Feb 26th, 2:00 PM

ASTRIA Ontology: Open, Standards-based, Data-aggregated Representation of Space Objects

Jennie Wolfgang
The University of Texas at Austin, jennie.wolfgang@gmail.com

Kathleen Krysher
The University of Texas at Austin, kathleenkrysher@utexas.edu

Michael Slovenski
The University of Texas at Austin, mcslovenski@gmail.com

Unmil P. Karadkar
The University of Texas at Austin, unmil@utexas.edu

Shiva Iyer
The University of Texas at Austin, shiva.iyer@utexas.edu

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/stm

Part of the [Cataloging and Metadata Commons](https://commons.erau.edu/cataloging), [Databases and Information Systems Commons](https://commons.erau.edu/dbs), and the [Space Vehicles Commons](https://commons.erau.edu/vehicles)
Presenter Information
Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil P. Karadkar, Shiva Iyer, and Moriba K. Jah

This event is available at Scholarly Commons: https://commons.erau.edu/stm/2019/presentations/2
ASTRIA Ontology: Open, Standards-based, Data-aggregated Representation of Space Objects

Jennie Wolfgang, Kathleen Krysher, Michael Slovenski, Unmil Karadkar
School of Information
The University of Texas at Austin
unmil@utexas.edu

Shiva Iyer, Moriba Jah
Dept of Aerospace Engineering and Engineering Mechanics
Computational Astronautical Sciences and Technologies
Institute for Computational Engineering and Sciences
The University of Texas at Austin
{shiva.iyer,moriba}@utexas.edu

Abstract

The necessity for standards-based ontologies for long-term sustainability of space operations and safety of increasing space flights has been well-established [6, 7]. Current ontologies, such as DARPA’s OrbitOutlook [5], are not publicly available, complicating efforts for their broad adoption. Most sensor data is siloed in proprietary databases [2] and provided only to authorized users, further complicating efforts to create a holistic view of resident space objects (RSOs) in order to enhance space situational awareness (SSA).

The ASTRIA project is developing an open data model with the goal of aggregating data about RSOs, parts, space weather, and governing policies in order to provide a comprehensive awareness of space objects and events. The first step in this direction involves modeling RSOs. Our standards-based, graph data model adopts design and documentation best practices as well. The model expresses data using well-known general-purpose data modeling schemas (such as Dublin Core [1] and OAI-ORE [4]), and orbit representations (such as Keplerian elements and position-values), and controlled vocabularies (e.g. DISCOS classifications of space debris, orbital regimes, and fragmentation events [3]) expressed as Resource Description Framework (RDF) triples. Recognizing uncertainties in tracking as well as associating RSOs with known objects, our model supports name or track-based initiation, incremental specification, and uncertainty in association.

De-siloing data is the first step toward enabling discovery regarding impact of the space environment and human based activity on space object behavior. We intend the ASTRIA ontology to support data-driven decision-making processes in order to make the space domain safe, secure, and sustainable.

References

