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Abstract 

Researcher: Abdulla A. Karmustaji 

Title: Real-Time Optimization Based Power Flow Controller For Energy 

Consumption And Emissions Reduction In A Parallel HEV 

 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Mechanical Engineering 

Year: 2016 

As the regulations on the fuel economy and emissions standards become 

higher, Hybrid Electric Vehicles (HEV) are gaining more popularity in the market. 

HEVs improvements in fuel economy and emissions strongly depend on the energy 

management strategy. An optimization based power flow controller is presented in 

this thesis to find the appropriate power split between the Internal Combustion 

Engine (ICE) and the electric motor to reduce the energy consumption and 

emissions. However, emissions were not taken into consideration in results due to 

lack of reliable results. A basic power flow controller was built to compare to the 

optimization based controller. A plant model of each component of the vehicle was 

built in Simulink to evaluate the performance of each controller. Compared to the 

basic power flow controller, the real-time energy and emission minimization 

controller using shift schedule (ReTEEM-SS) reduced the energy consumption by 

approximately 6.2% in city driving style and 5.4% in highway driving style. The 

optimization based controller was further modified to replace the shift schedule 

with a shift logic. The real-time energy and emission minimization controller using 

shift logic (ReTEEM-SL) reduced the energy consumption by 10.2% in city drive 

style and 5.3% in highway driver style, when compared to the basic controller. 
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Chapter I 

Introduction 

1.1  Background and Motivation 

Climate change, air quality, and energy security are prominent and global 

issues today. Government and non-governmental organizations are working to 

develop new regulations and funding research to find how to tackle these issues. A 

major contributor of greenhouse gas and particulate emissions is the automobile 

sector, which has traditionally also been one of the largest consumers of fossil fuels. 

Thus, to overcome the current environmental issues, newer, more efficient, and 

cleaner technologies are being developed for implementation in cars. 

A variety of options are under development, some of which augment 

traditional internal combustion engines with other energy generation devices and 

alternative fuel sources, while others utilize novel power generators and strictly 

renewable energy sources. Nowadays, internal combustion engine (ICE) has been 

used with different alternative fuel sources such as E85 and B20. E85 is made from 

the ultimate renewable resource, corn, and consists of a blend of 85% ethanol and 

just 15% gasoline. A flexible fuel vehicle (FFV) is specially designed to run on any 

ethanol blend up to 85% ethanol, where the computer adjusts the fuel injection and 

ignition timing appropriately. The main benefits of FFV is the increased power and 

acceleration and reduced emissions and air pollution. However, the energy density 

of E85 is less than the gasoline, as a result, it will have lower fuel economy. B20 is a 

term used for 20% biodiesel, comes from renewable resources such as soybeans 
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and waste cooking oil, and 80% petroleum diesel to create biodiesel blend. Since it 

is made from renewable resources, biodiesel is better for the environment. It has 

higher energy density than gasoline which will result in a better fuel economy. 

Another technology that has been developed to integrate with the ICE is the 

mild hybrid. It allows the engine to be turned off whenever the car is coasting, 

braking, or short stop, as well as it captures the energy from braking. This 

technology can be used by replacing the starter and the alternator by a single 

electric device to combine the purpose of both devices into one and be able to assist 

the power to the ICE. Furthermore, a bigger electric motor can be used to be able to 

operate in electric mode only, to form a full hybrid electric vehicle (HEV). Hybrid 

vehicles can accomplish all the benefits of mild hybrid, and operate in electric only 

when the battery’s state of charge (SOC) is high. The battery can be charged by 

braking, engine or converting the heat energy from the brakes to electric energy. An 

electrical outlet can be used to charge the battery, such design is called a Plug-in 

Hybrid Electric Vehicle (PHEV). PHEVs share both characteristics of the electric 

vehicle (EV) and the conventional vehicle. Unlike Hybrid vehicles, EVs operate 

without ICE and solely depends on the wall power outlet. Another power generator 

device that is used in cars is fuel cell. It is considered a zero emission vehicle since it 

uses oxygen and compressed hydrogen, with no pollutants on the tailpipe. In 

addition, it has higher fuel economy than the gasoline, however, it is a very 

expensive technology.  
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Out of the many vehicle options that is available in the market, HEVs are 

probably the most promising and currently viable approach to reduce fuel 

consumption and emissions in from automobiles and reduce their environmental 

impact.  

To encourage development of hybrid vehicle technologies, and nurture the 

future automotive engineers so that they enter the workforce with a motive and 

capabilities to produce green vehicles, Embry-Riddle Aeronautical University 

(ERAU) takes part in a collegiate competition called EcoCAR. EcoCAR 3 Advanced 

Vehicle Technology Competition, sponsored by the US Department of Energy and 

General Motors (GM), and managed by Argonne National Laboratory is the current 

and third iteration of the EcoCAR competition. Participating student teams are 

required to redesign the powertrain of a stock 2016 Chevrolet Camaro to turn the 

car into a hybrid or electric vehicle, integrating the use of alternative fuels and other 

innovations. Thus, teams strive to reduce the car’s environmental impact while 

maintaining the performance and character of a muscle car. This thesis will focus on 

developing an energy management system for the built hybrid Camaro to distribute 

the torque demand from the driver to the powertrain to reduce the energy 

consumption and emissions. 
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1.2  Vehicle Architecture 

 

The developed controller in this thesis is evaluated using the EcoCAR 3 

Camaro HEV. The architecture that the EcoEagle team is be building is a Parallel-

Series Plug-in Hybrid Electric Vehicle (PHEV), as shown Figure 1. This rear wheel 

drive vehicle can operate in either series or parallel hybrid configurations by 

engaging or disengaging the clutches. Table 1 shows the list of the components that 

will be added and replaced to the hybrid Camaro. 

 

Figure 1: The component connection diagram of the vehicle architecture and the 
power flow in Series and Parallel operation modes. 
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Table 1: List of the powertrain components. 

Component 
Manufacturer 

and Model 

Performance 

specifications 

Electric Traction 

Motor (x2) 
Bosch IMG 

70 kW 

350 N.m 

2.4L E85 ICE 
GM 

LEA 

136 kW 

233 N.m 

8-Speed AT 

Transmission 

GM 

8L90 
-- 

ESS 
A123 

7x15sx3p 
18.9 kWh 

The internal combustion engine used is a donated 2.4L GM LEA ECOTec 

calibrated for E85 fuel. Its power is supplemented by a pair of Bosch IMG 

motors/generators. The motors are controlled by Bosch inverters. Tractive force is 

sent to the wheels through a GM 8L90 8-speed automatic transmission. The on-

board energy storage system (ESS) is an A123 7x15s3p battery pack with a capacity 

of 18.9kWh and peak power of 177kW.  

1.3  Statement of Problem and Thesis Scope 

One of the challenges for the development of Parallel architecture HEVs is the 

energy management system (EMS) that coordinates the contributions of multiple 

energy sources. The main objectives of the EMS in HEVs are to increase the overall 

powertrain efficiency and reduce emissions while sustaining the battery charge and 

meeting the driver’s demand for traction power. Another challenging task is to 

determine the gear shifting strategy for Parallel HEVs because the throttle pedal 

position requests a torque from the drivetrain which could come from either one or 

both of the mechanical power generating devices. Therefore the transmission shift 

points cannot primarily depend on the throttle position and the engine torque, as it 



 

17 

 

does in a conventional vehicle. The scope of the thesis is to develop a real-time 

power flow controller that will optimize the operating point based on energy 

consumption and emissions to handle the mentioned challenges. Emissions were 

not taken into consideration in results due to lack of reliable data, but the controller 

methodology section explains how it would handle the emissions if sufficient data 

were available. The definition of real time is intended to convey a decision making 

process that can be executed in real time while driving. The algorithm presented 

relies on information available during driving in a custom supervisory control 

system. The application of this algorithm in a real time computing context is left for 

future work. 

The new power flow controller should be able to select the appropriate 

torque combination between the motor and the engine and to select the appropriate 

gear without a predetermined shift schedule to reduce the energy consumption and 

emissions. In addition, the power flow controller should be easily modified to be 

applicable to any parallel architecture with different components. 
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Chapter II  

Review of the Relevant Literature 

This chapter presents a literature survey of various energy management 

approaches. Section 2.1 reviews the rule based control strategy which is widely used 

in HEVs. Section 2.3 discusses the main idea of the optimization based dynamic 

programming. Section 2.4 presents different controllers and how it is integrated 

with Intelligent Transportation Systems (ITS) to predict future driving pattern to 

manage the energy more appropriately.  

2.1  Rule-Based Control Strategy (RBCS) 

HEVs and PHEVs primarily use rule-based control strategy (RBCS). It uses 

knowledge about physical systems and components, gained through experiments, 

and translates it to mathematical models. For example, when used to control the 

components generating tractive effort in a hybrid vehicle, it is mainly based on the 

idea of ‘load-leveling’. This means that it shifts the actual ICE/motor operating point 

as close as possible to the optimal point of efficiency, fuel economy, or emissions at a 

particular speed without a prior knowledge of the driving conditions. The idea of 

load leveling vehicle operation strategy for energy management is used widely in 

many different controllers [1], [2] , [3] and [4]. Adhikari proposed an online power 

flow control strategy for PHEV based on the power balancing strategy, which 

controls the ICE within its peak-efficiency region by using the electrical system [3]. 

Zhao used a fuzzy logic based controller to implement a power balance strategy on 

an Off-road HEV to make the engine operate close to the optimal curve [5]. RB 

strategies can be classified as deterministic or fuzzy RBCS. 
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2.1.1 Deterministic RBCS 

A Power follower controller is a RBCS that uses the engine as the primary 

source of power, and the electric motor to provide additional power when required, 

while sustaining the State of Charge (SOC) of the battery. However, this 

deterministic strategy doesn’t optimize the overall efficiency and emissions [6]. 

Instead, it controls the operation of the power generating devices based on the 

vehicle speed, SOC, and driver demand. It uses only the electric motor when the 

vehicle speed is below a certain threshold, and uses the ICE when the vehicle speed 

is above the threshold. The operating point of the ICE is kept close to optimal 

efficiency by producing either positive or negative torque from the motor. During 

braking, the motor is used to capture the kinetic energy. However, when the SOC 

falls below the minimum threshold, the controller requests more load on the engine 

to replenish the battery via electric motor. 

Nowadays many HEVs use this strategy to split the torque between the 

engine and the motor. A comparative study was performed by Ma and Kang that 

shows that the GM Volt and the Toyota Prius control strategies are based on a power 

follower control strategy [7], as well as the Honda Insight [8]. 

2.1.2 Fuzzy Logic Controller (FLC) 

Using prior knowledge and experiments of the drivetrain operation, fuzzy 

logic strategies can be used to develop a controller that will seek the optimal engine-

motor torque distribution [9] [10] [11] [12] [13]. In fuzzy logic language, the input 

and output variables are described by linguistic values such as high, medium, and 
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low. The main advantages of FLC are the ability to deal with nonlinearity, 

uncertainty, and adaptation, since it can be easily tuned based on the given 

knowledge. Real-time operation is the most reliable way of obtaining knowledge to 

tune the parameters, however, it requires a long time and involves high cost [14]. 

Another effective way is by using simulations to tune the control parameters until 

achieving optimal parameters for the specified operation environment. 

A fuzzy-logic based torque distribution controller was implemented and 

tested in a real service route for a parallel hybrid electric city bus by Lee to decrease 

the emissions of nitrogen oxides (NOx) from the diesel engine [9]. To acquire data 

for the system design of the HEV, a dynamometer test was carried out where every 

possible torque-speed combination of the powertrain and the corresponding NOx 

emissions were measured. The test results showed that the diesel engine produced 

relatively low torque with a large amount of emissions when its rotational speed 

was low. Conversely, it produced relatively high torque and a small amount of 

emissions when its rotational speed was high. The FLC controls the diesel engine 

and the motor to provide sufficient torque to the vehicle with emission 

characteristics that meet the vehicle emission. To ensure the SOC of the battery is 

sustained, the on-going battery charging control using surplus power of the diesel 

engine is preferred when it operates at high efficiency.  The proposed fuzzy-logic 

based can reduce NOx emissions by 20% when the powertrain is assisted by the 

electric motor, compared to only a diesel engine supplying tractive effort to the 

drivetrain. 



 

21 

 

2.2  Optimization-based Control Strategy 

In optimization-based control strategies, the goal of a controller is to 

minimize the cost function. The cost function for an HEV may include the energy 

consumption and emissions. However, their formulation is based on dynamic and 

static mathematical models of the powertrain systems components, resulting in 

sensitivity to system parameter variation, system uncertainties, imprecise 

measurement, and noises [15]. 

In order to eliminate the main disadvantage of the power follower controller 

– its inability to optimize the overall drivetrain efficiency – Johnson et al. [16] 

proposed a Real Time Control Strategy (RTCS), which minimizes the energy usage 

and emissions through a cost function. In order to determine the ideal operating 

point of the vehicle’s powertrain, this control strategy considers all possible engine-

motor torque pairs (candidate operating points) which meet the driver’s demand. 

Using a time-averaged speed, the controller computes the instantaneous energy 

consumption and emissions for candidates. Then it calculates the ‘replacement 

energy’ that would restore the battery’s SOC to its initial level. This replacement 

energy also accounts for the inefficiencies in the energy storage system conversion 

process. Furthermore, other parameters such as user-and standards-based 

weightings are used to impact the time-averaged fuel economy and emissions 

performance in the overall impact function. The controller continuously selects the 

operating point that is the minimum of this cost function. However, this approach is 

not desirable for online implementation due to the expensive computations 

required to determine all the possible engine-motor torque pairs. Simulations were 
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performed to compare the results of the RTCS and a power follower controller on a 

parallel HEV using ADVISOR. The RTCS reduced NOx emissions by 23% and PM 

emissions by 13% with a drop of only 1.4% in fuel economy. 

2.3  Dynamic Programming 

Another strategy to minimize the fuel consumption and emissions is dynamic 

programming (DP) which is used widely as HEV management system [17] [18] [19]. 

However, this approach is not an option for real-time implementation due to 

computation time and requisite prior knowledge about the entire drive cycle. 

Despite this, DP is a valuable analytical tool that provides important advantages 

while developing controllers and designing the vehicle [15]. In this optimization 

based control strategy, the vehicle is considered as a discrete dynamic system 

described by state functions. This technique is used to minimize the cost function to 

achieve the desired goal. The computational complexity of the DP approach is its 

main drawback [6].  

To reduce the computational burden of DP, some variables such as battery 

charging and discharging, and motor efficiency are usually assumed to be constant 

[20]. The main benefit of DP is its ability to minimize the fuel consumption and 

emissions by finding the optimum point at each time instant.  

2.4  Predictive CS 

Many types of Energy Management Systems (EMS) have been proposed to 

split the torque demand efficiently to reduce the emissions and improve fuel 

economy based on the current driving conditions. However, an appropriate 
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allocation cannot be determined based only on the current driving condition 

because the battery’s charge and discharge strategy depends on an entire driving 

pattern from a departure point to a destination. As a result, many strategies have 

been proposed to use the predicted future driving pattern, using Intelligent 

Transportation Systems (ITS) in order to choose the appropriate torque distribution 

strategy between the engine and the motor. As an example, Gong proposed a control 

strategy that uses on-board geographical information systems (GIS), global 

positioning systems (GPS), and advanced traffic flow modeling techniques to gather 

information about the future driving path and conditions [21].  Using the historic 

traffic information to model driving cycles, optimal power management of PHEV is 

used in the charge depletion mode, and dynamic programming algorithm is applied 

to reinforce the charge depletion control such that the SOC drops to a specific 

terminal value at the final time of the cycle. This proposed EMS was compared with 

basic rule-based power management and showed significant improvement in fuel 

economy.  

Hajimiri proposed FLC for energy management based on the future state of 

the vehicle using GPS in order to improve fuel consumption, emissions and 

performance [22]. Furthermore, the EMS is modified to increase the state of health 

(SOH) of the battery. Simulations verified that this strategy met all the desired goals.  

Ichikawa proposed a novel energy management system for HEV that utilizes 

car’s navigation system over a commuting route. He designed an efficient technique 

to manage the big amounts of collected data and cluster them into appropriate 
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driving patterns [23]. This makes online implementation easier and more efficient 

to predict the future driving patterns based on the collected data. Using the 

predicted driving pattern, it determines the appropriate distribution of energy using 

the characteristics of the engine and the motor to find the optimal split, making this 

a combination of predictive and deterministic RBCS. Figure 2 shows the rough 

distribution of output torque from the EMS. 

 

Figure 2: Engine and motor power distribution based on velocity. 

Since the engine is inefficient at low loads and speeds, the motor is used to 

provide the requested power. Conversely, the EMS prefers to use power from the 

engine at higher vehicle speeds. However, to sustain the battery’s SOC, the 

distribution can vary so that the surplus power from the engine can be captured in 

the ESS.  
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Chapter III 

Methodology 

The purpose of the power flow controller is to demand the appropriate 

torque distribution between the electric motor and the ICE that will correspond to 

the appropriate operating point to reduce the energy consumption and/or 

emissions while meeting the desired road load from the driver. 

3.1  Vehicle System Modeling 

Simulink and Matlab were used as a modeling environment to simulate the 

behavior and evaluate the performance of parallel-series PHEV. Matlab scripts were 

created that contained all relevant vehicle parameters to be used by the plant 

models for different components, as well as the drive cycles as input to the main 

model in Simulink. The drive cycle script reads an excel spreadsheet, consisting of 

two column matrices, in which the first column represents time in seconds and the 

second column represents the corresponding desired vehicle speed in miles per 

hour. Figure 3, Figure 4, Figure 5, and Figure 6 show all the four drive cycles used to 

evaluate the performance of the vehicle, obtained from United States Environmental 

Protection Agency (EPA) website [24]. The 505 drive cycle, as shown in Figure 3, is 

the first 505 seconds of the Urban Dynamometer Driving Schedule (UDDS). Since 

US06 city and highway drive cycles are short, they are repeated to ensure the ability 

of the controller to sustain the charge of the battery.  
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Figure 3: 505 Drive cycle to mimic low speed drive style. 

 

Figure 4: Highway Federal Economy Test (HWFET) to mimic high speed 
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Figure 5: US06 City drive cycle to mimic aggressive low speed drive style. 

 

Figure 6: US06H drive cycle to mimic aggressive high speed. 
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Starting from the top level in Simulink, as shown in Figure 7, the four main 

subsystems are the Driver, Power Flow Controller, Powertrain, and Glider. 

 

Figure 7: The top model in Simulink 

3.1.1 Driver 

The Driver subsystem generates the desired tractive force to the powertrain 

based on the drive cycles speed and vehicle speed. This is done by using a PID 

controller to find the appropriate overall tractive effort in order for the vehicle to 

follow the drive cycle which is based on the difference between the desired and 

actual vehicle speed. The tractive effort is then fed into the Powertrain subsystem 

that contains all the plant models of the vehicle’s components. 

3.1.2 Powertrain 

In HEVs, the desired torque from the driver needs to be distributed 

efficiently between the motor and engine. Three different power flow controllers 

will be evaluated and explained in more detail. The output of the controller is a 

demand electric motor and engine torque from the powertrain. 
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3.1.2.1 Internal Combustion Engine (ICE) 

The ICE block models the characteristics of the GM LEA engine as given in 

Table 2. 

Table 2: Characteristics of the modeled engine. 

Characteristic Value 

Displacement 2384 cc 

Cylinders I4 VVT 

Fuel E85 DI 

Maximum power 136 kW @ 6700 rpm 

Maximum torque 233 Nm @ 4900 rpm 

The engine speed (𝜔) is an input to the one-dimensional lookup table to 

determine a maximum available torque. The engine output torque is the minimum 

between the maximum available torque and the demand torque. To calculate the 

instantaneous and accumulated fuel consumption, the engine output torque and 𝜔 

are inputted into a two-dimensional brake specific fuel consumption (BSFC) lookup 

table that contains fuel flow rate data (in kg/s). Equation 1 is used to find the fuel 

power input to the engine for further performance calculations of the energy and 

efficiency. 

𝑃𝑓𝑢𝑒𝑙[𝑊] = 𝑖𝑛𝑠𝑡. 𝑓𝑢𝑒𝑙. 𝑟𝑎𝑡𝑒 [
𝑘𝑔

𝑠
] × 𝜌𝑓𝑢𝑒𝑙 𝑒𝑛𝑒𝑟𝑔𝑦  [

𝐾𝑊ℎ

𝑘𝑔
] ×  3600 [

𝑠

ℎ
]  × 103  [

1000 𝑊

1 𝑘𝑊
]  (1) 

 Engine braking and thermal effects are not considered and will not change 

the performance of the engine. The operating range is restricted between the idling 

speed of 600 rpm and the redline speed of 6500 rpm using Saturation blocks. The 

accessory loads are accurately taken into consideration since the experimental BSFC 
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data used accounts for the mechanical coolant pump and oil pump running off the 

crankshaft, leading to a slightly higher fuel flow rate. 

3.1.2.2 Electric Motor 

The Motor model uses torque characteristics of the 70 kilowatt Bosch IMG 

motors which was obtained from the manufacture, however, it is not shown because 

the data is proprietary.  

The bus voltage along with the shaft speed are inputs to the two-dimensional 

torque look-up tables to find the maximum motoring and regenerative braking 

available torques. The motor output is the minimum between the maximum 

available torque and the desired torque. The output torque and the through shaft 

speed are used to calculate the operating efficiency through two-dimensional 

lookup tables for both motoring and regenerative braking. The motor efficiency is 

used to calculate either an increased current demand from the ESS or a decreased 

regenerative current sent to the ESS. Due to a lack of manufacturer provided data, 

the performance outputs of the Motor model are affected only by the ESS provided 

voltage. Other effects not modeled in the Motor plant are the performance derating 

due to increasing operating temperature, inertia and back electromotive force (emf). 

3.1.2.3 Energy Storage System (ESS) 

The ESS was modeled with physics-based calculations and then parameters 

were optimized by testing the similar battery pack in the EcoEagles’ EcoCAR 2 

competition vehicle [25]. The modeled ESS is an 18.9kW-hr lithium iron phosphate 

battery. Its characteristics are shown in Table 3 which is obtained from [26].  
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Table 3: Characteristics of the evaluated battery. 
Characteristic Value 

Battery Chemistry Lithium Iron Phosphate 

Battery Pack 7x15sx3p 

Cell Capacity (minimum) 19.6 Amp-hr 

Cell Voltage (nominal) 3.24 volts 

Pack Voltage (nominal) 340 volts 

Pack Energy (minimum) 18.9 kW-hr 

For parameter optimization, two tests were performed – constant and 

variable current discharge. For both tests, the voltage was measured to be compared 

with the model voltage as shown in Figure 8 and Figure 9 [26]. 

 

Figure 8: Measured and simulated voltage for a constant discharge current of 
100 Amps. 
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Figure 9: Measured and simulated voltage for a variable discharge current. 

The mean squared errors between measured and simulated data for constant 

and variable discharge tests are 0.26 and 0.21 volts, respectively. This validates the 

ESS model developed. See [26] for full detail of the ESS modeling process. 

3.1.2.4 Transmission 

The Transmission subsystem is modeled using the characteristics of the 

eight-speed automatic transmission (8L90) obtained from GM using state flow in 

Simulink [27]. The gear ratios used in this transmission and the final drive ratio are 

listed in Table 4. 
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Table 4: Gear reductions used on the modeled vehicle. 

Gear Number Gear Ratio 

1 4.56 

2 2.97 

3 2.08 

4 1.69 

5 1.27 

6 1.00 

7 0.85 

8 0.65 

Final Drive 2.85 

The eight-speed transmission controller decides when the Transmission 

needs to upshift, downshift or stay in the current gear based on vehicle speed 

thresholds calculated as shown in Figure 10. The throttle and vehicle speed are 

inputted to the two-dimensional lookup tables to obtain the corresponding gear 

shift speed threshold. The up-shift and down-shift maps were obtained from GM but 

are not shown because they are proprietary. 



 

34 

 

 

Figure 10: Transmission controller using shift schedule. 

Since most of the simulations were run in charge sustain mode, which is 

mainly based on the ICE, the throttle calculation was based only on the ICE as shown 

in equation 2. 

𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 [%] =
𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑜𝑢𝑡𝑝𝑢𝑡

𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑚𝑎𝑥
                                                    (2) 

The gear number from the transmission controller state flow block is fed to 

the one-dimensional look-up table to find the corresponding gear ratio. The 

combined torque from the Motor and the ICE is then multiplied by the gear ratio, 

and the shaft speed is divided by the ratio, to form the output torque and shaft 

speed from the transmission, as shown in the Equations 3 and 4 

𝜏𝑝𝑜𝑠𝑡−𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝐺𝑅 × 𝜏𝑝𝑟𝑒−𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛                                    (3) 

𝜔𝑝𝑜𝑠𝑡−𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =
𝜔𝑝𝑟𝑒−𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝐺𝑅
                                          (4) 
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where GR is the transmission gear ratio. 

3.1.2.5 Wheels and Differential  

The Differential and Wheels block is simply converting the torque output 

from the transmission to the tractive effort at the wheels, as shown in Equation 5 

𝐹𝑝𝑜𝑠𝑡−𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 =
𝜏𝑝𝑜𝑠𝑡−𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛×𝐹𝐷𝑅

𝑟𝑡𝑖𝑟𝑒
                                      (5) 

where the FDR is the final drive ratio. The parameter for the tire is set to the same 

value as the baseline vehicle, 0.341 meters, which were provided by the competition 

sponsors. 

3.1.3 Glider 

The Vehicle Body subsystem evaluates the effect of all the forces – tractive, 

rolling, grade and aerodynamic drag – on the vehicle’s speed. Equation 6 through 9 

show all formulas used to calculate all forces. 

𝐹𝑎𝑒𝑟𝑜 =
1

2
𝐶𝐷 × 𝜌 × 𝐴 × 𝑣2                                                   (6) 

where 𝐶𝐷 is the drag coefficient, 𝜌 is air density, and 𝐴 is the frontal area. 

𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑚 × 𝑔 × 𝐶𝑟𝑟                                            (7) 

where 𝑚 is the mass of the vehicle, 𝑔 is the gravity, and 𝐶𝑟𝑟 is the rolling resistance 

coefficient. 

𝐹𝑔𝑟𝑎𝑑𝑒 = 𝑚 × 𝑔 × sin tan−1(𝑟𝑜𝑎𝑑 𝑖𝑛𝑐𝑙𝑖𝑛𝑒[%])                                 (8) 
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Thus, 

𝐹𝑟𝑜𝑎𝑑 𝑙𝑜𝑎𝑑 = 𝐹𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 − 𝐹𝑎𝑒𝑟𝑜 − 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝐹𝑔𝑟𝑎𝑑𝑒                      (9) 

Table 5: Vehicle parameters. 

Vehicle Parameter Value 

Mass 2020 [kg] 

Frontal area 2.222 [m2] 

Drag coefficient 0.344 

Rolling resistance 0.01 

Initial velocity 0 [m/s] 

Road incline 0 [%] 

The parameters entered into this block are listed in Table 5. These 

parameters have been updated from the stock vehicle values to reflect the physical 

modifications made to the car when the new powertrain is added. The values were 

obtained by building a CAD model of the vehicle in Siemens NX [25]. 

3.2  Power Flow Controller 

For HEVs, at any time for any vehicle speed, the control strategy has to 

determine the power split between energy sources. In this thesis, three power flow 

controllers were developed for the same vehicle. First, a basic power flow controller 

that uses the engine as a primary source of power when the vehicle is in CS mode. 

Second is the optimization based power flow controller which is the main focus of 

the thesis work. Third is a modified optimization based power flow controller which 

substitutes the traditional shift schedule with a shift logic. 
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3.2.1 Basic Power Flow Controller 

 

Figure 11: Simulink block diagram of the basic power flow controller. 

The basic controller was developed for two main reasons. First, to have a 

basic running controller so the new powertrain of the new Camaro can be put 

together and perform bench testing until a better controller is developed. Second, to 

have a basic controller that the new developed controller can be compared to. 

The controller demands zero torque from the engine and 𝜏𝑚𝑜𝑡𝑜𝑟  equal to the 

output of equation 1 under these conditions: 

a. The SOC is above the minimum threshold: charge deplete (CD) mode 

b. 𝜏𝑑𝑒𝑚𝑎𝑛𝑑 < 0 : the vehicle is slowing down 
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Otherwise, the controller demands torque from the engine as shown in the 

equation 10, and demands negative 𝜏𝑎𝑢𝑥 from equation 11. 

𝜏𝑒𝑛𝑔𝑖𝑛𝑒/𝑚𝑜𝑡𝑜𝑟[𝑁.𝑚] = 𝜏𝑑𝑒𝑚𝑎𝑛𝑑[𝑁.𝑚] + 𝜏𝑎𝑢𝑥[𝑁.𝑚]                                 (10) 

where the auxiliary torque is calculated using, 

𝜏𝑎𝑢𝑥[𝑁.𝑚] = 1.1 ×
𝐴𝑢𝑥 𝐿𝑜𝑎𝑑[𝑊]

𝜔[
𝑟𝑎𝑑

𝑠
]

                                                (11) 

The constant value of 1.1 is used to account for the average efficiency loss of 

the electric motor. 

3.2.2 Real-Time Energy and Emission Minimization Controller (ReTEEM-SS) 

The main objective of the controller is to find the optimal split between the 

engine and the motor. An optimization based controller is developed to minimize a 

cost function J as shown in equation 12.  

 𝐽 = 𝑑𝑎𝑡𝑎𝑛𝑜𝑟𝑚,𝑢𝑠𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑘𝑢𝑠𝑒𝑟 × 𝑑𝑎𝑡𝑎𝑛𝑜𝑟𝑚        (12) 

where 𝑑𝑎𝑡𝑎𝑛𝑜𝑟𝑚 is obtained by following the procedure explained in section 3.2.2.1 

through section 3.2.2.8, and 𝑘𝑢𝑠𝑒𝑟 is a user defined weighting that modifies the cost 

function to prioritize the desired factor.  The cost function 𝐽 is subject to the 

constraints 

�̇� = 𝑓(𝑥, 𝑡, 𝑢)

𝑔(𝑥, 𝑢) = 0

ℎ(𝑥, 𝑢) ≤ [
0
0
]

                                                            (13) 
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where 𝑓 is the dynamical state equation, 𝑥 the state variables, 𝑡 the time index, 𝑢 the 

vector of inputs, 𝑔 the equality constraints and ℎ the inequality constraints [28]. The 

state variables are the total energy consumption and the emissions. The equality 

constraint will assure that the initial and the final SOCs are equal. The inequality 

constraint will assure that the current SOC will not exceed the upper limit of the 

battery’s SOC or drop below the lower limit of the batter’s SOC. All of these 

constraints are implemented in Simulink. Figure 12 shows the main steps of this 

controller to minimize the cost function 𝐽. 
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First, the controller determines two vectors of torque distribution candidates 

between the two energy sources based on their limitations. Then it calculates the 

electrical and fuel energy consumption for each candidate. The electrical energy is 

regulated mainly based on the SOC to determine the operating mode. The sum of 

each torque-pair candidate energy is normalized to form a vector of normalized 

Figure 12: ReTEEM-SS controller algorithm. 

1. Define operating 
range and find the 
torque pairs 
candidates 

2. Electric Motor: 
Calculate the electric 
energy consumption 

of each candidate 

2. ICE: 
Calculate the fuel 

energy of each 
candidate 

3. Apply regulation 
factor to the energy 

candidates 

4. Add the 
corresponding 

energies to obtain a 
total energy 

consumption 

2. Calculate the 
emission for each 
operating point 

5. Normalize all data 

6. Apply user-defined 
weighting 

7. Pick the minimum 
and output the 
corresponding 

torque distribution 
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total energy consumption. Based on data availability, the controller calculates a 

vector of the corresponding emission candidates of the each pollutant. Based on 

user priority, the controller outputs the optimal split to achieve the desired 

objective. The concept of calculating the torque distribution candidates was 

obtained from [16]. 

3.2.2.1 Motor and ICE Torque Candidates 

The desired torque from the driver is split between the electric motor and 

the engine, and then the electrical and fuel energies are calculated. To compare the 

possible torque combination candidates of the motor and the engine while achieving 

the desired torque, the upper and lower motor torque limits are calculated at each 

time step. The upper limit of motor torque is 

𝜏𝑚𝑜𝑡𝑜𝑟,𝑢𝑝𝑝𝑒𝑟 = min (𝜏 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , 𝜏𝑚𝑜𝑡𝑜𝑟,𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒) @ current shaft speed (𝜔)   (14) 

where the available torque from the motor depends on the motor and battery 

capabilities. The lower limit of motor torque (𝜏𝑚𝑜𝑡𝑜𝑟,𝑙𝑜𝑤𝑒𝑟) is 

𝜏𝑚𝑜𝑡𝑜𝑟,𝑙𝑜𝑤𝑒𝑟 = max (𝜏𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑚𝑎𝑥 , 𝜏𝑚𝑜𝑡𝑜𝑟,𝑚𝑎𝑥,𝑟𝑒𝑔𝑒𝑛) @ current 𝜔  (15) 

where the maximum regenerating motor torque is also based on the motor and 

battery capabilities. The upper and lower motor torque limits are used as arguments 

for a Matlab function defined in Simulink which uses “linspace()” to generate a 

vector of linearly spaced motor torque candidates (𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) between the 

two limits. The respective engine torque candidate’s vector is 
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𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = 𝜏𝑚𝑜𝑡𝑜𝑟,𝑢𝑝𝑝𝑒𝑟 − 𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 + 𝜏𝑒𝑛𝑔𝑖𝑛𝑒 𝑒𝑥𝑡𝑟𝑎             (16) 

When the electric motor alone can’t supply the desired torque, extra torque 

is demanded from the engine candidates to get the final engine torque candidates 

using 

𝜏𝑒𝑛𝑔𝑖𝑛𝑒 𝑒𝑥𝑡𝑟𝑎 = 𝜏𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜏𝑚𝑜𝑡𝑜𝑟,𝑢𝑝𝑝𝑒𝑟                                          (17) 

such that the total of the engine and motor torque candidates matches the desired 

torque. This equation is used only when the motor can’t fulfil the desired torque, 

and outputs zero otherwise. The outputs of this step are the two vectors, 

𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 and 𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 using 𝑛 number of candidates, as shown 

below. 

𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = [𝜏𝑚𝑜𝑡𝑜𝑟,𝑙𝑜𝑤𝑒𝑟 𝜏𝑚𝑜𝑡𝑜𝑟(2) 𝜏𝑚𝑜𝑡𝑜𝑟(3) … … 𝜏𝑚𝑜𝑡𝑜𝑟,𝑢𝑝𝑝𝑒𝑟]   (18) 

𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = [(𝜏𝑚𝑜𝑡𝑜𝑟,𝑢𝑝𝑝𝑒𝑟 − 𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(1) +

𝜏𝑒𝑛𝑔𝑖𝑛𝑒 𝑒𝑥𝑡𝑟𝑎)    (𝜏𝑚𝑜𝑡𝑜𝑟,𝑢𝑝𝑝𝑒𝑟 − 𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(2) +

𝜏𝑒𝑛𝑔𝑖𝑛𝑒 𝑒𝑥𝑡𝑟𝑎)    …    …    (𝜏𝑚𝑜𝑡𝑜𝑟,𝑢𝑝𝑝𝑒𝑟 − 𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠(𝑛) + 𝜏𝑒𝑛𝑔𝑖𝑛𝑒 𝑒𝑥𝑡𝑟𝑎)]         (19) 

Corresponding values from each index of the 𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 and 

𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠  form the candidate operating points.  

3.2.2.2 Electric Energy Candidates 

After obtaining the motor torque candidates, the electrical energy of each 

candidate needs to be calculated to form an equivalent electrical energy vector for 
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the controller to evaluate. The 𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 at each time step and 𝜔 are input to 

the motor efficiency look-up table to obtain the corresponding efficiencies. To 

calculate the current demand from the battery, equation 20 is used. 

𝐼𝑑𝑒𝑚𝑎𝑛𝑑,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 =
 𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 × 𝜔

𝑉
                                       (20) 

The voltage in equation 20 is obtained from the battery plant model. Then 

the corresponding efficiency is multiplied or divided by 𝐼𝑑𝑒𝑚𝑎𝑛𝑑 for each candidate, 

depending on whether the electric motor is motoring or generating, to obtain the 

actual current that the motor would request from the battery. 

The vector of total current demand candidates (𝐼𝑡𝑜𝑡𝑎𝑙,𝑑𝑒𝑚𝑎𝑛𝑑,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) is 

formed by adding a scalar auxiliary current to the 𝐼𝑑𝑒𝑚𝑎𝑛𝑑,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 vector. It is then 

multiplied by the battery voltage to find the battery power output. The total current 

demand for each candidate is squared and multiplied by the battery resistance 

(which is a function of the SOC) to find the electric power loss from charging or 

discharging the battery. For each candidate, the battery power and the power loss 

are added to obtain the total battery power output, as shown in Equation 21. 

𝑃𝑒𝑙𝑒𝑐,𝑡𝑜𝑡𝑎𝑙,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = (𝐼𝑡𝑜𝑡𝑎𝑙,𝑑𝑒𝑚𝑎𝑛𝑑,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 × 𝑉) +

                                                        (𝐼𝑡𝑜𝑡𝑎𝑙,𝑑𝑒𝑚𝑎𝑛𝑑,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
2 × Ω𝑏𝑎𝑡𝑡𝑒𝑟𝑦)                              (21) 

and then integrated to obtain the electrical energy candidates. Due to the 

computational limitations, the integration is performed for one second intervals, 
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and then reset to zero to find the next set of electrical energy candidates. The 

electric energy consumption candidate’s vector is 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = [𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐(1) 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐(2) … … … … 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐(𝑛)]    (22) 

where values from each index of the 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is the energy consumption by 

producing a torque value of the corresponding index in 𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠. 

3.2.2.3 Fuel Energy Candidates 

A vector of fuel energy consumption that corresponds to each engine torque 

candidates should be calculated, and then added to the equivalent electrical energy 

candidates to form a total energy candidates for the controller to evaluate. The 

𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 with the 𝜔 are inputted to the brake specific fuel consumption 

(BSFC) table to get the instantaneous fuel consumption in kilograms per second for 

each candidate. These fuel mass flow rates are multiplied by the fuel energy density 

to find the input fuel power, as shown in equation 1, then all fuel power candidates 

are integrated over a one second interval to find the equivalent fuel energies. The 

fuel energy consumption candidates vector is 

𝐸𝑓𝑢𝑒𝑙,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = [𝐸𝑓𝑢𝑒𝑙(1) 𝐸𝑓𝑢𝑒𝑙(2) … … … … 𝐸𝑓𝑢𝑒𝑙(𝑛)]            (23) 

where the each index of the 𝐸𝑓𝑢𝑒𝑙,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is the energy consumption of producing a 

torque value of the corresponding index in 𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠. 
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Equation 24 is used to find the corresponding engine efficiencies if the engine 

were to operate at these torque candidates. These efficiencies are then used in the 

regulation factor which will be discussed next. 

𝜂𝑒𝑛𝑔𝑖𝑛𝑒,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 =
𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠×𝜔

𝑃𝑓𝑢𝑒𝑙
                                      (24) 

3.2.2.4 Regulation Factor 

 

Figure 13: Simulink block diagram of the regulation factor calculations.  

A regulation factor is used to adjust the electrical energy candidates in order 

to prioritize the engine or the motor for tractive effort, based mainly on the battery 

SOC. It also used to determine when to use the motor to regen. The concept of 

regulation factor was obtained from [16]. However, they regulated the energies by 

random numbers which were claimed as engineering judgments. 
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This factor either increases (expensive) or decreases (inexpensive) the 

electric energy for all the candidates based on different conditions. SOC is the main 

element to decide whether to operate in charge deplete or charge sustain mode. A 

Relay block is used in Simulink to output a Boolean value which indicates whether 

the SOC is below or above the limit. The block uses switch ON and OFF limit points 

to determine the Boolean output. For instance, if the ON and OFF points are set to be 

30% and 27% SOC, respectively, the relay outputs zero when the SOC drops below 

27%, and maintains this Boolean value until the SOC reaches above 30% and then 

switches to a value of one. 

The regulation factor is equal to one, i.e., it does not change the electrical 

energy, under the following conditions: 

a. 𝑆𝑂𝐶𝑟𝑒𝑙𝑎𝑦 = 𝑡𝑟𝑢𝑒 (SOC above minimum threshold): operate in charge 

deplete mode since the SOC is high. 

b. 𝑆𝑂𝐶𝑟𝑒𝑙𝑎𝑦 = 𝑓𝑎𝑙𝑠𝑒 (SOC below minimum threshold) and 𝜏𝑑𝑒𝑚𝑎𝑛𝑑 < 0. 

This means the vehicle is slowing down so the motor is used for 

regenerative braking. 

Moreover, under the conditions described below, the regulation factor 

increases the electrical energy usage (makes more expensive): 

a. 𝑆𝑂𝐶𝑟𝑒𝑙𝑎𝑦 = 𝑓𝑎𝑙𝑠𝑒 and 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 > 0: the motor is used to provide 

tractive effort drawing energy from the battery. 
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b. 𝑆𝑂𝐶𝑟𝑒𝑙𝑎𝑦 = 𝑓𝑎𝑙𝑠𝑒, 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 < 0 and 𝜏𝑑𝑒𝑚𝑎𝑛𝑑 > 0: This case is true 

only when the electrical motor is used as a generator when the energy 

is coming from the engine while the SOC is below the minimum 

threshold. 

The regulation factor increases the electrical energy by 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙,𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑑 =
𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙

𝜂𝑚𝑜𝑡𝑜𝑟×𝜂𝑒𝑛𝑔𝑖𝑛𝑒×𝜂𝑐ℎ𝑎𝑟𝑔𝑒/𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
                             (25) 

This is true assuming that if the engine produces more power than the 

required for maintaining the desired drive cycle speed and that the extra power is 

used to increase the SOC, this power will suffer the efficiency losses again when it 

will be reused for tractive effort in future from the battery. For instance, the process 

of converting source energy (fuel) into tractive effort at the wheels would require 

the energy to suffer the following losses due to multiple energy conversions: 

1. Engine efficiency (chemical to mechanical) 

2. Generating efficiency ( mechanical to electrical) 

3. Battery charging efficiency ( electrical to chemical) 

4. Battery discharging efficiency ( chemical to electrical) 

5. Motoring efficiency ( electrical to mechanical) 
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 The actual electric energy consumption value (not regulated) takes the 

battery discharging and motoring efficiencies into account prior to regulation factor. 

However, this energy in the battery already suffered engine, generating, and battery 

charging efficiencies. That is why Equation 25 uses these three efficiencies to 

regulate to reflect the actual energy usage.  

3.2.2.5 Total Energy Consumption 

Both fuel energy consumption and SOC regulated electrical energy are added 

together for each torque combination candidate between the engine and the motor 

to form the SOC regulated total energy consumption (𝐸𝑡𝑜𝑡𝑎𝑙). This total energy 

consumption takes into consideration all the efficiencies such as battery 

charge/discharge, battery internal resistance, motor and engine. 

3.2.2.6 Emissions 

The controller also contains four 2-dimensional look-up tables which 

contains emissions data for different engine torque and speed combinations. The 

𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 vector and 𝜔 are input into these look-up tables to find the 

corresponding emission numbers in kilogram per kilometer for Hydrocarbons (HC), 

Carbon monoxide (CO), Nitrogen oxides (NOx), and Carbon dioxide (CO2). The 

output of this step is an emission matrix as shown below. 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =

[
 
 
 
 
𝐻𝐶@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(1) 𝐻𝐶@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(2) … … 𝐻𝐶@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(𝑛)

𝐶𝑂@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(1) 𝐶𝑂@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(2) … … 𝐶𝑂@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(𝑛)

𝑁𝑂𝑥@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(1) 𝑁𝑂𝑥@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(2) … … 𝑁𝑂𝑥@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(𝑛)

𝐶𝑂2@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(1) 𝐶𝑂2@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(2) … … 𝐶𝑂2@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(𝑛)]
 
 
 
 

      (26) 
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3.2.2.7 Normalize All Data  

Because the controller has to minimize energy usage and emissions of 

different pollutants, all of which have different numerical ranges and different units, 

normalizing is necessary. The normalization of the energy consumption and 

emission values is done using the equation 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                             (27) 

Equation 27 scales all the data to range between zero and one. Zero 

corresponds to the minimum value and one corresponds to the maximum value. 

After normalizing all the total energy consumption and emissions data, the final 

matrix takes a form of 

𝑑𝑎𝑡𝑎𝑛𝑜𝑟𝑚 =

[
 
 
 
 
 

𝐸𝑡𝑜𝑡𝑎𝑙(1) 𝐸𝑡𝑜𝑡𝑎𝑙(2) … … 𝐸𝑡𝑜𝑡𝑎𝑙(𝑛)
𝐻𝐶@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(1) 𝐻𝐶@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(2) … … 𝐻𝐶@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(𝑛)

𝐶𝑂@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(1) 𝐶𝑂@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(2) … … 𝐶𝑂@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(𝑛)

𝑁𝑂𝑥@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(1) 𝑁𝑂𝑥@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(2) … … 𝑁𝑂𝑥@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(𝑛)

𝐶𝑂2@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(1) 𝐶𝑂2@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(2) … … 𝐶𝑂2@𝜏𝑒𝑛𝑔𝑖𝑛𝑒(𝑛)]
 
 
 
 
 

       (28) 

3.2.2.8 Cost Function and Controller Output 

The goals of minimizing the energy consumption and emissions can conflict 

with each other. This is true because the most energy efficient operating point is not 

always the same as the operating point with lowest emissions. Also, minimizing 

emissions of one pollutant by picking a particular operating point might actually 

increase emission of another. Thus, this controller’s design allows the user to pick 

weights for each of the five characteristics to prioritize the optimization of a 

particular characteristic.  For this purpose, a user defined vector of user weights for 
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the five characteristics is multiplied by the normalized matrix containing all the 

energy consumptions and emissions candidates to obtain all data with the desired 

importance which represents the cost function 

𝐽 = 𝑑𝑎𝑡𝑎𝑛𝑜𝑟𝑚,𝑢𝑠𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 𝑘𝑢𝑠𝑒𝑟 × 𝑑𝑎𝑡𝑎𝑛𝑜𝑟𝑚                                    (29) 

where  𝑘𝑢𝑠𝑒𝑟 is 1 × 𝑚, and 𝑚 is the number of characteristics. Thus the 

𝑑𝑎𝑡𝑎𝑛𝑜𝑟𝑚,𝑢𝑠𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 matrix has dimensions 𝑚 × 𝑛. The index of the lowest point is 

used in 𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 and 𝜏𝑒𝑛𝑔𝑖𝑛𝑒,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 to find the corresponding torque 

distribution between the motor and engine. The chosen torque combination, along 

with the shaft speed are the outputs of the controller to the powertrain.  

3.2.3 Real-Time Energy and Emission Minimization Controller (ReTEEM-SS) 

This controller is an extension to the main optimization based power flow 

controller. The process of translating the tractive force request from the driver to 

torque request is started using three different gear ratios. At each time step, the 

controller evaluates one lower gear, current gear, and one higher gear. However, if it 

is at the first or last gear, the possible gears are repeated. The possible gear options 

take into account the shaft speed limitation based on the vehicle speed. It eliminates 

the gear option and repeats the current gear in case if: 

a. 𝜔ℎ𝑖𝑔ℎ𝑒𝑟 𝐺𝑒𝑎𝑟 < 𝜔𝑖𝑑𝑙𝑒 

b. 𝜔𝑙𝑜𝑤𝑒𝑟 𝐺𝑒𝑎𝑟 > 𝜔𝑟𝑒𝑑 𝑙𝑖𝑛𝑒 
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A vector of three torque request options is inputted to the modified 

optimization based controller. It goes through the same calculations but with three 

times more torque candidates(3𝑛) since there are three different torque requests. 

For instance, in the ReTEEM-SS Controller, if 𝜏𝑚𝑜𝑡𝑜𝑟,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 vector had 20 

candidates, the modified controller will have 60 candidates. The first 20 candidates 

corresponds to the previous gear, the next 20 candidate corresponds to the current 

gear, and the last 20 candidates corresponds to the next gear. The controller finds 

the most efficient candidate, based on the selected user criteria, and then finds the 

corresponding index. The most efficient candidate index is found using 

𝑖𝑛𝑑𝑒𝑥 = min (𝑑𝑎𝑡𝑎𝑛𝑜𝑟𝑚,𝑢𝑠𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑)                                         (30) 

where 𝑑𝑎𝑡𝑎𝑛𝑜𝑟𝑚,𝑢𝑠𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 is 1 × 3𝑛. It then goes to this index in the vector 

containing gear numbers for all candidates and selects the value stored at this 

location as shown below. 

𝐺𝑒𝑎𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐺𝑒𝑎𝑟(𝑖𝑛𝑑𝑒𝑥)                                            (31) 

The gear number value is held for one second to improve drivability, and 

sent as an input to the transmission. This shift logic eliminates the use of traditional 

shift schedule in the transmission and it bases the shift logic on the defined criteria, 

such as energy consumption and/or emissions. 
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Chapter IV  

Results 

4.1  Simulation Set-up 

For each drive cycle three different power flow controllers were compared 

using the same vehicle plant models to evaluate the performance of the vehicle. The 

three power flow controllers are basic controller, real-time energy and emissions 

minimization controller using the standard shift schedule (ReTEEM-SS), and real-

time energy and emissions minimization controller using the developed shift logic 

(ReTEEM-SL). To reduce computational time, twenty torque pairs (𝑛 =20) were 

evaluated at each time-step in both ReTEEM-SS and ReTEEM-SL controllers. Also, 

the simulations were run by taking only the energy consumption into consideration 

and all emissions were ignored by setting the user defined vector to 

𝐾𝑢𝑠𝑒𝑟 = [1 0 0 0 0] 

4.1.1 Throttle Input to the Transmission 

Since the powertrain of the vehicle was modified, the given shift schedule 

data from GM for the conventional Camaro is no longer optimized for the hybrid 

Camaro with a different ICE and electric motor. For this reason, two different 

throttle calculations were used as an input to the shift schedule state flow diagram 

in Simulink for the optimization based controller – one using the Equation 2 and the 

other equaling zero throttle. An input of zero throttle to the transmission will 

eliminate the first variable of the shift schedule state flow, throttle, and the shift 

point will depend only on the second variable, vehicle speed. This will result in 



 

53 

 

upshifts occurring at the lowest vehicle speed threshold which will minimize the 

energy consumption. However, the vehicle might not follow the drive cycle if the 

powertrain can’t deliver the torque request at such low shaft speeds. This scenario 

is shown in Figure 14, Figure 15, and Figure 16 in US06 Highway drive cycle using 

basic controller with a zero throttle input to the transmission. Since the zero throttle 

input will make the transmission shift based on vehicle speed only, the transmission 

upshifts as early as possible keeping the RPM very low, as shown in Figure 14. 

 
Figure 14: Gear number using US06H drive cycle and Basic controller with a zero 

throttle input to the transmission. 
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Figure 15 confirms that the powertrain couldn’t meet the desired torque at 

such low RPM, since the basic controller uses mainly engine only for tractive effort. 

This resulted for the vehicle not follow the drive cycle, as shown in Figure 16. For 

this reason the basic controller uses the throttle calculation from Equation 2 as an 

input to the transmission to determine the shift schedule. 

 

Figure 15: All torques in US06H using Basic controller and zero throttle input to the 
transmission. 
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Figure 16: US06H drive cycle and vehicle velocities using basic controller and zero 
throttle. 

 

4.1.2 Charge Sustain and Response optimization 

In CS mode both the ICE and the motor/generator are used to meet the 

torque demand, giving the different controllers the opportunity to manage the 

energy differently. All simulations are thus run in this operating mode so that the 

differences are observable.  

Response Optimization Simulink toolbox was used for all the drive cycles to 

achieve a true CS mode, where the initial and final SOCs are almost identical, as 

shown in Figure 17.  
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Figure 17: SOC of 505 drive cycle using ReTEEM-SL controller. 

Initial SOC was used as the variable to be regulated by the toolbox, and the 

objective is to minimize the signal that represents the change in SOC. To ensure a 

true CS mode for energy calculation purposes, some of the drive cycles were 

repeated in order for the response optimization toolbox to converge. This will not 

change the result for energy consumption calculations because it is averaged over 

the total distance traveled. The difference between the initial and final SOCs for all 

the drive cycles was kept below 1%. However, the equivalent energy consumption 

resulting from the change in SOC will still be taken into account using equation 30. 

𝐸𝐶∆𝑆𝑂𝐶  [
𝑊.ℎ𝑟

𝑘𝑚
] =

𝐶 × 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙×∆𝑆𝑂𝐶

𝑥
                                             (30) 
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where C is the capacity in Ah, 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙 in volts, and 𝑥 is the total cycle distance in 

kilometer. It will either be added to or subtracted from the calculated energy 

consumption to result in final energy consumption value. 

4.1.3 Trace Error 

To ensure that the vehicle was following all the drive cycles using all 

controllers, the mean difference between the drive cycle and actual vehicle speed 

was calculated. These mean differences were kept below 1.3 mph, except for the 

US06C drive cycle. Since this is the most aggressive drive cycle evaluated, the 

differences could only be brought down to 3.1 mph. Figure 18 shows that the vehicle 

follows the US06C drive cycle using all three different controllers. 
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Figure 18: Drive cycle and actual vehicle speed using all three controllers in US06C. 
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4.2  Varied Torque Apportion from Different Controllers 

For illustration purposes, Figure 19, Figure 20 and Figure 21show the 

desired torque, motor torque, and engine torque for the first 300 seconds of 505 

drive cycle for all three different power flow controllers. As shown in Figure 19, the 

basic controller uses only the engine as the main power source in CS mode, and it 

uses the motor to generate the auxiliary power and regen from braking. 

 

Figure 19: Close-up of all torque requests using basic controller. 
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Using ReTEEM-SS controller, Figure 20 shows that although the engine is 

used as the main power source to deliver the desired tractive force, it sometimes 

uses the motor to assist the engine. Using ReTEEM-SL controller, Figure 21 shows 

that although the engine is used as the main power source, in some cases the engine 

makes surplus power in order for the motor to generate electricity to store in the 

battery. This indicates that there are some torque distribution pairs which are more 

energy efficient when there is extra load on the engine than the desired tractive 

force.

 

Figure 20: Close-up of all torque requests using ReTEEM-SS controller. 
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Figure 21:  Close-up of all torque requests using ReTEEM-SL controller. 

Since all three controllers split the torque differently between the motor and 

the ICE, the change in SOC will be different as well, as shown in Figure 22. The 

regions with steep positive slopes in the SOC plots are due to braking events of the 

505 drive cycle, where the motor functions as a regenerative brake and captures 

kinetic energy. All controllers enter charge deplete mode once the SOC reaches the 

upper threshold. Then the SOC starts dropping since the controller will prefer to use 

the electric motor over the ICE to meet the driver’s request. In all simulations, the 

SOC upper and lower thresholds were kept close to each other to achieve a true 

charge sustain. This allows the vehicle to use the extra gained energy in the battery 

from regenerative braking and the engine. 
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Figure 22: SOC comparison between all the controllers in 505 drive cycle. 

 

4.3  Energy Consumption Comparison 

Table 6 , Table 7, Table 10, and Table 11 compare the energy consumption 

between the basic controller, ReTEEM-SS controller, ReTEEM-SS controller using 

zero throttle, and ReTEEM-SL controller, for all four drive cycles. Since the shift 

schedule data is not optimized due to the change in powertrain components, the 

optimal energy consumption is expected to be close to the results from using 

ReTEEM-SS with zero throttle input. This is because the transmission will shift up to 

a higher gear at the lowest possible RPM which will make the engine operate with 

low torque outputs. As a result, the controller will demand more torque from the 

electric motor to meet the driver’s request. 
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4.3.1 Highway Drive Cycles 

Table 6 and Table 7 are energy consumption results for both highway drive 

cycles, US06 and HWFET. Compared to the basic controller, the ReTEEM-SS 

controller using zero throttle decreased the total energy consumption by 

approximately 5.63% in US06H drive cycle and 6.12% in HWFET drive cycle. The 

total energy consumption using ReTEEM-SL controller is similar to energy 

consumption using ReTEEM-SS with zero throttle for both highway drive cycles, 

which indicates that the shift logic decreased the energy without the use of shift 

schedule. 

Table 6: Comparison between all the controllers for US06H drive cycle. 

 
Basic 

Controller 
ReTEEM-SS 

ReTEEM-SS 
(zero throttle) 

ReTEEM-SL 

Energy 
Consumption 

[Wh/km] 
520.1 541.4 488.7 497.7 

Delta SOC [%] 0.09 -0.06 -0.20 -0.06 
𝑬𝑪∆𝑺𝑶𝑪 

[Wh/km] 
-0.9 0.6 1.9 0.6 

ECfinal 
[Wh/km] 

519.1 542.1 490.7 498.3 

 

Table 7: Comparison between all the controllers for HWFET drive cycle. 

 
Basic 

Controller 
ReTEEM-SS 

ReTEEM-SS 
(zero throttle) ReTEEM-SL 

Energy 
Consumption 

[Wh/km] 
410.4 424.9 386.7 368.9 

Delta SOC [%] 0.32 0.11 0.35 -0.96 
𝑬𝑪∆𝑺𝑶𝑪 

[Wh/km] 
-3.8 -1.2 -4.3 11.7 

ECfinal 
[Wh/km] 

406.5 423.6 382.4 380.7 
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One cause of higher energy consumption using basic controller is the limited 

torque availability at low RPMs, since it uses mainly the ICE to deliver the driver’s 

torque request. Figure 24 shows that using the basic controller the transmission 

downshifts repetitively to achieve the driver’s request. Figure 25 shows the 

combined electrical energy from the battery and the fuel energy used by the ICE 

using all three different controllers in HWFET drive cycle. The same figures, gear 

and energy consumption comparisons, for US06H drive cycle are shown in the 

Appendix. 

 
Figure 23: HWFET drive cycle. 
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Figure 24: Gear number comparison between the three controllers for HWFET drive 

cycle. 

 
Figure 25: Total energy consumption using all three controllers in HWFET drive 

cycle. 
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4.3.1.1 Basic Controller vs. ReTEEM-SS Controller 

Each controller distributes the power differently between the power 

generating components, thus the throttle value differs between controllers. This 

might cause the vehicle to operate at different gears at the same time in the drive 

cycle. Different gears and the availability of lesser or more toque in different 

controllers combine to deviate the vehicle speed differently from the requested 

speed of the same drive cycle. This causes the Driver model to request different 

amounts of tractive force from the powertrain. Thus, to compare the basic controller 

to ReTEEM-SS controller, instantaneous energy consumption data was considered 

only at times where the difference between the desired tractive force and the output 

force for the two controllers is within 0.1 N and the vehicle is in the same gear.  

Table 8 shows the comparison of instantaneous energy consumption data at 

a specific time in the HWFET drive cycle between the two controllers. At this time, 

all the conditions required for comparison are met. The combined instantaneous 

energy consumption from the engine and the battery using ReTEEM-SS controller is 

lower than that of basic controller, even though the force request from the driver 

and the vehicle’s operating gear are the same. This is true for 74.8% of the data in 

the HWFET drive cycle which meets the requirements for comparison – i.e. the 

required force, output force and the gear number are the same for both controllers 

at these times. In HWFET drive cycle, only 8.4% of the total data meets the 

requirements for comparison. 
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Table 8: Comparing the instantaneous energy using basic and ReTEEM-SS 
controllers. 

 Basic Controller 
ReTEEM-SS 

controller 

Time [sec] 121 121 

Required force [N] 94.4 94.4 

Gear number 8 8 

𝝉𝒆𝒏𝒈 / 𝝉𝒎𝒐𝒕𝒐𝒓 [N.m] 36.3 / -5.7 35.7/-5.2 

𝑷𝒕𝒐𝒕𝒂𝒍 [kW] 12.1 11.9 

In the ideal case, the ReTEEM-SS controller should improve the energy 

consumption at all times when the force request from the driver is the same. 

However, this is not true since the energy consumption calculation in ReTEEM-SS 

controller performs integration of instantaneous power over a one second interval 

because of computational limitations. 

The same comparisons were made for US06H drive cycle and showed that 

77.0% of the times when the desired force matches and the transmission operates 

in the same gear, the ReTEEM-SS controller reduced the combined instantaneous 

energy consumption over the basic controller. The comparable data in US06H drive 

cycle represents 10.4% of the total data. 

4.3.1.2 ReTEEM-SS Controller vs. ReTEEM-SL Controller 

Because of differences in driver demand, similar conditions are imposed on 

the data extracted from simulations using ReTEEM-SS and ReTEEM-SL controllers 

to make it comparable. At the same time in the drive cycle, the request and output 

forces still need to be almost identical, but the operating gear has to be different for 

this comparison. This is because the main difference between the ReTEEM-SS and 



 

68 

 

ReTEEM-SL controllers is the way they select the operating gear for the vehicle. 

Table 9 compares the instantaneous energy consumption data at a specific time 

from a simulated HWFET drive cycle when the conditions for comparison are met. 

The total output power, from both the engine and the battery, when using ReTEEM-

SL controller is lower than when ReTEEM-SS controller is used. This is true for 

90.6% of the data in the HWFET drive cycle which meets the requirements for 

comparison – i.e. the required force, output force and gear number are the same for 

both controllers at these times. In HWFET drive cycle, only 7.2% of the total data 

meets the requirements for comparison. 

Table 9: Comparing the instantaneous energy using ReTEEM-SS and ReTEEM-SL 
controller. 

 
ReTEEM-SS 

controller 

ReTEEM-SL 

controller 

Time [sec] 43.2 43.2 

Required force [N] 350.8 350.8 

Gear number 6 8 

𝝉𝒆𝒏𝒈 and 𝝉𝒎𝒐𝒕𝒐𝒓 [N.m] 46.6 / -4.5 71.4 / -6.9 

𝑷𝒕𝒐𝒕𝒂𝒍 [kW] 21.4 18.7 

To increase drivability when using the ReTEEM-SL controller, the operating 

gear is held for one second which causes the controller to not always choose the 

optimal gear. 

The same comparisons were made for US06H drive cycle and showed that 

75.4% of the times when the desired force and output force matches, and the 

transmission operates in a different gear, the ReTEEM-SL controller reduced the 
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combined instantaneous energy consumption over the ReTEEM-SS controller. In 

US06H drive cycle, 4.7% of the total data meets the requirements for comparison. 

4.3.2 City Drive Cycles 

To evaluate the controllers in city driving styles, simulations were run using 

505 and US06C drive cycles. Table 10 and Table 11 show the results of these 

simulations. Compared to the basic controller, the ReTEEM-SS controller using zero 

throttle reduced the total energy consumption by 2.78% in 505 drive cycle and 

9.60% in US06C drive cycle. The total energy consumption using ReTEEM-SL 

controller is reduced by 12.57% in 505 drive cycle and 7.76% in US06C drive cycle, 

compared to the basic controller. This indicates that the shift logic is energy 

optimized for city drive style as well. 

Table 10: Comparison between all the controllers for 505 drive cycle. 

 
Basic 

Controller 
ReTEEM-SS 

ReTEEM-SS 
(zero throttle) 

ReTEEM-
SL 

Energy 
Consumption 

[Wh/km] 
440.2 461.3 432.6 385.7 

Delta SOC [%] -0.12 -0.25 0.01 -0.18 

𝑬𝑪∆𝑺𝑶𝑪 
[Wh/km] 

4.3 8.7 -0.25 6.2 

ECfinal [Wh/km] 444.5 470.1 432.3 392.0 
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Table 11: Comparison between all the controllers for US06C drive cycle. 

 
Basic 

Controller 
ReTEEM-SS 

ReTEEM-SS 
(zero throttle) ReTEEM-SL 

Energy 
Consumption 

[Wh/km] 
699.1 722.9 633.8 650.3 

Delta SOC [%] 0.39 0.07 0.31 0.51 

𝑬𝑪∆𝑺𝑶𝑪 
[Wh/km] 

-9.3742 -1.5863 -7.2303 -12.0535 

ECfinal [Wh/km] 689.8 721.3 626.6 638.3 

The comparison between the gears in Figure 27 using basic controller and 

ReTEEM-SS controller with zero throttle shows that the basic controller usually 

operates at a lower gear due to the limitation of the desired torque. This is one of 

the reasons for a higher energy consumption using the basic controller, as shown in 

Figure 28. The ReTEEM-SL controller always operates at a higher gear than both 

other controllers, which helps it to have the lowest energy consumption. The 

significant reduction in energy consumption in 505 drive cycle using ReTEEM-SL 

over ReTEEM-SS controller is during low vehicle speed operations. From Figure 27, 

during these operations (340 to 500 seconds), ReTEEM-SL controller upshifts to a 

higher gear even if the vehicle speed is low, however, the shift schedule using 

ReTEEM-SS is limited to the vehicle speed thresholds, as discussed in section 3.1.2.4. 

This gear reduction will allow the ICE and the electric motor to run at lower RPMs 

which will reduce the energy consumptions. However, due to the aggressive drive 

cycle and frequent shifting using ReTEEM-SL controller, drivability might be an 

issue when it is implemented in a real vehicle. The same figures, gear and energy 

consumption comparisons, for US06C drive cycle are shown in the Appendix. 
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Figure 26: 505 Drive cycle. 

 
Figure 27: Gear number comparison between the three controllers for 505 drive 

cycle. 
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Figure 28: Total energy consumption using all three controllers in 505 drive cycle. 

  

4.3.2.1 Basic Controller vs. ReTEEM-SS Controller 

Instantaneous energy consumption data was compared from simulations 

using basic and ReTEEM-SS controllers for 505 drive cycle. This data had to match 

the conditions mentioned in Section 4.3.1.1. Results for a specific time are shown in 

Table 8. The combined instantaneous energy consumption from the engine and the 

battery using ReTEEM-SS controller is lower than basic controller. This is true for 

78.2% of the data when using 505 drive cycle. 20.6% of the total data meets the 

requirements for comparison. 
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Table 12: Comparing the instantaneous energy using basic and ReTEEM-SS 
controllers. 

 Basic Controller 
ReTEEM-SS 

controller 

Time [sec] 252 252 

Required force [N] 19.4 19.4 

Gear number 8 8 

𝝉𝒆𝒏𝒈 and 𝝉𝒎𝒐𝒕𝒐𝒓 [N.m] 8.6 / -5.1 8.8 / -5.2 

𝑷𝒕𝒐𝒕𝒂𝒍 [kW] 8.7 7.2 

The same comparisons were made for US06C drive cycle and showed that the 

ReTEEM-SS controller is better than the basic controller for 75.6% of the 

comparable data. The comparable data represents 16.3% of the total data. 

4.3.2.2 ReTEEM-SS Controller vs. ReTEEM-SL Controller 

Instantaneous energy consumption data was compared from simulations 

using ReTEEM-SS and ReTEEM-SL controllers for 505 drive cycle. This data had to 

match the conditions mentioned in Section 4.3.1.2. Results for a specific time are 

shown in Table 8. The combined instantaneous energy consumption from the 

engine and the battery using ReTEEM-SL controller is lower than ReTEEM-SS 

controller. This is true for 89.0% of the data when using 505 drive cycle. The 

comparable data in 505 drive cycle represents 20.6% of the total data. 

Table 13: Comparing the instantaneous energy using ReTEEM-SS and ReTEEM-SL 
controller. 

 
ReTEEM-SS 

controller 

ReTEEM-SL 

controller 

Time [sec] 64.7 64.7 

Required force [N] 189.9 189.9 

Gear number 5 8 

𝝉𝒆𝒏𝒈 and 𝝉𝒎𝒐𝒕𝒐𝒓 [N.m] 40.8 / -23.0 44.7 / -9.7 

𝑷𝒕𝒐𝒕𝒂𝒍 [kW] 15.0 10.6 
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The same comparisons were made for US06C drive cycle and showed that the 

ReTEEM-SL controller is better than the ReTEEM-SS controller for 87.0% of the 

comparable data, which it represents 16.0% of the total data. 
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Chapter V 

Discussions, Future work, and Conclusions 

5.1  Discussions 

The results for both optimization based power flow controllers using shift 

schedule and shift logic show a reduction in energy consumption when compared to 

the basic controller. Since the ReTEEM-SS controller uses the shift schedule, 

experimental tests need to be carried out to obtain the shifting thresholds. 

Therefore in simulation it is harder to evaluate the performance of the same vehicle 

using different components in the powertrain or different parallel powertrain 

architectures. 

To overcome this issue, ReTEEM-SL controller uses shift logic to select the 

gear which eliminates the use of shift schedule, therefore no experimental tests 

need to be carried out. Also, the controller can be used to develop a shift schedule 

without experimental data. However, since the ReTEEM-SL controller evaluates all 

the torque candidates for three different gears at each time step, it might be 

computationally more expensive when the controller is implemented in the actual 

vehicle. 

One main variable that can be calculated differently and affect the 

performance of the vehicle significantly is the throttle. As shown in Table 6 through 

Table 11, the energy consumption of the vehicle changes considerably when using 

the same controller but a different throttle input. This means that using ReTEEM-SS 
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controller, the energy consumption can be further reduced by calculating the 

throttle differently. 

One of the main advantages of both ReTEEM-SS and ReTEEM-SL controllers 

is the flexibility to evaluate different components in the parallel architecture 

powertrain without any modification to the controller. The controller can be applied 

to any powertrain architecture that splits the torque between different power 

generating components at the same shaft speed. In addition, the developed 

controller is capable of taking other factors, such as temperature, besides energy 

consumption and emissions into consideration by adding rows to the matrix 

𝑑𝑎𝑡𝑎𝑛𝑜𝑟𝑚,𝑢𝑠𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑. 
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5.2  Future Work  

5.2.1 Implementation and Validation 

The optimization based controller has the potential to be effective and 

implementable on the actual EcoCAR 3 vehicle. First, the controller needs to run 

with fix time-step and then check if it can be implemented on the controller 

hardware. Then the controller needs to be slightly modified to take the actual 

component statuses as inputs. For example, the controller needs to know the actual 

status of the engine due to a fault mode, low fuel, or overheating, in order to 

appropriately split the torque between the power generating components. Another 

input the controller will need is the actual status of the clutches to determine what 

components can be used to achieve the driver’s torque request. 

In the actual vehicle, the driver can choose between different driving modes 

such as sport and economy. This feature needs to be added to the controller so that 

if the driver selects power mode, all the power generating components run at their 

peak without taking any energy consumption and emissions into consideration. 

Once the controller is ready to be used in the actual vehicle, the next step is 

to carry out tests and collect data to compare with the Simulink model. This can be 

done by driving the actual vehicle and collect all the necessary data, and then input 

the actual velocity profile to the Simulink model and compare the results. 

5.2.2 Predictive Control Strategy 

One additional feature that can be added to this controller to be more energy 

efficient is the use of GPS to predict the future driving pattern. For example, it is 
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more energy efficient to depend on the electric motor and drop the battery’s SOC 

below the minimum threshold if the vehicle is close to the destination and the 

battery can be recharged. The selection of gears can also be modified to suit the 

upcoming road conditions and traffic patterns. 

5.2.3 Three-way Split 

The hybrid Camaro that the EcoEagles team is building has two electric 

motors and ICE. The controller needs to be modified to split the torque between all 

three power generating components to possibly further optimize energy 

consumption and emissions. 

5.2.4 Emissions 

The Methodology section in this thesis explains how the controller will take 

emissions into consideration, but it wasn’t evaluated due to lack of reliable data. To 

verify that the controller reduces the emissions, simulations should be run to 

compare with the basic controller when reliable emissions data is available. 

5.2.5 Shift Schedule Mapping 

Shift maps can be generated using the ReTEEM-SL controller. This can be 

done by using adaptive look up tables to generate shift maps that reduces the 

energy consumption and emissions. 

 

 



 

79 

 

5.3  Conclusion 

 The reduction in energy consumption of the HEV using the new optimization 

based controller has been shown, with a potential of reducing emissions if accurate 

data were available. Compared to the basic power flow controller, the real-time 

energy and emission minimization controller (ReTEEM-SS) reduced the energy 

consumption by approximately 6.2% in city driving style and 5.4% in highway 

driving style. This was using zero throttle as an input to the shift schedule which will 

result in upshifting as soon as possible, therefore minimizing the energy 

consumption. The optimization based controller was further modified to replace the 

shift schedule with a shift logic. The shift schedule is tuned experimentally by 

driving the vehicle in different conditions and eliminating this makes evaluating 

different components on the vehicle’s powertrain easier. The real-time energy and 

emission consumption controller using shift logic (ReTEEM-SL) reduced the energy 

consumption by 10.2% in city drive cycles and 5.3% in highway drive cycles, when 

compared to the basic controller. 
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Appendix 

Figures 

 

 

 
Figure 29: Gear number comparison between the three controllers for US06H drive 

cycle. 
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Figure 30: Total energy consumption using all three controllers in US06H drive cycle.

 
Figure 31: Gear number comparison between the three controllers for US06C drive 

cycle. 
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Figure 32: Total energy consumption using all three controllers in US06C drive 

cycle. 
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