16) to (3.17) into Eq. (3.15):

da (my+mye;)
— = (€1 + Ge) (Y@Boynlar +a0)) (3.19)

Let's call

A(e) = Y(a)Aoym(a, + aye) (3.20)

Assumption 1: Y(a) = 1 (For an infinite plate or if the crack is very dhtmmpared to

the plate’s width)

yields
—  A(e) = Aom(a; + aye) (3.21)

yields 0.5ma,Aoc
— Ay = —"-—2>0,becausea, =0

vr(a, + aye)
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It means that A increases fare [—1,1] :

Ay = A1)
= Aoy/m(a; + ay)
Ay = AoJrayY(ay) (3.22)
and
A, = A(-1)
= Ao/m(a; — a,)
A; = Aoma;Y(a;) (3.23)

and we can then writé into its affine form :
A(S) = A1 + Azg

AU+AL AU_AL

« Assumption 2: Y(a) = 1 + 0.256a + 1.152a? + 12.20a3
In this case

a; + ae a, + aye\?
A(e) = Aovr(ay + aye) l1 +0.128 (%) +0.288 (1W_2)

a, + ae\3
+1.525 (T) (3.24)

It can be shown that A monotonically increasesfof-1,1] and thus :
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a; +a a; + az\? a; + az\?
Ay = Aoyr(a, + ay) <1 + 0.128( L — 2) + 0.288( L ” 2) +1.525 ( ! — 2) )
T (1 +0.128 (a—”) +0.288 (a—")z +1.525 (a—”)g)
U . w . W . w
Ay = AomayY(ay) (3.25)

and

Ay = Aoyn(a; — ap) (1 +0.128(2 V—Vaz) +0.288 (2= az)2 +1.525 (2 a2)3)

w
_ a ap\? 525 ap\3
= Ao /ma, (1 +0.128 (W) +0.288 (W) +1.52 (W) )
A, = Ao /ma;Y(a;) (3.26)
Then we can writed(e) = A; + A,¢

Ay+Ar
2

Ay—AL
2

With A, = and4, =

Assumption 3: Y(a) = +/sec(ma) = /sec (n %) (For a center-cracked tension

specimen)

In this case:

A(e) = AoJm(a, + aye ’sec (n%) (3.27)

It can be shown that A monotonically increasesfgr1,1]
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Ay = AQD)

2w

= Ao m(a; + az)\/sec (n ¥ az)

= AG\/FuU sec (n ;—:})

Ay = Ao /ayY(ay)
and

A, = A(-1)

= Aoym(a; — az)Jsec (n alz;az)
= Ao,/ma; |sec (n;—‘:)
A, = Ao /ma;Y(a;)

Then we can writee) = A; + A€,

Ay+Ag
2

Ay—AL

W|th A1 = >

andA4, =

Assumption 4: Y(a) =

1
Ji-ea? Jl_(z)z
In this case:

A(S) — Ao Jr(ai+aze)

e

26
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It can be shown that A monotonically increasesfof-1,1]

Ay = A(l)
_ Ao- \/T[(al + az) 2
a, +a,
\/1 - ( w )
1
= Ao,/may =
ay
1= (W)
Ay = AomayY(ay) (3.31)
and
AL = A(_l)

A, = Ao /ma;Y(a;) (3.32)
Then then we can writet(e) = A; + A,¢

Ay+Ag Ay—A4Ag

2

with 4, = and4, =

We can conclude that for any assumption, A can tiigew as:
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A(E) = Al + Azg

Ay+Ag
2

Ay—AL
2

with 4; = and

andA4, =

Ay = Ao/tayY(ay)
A; = Ao mta;Y(a;)

Rewriting Eq. (3.19) gives:

da
In (C1 + Co1)(Ay + Age)matmaca)

Using

fe &) = (A; + Ape)Mmatmzez)
let’s find the maximum and minimum value 6f

fe, =M, In(4; + A,&3) f (e, &)

A,
fe=(my + mzfz)mf(& &)

m, 20, A= A; + Aze = 1andf (g, &;) > 0 which yieldsf,, = 0
my; + mye, = 0,4, = 0 andf (g, &) > 0 which yieldsf, > 0

f is then increasing with respectd¢@nd with respect te,
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fu=rf11)

= (Al + AZ)(ml"'mz)
fu=A4,""

and

fL = f(—l,l)

= (A; — A)ma=m2)
fL= A,
Then we can writef (¢) = f; + fo¢

Wlth f1 — fU;'fL andfz — fU;fL

Then,
da
= (C1 + Coe)(f1 + fr€)
yields
— (@)q = (C; + Cre))(f1 + fre)dn + (a) 1
yields
—(a; +az&3 )y = (C; + Cre))(fy + fre)dn + (a; + aze )4
Let’s call

g(&,&1) = (C; + Coe)(fy + fre)dn + (ag + aze )p—q
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Let’s find the maximum and minimum values(efe,) :

ge, = C(f1 + fr€)dn

ge = f2(C1 + Coe1)dn + (az )ny
C; 20 ,dn > 0 and(f; + f,¢) > 0 which yieldsg, =0
fo =0 ,(az )n_1 =0, dn > 0 and(C; + C,&;) > 0 which yieldsg, = 0
g is then increasing monotonically with respect &nd with respect te,

Jdu = 9(1,1)

=G+ C)(fi + f2)dn+ (a; + az )n—g
gu = Cyfydn + (ay )n-1 (3.42)
and

gL =9(-1,-1)

= (G —C)(fi— f2)dn+ (a1 — a3 )ns
gL =Cfrdn+ (ag)ny (3.43)
Then we can writefe) = g, + g,¢ , withg; = =——=
Since (aq + ay&3 ), = g(g, &), we have then:

(ay)n = Cyfydn + (ay In-1 (3.44)

(ap)n = Crfrdn+ (a; )1 (3.45)
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Using Egs. (3.33), (3.34), (3.37) and (3.38) ingsH3.44) and (3.45) we then obtain two

iterative formula for the range 6#),, as accurate as the real solution of the PE equatio

(ay)n = Cy[Aoy/ ﬂauY(au)]mudn + (ay In-1 (3.46)
(@), = CL[AG,/n'aLY(aL)]den + (ag )p-1 (3.47)

Since(a), increases at each cycle, it increases then akbcewi

CU[AG,/naUY(aU)]mU + C [Aoyma;Y(a,)]™

(al)n = 2 dn + (al)n—l (348)
(ay), = Cy [AG,/naUY(aU)] 2— C.[Aoma,Y(ay)|™ dn+ (@), (349)
(a1 + aze3 ) = (@) + (@z)ne (3.50)

The primary goal of using Affine Arithmetic is t@ lable to build some functions
which could directly compute the lifetime of a sjpeen, given only the interval range of
the parameters. To do so, all of the uncertainrpaters of the crack growth equation
were first written in their affine form. A study waone on the crack growth equation
using different noise symbols in their affine fortoobtain the critical points of the
crack growth law. Finally, two analytical equatid&sg)s. (3.46) and (3.47)] for the
maximum and the minimum values of the crack haifyte at any loading cycle were

obtained.
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3.2.2 Prediction of Crack Growth Under Cyclic Loading in Isotropic Plates

Using Affine Arithmetic on the Paris Erdogan L aw
The isotropic plate structure investigated in gastion is made of Titanium alloy
Ti-6Al-4V and has a finite rectangular shape withnawidth. A Mode | opening crack is
centrally situated, and it is perpendicular to darm tensile loading axis. The tensile
stress is denoted asand the crack length is given as 2Zl'he Paris Erdogan law is used
to quantify crack growth in terms of the numbetaading cycles of a specimen given a

particular crack size.

The parameter€ andm are uncertain parameters in Paris’s Law. The tffettheir
variation on the crack length, and thus the lifetiof the specimen, are the driving force
of this sectionY(a) = 1 in our analysis, which corresponds to the assumpif a center
crack in an infinite plate. The Paris Erdogan Lawomputed from the initial crack half-
lengtha, of the specimen at zero cycle to a critical craal-lengtha,,., at the lifetime

of the specimen. In our casg,. is chosen to be the crack half-length correspanttn
when the crack-tip stress intensity factor reathedracture toughness of the material

K; (The subscript denotes Mode | of crack opening).

The Paris Erdogan Law is integrated through tlegifife using a forward recursive Euler

Method to give the following equation for the crdekf-length at any cyclH:

(@1 = € [Aoym(@)nY((@))] " dn+ @)y (351)
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3.2.2.1 Procedure

The parameters; andm, are defined as interval/range and the lifetiipeof the
specimen is computed therefore as a range. ltpsitant to understand that the
upper/lower limits of the lifetime range correspsnd the best/worst combination of the
uncertain parameters, respectively. The lower lohthe lifetime range is the minimum
number of cycles before the critical crack lengthdached while the upper limit is the
maximum number of cycles the specimen can sustdordédthe crack grows to its critical
length. At first, two Monte Carlos simulations wiifferent number of samples are run
from a, to a,, using Eq. (3.51) to determine the specimen lifetiiags. (3.46) and (3.47)
are then used to predict the lifetime of the speaimsing Affine Arithmetic. Finally, the
lifetime range and the computation time for the kéo@Garlo simulations as well as the

one for the Affine Arithmetic method are compared.

3.2.2.2 Monte Carlo Analysis for Paris Erdogan Law

The Paris Erdogan’s parameters and the specimesriaigiroperties are taken
from [16]. The parameters are defined by an infemith logC € [-15.0 — 11.6] and
m e [3.7 6.2]. The fracture thoughness of the material is 75 WiRavith a load ratidR
of 0.8. The Monte Carlo analysis is performed bhygiéng the parameteiS andm with
a uniform distribution over their interval. All tigarameters are assumed to be
independent and known by their ranges. Monte Cladod Monte Carlo 2 simulations
with 1000 samples and 3000 samples of the uncertaemeters’ values, respectively,

are carried out. As mentioned above for eachefiifferent Monte Carlo simulation
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cases, only the crack growth curves depictingite@rhe of the specimen in the worst
case and in the best case of combination betweeurttertain parameter values are
useful here because they correspond to the miniamdrthe maximum values of the
crack length, respectively. Table 3.1 summarizedifferent lifetimes computed for

each of the Monte Carlo simulations and their cotaijpon time.

3.2.2.3 Affine Arithmetic for Paris Erdogan Law

The primary goal of using Affine Arithmetic is t@ lable to build some functions
which can directly compute the lifetime of a spesimgiven only the interval range of
the parameters. To do so, all the uncertain paemnef the crack growth law are first
written in their affine form. A function study i©de on the crack growth law that is a
function of the different noise symbols in theifirzé forms to obtain the critical points of
the crack growth law. Finally two analytical eqoas [Egs. (3.46) and (3.47)] for the
maximum and the minimum values of the crack haifyte at any loading cycle are

obtained.

The values of the upper limitty),,.1 and the lower limita;),.1 of the crack half-
length are then computed respectively frary )¢ = ag to (ay),+1 = a. and from
(a;)o = ag to (ay),+1 = a.-. The value of the cycle step sizlFsis chosen here as a
function so that it is small enough to have a smmaatriation of(ay),.+1 and(a;),+1-
Figures 2.1 and 2.2 show the curves of Egs. (RA8)Eq. (3.47) plotted against the
curves obtained from the two Monte Carlo simulagsicomputed with Eq. (3.51). The
curves in red color represent the plot of the upaduwe of the crack half-length range,

34



whereas the curves in blue represent the ploteofaer values of the crack half-length

range respectively for AA and for Monte Carlo siatidns (triangle marker type).

We can see in Figure 3.3 that the first Monte Camaulation with 1000 samples predicts

a faillure range of smaller diameter than the dinh® prediction of Affine Arithmetic.

0.1 : ‘
—— Affine Arithmetic
—<&—Monte Carlo 1
o 0.08- 1
[0
&
< 0.06] .
8) 4l 4
o
S 0.04; :
©
) 4
0.02¢ J 1

6 8 10 12 14
log of Number of cycles

N

Figure 3.3. Comparison of Crack Growth Curves Betwilonte Carlo 1 (1000 samples)

and Affine Arithmetic.
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0.1 ' ‘

—— Affine Arithmetic
—<4—Monte Carlo 2

o 0.08r .

©

e

< 0.06¢ 1

o

C

Q@

S 0.04f 4 1

©

o {

0.02r J .

4 6 8 10 12 14
log of Number of cycles

Figure 3.4. Comparison of Crack Growth Curves Betwilonte Carlo 2 (3000 samples)

and Affine Arithmetic.

It might seem that the AA prediction range is atifunot accurate enough or too
far off. However with an increased number of sampkegure 3.4 shows that the Monte
Carlo prediction range starts getting closer toahe of AA and the prediction curves of

AA and Monte Carlo 2 are overlapped.

Table3.: Comparison of ifetime Prediction ancComputation imesBetween Affine
Arithmetic and Two Monte Carlo Simulations for Eate Crack
Uncertainty propagatic

Affine Arithmetic Monte Carlo 1 Monte Carlo 2
method
Number of sample - 100( 300(
Computation time (se 2.2% 62 326¢
log (n) [6.99, 12.8C [7.18, 10.24 [6.99, 12.56
Number of days for 2 [5.62, 3677530] [8.8, 10107] [5.75, 2086682]

Hz load frequency
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Table 3.1 shows the lifetime prediction yieldeddagh of the simulations and their
computation times. We can see that the Monte Qasionulation predicts the possibility
of occurrence of failure three days after the failis predicted to happen by Affine
Arithmetic. Simply increasing the number of sampte8000 helps the Monte Carlo
simulation+o make predictions closer to AA buturegs a longer computation time. It
took almost an hour to run the second Monte Canhoilation whereas Affine Arithmetic

took only 2 seconds to give its prediction withtthecuracy level.
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Chapter 4

Kardomateas Law for Composite Materials

Under Cyclic Compressive Loading

In [17], Kardomateas described a new law, thatdaki accountthe both Modes
I and Il fracture toughness in the descriptionhef elamination tip in a composite
material under compressive loading. The major atarstic of delamination growth is
the fact that the fracture path is constrainedpeetive of the application of the globally-
applied loads, hence growth is inherently mixed endbnsidering a plate of half-length
L with a unit width, with a through-the-width delamation of half-length,

symmetrically located at an arbitrary position tigh the thickness (Figure 4.1)

el M b %
|

i
1 @=0
$=x/2 E{ﬂi/ f<0 ~mf2>P=d,y>-x
P P
Base
™ Pt g %
Y |
| /f"" |
Substrate Pan D;;;ﬂninam :'
£ 2L

Figure 4.1. A One-Dimensional Delamination Confegion Under Compression [17].
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For a cyclic loading that causes a variation ofgtiain energy release rate fra@ty;,, to

Gmax, the stresses near the tip of the delaminationcéa#ly described b¥s,, .., the load

ratio @ = Zmin , Which expresses the ratio of minimum to maximaading, and the

max

mixity parameter¥ = tan‘l(%) that expresses the relative amounts of Mode |
1

(opening) and Mode Il (shearing) components. Thre pdode | corresponds t§ = 0

and the pure Mode Il t# = + .

Kardomateas, based on experimental and mecharisahations, assumes that the

toughnesd), depends on the Mode mixity:

GE -1

I,(¥) = Gf [1 + (G—i - 1) sinZ‘Pl (4.1)
I1

The effects of mode-dependent toughness on thendeéion growth is accounted for by

defining:

G
o (¥)

G = (4.2)

G is regarded as a mode-adjusted crack driving fortiee sense that the criterion for
crack advance i§ /T, = 1. In other words for a crack to growth, the valfi& should

reach 1.

For slow growth of the delamination, Kardomatea#ds the following law:
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dl _ C(¥)(AG)™™ 43
dN B 1- Gmax ( l )

AG is the range in the energy release A= G0 — Gomin-

The Mode dependence of the const@&endm s also defined. Of these two parameters

the most important is1 because of its impact on Eq. (4.3).
m@®) = m;(1 — sin?¥) + my;sin?¥ (4.4)
C(W®) = C,(1 — sin®¥) + C;;sin*¥ (4.5)

Since the uncertain parametéis Gfj, m;, my;, € ; and C;; are determined by
experiments, let's consider as in the case of #resFErdogan Law in the previous

section thaty, G}, m;, my;, € ;, C;; andl are defined by their interval:

L=1[l,ly] =11 + ;€ (4.6)
Cr=[Ci, Cryl=Cry+ €& (4.7)
m1=[m,L,m,U]=m,1+ m,& (4.8)

G = [GICL, GICU] = Gy, + Gi,& (4.9)
Cn = [Cuy C IIU] = Cul + 611285 (4-10)
my = [muy muu] = my; + my,& (4.11)

G = [Gp,, Giy] = Giry + Gii, €3 (4.12)
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The energy release rate is:

G(Ey, 1) = 0.5ER(1 —v?)(Ey — €.,)(Ep + 3E,,) (4.13)
€. (1) = m?h” (4.14)
T3 -vd)? '
yields _ % 2
— £, = m(h +Elp)
yields 2
. _ n2h?
with H = 3(1—_1/2)
Inserting Eq. (4.6) in Eq. (4.13) we have:
with V = 0.5Eh(1 —v?)
yie—ldf Ge =4VHI, (1, + Slz)_3[—€0 +3H(, + Slz)_z] (4.17)
ields 3H
GE = 0 y—) ltI' == ltrl + gtrltrz = 8_0 (418)
,3H I
ields €, 1
pelds g —N& (4.19)

I, is the unstable - to - stable transition poina¢grlength) and it is the point where the
energy raté reaches its maximum valué¢(= 0). In the case where the initial

delamination length is beloly,. (-1 < €, < 1), then unstable but “contained growth”
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will occur. For this reason to have stable growhle, initial length should always be

chosen so that:

yields
lO>1tr — —1>€tr07’€tr>1

ields
120>, =5 I>1,

ield 3H
e L +€lL,> =
0
ield 3H
e L +ElL)r> =
0
yields

— 80 > 3H(l1 + 8[2)_2

yields
— - 80 + 3H(l1 + 8[2)_2 <0

Using Eqg. (4.20) results:
Gg = 4Vle(ll + Elz)_3[_€0 + 3H(l1 + Slz)_z] < 0
since all the other terms in Eq. (4.17) are positiv

The Mode mixity is also defined by:

4cosw +V3Esinw

tan¥ =
—4 sinw ++/3& cosw

where
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0.5

e

Replacing Eq. (4.15) into Eq. (4.23):

4 0.5
£(8) = |5 8oty + EL,Y2H — 1)

yields 4 4 e
— &= §€oH_llz(l1 + €l) [§ (Eo(ly + EL)*H — 1)] (4.24)

¢ is a square root function (¢ > 0) and all the other terms in the left side of Eq243

are positive, which yield& > 0. Thusé(€) monotonically increases fér= [—1,1]

and:
§y =¢(1)
- E (€ (L + L,)?H 1 — 1)]0'5
&y = E(eolqu—l - 1)]0'5 (4.25)
and
& =¢(-1

4 0.5
=[5 ot = 1217 = 1)

4 0.5
& = [§(€OIL2H‘1 - 1)] (4.26)
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Then we can writef = &, + £, andé, = fUZfL andé, = fu;s‘L
Eq. (4.22) becomes:

4cosw +V3(& + €) sinw
tan¥ = & $) (4.27)
—4sinw +V3(&; + €&,) cosw

ield 4 cosw + V3(&, + €&,) sinw
yields W(E) = tan-! (&1 +E&)
—4sinw +V3(& + €&,) cosw

(4.28)

we know that? exists and is real if only if :

—4sinw +V3(&; + €&,) cosw # 0

yields 4 sinw
St B V3 cosw

4
yields ﬁtan(w) - 51
€+
$2

\%tan(W)—ﬁ

: , we see that the domain#fis:
2

By calling €y =

D= [_11 8‘1’[ U ]E'Pl 1]
A function analysis o follows:

For€e[—-1,€&y[,

2 tanw) - &

V3
$2

yields

€< —4sinw +V3(&; +€&,) cosw < 0
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We know that the termh cosw + V3(&; + €&,) sinw > 0 in Eq. (4.23) is always

positive:

1m1w@)=—§

E—>Elp<

For€ e €y, 1],

i%tanov)-fl

yields
—_—

yields
—

yields

—

yields

yields

€=

$2

A
lim ¥(€) =+ =
elim €) >

yields
—_—

yields
—

yields
—_—

yields
—

tan¥ < 0

Ye ]g,n[ or Pe ]—%,0[

we |-Z,0| (4.29)

¥ decreases monotonically

—4sinw +V3(&; + €&) cosw = 0

tan¥ > 0
Ye ]0,%[ or We ]—n,—g[

we Jo.5] (430)

¥ decreases monotonically

We can see that the Mode mixi#yhas a discontinuity at the noise symbgl Since the

delamination in mixed Modes | and 1l is describgdte Mode mixity in the
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Kardomateas Law, all the following derivations vd#pend on the Mode mixity, more

precisely the Mode mixity noise symi®) in all of the affine form derivations.

Since any noise symbélshould be such &e [—1,1], three cases will happen as for the
values ofy: €y € [—1,1] , €y < —1 and€y > —1.
o If Epe[-1,1]

D =[-1,Ey[ Uy, 1]

lim YE) = — = and lim W) = + =
el € =-5an e ®=+5

i 46,3
(4 cosw +V3(&; + €&,) sin W)2 + (—4 sinw ++/3(&; + €&,) cos w)2

¥

yields
Ez >0 — l{lg <0

yields .
—— ¥ decreases monotonically

The Affine Arithmetic formulation we are using ifnves only the noise symbol
€ € [—1,1], but sinceV is not continuous ofi € [—1,1], we need to separate the domain

of ¥ into two sub-domain wher# is continuous:

D, ={€e[-11] /€€ [-1,Ey[}

D, ={€" e [-1,1]} (4.31)
and
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D, ={€e[-11] /€€]€y,1]}

D, ={€" e [-1,1]} (4.32)

To be able to easily continue the derivations fiafforms, a change of variable was
made to obtain Eq. (4.31) and (4.32). The synabd the noise symbd € [—1, €[ and
the symbok" the noise symbd € |€y, 1]. It is now easy to continue the derivation in

the affine forms sinc® is continuous on each of the two domains above.

We know that:

l=1 +€l,, with€ e [~1,Ey[ Uy, 1]

For€ = —1,
l == ll - lz
=1
for€ =1,
l == ll + lz
=1y
and for€ = &y,
l == ll + 811/[2

ly+1, ly—1,
5 + Ey >




Sincel increases monotonically with

yields
86 [_1,81}/[ — lE[lL,lly[

,lzp—lL

yields Lo+l
l="++E72

and

yields
€€y, 1] — Le]ly,ly]

yields

_ lptly nly—ly
l= 5 + € 5

- For€e[-11] (£e[-1,&[ )

The Mode mixity derivation:

Egs. (4.25) and (4.26) give the upper and loweittdiof . We can then write:

§=¢&+¢€&

(4.33)

(4.34)

From Eq. (4.29) we know th&te ]—g 0[ and¥ (€") decreases monotonically :

Wy = ¥(-1)
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a1 [ 4cosw +V3(& — &) sinw ]
= tan
—4sinw ++/3(& — &) cosw
4 cosw + V3§ sinw
P, = tan‘ll L ] (4.35)
—4sinw ++/3&, cosw
Y, =¥
can- [ 4cosw +V3(& + &) sinw ]
= tan
|—4sinw +v3(&, + &) cosw
.| 4cosw +V3¢&;sinw ]
= tan
|—4 sinw ++/3&, cosw
Y, = d 4.36
L — 2 ( " )
lIU - llul - 8”2”2 (4‘.37)

The enerqy release rate derivation:

From Eq. (4.21)G¢, < 0. Thus the energy release rétg’) monotonically decreases:
Gy = G(-1)
Gy =V[€ — Hl, ?|[€ + 3HLI;172] (4.38)
and

G, = G(1)
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G, =V[€ — Hly?][€ + 3HI, 7] (4.39)
W|th G = Gl - SIGZ

The mixed-mode exponent:

mW¥) = m;(1 — sin®?¥) + my;sin?¥
Using Eqgs. (4.8), (4.11) and (4.37):

m(gl, 82, 84) = (mll + Ezmlz)(l - Sinz (llul - 8’!1/2)) + (mnl + 84m”2)sin2(11u1 -

g'y,)

ield.
5 me, =my,(1—sin?(®, — £%,)) > 0

and

yielas = in2(W, — E¥,) >0
mg, = my,sin®(¥; )

thenm(€,, €,) monotonically increases f@, = [—1,1] and€, = [-1,1]
mg, = 2¥, sin(¥; — €'W,) cos(¥; — £'W,) [(my, + €,my,) — (myy, + E4myy,)|

we know that fol€’ € [-1,1], ¥ < 0

yields
— sin(¥; — €'¥,) < 0and cos(¥; —E€'W,) >0

Also we know thatn, is always greater than,,

yields
— my, +E&my, >my, +Emy,
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We can then conclude thatg, < 0
Thusm monotonically decreases with respecg'tand :

my = m(—1,1,1)

= (m;, +my,)(1 —sin?®y) + (my;, +my,)sin? ¥y

my = my, (1 — sin*¥y) + my;,sin®¥y (4.40)

m;, =m(1,—-1,-1)
= (m,1 - m,z)(l —sin?¥;) + (m,,1 - m,,z)sinz‘I’L

= mlL(l - Sinzl},[,) + m”LSinquL =my,
my =my, (4.41)
withm =m; — €'m,

The mixed-mode coefficient:

C(¥) = C,(1 — sin?¥) + C;;sin?¥

Using Egs. (4.7), (4.10) and (4.37):

C(€,€1,€5) = (Cry + €:.C1,) (1 — sin? (¥ — E'W,)) + (Ciyy + EsCyp,y) sin? (¥ — E'W)

ield
D G, =G, (1 —sin?(W, —€'9,)) = 0
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and

yields . ,
E— CES == CIIZSII’IZ(Wl - 8 lluz) 2 0
thenC(€,, €s) monotonically increases f@; = [—1,1] and€; = [—1,1]

CE’ = leuz Sin(llul - 8,"1[[2) COS(llul - Slllllz)[(cll + €1C12) - (Clll + 856112)]

We know that foi€' e [-1,1], ¥ < 0

yields
— sin(¥; — €'¥,) < 0and cos(¥; —E€'¥,) >0

Also we know that; is always greater thaf)

yields
— CIl + €1C12 < CIIl + 85C112

We can then conclude that

Ce, >0
ThusC monotonically increases with respecg&tand :

Cy = C(1,1,1)
= (Cll + CIZ)(l - Sinz(llul - lluz)) + (Clll + CIIZ)Sinz(llul - lluz)

= CIU(l - SinquL) + C"USinquL

Cy = Cyyy (4.42)
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= (€, — C,)(1 = sin? (¥ + ¥2)) + (Ciyy — Ciy,p)sin? (W + W)
CL = CIL(I - Sinquu) + C"LSiHZ‘I’U (4‘43)
Wlth C = Cl + SICZ

The mixed-mode adjusted fracture criteria:

C
G11

Gf ol
(W) =G |1+ | = —1]sin®¥
Using Egs. (4.9), (4.12) and (4.37)

G, + €6GF,

-1
[y (€, €5, €) = (GE. + E4GS [1 + ( . 1) sin2(¥, — 8"1’2)]
( ! 2) Gii, + €3Gy,

yields 2 . —2
yee Log, = (G, + €6Gf,) Gy, sin®(¥1 — €'¥2)(Gfy, + €5Gfj,) [1 +
GE, +64G§ 2 N
—1t > -2 _ 1|sin?(¥, — E'Y ] >0
(GIC11+E3GIC12 ) ( ! 2)
and
yields Gf,+€6Gf,

-1
— (3¢ — in2 g —
_ F0€6 — 12 [1 + <G;:11+E3Gf12 1) Sin (‘1”1 8 lluz):l Il

Gf,+€6Gf,
C C
Gfi, +€3Gfy,

Gf,+€6Gr,
C C
Gfi, +€3Gfy,

sin?(¥, — £'%,) [1 + ( - 1) sin? (¥, — s’svz)]_zl >0

thenI, (€', €5, €) increases monotonically fé; = [—1,1] and€, = [—1,1]
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C C
Gf , +E6Gf,
C C
Gf, +E3Gf,

Tog, = 2%, (Gf, + eécfz)( - 1) sin(¥; — €'¥,) cos(¥; — €'W,) [1 +

(Gf1+€6sz
GI°11+E3GI°12

-2
— 1) sin?(¥; — 8"1’2)]
We know from the derivations above that(¥; — €'¥,) < 0 andcos(¥; — €'¥,) > 0

Also we know thaGy; is always greater thakf

yields Gfl + €6Gf2
Gii, + €3Gy,

We can conclude that
Tog, > 0
ThusT, monotonically increases with respect&band:

FOU = Fo(l,l,l)

Gf, + Gf -
= (Gf, + G¢ [1 + <—1 Z 1) sin?(¥; — ¥,)
( 1 2) Gfll + G;:IZ

Gf -
= Gf, l1 + <Gc" - 1) sinzle

Iy

b, =G (4.44)

FOL = Fo(_l,_l,_l)

£, —Gf -
- 6, -6 |1+ (g - 1 st 4
I = GIIZ
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-1
G
Ly, = Gf, [1 + < GﬁL - 1) sinZ‘I’U] (4.45)
L

Wlth FO = Fol + SIFOZ

- For€"e[-1,1] (€€ 1€y, 1] )

The mode mixity derivation:

EqQ. (4.25) and (4.26) give the upper and lowertloh§. We can then write:
§=§& +E€"

From Eq. (4.30) we know théte ]Og[ and¥ (€'") decreases monotonically:

w, = p(-1)
can [ 4cosw +V3(& — &) sinw l
= tan
—4sinw ++/3(& — &) cosw
9 [ 4cosw ++V3 & sinw ]
= tan
—4sinw ++v3&, cosw
= Sl}g}p> (IU(E)
T
Wy=+3 (4.46)
Y, =¥

1| 4cosw + V3(& + &) sinw

—4sinw +vV3(& + &) cosw
55
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| 4cosw +V3&;sinw
—4sinw ++/3§; cosw

¥, =tan~ (4.47)

y =y —g"yp, (4.48)

The enerqy release rate derivation:

From Eq. (4.21)G¢,, < 0 . Thus the energy release rét&') monotonically decreases:

Gy = G(=1)
Gy =V[€ — HI,?|[€, + 3HI_1;172] (4.49)
and
G, = G(1)
G, =V[€ — Hly ?]|[€ + 3HI; ] (4.50)

Wlth G = Gl - SHGZ

The mixed-mode exponent:

mW¥) = m;(1 — sin?¥) + my;sin*¥
Using Egs. (4.8), (4.11) and (4.48):
m(gl, 82, 84) = (mll + Szmlz)(l - Sil’lz ("IUI - 8”2”2)) + (mnl + 84m”2)sin2(llul -
£'Y,)
yields
—  mg, =my,(1—sin* (¥, — €¥,)) >0
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and

yields - in2(W, — €¥.) > 0
mg, = my;,sin®(¥; )

thenm(€,, €,) monotonically increases f@, = [-1,1] and€, = [-1,1]
mg,, - leuz Sin(llul - 8,,,‘1[[2) COS(llul - 8,,,‘1[[2) [(mll + Szmlz) - (mnl + 84171”2)]

we know that fol€” e [-1,1], % > 0

yields
— sin(¥; — €"¥,) > 0and cos(¥; —E€"¥,) >0

Also we know thain, is always greater than,,

yields
—  my, +E&my, >my, +Emy,

We can then conclude thatg,, > 0
Thusm monotonically increases with respec€tband :

my =m(1,1,1)

= (m11 + mlz)(l - Sil’lzleL) + (mul + m”Z)SinzleL

my = my,(1 - sin®¥;) + my;,;sin®¥P, (4.51)

m, =m(—1,—-1,-1)

= (mll - mlz)(l - Sinzlluu) + (mul - mllz)sinzlluu
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= mIL(l - SinzlluL) + m”LSinzleL = m"L
my, =myy, (4.52)
Withm = m, + €'m,

The mixed-mode coefficient:

C¥) = C,(1 — sin?¥) + C;;sin?¥
Using Egs. (4.7), (4.10) and (4.48):

C(€",€1,€5) = (Cry + &.Cp,)(1 —sin? (¥, — €'F,))
+ (Cnl + 85C”2) Sinz(llul - SHIIUZ)
yields
—  Cg, = Cp,(1—sin?(¥; —€"¥,)) =0

and

yields
— CES = CIIZSinz(llul —_ 8”!{]2) 2 0
thenC(€,, €s) monotonically increases f@; = [—1,1] and€; = [—1,1]

Cerr = 2¥, sin(¥; — €"%,) cos(¥y — €"¥)[(Cr, + €.Cr,) — (Cryy + €5Cy,)]

We know that foi€"’ e [-1,1], ¥ > 0

yields
— sin(¥; — €"¥,) > 0and cos(¥; —€"'¥,) >0
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Also we know that; is always greater thaf)

yields
— C11 + EICIZ < C”1 + 856”2

We can then conclude that

Ce, <0
ThusC monotonically decreases with respec€toand:

Cy = C(-1,1,1)
= (Cll + Clz)(l - Sinz(llul + lluz)) + (Cnl + CIIZ)Sinz(llul + lluz)

= CIU(l - SinzleL) + CIIUSiDZIIUU
CU = CIIU (453)

C, =C(+1,-1,-1)

= (€, — C,) (1 —sin? (¥, — W) + (Cyyy — Cpy,)sin? (¥, — ¥,)
CL - CIL(]. - Sinz'I’L) + C"Lsinz'I’L (454‘)
Wlth C = Cl - SHCZ

The mixed-mode adjusted fracture criteria:

GS i
L,(¥) = GS [1 + <—1 - 1) sinZ‘Pl

C
G11

Using Eq. (4.9), (4.12) and (4.48)
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G, + €4Gf,

-1
- 1) Sil’lz (llul - 8,,,‘1[[2):|
Gii, + €3Gy,

To(€",€3,€6) = (Gf, + €4Gf,) [1 + <

yields 2 ) -2
— Tog, = (Gf, + €6Gf,) Gff ,sin? (¥, — €"¥,)(Gfi, + €3Gfy,) [1 +
c c -2
Sta*eSty 1) sin2(w, — €'w,)| >0
GE, +€3GE, 1 2
and
yields Gf,+€6Gf,

-1
— (C _ P02 _cn _
—_— FOEG - 12 [1 + (—Gfll+€3Gflz 1) Sin (llul 8 KIUZ):I ll

Gf,+€6Gf,
Gfi, +€3Gfj,

G, +€6Gf,
Gfi, +€3Gfj,

-2
sin2(¥, — €"'%,) [1 + ( - 1) sin?(¥; — 8”'1’2)] ] >0

thenl,(€", €3, €;) increases monotonically f@; = [—1,1] and€, = [—1,1]

Gf,+€6GJ,

Lo, = 2%2(Gf, + €6Gf,) (m - 1) sin(¥; — €"'¥,) cos(¥; — €"'¥,) [1 +

(Gf1+€6sz
Gf, +E5Gf,

-2
- 1) Sinz (‘1”1 - 8”1{/2)]
We know from the derivations above that(¥; — €"¥,) > 0 andcos(¥; — €"¥,) > 0

Also we know thaty; is always greater thaGf

yields Gfl + & fz
C C
G, + €3Gy,

We can conclude that
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Tog, <0
ThusTI, monotonically decreases with respect¥6and:

FOU = Fo(_l,l,l)

Gf, + Gf, i
_ . 2
= (GIC1 + sz) Il + <G1c11 e, —1)sin?(¥; + ¥,)

G -1
=G, l1 + <Gi" - 1) sinz‘}’Ul

Iy

Toy = GICIU (4.55)

FOL = F0(+1,_1,_1)

-1
= (Gf, — Gf,) [1 + <GC — GCZ 1) sin?(¥; — lpz)]
114 1

2

-1
T,, = G¢ [1 + ( L 1) sinZ'I’L] (4.56)
GIIL

W'th FO = FOl - E”FOZ

e If €y >1

€y > 1 means that the discontinuity ¥ happens after the current length (range)

l=1[l,1ly] = 4 + LE , which is exactly the same case as when we wete [—1, €y [
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yields
—— Y. <0

thus¥ (€) decreases monotonically fér= [—1,1]

Yy =¥(-1
can [ 4cosw +V3(& — &) sinw l
= tan
—4sinw ++/3(& — &) cosw
4cosw+ V3§ sinw
¥, = tan™1 [ V34, l (4.57)
—4sinw +V3&, cosw
and
@, = (1)
a1 [ 4cosw +V3(& + &) sinw ]
= tan
—4sinw +vV3(& + &) cosw
4cosw +V3¢ysinw
¥, = tan™1 [ V3¢ ] (4.58)
—4sinw +V3&, cosw

Using the definition o€y and knowing that cos w + v/3(&; + &) sinw > 0:

yields
€y >1 — —4sinw +V3( +&)cosw <0

jeld
e —4sinw +V3(& — &) cosw < 0

yields [ 4cosw +3(&; + &) sinw
—— tan
—4sinw +vV3(&; + &) cosw

and
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_, | 4cosw + V3(& — &) sinw
—4sinw +vV3(& — &) cosw

tan

Thus¥; < 0 and¥?; < 0 and ther?? < 0 and¥ = ¥, — E¥, (Note that for this

particular variablé’; < 0 and¥, > 0)

The enerqy release rate derivation:

From Eqg. (4.21)5¢ < 0, thus the energy release rétg€) monotonically decreases and:
Gy = V[€o — HL,?|[€o + 3HL, 7] (4.59)
and
G, = V[€o — Hly ?][€o + 3HL; ] (4.60)
With G(€) = G, — €6,

The mixed-mode exponent:

We already know that(€,, €,) monotonically increases f@, = [—1,1] and€, =

[-1,1].

As in the case df € [—1, €y,

mESO

Thusm monotonically decreases with respecg t@and :

my = m(—1,1,1)
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= (m11 + mlz)(l - Sinz(‘}’l + lluz)) + (‘m111 + mnz)sinz(’l’l + lluz)
my = my,(1 - sin®¥y) + myy sin®¥y  (4.61)

m;, =m(1,—-1,-1)

= (mll - mlz)(l - Sinz(llul - lluz)) + (mlll - mllz)sinz(llul - lluz)
my, = mq, (1 —sin*¥;) + my,,sin®¥, (4.62)
With m(€) = m; — Em,

The mixed-mode coefficient:

We already know that (€, €5) monotonically increases f@; = [—1,1] and

85 = [_1,1].
As in the case & € [—1, Ey ],

Ce >0

ThusC monotonically increases with respec€tand:

Cy =C(1,1,1)

= (Cll + Clz)(l - Sinz(llul - lluz)) + (C111 + Cllz)sinz(llul - lluz)
Cy = C1y(1 — sin®¥}) + Cyq,Sin¥y, (4.63)

C,=C(-1,-1,-1)
= (€1, = C,)(1 = sin?(¥; + ¥,)) + (Ciy, — Cip,)sin?(¥; + W)
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CL = CIL(l - Sinquu) + C11LSin2qIU (4‘64‘)

The mixed-mode adjusted fracture criteria:

We already know thdi, (€5, &) increases monotonically f@; = [—1,1] and€, =

[—1,1].
As in the case df € [—1, €y,

Tog, > 0
ThusTI, monotonically increases with respecttand:

FOU = Fo(l,l,l)

C -1
= (G§ 1+ —1|)sin?(¥; — ¥
(65, +65) 1+ (g =1 s - )
GS, !
Toy = Giy [1 + <G° - 1> sin lI’L] (4.65)
11y

FOL = Fo(_l, _1, _1)

G§, — G§ -
= (G§, — G§,) [1 + <G§1—2— 1) sin?(¥; + svz)l

— (C
11 G112

GS -1
Ty, = G, l1 + ( GC” — 1) sinqu,,l (4.66)
11
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W'th Fo(g) = Fol + SFOZ

o If Ely < -1

€y < —1 means that the discontinuity ¥ happens before the current length (range)

l=1[l,1ly] =4 + LE, which is exactly the same case as when we wete |€y, 1]

yields
—_—

Y, <0
thus¥ (€) decreases monotonically fér= [—1,1]

Y, =¢(-1)

=tan! [

4cosw +V3(& — &) sinw ]
—4sinw ++3(& — &) cosw

4cosw+\/§fLsinw]

Y, = tan™?!
v [—4 sinw ++/3§, cosw

and

W, =y(1)

L[ 4cosw +V3(& + &) sinw
—4sinw +V3(& + &) cosw

= tan™
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Y, =tan™

Using the definition o€y and knowing that cosw + vV3(&; + &) sinw > 0:

€y < —1

yields
—

yields
—_—

yields

yields

tan™

tan™

| 4cosw ++3&; sinw
—4sinw +3&; cosw

[ 4cosw ++/3(&, — &) sinw ]
|—4sinw ++/3(&;, — &) cos w|

[ 4cosw +/3(& + &) sinw ]

|—4sinw ++/3(&; + &) cosw]

Thus¥, >0 ,¥, > 0 and theri? > 0

The enerqgy release rate derivation:

—4sinw +V3(& — &) cosw > 0

—4sinw ++/3(&; + &) cosw > 0

>0

>0

(4.68)

From Eq. (4.21)¢ < 0, thus the energy release r&té€) monotonically decreases and:

Gy

and

GL

v[€o — HL, 7?][€ + 3HL, 7]

V[€o — HIy ?][€ + 3HI, 7]
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The mixed-mode exponent:

We already know thah(€,, €,) monotonically increases f@, = [—1,1] and

84 = [_1,1]
As in the case df € |€y, 1],

mEZO

Thusm monotonically increases with respec€tand :

my = m(1,1,1)

= (mll + mlz)(l - Sinz ("IUI - lluz)) + (mnl + mHZ)Sil’lz (llul - lluz)
my =my,(1 — sin®¥;) + my;sin®¥, (4.71)

m;, =m(-1,-1,—-1)

- (m11 - mlz)(l - Sinz(llul + lluz)) + (m”1 - muz)sinz(llul + lluz)
my, = my, (1 — sin?¥y) + my;, sin?Py (4.72)
With m(€) = my + €m,

The mixed-mode coefficient:

We already know that(€;, E5) monotonically increases f@; = [—1,1] and

& =[-1,1].
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As in the case df € |€y, 1],
Ce<0
ThusC monotonically decreases with respect tand:

Cy = C(-1,1,1)

= (€ + C,)(1 = sin? (¥, + W) + (Cypy + Cpy,)sin? (¥, + ¥,)
CU == CIU(I - Sinquu) + C"USinz'I’U (4‘73)

¢, =C(1,-1,-1)

= (Cll - CIZ)(l - Sil’lz ("IUI - lluz)) + (Cnl - CIIZ)Sinz(llul - lluz)
CL = CIL(l - Sinz'I’L) + C"LSiHZ‘I’L (4‘74‘)

The mixed-mode adjusted fracture criteria:

We already know thd{, (€5, €;) increases monotonically f@; = [—1,1] and

g = [-1,1].

As in the case df € |€y, 1],

Lo < 0

ThusTI, monotonically decreases with respect tand:
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FOU = Fo(_l,l,l)

-1
I
= (Gf 1+ 2—1sin?(¥; + ¥
( Il )[ <Gfll+GIIZ )Sln ( 1 2):|

C Gf ia2 -
Loy =Gy |1+ GE —1|sin“?y (4.75)
U

FOL = F()(]., _1, _1)

c -1
= (Gf, — Gf,) l1 + (Gc — GC — 1) sin?(¥; — svz)l
111 I

-1

Gy

Iy, = Gf, I1 + ( GﬁL - 1) sin 'pL] (4.76)
L

Wlth F()(S) - Fol - 81—‘02
In Chapter 6, Egs. (4.6) to (4.12) and all the #&igua in bold are used and numerically
computed in Matlab to predict the lower and upp@ue of the delamination growth

range of values at every cycle N. We have now egumthat can directly be used for

prognosis for any material as long as the growthuaed is Kardomateas Law.
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Chapter 5

Model and Modell Interlaminar Fracture Toughness
and Fatigue Characterization

of Carbon-Fiber Epoxy Composite Material

In this section the steps necessary to computertbertain parameters of
Kardomateas Law are shown. The average value (&atdiy average summation or
using fitting curves) of these parameters as wethair range is obtained. In the case of
Kardomateas, all the necessary parameters araetthy characterizing the pure Mode
I and pure Mode Il of a specimen built in of thengamaterial as the one that will be

studied using the Kardomateas Law in mixed Modssd I.

5.1 Model Interlaminar Fracture Toughness and Fatigue Char acterization

of Carbon-Fiber Epoxy Composite M aterial

511 Scope
This section describes the characterization oMbde | fracture opening of
fiber-reinforced carbon materials. The charactéiorancluded both the determination of
the value of the interlaminar fracture toughn€&gsthe Kardomateas Law exponent, and

coefficient valuesm; andcC,. The fracture thoughness value, which is thecalitamount
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of energy required to propagate a pure Mode | ¢riaatetermined by following the
Griffith criterion [18], under a quasi-static Mod&est. The fatigue delamination growth

on pure Mode | is then studied to obtain the Kardtas Law exponent and coefficient.

All the tests are conducted using Double Cantil®&am (DCB) specimens (see Figures

5.1).
P
|
/ I
O e | b
O [
< L h >
— >

Figure 5.1a. Double Cantilever Beam (DCB) Specimen.

Figure 5.1b. DCB test configuration for fractureldatigue characterization.
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5.1.2 Summary of the Double Cantilever Beam Test
The DCB specimen shown in Figures 5.1a and 5.1bisbof a rectangular
laminate composite beam of uniform thickness, withidplane nonadhesive insert at
one end that serves as a delamination initiatansibe forces are applied to the beam by
means of loading blocks, bonded to the insert éldeobeam. The delamination length

is measured from the load blocks rotation axis.

5.1.3 Methodology
The characterization of the Mode | fracture opermdegends on several
measurements that should be made with a propdityated test machine. It is necessary
to determine with accuracy the following variablgee initial delamination lengtt,, the
delamination length during the testthe applied load and the opening displacement at
the point of the load applicatidhandé. Since the Mode | fracture is well known and
defined by ASTM standards, only the data and in&drom needed for our prognosis

model are shown in this section.

5.1.3.1 Determination of the Delamination Length

According to ASTM D5528-13 standard [19], the devinpointing the
delamination front should have an accuracy of atl€0.5 mm (£0.02 in). Two main
methods have been frequently used to measure lidation length: the use of crack

length gages or visual methods.

The use of crack length gages bonded to the spadiae several disadvantages [20]:
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The sensors are manufactured usually in relatiselgll sizes and may not always

measure the full length of the delamination.

The sensors may become unreliable during fatigste teecause of the fatigue of the

Sensors.

Visual methods, on the other hand usually requirtéing some precision marks on the

laminates. Also the tests usually have to be stpmeeach of the length readings to be
performed. Small delamination growths are also d#ficult to measure accurately with
this method. Another big issue is the synchroniratf load-displacement data with the

delamination length data.

As good alternative to conventional visual systeamsautomated delamination length
measurement system has been proposed by Yarlagaaldi21] where a time domain
reflectometry system would be used by equippinddhenates with wires. Richtet al.
[22] described a set of image processing trialsfatic Mode | laminates. In [20]
F.Lahuertaet al. used a visual technique based on video image gsougefor
measurements of the delamination length in Moae bbth static and fatigue tests for

glass fiber reinforced composites.

In this paper a visual method was used for botlsigstatic and fatigue loading of the

composite beam to determine the delamination ledgéhto the opening of the beam.
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5.1.3.2 Use of Camera Recorder in Synchronization with the Load Displacement Signal

To be able to meet the accuracy requirement fodét@mination measurements

procedure some steps advised in [20] were followed:

The laminates were painted in white and matte paast used to avoid light
reflection

A thin layer of water-based typewriter correctituid was used to coat both
edges of the specimen just ahead of the inserttm éhe visual detection of the
delamination onset

The laminate was oriented perpendicular to the came

The initial delamination tip, at the end of theartsvas marked with a thick
vertical line. The entire 2.5 inch length of thenrmracked specimen was marked
at every 1/16 inch, from the tip of the insert

Since the part of the composite that has not betamdnated yet is not
deforming, it remains horizontal. The undelamingtad is then measured using
the vertical marks in the images taken by the camegorder. The delamination
length of the laminate is then calculated as thed taarked length + the initial

delamination lengtddue to the insert — the undelaminated length.

LabVIEW was used to automatically and externallgtonl the camera recorder and the

loading machine. Since LabVIEW was used as theatajaisition system to retrieve the

load-displacement data from the loading machin#) tiee camera and the loading

machine were synchronized following the logic floelow.

75



- An output signal was sent from LabVIEW to start lib@ding machine and to
control the displacement rate of the loading bldoked to the loading machine

- Two synchronized and simultaneous signals are gieatly sent from LabVIEW;,
one to trigger the camera to make a video snapdhbe opened beam and the
second to record the corresponding load-displacedsa

- Every snapshetis was then linked to a load-digsteent data point and to a

precise time during the whole test procedure

5.1.3.3 Load Versus Opening Displacement Record

The opening displacement was estimated as thehmadseparation of the
composite. The internal X-Y plotter of the loadiegt device was used as a permanent
record during the test. Also, the load vs. dispiaeet data was digitally extracted from

the loading test device through LabVIEW.

514 Material and Test Specimens

Twenty-two plies zero-degree unidirectional tegcsmens following the

ASTM D5528-13 specimen size specifications wereguSean long by 0.8 in wide
specimens made of carbon reinforced unidirectibbal T700S manufactured by
TORAYCA, were built. Actual specimen dimensions gvereasured at three different
locations and the average values shown. Arh3hick and 2.5 in long Teflon film was
inserted between the tenth and eleventh plies wtodesponds to a value aof, of 1.7

in. Steel loading blocks of 1 x 1 xit3were properly cleaned before usage and bonded
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to the laminates with a cyanoacrylate adhesiveréadadebonding of the tab during the

testing.

515 StaticModel Fracture Characterization
The aim of the static tests was only to deterntimevialue ofGf . Three

definitions for an initiation value o have been evaluated during round-robin testing
[23]. In our study onlG} values determined using the load and deflectioasmed at
the point of deviation from linearity in the loagsglacement curve (NL) was used. All
tests performed for the static characterizatiotheflaminates were carried out on the
MTS machine, 100 KN maximum capacity with a 50 Kidd cell, following ASTM
D5528-13. Six specimens were tested in fracturedvlo&or the calculation of the Mode
| fracture toughness of the laminates, only the glance Calibration Method (CC) [24]
was used. The testing machine was operated inigh&adement control mode during the

characterization.

5.1.5.1 Initial Loading

The specimens were loaded at a constant displad¢eaterof 0.25 in/min starting
from a zero load applied. The loading was stoppet the delamination reached 2/16 in
from the film insert. The point on the load-disgatent curve and data value that
corresponds to a sudden drop of the load value&@sded. The specimens were then
unloaded at a constant crosshead rate of 1.2 in/fhie position of the delamination’s tip

was marked in red on both edges after unloadingpkeimens.
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5.1.5.2 Reloading

The specimens were reloaded at a constant dispéateate of 0.25 in/min again
from a zero load until the delamination’s tip readhhe last vertical marks on the
specimens. Finally the specimens were unloadech @aja constant crosshead rate of 1.2
in/min. During both the initial loading and theaatling the load and displacement

signals as well as the snapshot of the delaminattgmposition were recorded.

516 FatigueModel Characterization

The DCB fatique tests were performed to deternfieekiardomateas constants
(m; and(;). To do so the delamination growth had to be sthdAll the fatigue tests
were performed also on the same MTS machine abdastatic tests. Six specimens with
the same dimensions, same material and same ohii@iination properties as the static
test specimens were used for the fatigue testsfafiyeie tests were operated also in
displacement control mode with constant displacéramplitude. The specimens were
cycled between a minimum displacemépt,, and maximum displacemedi, ,,, such
that the value of the load raiby,;,,/ 54 Was chosen equal to 0.1. The maximum
displacemens,,,,, was chosen by setting the value of the ratio betg,,,, and the
square of the average displacements at maximumiche static testsSﬁlax/[&ﬂ]ivg)
between 0.1 and 0.6. The specimens were then sedjeca sinusoidal cyclic loading at
a frequency of 8 Hz with the stress values desdrdimve. Video snapshots were taken

at every 1000 cycles below a number of test cyal&90,000 cycles and every 5000
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cycles above that value, for the delamination lemgtords. The force and displacement
data were acquired at the same time as the snaf@steoy 500 cycles below a number of
test cycle of 200,000 cycles and every 5000 cyabes/e that value). The number of

cyclesN, at which the delamination onset happened was dedor

5.1.7 Data Reduction Methods
5.1.7.1 Static Tests
Data reduction was conducted to obtain the Modadtfire toughness; of the
specimens. Only the Compliance Calibration mett@d)(was used. All the data (load,
displacement and delamination) used for the datacteon were the data corresponding

to the visually observed delamination onset as agthe delamination propagation

values.

Compliance Calibration (CC) Method:

Using the visually observed delamination onsetesland all the propagation
values of the delamination, a least squares pltigfC) versuslog (a) was generated.
The exponent n, that is the slope of the straigketthrough the data that results in the
best least-squares fit, was calculated suckal/4x . b is the specimen width and a

the crack delamination. The interlaminar Mode tfuae toughness is then:

G =120 (5.1)

" 2ba
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5.1.7.2 Fatigue Tests

In order to perform the differentiation of the delaation length with respect to
the number of cycleda/dN, two different methods were described in ASTM EG8a
[25] . In our study only the incremental polynorma¢thod was used as for data

reduction.

The Incremental Polynomial Method

This method involves fitting a second order polyinadrto a set of (2n+1)
successive data points, where n is a non-zerodantegually between 1 and 4. The

equation for the crack length fit is

A N; - N; -
ai=b0+b1< c >+b2< ) (5.2)

with

N; — C;
ety o,
C,

andb,, b; andb, are the regression parameters that are deterrbintek least squares
method over the range_,, < a < a;_,. The value ofi; is the fitted value of the crack
length corresponding ;. The parameter§, = (N;_,, + N;,)/2 and

C, = (Njyn — N;_,,)/2 are used to scale the input data to avoid nuniefitfeculties in
determining the regression parameters. The parabotputed by the fitted crack length

d; is obtained to compute the growth rate:

(da/dN)g, = by/C, + % (5.3)
2

The data pointsa(;, N;) are used to compute the valueddf.
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For our data reduction Egs. 5.2 and 5.3, for n f0137 successive data points were used.

5.1.8 Model Fractureand Fatigue Tests Results
The different values d&; obtained for the differents specimen are summaiiize
Table 5.1. These values were averaged in ordez tesbd in the prediction of the
Kardomateas Law. The range in Table 5.1 will beddse the uncertainty df in
Chapter 6 for Affine Arithmetic prediction. The dlacement values corresponding to the

maximum load during the fracture test are also show

The fatigue tests were run at maximum displaceroa@mesponding to a ratio of
82ax/[6cr1%,4 between 0.1 and 0.6. Table 5.2 shows the diffsrgmgcimens used for

the fatigue test as well as their displacement ratid their maximum fatigue cycles.

The maximum fracture toughness, .., during each fatigue test was determined for

every delamination length a, using Eq. 5.1:

G = nPé§
'™ 2ba
nPé.

Gimax = Zbr;tax (54)

with 6,4, @s given in Table 5.2, P being measure at evdayrdeation length a. For every

fatigue testg,, ., Will be constant but Rj;,,,,,, and a will vary.
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Table 5.1 Mode I Interlaminar Fracture Toughneaki¥s

Specimen ID G (in. lln_bz ) Fnax (ID) Ser at Epgy (iN)
1 1.0 20 0.59¢
2 1.10 19 0.62
3 1.015 18.5 0.59
4 1.0z 22 0.60¢
5 1.11 20.2 0.62
6 1.07 21 0.603
Average 1.0575 - 0.606
Range for AA [1.02,1.11] - -

After the fatigue tests were completed, the fatiguevth curves of each of the six

specimens were plotted.

Since the purpose of this section is to obtainMibee | coefficient for the Kardomateas

Law, the growth curves were plotted following thardomateas equation:

mp

da  CGmax
dN 1-

Gm ax

(5.5)

WhEl’EGmax = Glmax/GIC
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Table 5.2 Fatigue Mode | Test Matrix

Specimen ID 82 ax Smax (iN) Max. Cycles
[6cr] ?wg

F1 0.6 0.469 1,550,280
F2 0.€ 0.46¢ 1,348,501
F3 0.5 0.429 578,450
F4 0.5 0.429 602,540
F5 0.1 0.192 250348
F6 0.1 0.192 264800

Eq. 5.4 is the same as Eq. 4.3 just that hereapjdied to only Mode | instead of a mixed

Modes | and Il. Eq. 5.4 was transformed to:

1-G )da c,G (5.6)
(1 = Gax W: 1Umax .

Eq. 5.6 was then plotted for each of the fatiguecspens and-its fit to a power law

y = ax®. The coefficient, is was then equal @ and the exponemt, = t. The lower
value of C; and m; from all the power law fits were taken as, respety, the lower
value of the range df; and the range ofy; and the t largest value 6f andm,, taken as
the upper value of the range@fand the range of.. Finally all of the fatigue growth
curves were plotted together on one graph andguerpower law fit was obtained. The
coefficient and exponent of that power law fit wased respectively as the mean value

of C; and the mean value of;.
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Table 5.3 shows the Kardomateas coefficient andmapt obtained from each of the

fatigue specimens as well as their mean value.

Table 5.3 KardomateiMode |Coefficient ancExponentValue:

Specimen ID C; m;

F1 0.00015 9.21

F2 0.00006 9.15

F3 0.00006 8.42

F4 0.0000-¢ 6.82

F5 0.00002 5.42

F6 0.00001 5.26
Mean 0.00002 5.42
Range [0.00001,0.00015] [5.23,9.21]
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5.2 Modell Interlaminar Fracture Toughness and Fatigue Characterization

of Carbon-Fiber Epoxy Composite M aterial

521 Scope
This section describes the characterization oMbde Il fracture opening of
fiber-reinforced composite materials. The charaza¢ion included both the
determination of the value of the interlaminar fraie toughnessy; and the Paris Law
exponent and coefficient values,;; and(;;. All the tests were conducted using the End-

Notched Flexure (ENF) specimens (Figure 5.2).

Loading Roller
Cracked P-6
End Insert or Support Roller
Pre crack Spemmen
’ Base
f |
a
- L L

Figure 5.2. End-Notched Flexure (ENF) or 3-Poinhéiag Test [26].

Unlike the Mode | fracture toughness DCM test whgldescribed in ASTM D5528-13,

the ENF test for Mode Il fracture toughness is entlly under review by ASTM as a
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potential standard test method. In [26], T. KeviBiien et al. following the ASTM draft
for Mode Il fracture toughness using the ENF ts&idied the Mode Il interlaminar
fracture toughness and fatigue characterizaticngrfaphite epoxy composite material.
Their test approach, methods and procedures whoevéd in this report to characterize
the Mode Il fracture and fatigue of our speciméite fatigue delamination onset and
growth on pure Mode Il were then studied to obtaaKardomateas Mode Il exponent

and coefficient.

5.2.2 Summary of the End-Notched Flexure Test
The ENF specimens consisted of rectangular lamic@atposite beams of
uniform thickness, with a midplane nonadhesiverinsieone end that serves at a
delamination initiator. The specimen were then émhoh three-point-bending as shown in
Figure 5.2. The delamination length is was meastroed the left support roller and the

half-span length, L is the distance from the suppmlers to the center loading roller.

5.2.3 Methodology
The characterization of a Mode Il fracture operdegends on several
measurements that should be made with a propdityated test machine. It is necessary
to determine with accuracy the following variablgee initial delamination lengtt,, the
delamination length during the testthe applied load and the opening displacement at

the point of the load applicatidhandd.
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5.24 Determination of the Delamination Length
Unlike the Mode | experiments, no camera or rec@ydievice was used to
measure the delamination length during the testorpliance calibration (CC) was
performed for the specimens, before testing theraptain the relationship between the
specimens’ compliancé {P) and their delamination length 5 is the vertical
displacement due to the applied IdadThe compliance calibration relationship obtained

was then used to estimate the delamination lengfingithe tests.

5.25 Load Versus Opening Displacement Record
The displacement was estimated as the verticalatisment of the loading roller.
The internal X-Y plotter of the loading test devigas used as a permanent record during
the test. Also the load vs. displacement data wgitatly extracted from the loading test

device through LabVIEW to compute the complianceies

52.6 Material and Test Specimens

Twenty-two plies, zero-degree unidirectional spesis) following the specimens
used in [26], were used. 7 in long by 1 in widecsmens made of carbon reinforced
unidirectional fiber T700S manufactured by TORAYGx¥ere built. Actual specimen
dimensions were measured at three different logatémd the average values shown. A
13 um thick and 3 in long Teflon film was inserted beem the eleventh and twelfth plies
which corresponds to a value af, of 1.5 in, to build the specimen. The specimeighb
edges were coated with white or yellow spray pirdasily detect the onset of the

delamination from the insert.
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5.2.7 StaticModell Fracture Characterization
The aim of the static tests-was were to deterntisevéilue ofGf; and also to
determine the compliance calibration relationsléween compliance and delamination
length values. All tests performed for the statiaracterization of the laminates were
carried out on the MTS machine, 100 KN maximum capavith a 50 KN load cell,
following [26]. Six specimens were tested in fraetode Il and the values 6f; are

obtained.

5.2.7.1 Fracture Toughness Tests

The specimens were marked with tick black markbeeit middle and then at +
6/16 in and - 6/16 in. away from the mark in theldhe. Those marks were used as
guides for positioning the center load nose ducogpliance calibration loadings. The
compliance calibration along with the fracture $estnsisted of three loading sets. At
first the specimens were put in the three-pointloenfixture with the center load above
the + 6/16 in. mark and loaded with a maximum Ibalbw the failure load value. Then
the specimens were shifted to have the centerrioad above the — 6/16 in. mark, and
loaded again with the same maximum load value.ld&@-displacement data of the
specimens at those two positions were obtaine@terishine the two compliance values.
The specimens were finally put in the three-poamding fixture at the testing position
with the center load nose at the middle mark pasi(Figure 5.3) and loaded until the
initial delamination grew away from the insert @hdn unloaded. The load-displacement

of the specimens was also obtained during the hgeaind unloading period. The last
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load-displacement data point right before theahiielamination started growing was
used to compute the third calibration value for¢hmpliance calibration. The first load-
displacement data point right after the specimdoading began was used with the
compliance calibration to obtain the precrack lar{gelamination length after the
delamination grew from the insert). During the frae tests the delamination grew about
0.5 in from the insert end to the middle mark om$pecimens. Photos taken after
unloading the specimens gave a visual estimatidgheofielamination length on the two
edges of the specimens. The tic marks used fazdhmpliance calibration also can be

seen in Figure 5.4.

Figure 5.3. Static ENF Fracture Test Configuradimensions are in inches).
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Insert end - 6/16 Plate middle + 6/16

Figure 5.4. Specimen Top Surface Showing the Positior the Compliance Calibration.
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5.2.8 Fatigue Testing Characterization of the Specimens

The ENF fatigue tests were performed to determhaektardomateas constants
(m;; andCy;) in Mode 1. To do so the delamination growth hade studied. All the
fatigue tests were performed also on the same Ma&ine as the static tests. Six
specimens with the same dimensions, the same adadad the same initial delamination
properties as the static tests specimens werefas#tk fatigue tests as shown in Figure
5.3. The fatigue testing machine was operatedad tmntrol mode with a constant load
amplitude. The specimens were cycled between amaimi displacement loa#,,;,, and
maximum loadB,,,, such that the value of the load ralig;,, /P, Was setto 0.1. The
maximum loadP,,,, corresponding t&;;,,4 vValues equal to 60 %, 40% and 20% of the
average value df;;. from the fracture tests were chosen. For eacheoftiree values of
P.ax two specimens were fatigue tested. The specimens subjected to a sinusoidal
cyclic loading at a frequency of 8 Hz. Before thdue tests a compliance calibration
(following the same procedure as in the fractusésjewas conducted to determine the
relationship between compliance and crack lengthtarcalculate the approprialg
for each of the two specimens being tested atahe§,,,,,, value. For all three
delamination lengths used to obtain this compliaraddration, the load was kept below
a level that would cause further delamination groMturing fatigue, the compliance
(load-displacement data) was measure at a frequeEntyHz until the tests were stopped.
The compliance values were used with the compligadibration to calculate the
corresponding delamination lengths. The fatigutstegre conducted for almost 1

million cycles.
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5.2.8.1 Data Reduction

As in the Mode | fracture case, data reduction emaslucted to obtain the Mode
Il fracture toughnes6y; of the specimens. Here only the compliance calimamethod
was used. Also as said before for the Mode Il tragiance calibration was not only
used during the static testing but also duringféltigue testing, to determine the crack

lengths.

5.2.8.2 Compliance Calibration

As said above three loadings were used to deterthe compliance - crack
length data points, ai, — 6/16, ay + 6/16 and from the initial portion of the fracture

test.a, is the specimens initial delamination.

ap+0.375=1.875"

100
90
80 J’"‘
70
60 ./
50
40 -!“'.
30 /
ig o',.
&

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Load, lbs

Stroke, in

Figure 5.5a. Typical Compliance Calibration Loadacement Graph at - 6/16.
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a, - 0.375=1.125"
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90 &
80 »®
70 o°®
60
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40 o? ¢
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10 ...

Load, Ibs

0 0.01 0.02 0.03 0.04 0.05 0.06
Stroke, in

Figure 5.5b. Typical Compliance Calibration Loads@lacement Graph at + 6/16.
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Figure 5.6. Typical Fracture Test Load-Displacen@raph for Determination dff;.
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Figures 5.5a and 5.5b show typical compliance catiitn load-displacement graphs
from the fracture tests and Figure 6 shows a tyibH- load-displacement plot from the

fracture test for the determination 6f;.

The compliance was determined using the load-diephent data. The compliance

versus crack length data point were fitted to tiiliving equation

C=A4,+A4,a3 (5.7)

The coefficientsA, andA4,; were determined using a least-squares linearssigre
method of C at each crack length as a functiom@fcubed crack length. With those
coefficients the crack length corresponding to emypliance valued(vs P data points)

can be determined using

(52

A typical fracture test fit of compliance as a ftion of crack length is shown in Figure

5.7.

The energy release rafigwas determined using the compliance calibratioatiaat

specified in [26]:

P2 acC
u= ﬁ% (5.9)
Which gives us the equation below when C is repldmeEq. 5.6.
34,P?%a?
=T (5.10)
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0.0011

C =0.000092%+0.00044

0.001

0.0009

0.0008

0.0007

Compliance, in/lbs

0.0006 ® .7
0.0005

a?, in?

Figure 5.7. Typical Fit of Compliance as a FuncidiCrack Length Cubed.

5.2.8.3  Fracture Toughness Calculations

The Mode Il fracture toughness;. for the specimen was determined using Eq.

5.10:

3umax2 a?

¢ = 5.11
1l B (5.11)

WherePB,, ., is the maximum load from the respective fractest and a is the initial half

crack length (first crack length measured fromittsert tip).
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5.2.84 Fatique Test Property Calculations

The maximum load,,,, corresponding t& ;. Values equal to 60 %, 35% and
20% of the average value 6f; from the pre-cracked fracture tests were choBgp.

was obtained by solving Eq. 5.11 and substitutiegdorresponding value Gf;ax

(5.12)

max

1 (ZBGIImax)

a 3m

For the calculation of the crack growth rate, thiues of the crack length at a specific

number of cycles was needed. Since the data atiqoisystem used during the fatigue
test only produced( P) data points at every specific number of cydlesse data points
were first converted into crack length, using E&. Figure 5.8 shows the fracture

surface of a typical ENF fatigue specimen.

The compliance data was recorded at every 4 cyalessure that no data were lost. The
data were then used to calculate the fatigue agemkth rate using the incremental
polynomial method with 7 successive points as empthfor the Mode | fracture. Typical

results for a fatigue crack growth curve is showifrigure 5.9.
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Teflon Film Cyclic Growth

Figure 5.8. Fracture Surfaces of Typical ENF Fai§pecimen.
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Figure 5.9. Reduced Fatigue Crack Growth Data @itset and Growth Regions Shown
[26].
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Only the section of the graph that shows stablguatcrack growth was used for our

analysis (Figure 5.8). That section starts at tieebdelamination length.

For each specimen the fatigue growth curve wagqalon the typical log-log form of the

Kardomateas Law and the data were fitted to aiogisiip on the form of:

~ myj
da _ CyGimmax

- MTimax (5.13)
dN 1- GIImax

yields

myp
_—

~ a ~
(1 - GIImaX)W = C1;Giimax (5'14)
WhEl’EGmax = Gllmax/GICI

The procedure explained in the previous sectiofEtprs.6 was used here with Eq. 5.14
to plot the delamination growth curves in the fahiq. 5.14 and to determine the

values (interval and mean) af; andcC;;.
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5.2.9 Fractureand Fatigue Test Results

Fracture toughness results for all the specimesisdeare shown in Table 5.4.

Table 5.4 Mode Il Interlaminar Fracture Toughndabkies

Specimen I < (in-lb/in?)
7 4.68
8 4.6
9 51
10 4.57
11 4.7z
12 4,75
Average 4,73
Range of values [4.57,5.10]

The different values af;;,,.., for the fatigue tests are shown on Figure 5.10s€
values were used to determine the valueB,gf for the cyclic loading. The values of
Gmax for each of the fatigue tests and the number oliesybefore the delamination

onset for all of the specimens are plotted in Fegud 0 as well as a power law curve fit.

Finally the delamination crack growth results wiargt plotted in the Paris Law form in
Figure 5.11. Then the same delamination crack drovetre plotted in the Kardomateas

Law form in Figure 5.12. We can see that the pogsnot the same and the parameters
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C;; andm,;; have different values for the two different lad¢so a power law fit curve

was computed for all of the fatigue specimen cigrdwths on the same graph

(Figure 5.12) to get the mean valueCgf andm,;.

It should be noticed that Figures 5.11 and 5.12adiéipe delamination growth laws

derived by combining the results of all of the thkfferent cyclic loads (60%, 40% and

20 %) into one plot.

L &

, Gi[max =4.8283N70:138

o,

G i In-1b/in?|

S 2

1 10 100 1000 10000 100000
N, cycles

Figure 5.10. Power Law Fits Applied to the Delamima Onset Threshold Data.
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Figure 5.11. Paris Law Fits Applied to All Six Spaen Delamination Growth Data.
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Figure 5.12. Kardomateas Law Fits Applied to Ak Sipecimen Delamination Growth

Data.
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Table 5.5 Kardomateas Mode Il Coefficient and ExqrarValues

Specimen ID/color Cy my,

F7 lyellown 0.001¢ 4.673¢
F8/green 0.0004 3.0565
F9/gray 0.0004 3.9605

F10/orange 0.0002 2.6947
F11/blue 0.000: 2.914¢

F12/dark blue 0.00006 1.8265

Mean (Fit) 0.0002 2.6807

Range [0.00006,0.0018] [1.8265,4.6735]
0.0003
0.00025 y = 0.0018x*67%5
<
0.0002
g y = 0.0004x3%605
= ;
8 000015 = 0.00046 55 5
5 =0.0002x287
& 00001 Y X
y = 0.0001x29145
0.00005
y = 6E-05x*8265

0

0.15 0.25 035 0.45 0.55 0.65 0.75 0.85 095

lelmax

Figure 5.13. Kardomateas Law Fits Applied to Eaficthe Six Specimen Delamination

Growth Data.
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Figure 5.13 shows each specimen with both its Kaeateas growth curve as well as its

power fit curve.

Table 5.5 shows the values@f andm;; obtained for each of the fatigue specimens with
the power fit curves as well as their mean vahatiaterval range. Each specimen ID is

also linked to its color on the graph.

Table 5.6 shows a summary of all the uncertainrpatars range of values and mean

values.

Table 5.6 Kardomateas Law Uncertain Parameteues

Parameters Range Mean value
C; [0.00001,0.00015] 0.00002
Cy [0.00006,0.0018] 0.0002
my [5.23,9.21 5.42
my; [1.8265,4.6735] 2.6807
G¢ [1.02,1.11] 1.0575
¢ [4.57,5.10] 4.73

103



Chapter 6

Mixed-Model and Il Experiments and Comparison between

Affine Arithmetic Predictions and Monte Carlo Predictions

In the previous section all of the uncertain par@mserange values and mean
values were obtained and summarized in Table H:i8. Section will present how these

parameter values were used to predict the delaiomigngth.

6.1 Determination of the Theoretical Unstable-to-Stable Half Length

The theory described in Chapter IV will now be agglito some specimens,
consisting of a delaminated plate made of the saonmgosite material as in the previous
chapter. This step in necessary to obtain inforonatthat will be used in the mixed mode
experiments such as the unstable-to-stable trangintl,,.. The half-length of the
plates ard. = 2.5 in with a width of 0.48 in. The toughnestadased were the average
values in Table 5.6. First, we need to determieethleoretical value of the unstable-to-
stable growth transition point,,, by examining thé&,, 4, vs! curves (which would have
a zero slope or peak value at this point). If thigal delamination half-length in the plate
is belowl,,, then unstable but contained growth will occuretiee delamination grows
to the length corresponding . Figure 6.1 shows the maximum energy release rate

Gmax @S a function of the delamination half-length radjib, for the applied strain peak
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value that will be used in the experimen&,,, = 2.5 X 1073 and the three cases of

delamination locationh/T = 0.25, h/T = 0.40 andh/T = 0.50.

1.6
14
1.2

0.8 ® h/T=0.25

T max

¢

) ‘
0.6 C "f}\ Y h/T=0.4

5.3 h/T=0.50

0.2 ; —

.

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Delamination length ratio, I/L

Figure 6.1. Maximum Energy Release R&@jg,, as a Function of Delamination Ratio, in

Order to Determind,,..

In Figure 6.1 it is seen that for a delaminatioli-lemgth [, = 0.125 in, which

correspond to a ratiy L = 0.45, we are already at a point beydpdand beyond the
critical length G,,4, = 1) for all of the three different specimens. Therefslmv fatigue
growth is expected. The initial delamination halfigth in all of the three different
specimens tested was selfe= 0.125 in. In figure 6.2 we can see the maximum energy
release rate as a function of the delaminationrlealjth ratio for the specimen tested.
Only the part of Figure 6.1 starting by the rdié = 0.45 was used. Figure 6.3 shows

the theoretical number of compressive cycles (staiween 0 anfl,,,,,,) expected to
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reach a certain delamination half-length usingkhedomateas law. We can see that for
the same initial delamination half-length, the lowree ratioh /T is, the more growth
resistant the specimen is. Moreover in the caseeofame specimen thickness

(specimen318—6 and %), we see that the closer to the surface thatelendnation is, the

more resistant the specimen is.

0.45

®h/T=0.25
o) ® h/T=0.40
0.15 "o..
0000, %0, h/T =0.50
0.1 0000020 ¢% 00
""'biégg—r,
©edd23)

0.05

1 1.1 1.2 13 1.4 15 16 1.7 18
Delamination length ratio, I/,

Figure 6.2. Maximum Energy Release RGjg, as a Function of Delamination Ratio.

106



1000000

8
S

®h/T=025

.:..T';; ® h/T=0.40
h/T =0.50

Number of cycles, N
S
S

:

100
1 1.2 1.4 1.6 18 2 2.2

Delamination half-length (in), [

Figure 6.3. Number of Compressive Cycles as a kamof the Delamination Ratio

(semi logarithmic plot).

6.2 Prediction Using Affine Arithmetic

Once the initial delamination half-length necesgarigave slow and stable
growth was determined, all the characteristichefdpecimens were known. The
prediction of the delamination half-length was daseng the Affine Arithmetic
equations for lower and upper limits of the difigré&inctions of the Kardomateas Law.
The range values of the Kardomateas uncertain peas) from the characterization of
Mode | and Mode Il were used here. Figures 6.44) &nd 6.4c depict the curves of the
lower limit values of the delamination half-lengdnge for every cycle as well as the

corresponding upper limit values for each of tHéedent specimens tested. The lower
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limits correspond to the worst combination of timeertain parameters (the minimum
number of cycles it will take for the delaminatianreach a certain half-lengt) , while
the upper limits corresponds to the best combinaticdhe uncertain parameters (the

maximum number of cycles before the delaminati@chea certain half-lengtdn).

Figure 6.4 (a, b and c) shows that the predicticth® Kardomateas Law using the
average values of the uncertain parameters is ala@ytained inside the prediction made
using the range of values of these uncertain paeameélhat is always a good sign when

a prediction method is being studied.

2.2
=
= 2
<
+—
&
o 1.8
o
T 16 ® average value
c _
o e— AA [Ower limit
s 14
g — AA upper limit
£
© 1.2
[}
()]

1

2.5 3 3.5 4 45 5 5.5 6

log of number of cycles

Figure 6.4a. Comparison of Delamination Growth @griay Affine Arithmetic and by

the Average Value for Specimen h/T = 0.25.
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Figure 6.4b. Comparison of Delamination Growth @srby Affine Arithmetic and by

the Average Value for Specimen h/T = 0.40.
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Figure 6.4c. Comparison of Delamination Growth @sripy Affine Arithmetic and by

the Average Value for Specimen /T = 0.50.
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6.3 Prediction Using Monte Carlo Analysis

Since Monte Carlo analysis is the most used unogytpropagation method, the
prediction made with Affine Arithmetic is compareith the one made using the Monte
Carlo Analysis. Monte Carlo simulation is mainlyfided by the number of samples
chosen for the computation. The number of sampketh@ number of data points
randomly chosen in the range of values of the duaceparameters for the computation
of the prediction half-length. The higher that nianis, the more accurate the prediction

will be; however a higher number of samples is ligdallowed by a longer computation

time.
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Figure 6.5. Comparison of Delamination Growth Cgriaetween Monte Carlo 1 and

Affine Arithmetic for Specimen h/T = 0.25.
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Two Monte Carlo simulations are computed for thedpotion. The first one with
2000 samples is compared to the prediction of Afmithmetic in Figure 6.5. Then the
second Monte Carlo simulation with 6000 samples eeaspared against the Affine
Arithmetic prediction (see Figure 6.6) to see thferkence in terms of prediction

accuracy.
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Figure 6.6. Comparison of Delamination Growth Carizetween Monte Carlo 2 and

Affine Arithmetic for Specimen h/T = 0.25.

Table 6.1 shows the lifetime prediction yields lagle of the simulations and their

computation times. We can see that the Monte Qasioulation predicts the worst case
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for failure; namely, 1 day before the failure ippased to occur (compared to the Affine

Arithmetic prediction).

Table 6.. Comparison of Lifetime Prediction and Computatiomds Between Affin
Arithmetic and Two Monte Carlo Simulations for Daliaation for h/T = 0.25

Uncertainty propagatic

Affine Arithmetic Monte Carlo 1 Monte Carlo 2
method
Number of sample - 200( 600(
Computation time (se 40 25(C 158¢
Log (n) [4.8,5.5 [4.5,5.7 [4.7,5.6
Number of days for 8 H [2.19, 10.98] [1.10, 17.40] [1.73, 13.82]

load frequency

Simply increasing the number of samples to 600pshtle Monte Carlo 2 to
make a more accurate prediction but requires agloogmputation time. It should be
noted that the computation times of the Monte Csirlaulations are relatively small in
the case of the composite materials compared tBdhis Law case for isotropic material.
In addition, the lifetime range predicted in thenpwsite case has a small width, i.e. 2
days to 10 days, which is really useful in practltshould be noted that the
Kardomateas coefficients and exponents were comrsidesre independent as explained
in the Affine derivation. But as we have seen whienputing the delamination growth
curve for every specimen the coeffici€hand the exponemh are linked through the
Kardomateas Law and hence are not independentd akio account the dependence of

those two parameters would yield a tighter predictange.
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6.4 Experimental Results

The experimental study was conducted on the samercéiber material as for
the Mode | and Mode Il characterization tests. Bpsicimens were laid up by hand and
cured in an Autoclave oven at a temperature of2{@@cuum bag was placed prior to
the curing cycle). The initial delamination halfigth of 1.125 in. was produced by
placing at the desired location, through the emtagth, a Teflon film of 0.001 in
thickness. After curing, the thicknesses of thecspens were measured with a
micrometer at three different points through thdtiviand length to insure overall

uniformity.

The cyclic compression tests were conducted ospkeimens at a frequency of 8 Hz,
and the delamination growth was monitored usingp@ral Image Capability and visual
measurements. All the experiments were conductactahstant maximum compressive
strain€,,,4,. The specimens had a width of 0.48 in. and alkalfth between grips of

L=25in.

Three delamination configurations were tested:

(a) 16 plies, specimen thickne$s= 0.112 in, delamination between the fourth and
fifth layer, hencé/T = 4/16 = 0.25. This specimen is denoted 4/16

(b) 16 plies, specimen thickne¥s= 0.113 in, delamination between the eighth and
ninth layer, henc&/T = 8/16 = 0.5. This specimen is denoted 8/16

(c) 10 plies, specimen thickne$s= 0.074 in, delamination between the fourth and

fifth layer, hencé/T = 4/10 = 0.4. This specimen is denoted 4/10.
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Figures 6.7a, b and c show the actual experimeatal against the prediction of Affine
Arithmetic. It should be first emphasized that silise experimental delamination lengths
were measured using the visual method and Themmagihg Capability, only
measurements of delamination lengths at discrateégpt some specific number of
cycles) were performed. At every length measurentbatfatigue test was stopped and
the specimen taken out of the MTS machine befararteasurements. Therefore the
experimental data are given as discrete data paimie the Affine Arithmetic prediction

is given as curves. Table 6.2 shows a detaileddenfcthe experimental data.

Table 6.2 Experimental Data for Delamination H-Lengtk

h/T Number of cycle l, inche:
Specimen type Delamination half-length
4/16 (0.25 100( 1.1¢
T=0.112 10000 1.3
50000 15
100000 2
4/10 (0.40 100(¢ 1.1
T=0.074 10000 15
50000 1.8
8/16 (0.50 100( 1.1t
T=0.113 10000 15
30000 2.2
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Figure 6.7a. Comparison of Experimental Data arfchAfArithmetic Prediction for
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Figure 6.7b. Comparison of Experimental Data anfthAfArithmetic Prediction for
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Figure 6.7c. Comparison of Experimental Data anfthafArithmetic Prediction for

h/T = 0.50.

We can see that in Figure 6.7 that all the expertailedata points are inside the range of

values predicted by Affine Arithmetic which showst the prediction is correct.

In Figure 6.8 we can see the display of the spetsnfi@ermal Imaging Capability. We
were able to see distinctively the different pdrthe tested material using Thermal
Imaging. It was also very helpful to measure trepldiyed delamination and to compare
with the visual measurements. An example of vissahsurements is also shown in
Figure 6.9. In Figure 6.10 different stages ofdetamination growth can be seen using
Thermal Imaging. Figure 6.11 shows a front and side/ of a specimen during the
mixed-mode | and Il fatigue test.
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Griped part Undelaminated part Delamination part

Figure 6.8 Delaminated Specimens Display Througkrifal Imaging.

Figure 6.9 Delaminated Specimen Using Visual Mezm@nt.
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Figure 6.11 Specimen During Mixed-Modes | and Higize Test.
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Chapter 7

Conclusion and Future Work

In this study, an uncertainty algorithm called A#iArithmetic was used to predict the
delamination half-length and lifetime of composifeecimens made of carbon fiber. The
Kardomateas Law was used as the crack growth lavthenderivations necessary to
compute the range values of the lifetime were shd&®vedictions were made using the
uncertain parameters range of values instead girthi@ability distribution. The study
showed every step necessary for the predictiormofadje in SHM, starting with the
derivation of the Affine Arithmetic forms, the detanation of the different uncertainty
parameters in Mode | and Mode Il of fracture, theasurement of the mixed-mode | and
Il delamination length using Thermal Imaging anthfly the comparison of Affine

Arithmetic predictions with different Monte Carlomailations.

Affine Arithmetic was found very accurate in iteegictions and converges very quickly
compared to the Monte Carlo simulations. However,dependency between the
coefficient and the exponent in Mode | as welllesrtdependency in Mode 1l was not
taken in account in this study. To be sure thain&ffArithmetic predicts tight bounds for
the lifetime of the specimens, more specimens shioellstudied on a longer number of

cycles.

It would be interesting as a continuation of tlesearch to take the dependency of these
two parameters (between, on the first h@pdndm; and on the second hand dependency
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betweerC;; andm,;) into account and see the effects on the predi@ozuracy and

computation time.

Only three specimens were studied in this casthprediction and not too many
specimens were tested in Mode | and Mode Il ofténacfor the determination of the
uncertain parameters range of values. A study fogyzincipally on the determination
of those uncertain parameters range of values waefiditely increase the accuracy of

the Affine Arithmetic prediction.

Other damage mechanisms, such as, damage duedoctiloading, damage due to cyclic
compression — tension loading, could also be stiudéeng Affine Arithmetic, as long as

one is willing to derive the necessary equations.
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