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Abstract

A projection scheme for the numerical solution of the incompressible Navier-Stokes
equations is presented. Finite element discontinuous Galerkin (dG) discretization
for the velocity in the momentum equations is employed. The incompressibility
constraint is enforced by numerically solving the Poisson equation for pressure us-
ing a continuous Galerkin (cG) discretization. The main advantage of the method
is that it does not require the velocity and pressure approximation spaces to sat-
isfy the usual inf-sup condition, thus equal order finite element approximations for
both velocity and pressure can be used. Furthermore, by using cG discretization
for the Poisson equation, no auxiliary equations are needed as it is required for dG
approximations of second order derivatives. In order to enable large time steps for
time marching to steady-state and time evolving problems, implicit scheme is used
in connection with high order implicit RK methods. Numerical tests demonstrate
that the overall scheme is accurate and computationally efficient.
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Chapter 1

Introduction

1.1 Motivation

The incompressible Navier-Stokes equations have a wide range of applications,

some of the most important are horizontal and vertical axis wind turbines, biomed-

ical flows such as in the cardiovascular system, vehicle and building aerodynamics

and hydrodynamics for swallow water and oceanography. The final objective of

this work is to develop a strongly coupled method for fluid structure interaction

(FSI) of low speed flows in horizontal axis wind turbines. Among others, Bazilevs

et al. [10], Galdi and Rannacher [41], as well as Duarte, Gormaz and Natesan [37]

have recently presented developments in this field.

Fossil fuels are responsible for the fast global climate change, emitting tremen-

dous amounts of harmful gases in the atmosphere. Therefore a need for clean and

renewable sources of energy has been created. Wind turbines are an increasingly

important source of renewable energy and nowadays have become very popular.

Large amounts of research and resources are being spent in order to harness wind

energy effectively. Designing a wind turbine is a complex issue not only because

the blades must have an aerodynamic design, but also a complete wind power

system must be constructed taking into account aeroelasticity effects. For this

reason, three dimensional simulations must be performed. Furthermore, for the

large scale wind turbines, accurate prediction of aeroelastic coupling is necessary

to avoid serious accidents during operation.

In the wind turbine, the flow depends on the shape and the motion of the

blade, whereas the motion and the deformation of the blade depend on the fluid
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mechanics forces applied on it. Computational methods have been used in FSI

due to the non linearity and time dependence of the coupled system of differential

equations. The fluid and structure domains do not overlap, but in their interface

the coupling is achieved by satisfying physically interface conditions. Another im-

portant issue in FSI is the discretization of the fluid-structure interface. If different

meshes are used in the two domains, correct coupling between the tractions and

the displacements must be made. Although this choice is challenging, it has many

advantages such as refinement techniques can be applied either in fluid, or in the

structured part. Furthermore, different discretization methods can be used for

solving the elasticity and the flow equations. The mesh for the fluid domain must

be finer in critical areas of the interface, for example in the leading and the trailing

edge in order to capture the velocity and pressure gradients. On the other hand,

this is not the case in the structural domain, where for example finer mesh around

holes will be necessary. Due to these conflicting requirements the use of the same

mesh in both sets of equations becomes computationally inefficient, especially for

complex geometries. As a result, the mesh at the interface of the fluid and the

solid is different.

The Eulerian frame of reference is usually used for the fluid mechanics equa-

tions, whereas Lagrangian framework is used for the non linear elasticity equations.

In the Eulerian description the grid is fixed in space and the conservation equations

are developed for a fixed in space control volume. In Lagrangian description, the

mesh points are actually the material particles, and a new mesh is created after

the displacements are found. Arbitrary Lagrangian Eulerian (ALE) description is

combining the advantages of the two previous methodologies, where the mesh can

be moved in an arbitrary way. This approximation has the features of Eulerian

approximation when the mesh cannot follow the fluid motion, and the features of

Lagrangian approximation when relatively small motion takes place.

The most important benefits of the ALE method are:

· Interfaces and solid boundaries keep their boundary conditions by moving

the boundary and interior nodes of the grid.

· CPU time can be reduced because no re-meshing is needed.

· The so called projection error can be avoided. Projection error is the error

2



1.2. Historical Perspective

which is created when the numerical solution is projected from the old mesh, to

the new mesh.

· Time accuracy must be retained.

In order to combine all the previous attributes, discontinuous Galerkin (dG)

and continuous Galerkin (cG) approximations with modal shape functions will be

used for the formulation. Modal bases are ideal for different mesh in the interface

because the solution doesn’t actually refer to a specific point and higher order

accuracy polynomials and schemes can be created. The Legendre polynomials are

used for the construction of the modal bases which can facilitate transfer of infor-

mation between the fluid and structural solvers through the arbitrary Lagrangian

Eulerian (ALE) coupling approach. Mixed dG-cG formulation was used for the

numerical solution of the incompressible Navier-Stokes equations combining this

way their main attributes. The dG methods are suitable for the momentum dis-

cretization because of their upwinding formulation. The cG method was used for

the pressure Poisson equation avoiding this way to solve the auxiliary equations

for the pressure gradients. Furthermore, using cG formulation, the discretized

Poisson equation is solved only once for each time step.

In the next section, a historical review of the most important accomplishments

in CFD is made. Since the dG method is going to be implemented, a historical

review of this method is presented as well. Because there are many different

discretization methods and solution algorithms for the incompressible flows, a

review in the most important of them is made, stating their main attributes and

drawbacks.

1.2 Historical Perspective

Recently, Shang [80] presented a historical review of CFD mainly for compressible

flow. Some historical perspective of numerical methods for incompressible flow

can be found in Cockburn, Karniadakis and Shu [22], as well as in [33] and [3].

Richardson [72], Courant, Friedrichs and Lewy [27], Southwell [83], von Neu-

mann [93], Lax [55] and Godunov [43] are considered to be the initiators of com-

putational fluid dynamics (CFD), traced back in the early 1900s. They focused on

3
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solving discontinuous fluid phenomena, the famous Riemann problem [74]. The

first numerical solution for viscous flow around a circular cylinder was obtained

by Thom [88] in the early 1930s. Harlow [47] proposed the particle in cell (PIC)

method in 1957 which is a combination of Eulerian and Lagrangian description of

the fluid motion. The PIC method was able to simulate multi-dimensional and

time dependent fluid problems, which is why it was the first breakthrough in the

field of CFD for incompressible flow and it was used for the development of future

algorithms and schemes.

Flow separation in a boundary layer is a problem of great interest until nowa-

days. Davis [29] solved accurately the compressible boundary layer equation by

using a combined implicit-explicit finite difference scheme. Stewartson [84] indi-

cated that the flow separation singular point can move and provided a scaling law

for the interacting boundary layers.

For inviscid three dimensional supersonic flow the method of characteristics

was developed. Rakich [70] created a three dimensional mesh in order to solve the

flow field around Mach cone shock fitting. Moretti and Abbett [63] solved time

dependent Euler equations using finite difference method and obtained a steady

state solution. Their main breakthrough was that they successfully incorporated

Rankine-Hugoniot conditions into their scheme. Furthermore, the Euler equations

maintained their hyperbolic type even in subsonic flow due to the time discretiza-

tion. Small disturbances theory was used in inviscid subsonic flows around aircraft

[76] and it has been used for airplane design even nowadays.

Dean Chapman, Director of Aeronautical Science Directorate of the NASA-

Ames Research Center, had the vision to create an organization specializing in

fluid dynamics for Aerospace and Aeronautic applications. For that purpose, tal-

ented scientists in the field of fluid dynamics and computer design were recruited.

Their combined efforts and collaboration between different NASA research centers,

resulted in great development around computational aerodynamics.

In 1969, McCormack published his well-known explicit predictor-corrector al-

gorithm [59]. The MacCormack algorithm is a second order accurate scheme for

resolving aerodynamic problems, even when strong flow field gradients are present,

due to a damping term which adds artificial viscosity which is proportional to the

4
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local pressure gradient. His numerical scheme has been successfully used for more

than 30 years. In the 1970s, a three dimensional hypersonic compression corner

simulation was performed using McCormack’s scheme and giving great agreement

with the experimental results [81].

Transonic flow in the Euler equations are of elliptic, parabolic or hyperbolic

type depending on the existence of the flow field in the subsonic, transonic or

supersonic domain respectively. Murman and Cole [64] used a combination of

central, backward and forward differences for the simulation of the transonic flow

field.

Jameson [48] had numerous contributions in CFD, among them are his numer-

ical scheme for transonic flow, the multigrid algorithm and aerodynamics optimiz-

ing techniques. Multigrid is a technique for solving large systems and achieving

faster convergence by solving a smaller system instead of the original one. The

multigrid methods are widely used for incompressible flows and they are generally

classified into the geometric and the algebraic multigrid. Brandt [15] introduced

the geometric multigrid algorithm. In this method, the low frequency numerical

error is being filtered out by interpolating the finer grid result to the coarser grid,

and the opposite process for constructing the corrected solution in the finer mesh

is followed. Use of multigrid can dramatically accelerate the numerical solution of

the Poisson equation for pressure. In general, some type of multigrid acceleration,

geometric or algebraic must be employed for Poisson solvers in large scale compu-

tations because the Poisson equation is of elliptic type and domain decomposition

methods do not help much.

Thompson’s technique for grid generation [90] is the reason that CFD became

vastly used in practical applications, where differential equations of various types

have been solved in order to construct the mesh. MacCormack’s implicit scheme

was used for the aerodynamic performance of the X-24C vehicle while it was enter-

ing the atmosphere [82]. The simulation was performed on the Cray 1 computer

and the mesh was constructed from Steger’s GRAPE grid generation software.

Briley and McDonald used the alternating direction implicit scheme (ADI)

for implicitly advancing in time the Navier-Stokes equations in the 1970s [16],

[17]. The scheme was unconditionally stable but matrix inversion was needed,

5
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resulting in larger memory requirements. Later, Beam and Warming solved the

compressible Navier-Stokes equations by using factorized implicit algorithms [11].

ADI scheme was further developed by Pulliam and others and it became the most

famous algorithm in CFD for the next few decades.

In the 1980s the finite volume schemes became widely used. The first numerical

solution using finite volume discretization was from MacCormack and Paullay [61]

in 1972. However, Rizzi and Inouye were the first who used the term finite volume

in 1973 [75]. Some other famous contributions to finite volume method are the

implicit Gauss-Seidel relaxation algorithm implemented by Thomas and Walters

[89] and MacCormack [60], as well as the van Leer upwind flux [92]. Ideas from

finite volume method are used in the present work and more information about

the method is given in subsection 1.3.2 .

Complex geometry representation requires the use of unstructured meshes be-

cause the excessive number of cells increases the computational time and could

make the analysis inefficient. Therefore an unstructured mesh framework was

created. Instead of using hexahedrals in three dimensions, prisms, pyramids and

tetrahedrals have been introduced. The first scheme used for unstructured grid

was Delaunay’s scheme [31] for triangular and tetrahedral elements in two and

three dimensions, respectively. Later, more advanced grid generation methods

enabled multi type elements in the domain of interest. Unstructured grid is con-

sidered to have better scalability than the structured, making parallel computing

more efficient, as well as it is suitable for adaptive mesh refinement. It must be

emphasized that most discretization methods have better efficiency for Cartesian

meshes. Therefore, the overset grid concept with Cartesian-type meshes in the far

field and body conforming grids for the near flow, interfaced with the Cartesian

off body grids with the Chimera approach, gained significant popularity.

Advancement in computer science enabled large scale simulation using par-

allel systems. Strang used a parallel network of computers and provided the

numerical solution of the Euler and Navier-Stokes equations [85]. As a result,

aerodynamic simulations of aircrafts became possible. In this work the massively

parallel environment for many cores was adopted through domain decomposition

using METIS library [50] and MPI prototype.

6
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Modeling of turbulence has always been a challenging issue for the CFD due to

its stochastic character. The approaches used for numerical solution of turbulent

flows are direct numerical simulation (DNS), large eddy simulation (LES), and the

so-called Reynolds-averaged Navier-Stokes (RANS) method. In DNS, the Navier-

Stokes equations are solved without any modification or assumption for finding

the time dependent velocity and pressure. In order to resolve the small scales the

grid points must be proportional to Re9/4 for a three dimensional problem, thus

making the method computationally inefficient. In the LES approach, velocity

and pressure are computed exactly like in DNS found for the moderate and large

scales, whereas the small scale effects are captured by using model approximations.

Finally in the RANS approximation, mean velocity, pressure and eddy viscosity

or Reynolds stresses are computed. In order to close the system of equations, the

eddy viscosity hypothesis is often employed. Depending on the turbulence model

being used, the eddy viscosity and the Reynolds stresses can be found from one

or two equation models.

Nowadays the fundamental equations of linear or non-linear structure dynam-

ics or electromagnetics are solved in a coupled fashion with the Navier-Stokes

equations. Furthermore numerical schemes for the aerothermodynamics of the

hypersonic flow, species reaction and computational magneto-fluid dynamics have

also been developed.

1.2.1 Historical review of the discontinuous Galerkin method

In this work, the dG method is used as basic discretization scheme for the mo-

mentum equation. Therefore a brief historical review of the developments in the

dG method is given. The dG finite element method was introduced for solving

linear hyperbolic systems. More specifically, Reed and Hill [71] proposed for the

first time the dG method in order to solve the neutron transport equation in

1973. One year later, LeSaint and Raviart [56] made the first analysis of the dG

method and showed that the method is strongly A-stable of order 2k+ 1 at mesh

points, when polynomials of degree k are used. Some early applications of the dG

method in the late 1970s are wave propagation analysis in elastic media by Oden

and Wellford [96], [98] and [97] and to optimal control dy Delfour and Trochu [32].

7



1. Introduction

In the 1989, Fortin [40] used the method for numerical computation of viscoelastic

flows, by expressing the extra-stress tensor in terms of the velocity. Ten years

later, Warburton and Karniadakis [95] discretized the magneto-hydrodynamics

equations using dG method.

Since linear hyperbolic equations have been successfully treated by dG method,

the method was expanded to non-linear hyperbolic systems. Implicit time dis-

cretization had been used because of the nonlinearities in the system of differen-

tial equations. Lowie and Morel [58] among others used space-time elements in

order to avoid solving the system of the implicit scheme and keep its local char-

acter. Explicit schemes had been used to avoid the difficult implicit treatment,

first by using the Euler method [19] and later by using the Runge Kutta Dis-

continuous Galerkin method (RKDG). The first RKDG method was introduced

by Cockburn and Shu [24] and it was second order accurate in time, stable for

CFL number less than 1/3 and total variation bounded in the means (TVBM).

In 1989, Cockburn and Shu [23] generalized the method and created high-order

accurate RKDG methods for the scalar hyperbolic conservation law. The success

of this scheme was that the accuracy wasn’t destroyed by the slope limiter and no

oscillations were noticed in the numerical solutions.

The dG method does not impose continuity constraints for the solution at the

element interfaces. This gives local character to the dG but introduces difficulties

for second order derivative discretization. In 1991, Dawson [30] used for first time

upwind-mixed methods (UMM) for advection-diffusion equations by upwinding

the convective terms. One year later, convection-diffusion discretization was pro-

vided by Richter [73]. One of the first attempts in dG framework for treating the

viscous terms (second order derivatives) in the Navier Stokes equations is the local

discontinuous Galerkin (LDG) method by Cockburn and Shu [25] which was a gen-

eralization of Bassi’s and Rebay’s [5] approach for the compressible Navier-Stokes

equations. The basic idea is to write the second order system in a bigger first order

system and then carefully choose the numerical fluxes. So in this approach the

velocity vector field and the velocity gradient tensor are treated as independent

unknowns and thus auxiliary equations for computing the velocity gradients are

derived.

8
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Some recent developments in the dG method and turbulence modeling are

RANS equations coupled with either k-omega or Spalart-Allmaras turbulence

models by Bassi [7], Oliver [67] and others. Arbitrary Lagrangian-Eulerian (ALE)

formulation has been incorporated into the dG method [69], allowing the interior

computational mesh to move, while the boundary mesh moves along the materials.

This formulation is mostly used in fluid structure interaction problems (FSI).

1.3 Discretization Methods in CFD

In this section the most common discretization methods in CFD are presented

and their main features are briefly outlined in order to point out advantages of

the Finite Element method that was chosen in this work. Finite differences and

finite volumes, are the most common low order (second order) methods in CFD.

High order methods are finite difference explicit and compact schemes, as well

as the ENO and WENO schemes [3]. These methods are quite efficient compu-

tationally, they produce the design order of accuracy for moderately stretched

structured meshes but they involve wide stencils. Finite element approximation,

such as continuous Galerkin (cG), discontinuous Galerkin (dG) and Hybridizable

Discontinuous Galerkin (HDG) are well suited for high order accurate discretiza-

tions with a compact stencil in unstructured meshes. The main consequence of

low or high order of approximation, is that in the former only mesh refinement

(h-refinement) can be applied. On the other hand, in high order methods both

mesh and polynomial refinement (p-refinement) can be applied. References used

for this part are Ferrer [38], Shahbazi [79] and Karniadakis [49].

1.3.1 Finite Difference Method

Finite difference method is the first discretization technique used in numerical

methods and it was introduced by Euler in the 18th century. The physical domain

is discretized by a set of grid points, where the variable values are unknown. In

this method the differential form of the equations is transformed into a system of

algebraic equations usually by using Taylor series expansions in order to approx-

imate the derivatives. Another equivalent way to approximate the derivatives is

9
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by using polynomial fitting.

The main advantages of the method are ease of implementation and reduced

computational cost. The main drawback in that method is that it cannot be

applied in complex geometries. Metrics need to be computed if the grid points

don’t form canonical quadrilateral or hexahedral in the two and three dimensions

respectively and the transformed equations must be solved. Finally, depending

on the accuracy which is needed, more terms in the series expansion are taken

in order to approximate the first or the second derivative. That way, imposing

the boundary conditions becomes a complicated issue and parallel implementation

with domain decomposition becomes less efficient as the stencil width increases.

1.3.2 Finite Volume Method

The finite volume method became very popular in the 1980s and has been applied

for conservation laws in the Eulerian reference frame. It is self explanatory that

the physical domain is discretized in finite volumes. The integral form of the

Navier-Stokes is used where mass, momentum and energy are conserved both in

the element and in the total domain. The Gauss’ divergence theorem is applied to

transform the viscous and inviscid terms from volume integrals to surface integrals

in a three dimensional mesh. Finally, the fluxes from the neighbor volumes are

used in order to calculate the surface integrals.

The most important feature of this approximation is easy implementation of

the numerical scheme for the conversation laws, making the method appropriate

for complex geometries, as a result the FV method was used in many industrial

applications. One unknown for each variable per element has to be computed.

Therefore, the total number of unknown degrees of freedom is relatively small,

making large mesh simulations feasible. Furthermore, no metrics need to be found,

the only geometrical operations needed are calculation of the area and the volume

of each face and cell respectively. In addition to this, the flux vector which is

normal to each cell surface has to be calculated for the diffusive and convective

terms.

Although finite volumes have been successfully used for more than 30 years ,

they have specific disadvantages. High order accuracy cannot be easily achieved

10
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and it is extremely computationally inefficient, because the stencil is becoming

very large. Coupling with other discretization schemes is difficult to be achieved,

restraining the choices of the numerical method, for example in FSI simulations .

1.3.3 Finite Element Method

In the finite element method (FEM) the variables are approximated by the prod-

uct of the transposed shape function vector and the solution vector. For the finite

element discretization, the weak form of the equations is used, which is created

by multiplying the partial differential equations with a weight function and inte-

grating by parts, using Gauss divergence theorem. The values of the surface and

volume integrals are calculated using numerical integration at specific quadrature

points, whose the number and the location depend on the order of the accuracy

used.

If the test function is the same as the shape function, the FEM is called

Galerkin approximation. A well known method where the weight and the shape

functions are not the same, is the Streamline Upwind Petrov Galerkin (SUPG)

method, due to the upwinding of the weight functions in the streamwise direc-

tion. Nodal (Lagrange polynomials), modal (Legendre or Jacobi polynomials),

even nurbs that could achieve higher order continuity and geometric representa-

tion have been employed as basis functions. The most widely used finite element

techniques are continuous Galerkin (cG), discontinuous Galerkin (dG) and Hy-

bridizable Discontinuous Galerkin (HDG), which is actually in the family of dG

schemes.

In finite element schemes, the polynomial basis and the numerical integration

are responsible for the order of accuracy, so the latter can be increased simply by

changing the order in the input file. As a result, higher order polynomials will be

used for the basis construction and more quadrature points at new locations will

be taken. This is of major importance, because no sophisticated interpolations

and fluxes from far away elements are needed.

11
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Continuous Galerkin Method

In the cG method, there is at least C0 continuity, which means the approximated

variable has to be continuous in the face between the elements. If k order conti-

nuity is achieved, it means that the variable and all the derivatives up to k order,

are continuous. Since the basis and the variable are continuous, there is no need

for numerical fluxes and all the interior surface integrals are eliminated. Surface

integrals are only used for the Neumann type boundary conditions. The Dirichlet

type boundary conditions are enforced either by the row and column elimination,

or by the penalty approach.

The main attributes of the cG method is that high order of accuracy can

be guaranteed, while fast convergence with low diffusion and dispersion errors

is achieved. The number of the equations to be solved is smaller than those in

dG, because no auxiliary equations for the gradients of the unknown variables

have to be derived, which is the case in the dG method. In addition to this,

the total degrees of freedom (DOFs) for the unknown variable in the system are

much more less than those in the dG method, especially for polynomials of lower

order. Although only implicit schemes are derived, due to the continuity of the

variable, only one iteration is required for steady state problems, whereas using

dG methods, multiple iterations will be necessary until convergence is achieved.

Finally, by using a specific numbering for the global degrees of freedom (more

details in chapter 3), the matrix has most of his elements in or close to the diagonal,

so it has a better matrix condition, thus it can be easier solved.

However the previous approximation has the following drawbacks. The con-

tinuous framework has to be constructed, for example algorithms for mapping

the local DOFs into the global DOFs, the edge connectivity between neighbor

elements sharing the same edge, probably remapping in order to eliminate the

variables which are known from the Dirichlet type boundary conditions etc. All

these are not needed in the dG method. Finally, the parallelization in cG schemes

is more difficult than using dG schemes, because of the mapping. Even if an el-

ement belongs to a specific rank, the correspondent global DOFs maybe belong

to another rank, making the communication between ranks necessary. The num-

12
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ber of the unknown coefficients per element for each variable is much larger than

in the finite volumes discretization, but this is the case in every finite element

method. In most cG formulations, local conservation cannot be achieved due to

the continuity of the bases, and global conservation can only be achieved if there

are no Dirichlet type boundary conditions.

Discontinuous Galerkin Method

In the dG method, there is no continuity across the element boundaries and the

conservation of the flow properties is ensured by the numerical fluxes used in the

surface integrals. The numerical fluxes must be carefully chosen in order for the

scheme to be stable and consistent. Boundary conditions can be easily treated

using ghost elements approach, so they are weakly enforced in comparison with

the cG method, where the boundary conditions are usually strongly enforced.

One of the most important advantages of the dG method is that the mass,

momentum and energy are preserved in a local manner and global manner (locally

and globally conservative method) due to the finite volume character achieved

through discontinuous test functions. Physical discontinuities can be captured

without any oscillations around them, for example shock waves in compressible

flow problems. High order accuracy can easily be achieved using higher order

polynomials for the shape functions. The minimum order of accuracy is k + 1/2

and usually for smooth flow problems the accuracy is k + 1, when polynomials

of k order are used. The bases which are often used are hierarchical, thus no

actual change is needed in the numerical scheme in order to obtain a higher order

approximation. Both p-type and h-type refinement can be achieved using dG

discretization. In the non-conforming h-type adaptivity, the refined mesh has

hanging nodes, which can be easily handled if modal basis have been used. In the

p-type refinement, the order of the polynomial used for the dG approximation can

be different from element to element, thus better resolution in elements of interest

is achieved. Discontinuous Galerkin is a compact method, thus communication

only with the immediate neighbors is needed, regardless of the order of the scheme,

making the method easily parallelizable. Complicated geometries can be captured

by using unstructured or mixed type mesh. Boundary conditions can be easily

13
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satisfied in the dG formulation and due to the discontinuity of the approximation

variables, no special treatment in higher order scheme is needed, which was the

case in finite volume and difference.

However the main disadvantage of the method is that it is more computation-

ally expensive compared to the FD and FV methods. For example, if first order

polynomials have been used in order to give second order of accuracy in space, the

number of the bases used for hexahedral elements is eight, which means that for

each element 8 unknown coefficients must be found for approximating one vari-

able. The implementation of the scheme is much more sophisticated compared to

low order methods. Moreover, auxiliary equations for the variable gradients are

needed, the only case to avoid that is by using Interior Penalty Method (IPM) [1].

When solving numerically the INS equations, nine auxiliary equations are required

which have to be solved at each time step in order to find all the necessary velocity

gradients, needed in the viscous flux computation.

Hybridizable discontinuous Galerkin Method

The HDG method is actually a dG scheme with special choice of the numerical

traces and fully implicit formulation [66]. Unique value for the trace along the

element boundaries is derived by enforcing the continuity of the normal component

of the flux across the element boundary. The global equation system is only

in terms of the approximate trace, whereas all the other variables are treated

explicitly.

The most important feature of the method, is that the unknowns from the im-

plicit scheme are the trace of the velocity and the mean of the pressure on element

boundaries, thereby there is reduced number of degrees of freedom. The HDG

method has superconvergence properties for the velocity field, and after elemental

post-processing, the velocity field is exactly divergence free and converges with

order k + 2, if k is the degree of the polynomial used in the expansion. Finally,

unified treatment is used for both the viscous and the inviscid numerical fluxes by

using a single numerical flux.

On the contrary, HDG suffers from serious disadvantages, difficulty in paral-

lelization among others. The main reason for that is that there are several matrix

14
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multiplications and other operators in order to decouple the traces from the other

unknowns. Moreover, there is high computational cost in memory, due to the

global matrices storage which is required.

1.4 Solution Algorithms for Incompressible Flow

The compressible Navier-Stokes equations describe the flow when the flow speed

is significant (M =
u

a
> 0.3) relative to the speed of sound. If the speed of

sound of the medium becomes infinity, the compressible flow equations become

singular. This singularity is the main difficulty in solving incompressible flow using

a compressible flow formulation. The challenge in incompressible flow is to satisfy

the continuity equation, which is often used as a constraint rather than a new

equation to be solved. Many different techniques have been used for surmounting

this problem and for that reason there is an ambiguity in the literature as far as

the different solution algorithms are concerned. The most popular techniques for

solving INS are summarized by Karniadakis and Sherwin [49], as well as Deville,

Fischer and Mund [33]. The two different methodologies for solving the INS are

fully coupled and uncoupled methods for the velocity and pressure.

In coupled algorithms, the velocity field and the pressure are solved simulta-

neously. The first uncoupled method for the linear Stokes equations was prob-

ably the Uzawa algorithm [62] which converges slowly and it is computationally

expensive. Later coupled techniques, regardless of the discretization method, in-

corporate the unknown pressure variable into the continuity equation, such as

the artificial compressibility method. In this method, a pseudo-time derivative

of pressure, multiplied by an artificial compressibility parameter, is added in the

continuity equation [46]. Now the system is hyperbolic-parabolic type and thus

implicit schemes and discretization methods designed for compressible flow can

be applied. A time marching scheme is used until the divergence of the veloc-

ity converges to a specific tolerance. The incompressibility parameter has to be

chosen to its highest possible value, so as the incompressibility is quickly recov-

ered. Other methods treating continuity equation in terms of velocity and pressure

are Hybridizable Discontinuous Galerkin method (HDG) [66] and discontinuous
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Galerkin method where the incompressible numerical flux of the velocity in the

divergence free condition is a function of both velocity and pressure [57]. Coupled

algorithms are generally considered to give exactly divergence free velocity field.

The uncoupled methods which are usually much more efficient, since two

smaller systems for the velocity field and the pressure are solved, are divided

into velocity correction [36] and projection methods [33]. In these methods, the

velocity field at the new step is found without calculating the pressure field. On

the one hand, in the velocity correction schemes, the viscous term is treated explic-

itly or ignored in the first substep and a correction to the velocity is made in the

second substep. More specifically, in the rotational velocity correction formulation

[36], the rotational form of the viscous term is used in order to obtain a high-order

splitting scheme. On the other hand, in the projection methods, pressure is treated

explicitly or ignored in the first substep, and an intermediate velocity field which

is not divergence free is calculated. This field is projected on the solenoidal space.

Projection methods are also divided into fractional step methods and pressure

correction methods. The former, is a splitting technique for decoupling nonlin-

ear convection terms and the diffusion terms in the INS equations into separate

problems. In the beginning, the INS equations are solved without the pressure

gradient term at all and next the pressure Poisson equation is solved. In the later,

the INS are solved using an old time level value for the pressure in order to find a

velocity field which is not divergence free. In the second step, pressure correction

is performed, by subtracting the old from the new time level pressure and it is

added to the velocity field in order to satisfy the divergence free condition. Al-

though split algorithms don’t give exactly divergence free velocity field, they are

robust and computationally efficient.

1.5 Objective

A numerical algorithm for the numerical solution of the unsteady three dimensional

incompressible Navier-Stokes equations has been developed using finite element

discretization techniques. The main objectives of the thesis are the following:

1. To develop high order accurate method in space using a hybrid dG and

16
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cG discretization approach for the velocity vector and the pressure fields

respectively. The h/p Spectral Element framework is employed to obtain

unified discretization of the fluid and solid domains.

2. To ensure time accuracy and overcome CFL stability limitation, implicit

Runge-Kutta methods are used for time marching.

3. To implement parallelism using Message Passing Interface (MPI) in order

to make possible large scale simulation in massively parallel computer archi-

tectures.

4. To perform verification and validation of the solution algorithm for its ac-

curacy and stability by solving two and three dimensional problems. The

algorithm is verified by comparing with the analytical solution and validation

is performed by comparing with the experimental results.

Although the long term application of the numerical method is accurate pre-

diction of the flow around wind turbine blades, there are many more applications

in three dimensional incompressible flows. The rest of the thesis is organized as

follows. In chapter 2, the non-dimensional form of the governing equations in

three dimensions is presented. Some exact solutions for simple problems are also

given and later used for verification. In chapter 3, the continuous and discontin-

uous finite element framework is described by employing the three dimensional

expansion bases, local and global operations. The numerical scheme used and

the pressure-velocity decoupling using the projection method combined with time

marching techniques are introduced in chapter 4. Numerical examples and verifi-

cation of the method by performing comparison with analytical solutions has been

shown in chapter 5. Finally, all the work is summarized and future directions are

given.
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Chapter 2

Governing Equations

2.1 Governing Equations

We seek the numerical solution for the unsteady three dimensional Navier-Stokes

equations:

∇ · u = 0, in Ω, (2.1)

∂u

∂t
+ (u · ∇)u = f − 1

ρ
∇p+ ν∇2u, in Ω, (2.2)

where Eq. (2.1) is the continuity equation and Eq. (2.2) are the momentum

equations, in the physical domain Ω. The boundary faces ∂Ω are divided into

Dirichlet ∂ΩD and Neumann ∂ΩN type, where ∂Ω = ∂ΩD∪∂ΩN and ∂ΩD∩∂ΩN =

∅. In order to close the system, the following initial and boundary conditions are

specified.

u(x, t = 0) = u0, in Ω, (2.3)

u = uD, on ∂ΩD, (2.4)

µ
∂u

∂n
= pn, on ∂ΩN , (2.5)

where u is the velocity vector field u = [u v w]>, p is the static pressure, ρ

is the density, f is the body force vector, t is the time and ν is the kinematic

viscosity given by: ν =
µ

ρ
. The initial velocity is u0, whereas uD is the specified

velocity at the Dirichlet type boundaries ∂ΩD in Eq. (2.4). The gradient of the
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velocity at each direction in the Neumann type boundaries ∂ΩN is given by the

condition in Eq. (2.5).

The non-dimensional form of the governing equations is given by normalizing

the static pressure by the upstream dynamic pressure: p̂ =
p

ρU2
∞
, while the velocity

is non dimensionalized by dividing by the free stream velocity û =
u

U∞
, the non

dimensional time is t̂ =
tU∞
L

, where L is the characteristic flow length scale.

∇̂ · û = 0, in Ω, (2.6)

∂û

∂t̂
+ (û · ∇̂)û = f̂ − ∇̂p̂+

1

Re
∇̂2û, in Ω, (2.7)

û(x̂, t̂) = û0, in Ω, (2.8)

û = 1, on ∂ΩD, (2.9)

1

Re

∂û

∂n
= p̂n, on ∂ΩN , (2.10)

where the Reynolds number is defined as the ratio of inertial to viscous forces and

it is given by: Re =
U∞L

ν
. For low Reynolds number the viscous effects dominate,

whereas in high Reynolds numbers the convective terms are the most important.

The interesting fact here is that the flow is independent of the actual value of the

inflow velocity, since in Eq. (2.9) the value is unity. As a result, the Reynolds

number is the non dimensional parameter that affects the speed of the fluid in

the incompressible flow. For simplicity in the rest of this work, the hat symbol

is omitted for all the variables, with the understanding that all variables are non

dimensional.

2.2 Analytical Solutions

In this section analytical solutions for the incompressible Navier-Stokes equations

are presented such as the inviscid cylinder case and the Kovasznay flow. These

exact results will be used for verification of the numerical algorithm.
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2.2.1 Inviscid Flow over a Cylinder

The analytical velocities and pressure for the Euler equations describing the in-

viscid and irrotational flow around a cylinder are given by:

u = U∞ +
U∞ρ

2(y2 − x2)

x4 + y4 + 2x2y2
, (2.11)

v =
−2U∞ρ

2xy

x4 + y4 + 2x2y2
, (2.12)

p = p∞ +
U2
∞ρr

2(x2 − y2)

x4 + y4 + 2x2y2
, (2.13)

where r is the cylinder radius. The pressure coefficient for inviscid flow is given

by:

Cp = 1− 4sin2θ. (2.14)

2.2.2 Kovasznay Flow

The Kovasznay flow is one of the few exact steady solutions for viscous incompress-

ible flow. The Kovasznay flow is defined in a square domain (−0.5, 1.5) × (0, 2)

with boundary conditions for the velocity and pressure taken from the analytical

solution in Eq. (2.15)-(2.17) .The analytical solution describing the field is given

by the following equations [53]:

u = 1− eλxcos(2πy), (2.15)

v =
λ

2π
eλxsin(2πy), (2.16)

p = 0.5(1− e2λx), (2.17)

where λ is defined as:

λ =
Re

2
−
√
Re2

4
+ 4π2. (2.18)
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Chapter 3

Finite Element Framework

3.1 Introduction

Before deriving the finite element discretization with the Galerkin approximation,

the expansion bases will be introduced following the h/p Spectral element frame-

work [49]. In addition, the elemental and global operations needed in dG and cG

formulations for calculating the integrals and assembling the global matrix will be

outlined. Numerical integration and differentiation are considered to be the lo-

cal operations, whereas the local to global mapping, modal face connectivity and

enforcement of the Dirichlet boundary conditions are referred as global operations.

Let Ω denote the physical domain and Ωj the elements belong in: Ωj ∈ Ω. All

the operations, either the expansion bases or the numerical integration and dif-

ferentiation, are performed in the computational domain. The standard elements

Kj in the computational domain K are actually a transformation of the physical

elements Ωj and they are normal hexahedrals defined in the space: Kj = {−1 ≤

ξ1, ξ2, ξ3 ≤ +1}.

3.2 Expansion Bases

The modal discontinuous and continuous bases are constructed in the computa-

tional space K using tensor product and then they are transformed back to the

physical space Ω using a collapsed coordinate system. The shape functions used

in velocity approximations are discontinuous, whereas the shape functions used in

pressure approximation are C0 continuous.
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The bases are constructed using the Jacobi polynomials Pα,β
p which are solu-

tions of the following ordinary differential equation:

d

dx
[(1− x)1+α(1 + x)1+β d

dx
up(x)] = λp(1− x)α(1 + x)βup(x), (3.1)

up(x) = Pα,β
p , (3.2)

λp = −p(α + β + p+ 1). (3.3)

The one-dimensional dG bases used in the present work are:

φpd(ξ) = P 0,0
p (ξ), 0 ≤ p ≤ P, (3.4)

where d subscript stands for discontinuous. The one-dimensional modal C0-

continuity expansion bases are introduced next:

φpc(ξ) =


ψα0 (ξ) =

1− ξ
2

, p = 0

ψαp (ξ) =
1 + ξ

2

1 + ξ

2
P 1,1
p−1(ξ), 0 < p < P

ψαP (ξ) =
1 + ξ

2
, p = P

(3.5)

where c subscript stands for continuous. In the one-dimensional bases, the bound-

ary modes are the fist and last modes, that is for p = 0 and p = P , whereas the rest

of them are the interior modes. The three dimensional bases can be constructed

by tensor product of the one-dimensional bases in each of the Cartesian coordinate

directions either for the continuous or the discontinuous shape functions:

φpqr(ξ1, ξ2, ξ3) = φp(ξ1)φq(ξ2)φr(ξ3), 0 ≤ p, q, r; p ≤ P1, q ≤ P2, r ≤ P3

(3.6)

The shape functions used in pressure approximation are C0 continuous and

they are decomposed into boundary and interior modes. Boundary modes are all

the modes with non-zero support on the boundary and interior modes are zero on

all boundaries. For three dimensional bases employed in this work, the boundary

modes are decomposed in vertex, edge, and face modes. Vertex modes have a unit
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magnitude at one vertex and zero value at all the other vertices. Similarly, edge

modes have support at one edge and zero value at all the other edges and vertices.

Finally, face modes have support at one face and zero support at all the other

faces, edges and vertices. Following the indexing shown in Fig. (3.1) [49], several

examples of modes are given next.

The vertex mode A is:

φ000(ξ1, ξ2, ξ3) = ψα0 (ξ1)ψα0 (ξ2)ψα0 (ξ3), (3.7)

the edges mode AB are:

φp00(ξ1, ξ2, ξ3) = ψαp (ξ1)ψα0 (ξ2)ψα0 (ξ3), 0 < p < P1, (3.8)

the face modes ABFE are:

φp0r(ξ1, ξ2, ξ3) = ψαp (ξ1)ψα0 (ξ2)ψαr (ξ3), 0 < p < P1, 0 < r < P3, (3.9)

and the interior modes are:

φpqr(ξ1, ξ2, ξ3) = ψαp (ξ1)ψαq (ξ2)ψαr (ξ3), 0 < p, q, r; p < P1, q < P2, r < P3. (3.10)

Figure 3.1: Indices for the modes in the three dimensions.

For dG finite element discretization, within each element the number of the dis-

continuous bases used for a polynomial of degree k (so order of accuracy k+ 1 can

be achieved) is:

nvbd = (k + 1)3, 0 ≤ k, (3.11)
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and the number of the continuous bases used for a polynomial of k order is:

nvbc = vertices+ edges(k − 1) + faces(k − 1)2 + (k − 1)3, 1 ≤ k. (3.12)

Where vertices, edges and faces is the number of the vertices,edges and faces

respectively. In the previous equations nvbd and nvbc are actually the same for

a given polynomial order k. The bases used are hierarchical, because higher or-

der expansions are built from lower order expansions. Thus p-refinement imple-

mentation is straightforward and efficient. In addition, the bases are orthogonal

polynomials in the Legendre inner product.This type of orthogonality offers better

matrix conditioning and is more appropriate for using an explicit time step [49].

3.3 Elemental Operations

3.3.1 Numerical Integration

The transformation relation between computational and physical space for a hex-

ahedral shown in Fig. (3.2) is given by:

X(ξ1, ξ2, ξ3) =
(1− ξ1)(1− ξ2)(1− ξ3)

8
XA +

(1− ξ1)(1 + ξ2)(1− ξ3)

8
XB

(1 + ξ1)(1− ξ2)(1− ξ3)

8
XC +

(1 + ξ1)(1 + ξ2)(1− ξ3)

8
XD

(1− ξ1)(1− ξ2)(1 + ξ3)

8
XE +

(1− ξ1)(1 + ξ2)(1 + ξ3)

8
XF

(1 + ξ1)(1− ξ2)(1 + ξ3)

8
XG +

(1 + ξ1)(1 + ξ2)(1 + ξ3)

8
XH ,

(3.13)

where X = [x y z]>. The differential change in the physical coordinates is:


dx

dy

dz

 =



∂x

∂ξ1

dξ1 +
∂x

∂ξ2

dξ2 +
∂x

∂ξ3

dξ3

∂y

∂ξ1

dξ1 +
∂y

∂ξ2

dξ2 +
∂y

∂ξ3

dξ3

∂z

∂ξ1

dξ1 +
∂z

∂ξ2

dξ2 +
∂z

∂ξ3

dξ3


=⇒


dx

dy

dz

 = [J ]


dξ1

dξ2

dξ3

 , (3.14)

where [J ] is the volume Jacobian defined as:
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[J ] =



∂x

∂ξ1

∂x

∂ξ2

∂x

∂ξ3

∂y

∂ξ1

∂y

∂ξ2

∂y

∂ξ3

∂z

∂ξ1

∂z

∂ξ2

∂z

∂ξ3


. (3.15)

The Jacobian of the transformation given by Eq. (3.16) must be positive, otherwise

self-intersecting elements are detected which cannot be used for the computations.

|J | = ∂x

∂ξ1

(
∂y

∂ξ2

∂z

∂ξ3

− ∂z

∂ξ2

∂y

∂ξ3

)
− ∂x

∂ξ2

(
∂y

∂ξ1

∂z

∂ξ3

− ∂z

∂ξ1

∂y

∂ξ3

)
+
∂x

∂ξ3

(
∂y

∂ξ1

∂z

∂ξ2

− ∂z

∂ξ1

∂y

∂ξ2

)
.

(3.16)

Figure 3.2: Numbering of global and local hexahedral nodes.

The bases are employed in the computational domain K where numerical integra-

tion can also be performed, therefore the following volume integral transformation

is made from the physical space elements to the canonical elements of the compu-

tational domain:

∫
Ωj

u(x1, x2, x3)dx1dx2dx3 =

∫
Kj

u(ξ1, ξ2, ξ3)|J |dξ1dξ2dξ3. (3.17)

The transformation for a surface integral is similar, taking into consideration that

∂Ωj is a specific local face of the element Ωj in the physical domain. For demon-

stration purposes and without loss of the generality it is assumed that ∂Kj is the

corresponding local face where ξ3 = −1 of the element Kj in the computational

domain:
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3. Finite Element Framework

∫
∂Ωj

u(x1, x2, x3)dS =

∫
∂Kj

u(ξ1, ξ2,−1)

∣∣∣∣ ∂x∂ξ1

× ∂x

∂ξ2

∣∣∣∣dξ1dξ2, (3.18)

where

∂x

∂ξi
=



∂x1

∂ξi

∂x2

∂ξi

∂x3

∂ξi


. (3.19)

The volume and surface integrals derived from the weak formulation are calcu-

lated using Gaussian quadrature which is exact for polynomials of degree k once
3k + 1

2
quadrature points are used in Legendre type of integration. The value of

the integrated function is required only at the specific quadrature points. The

numerical integration for a volume integral is presented:

∫
Kj

u(ξ1, ξ2, ξ3)dξ1dξ2dξ3 =

Q1∑
i=1

wi

{ Q2∑
j=1

wj

{ Q3∑
k=1

wku(ξ1i, ξ2j, ξ3k)

}}
, (3.20)

where w are the weights and Q1, Q2, Q3 is the number of quadrature points in

each direction. A similar to Eq. (3.20) formula can be employed for the surface

integrals. In the current work, Gauss-Legendre and Gauss-Lobatto-Legendre type

of integration will be used. The difference is the location and the number of the

quadrature points and the weights used. In Gauss-Legendre type the quadrature

points are inside the interval, whereas in Gauss-Lobatto type the end-points, ξ =

±1, are quadrature points as well.

Gauss-Legendre type:

ξi = ξ0,0
i−1,Q+1, i = 1, · · · , Q (3.21)

Gauss-Lobatto type:

ξi =


1, i = 1

ξ1,1
i−2,Q−3, i = 2, · · · , Q− 1

−1, i = Q

(3.22)

The number of the quadrature points taken depending on the polynomial order

is the smallest integer value greater than or equal to:
3k + 1

2
and

3k + 3

2
for

Legendre and Lobatto integration type respectively.
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3.3.2 Differentiation

Differentiation is performed at the quadrature points as well, by using chain rule,

since the shape functions are in terms of the canonical coordinates ξ1, ξ2, ξ3. There-

fore if the gradient of a scalar value q is required, the gradient of the basis Φ (con-

tinuous or discontinuous) must be found ∇Φ. Applying chain rule, the derivatives

can be found:

∇Φ =



∂Φ

∂x1

∂Φ

∂x2

∂Φ

∂x3


=



∂ξ1

∂x1

∂Φ

∂ξ1

+
∂ξ2

∂x1

∂Φ

∂ξ2

+
∂ξ3

∂x1

∂Φ

∂ξ3

∂ξ1

∂x2

∂Φ

∂ξ1

+
∂ξ2

∂x2

∂Φ

∂ξ2

+
∂ξ3

∂x2

∂Φ

∂ξ3

∂ξ1

∂x3

∂Φ

∂ξ1

+
∂ξ2

∂x3

∂Φ

∂ξ2

+
∂ξ3

∂x3

∂Φ

∂ξ3


. (3.23)

Inverting the Jacobian matrix in Eq. (3.15), the following derivatives are com-

puted:

∂ξ1

∂x
=

1

|J |

(
∂y

∂ξ2

∂z

∂ξ3

− ∂y

∂ξ3

∂z

∂ξ2

)
,

∂ξ1

∂y
=

1

|J |

(
∂x

∂ξ2

∂z

∂ξ3

− ∂x

∂ξ3

∂z

∂ξ2

)
,

∂ξ1

∂z
=

1

|J |

(
∂x

∂ξ2

∂y

∂ξ3

− ∂x

∂ξ3

∂y

∂ξ2

)
,

∂ξ2

∂x
=

1

|J |

(
∂y

∂ξ1

∂z

∂ξ3

− ∂y

∂ξ3

∂z

∂ξ1

)
,

∂ξ2

∂y
=

1

|J |

(
∂x

∂ξ1

∂z

∂ξ3

− ∂x

∂ξ3

∂z

∂ξ1

)
,

∂ξ2

∂z
=

1

|J |

(
∂x

∂ξ1

∂y

∂ξ3

− ∂x

∂ξ3

∂y

∂ξ1

)
,

∂ξ3

∂x
=

1

|J |

(
∂y

∂ξ1

∂z

∂ξ2

− ∂y

∂ξ2

∂z

∂ξ1

)
,

∂ξ3

∂y
=

1

|J |

(
∂x

∂ξ1

∂z

∂ξ2

− ∂x

∂ξ2

∂z

∂ξ1

)
,

∂ξ3

∂z
=

1

|J |

(
∂x

∂ξ1

∂y

∂ξ2

− ∂x

∂ξ2

∂y

∂ξ1

)
.

(3.24)

3.4 Global Operations

In this section, the global operations performed in continuous and discontinuous

finite element approximation are described. These operations are the mapping

process from local DOFs to global DOFs in order to create the global matrix and

vector, modal face connectivity in order to apply continuity, and the Dirichlet

boundary condition enforcement.
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3.4.1 Mapping Process

dG formulation

In the dG approximation where no continuity is required, the process for assem-

bling the global system is straightforward, since all the local DOFs are and global

DOFs as well. The first nvb rows and columns of the global matrix contain the

DOFs of the first element, the next nvb rows and columns are the DOFs of the

second element, etc. However, in a specific row where the equations of a certain

element are placed, there is also contribution from other elements, so columns of

neighbor element DOFs are non zero, due to the numerical flux in the surface

integrals.

cG formulation

In the cG approximation where C0 continuity is required, the appropriate mapping

must be made in order to assemble the global matrix and vector from the local

matrices and vectors respectively. For each element, a local index vector is created

connecting the local DOFs with the global ones. The numbering in the local DOFs

is the following. The vertex modes come first, then the k− 1 edge modes for each

edge follow, then the (k−1)2 face modes for each face and finally the (k−1)3 interior

modes. The numbering between the local vertices, edges and faces is consistent

with the computational canonical element, as it is shown in Fig. (3.3). The

global numbering is accomplished with a similar procedure as follows. First, all

the global vertex modes are assigned, defined by their global coordinates, then the

edge modes are assigned, defined by the global edge numbering. Next, the global

face modes are assigned, defined by the global face numbering, and finally the

interior modes are independently assigned, by looping over all elements. Although

the algorithm defining the unique matching between local and global edges or faces

appears complicated, this type of global numbering is adopted because it yields

to minimal bandwidth, therefore offering a better matrix conditioning.
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3.4. Global Operations

Figure 3.3: Local numbering of vertices (red), edges (green) and faces (blue) in
the canonical element.

3.4.2 Modal Connectivity

dG formulation

For the numerical flux calculation in the dG approximation, information from ele-

ments neighboring the element under consideration is needed, therefore quadrature

points connectivity must be established. For that purpose all possible orientations

between two neighbor faces are examined. When calculating the value of a surface

integral in a specific quadrature point, the corresponding quadrature point at the

same location from the neighboring face must be taken. If the faces have different

orientation, the quadrature points will not have the same index, thus proper mod-

ifications must be made. This is clearly shown in Fig. (3.4), where the ξ1 local

axis is reversed, so for example the quadrature point (3,1) of the upper element

should match with the quadrature point (1,1) of the lower element.

cG formulation

The situation is much more complicated in the cG approximation but the bound-

ary/interior decomposition which was made, allows to match boundary modes of

similar shape. For shape functions with polynomial order higher than two, where

more than one edge modes exist, the local orientation of the element must also

be taken into account, as it is shown in Fig. (3.5). Depending on the orientation

of the local coordinate system, the sign of odd-ordered modes may need to be
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3. Finite Element Framework

reversed. This happens if the local system of the two neighboring elements is in

opposite direction. In order to avoid re-ordering the edge modes, their number-

ing is based on their polynomial order, therefore the lowest edge mode number is

the lowest polynomial order. Following the same procedure in global numbering,

modes of similar polynomial order from two neighbor elements, have the same

global number, thus mode matching is achieved. In a three dimensional formula-

tion, the same procedure applies for the face orientation but now more orientation

possibilities exit. One or more of the local coordinate systems may be transposed,

reversed or a combination of those two, therefore a new mapping must be con-

structed transposing and changing the sign whenever needed in order that the

boundary modes between the two elements match. Since the interior modes are

different for each element, no re-ordering is needed for them.

Figure 3.4: Quadrature points of the same color should match in the neighbor
faces, although they have different index numbering due to reversed ξ1 axis.
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3.4. Global Operations

Figure 3.5: C0 expansion bases of order P1 = P2 = 4 in two dimensions. Vertex
and edge modes of similar shape should match. Expanding in 3D, face modes
should match as well. The figure was taken from [49].

Figure 3.6: Ghost element for no slip wall boundary condition. The velocity in
the ghost element is the opposite than the value in the element, thus resulting in
zero velocity on the no slip boundary.
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3.4.3 Dirichlet Boundary Condition Enforcement

In the dG discretization the boundary conditions are easily enforced using ghost

elements. In the boundary faces, the value of the neighbor element is the boundary

condition for the inflow and outflow. In order to satisfy the no slip condition for

the stationary wall, the value of the velocity in the neighbor element is taken to

be the opposite than the value calculated in the element, as it is shown in Fig.

(3.6). Similar process is followed for the symmetry condition, where the velocity

components normal to the boundary must vanish.

Although boundary condition implementation is easy in dG, this is not the

case for the cG schemes. There are two different ways for enforcing the Dirichlet

boundary conditions, either row and column elimination, or penalty approach. In

the row and column elimination, the Dirichlet boundary modes have to be ex-

cluded from the total unknown DOFs. For that reason a new re-ordering mapping

process is employed by checking all local DOFs. This process is strongly enforcing

the boundary conditions and reducing the dimension of the global matrix but the

implementation is rather difficult in comparison with the penalty approach. In

the latter, for each Dirichlet mode, the diagonal entry of the global matrix is mul-

tiplied by a penalty parameter which is usually in the range 106−108, whereas the

corresponding DOF in the right hand side vector is replaced by the updated diag-

onal entry multiplied by the Dirichlet value. This way, all the other matrix entries

in this specific row are very small relatively to the updated, thus this equations is

actually giving the value specified for the Dirichlet mode. The disadvantages of

this method is that it is inexact, ill-conditioned and the value of the parameter

plays a significant role in the convergence of the GMRES algorithm used.

3.4.4 Parallelization

Parallelization is performed using the Message Passing Interface (MPI) prototype

in C programming language and for the mesh decomposition METIS library [50]

was used. In each processor (or rank), a specific amount of calculations and data

storage are performed. The objective is to equally divide the workload among all

ranks, therefore information must be sent through the partition boundaries. The
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idea is to try to minimize the number of the messages sent and received due to the

high start up cost. Furthermore, an element re-ordering algorithm was created in

order to obtain an element numbering which follows the rank numbering. More

specifically, the elements of the first rank are numbered first, then the numbering

continues to the elements of the second rank and this procedure continues until

the last rank.

Since the stencil of the dG methods is compact, messages containing informa-

tion only from the immediate neighbor elements must be exchanged. Two ranks

communicate with each other only if they share a global face in three dimensions,

therefore each rank must send one message to the other with the solution vector

needed for numerical fluxes calculations. A simplified two dimensional example

is shown in Fig. (3.7) for four processors. Efforts to minimize the message cost

were made and each rank sends a single message to each other, containing all the

solution vectors from elements in their interface.

The volume of information exchange is larger in the cG formulation, because

not only the face modes, but also the vertex and the edge modes belonging in the

partition boundary and needed for superpositioning in the global stiffness matrix

must be exchanged. As it is shown in the mesh decomposition Fig. (3.8) for a two

dimensional grid, vertex modes communication is necessary, in case they belong to

different ranks. Expanding to a three dimensional mesh, edge modes can belong

to more than two ranks, thus communication between them is needed. In the cG

method, the communication is more computationally expensive than in the dG

method, due to more messages needed to be sent, although they are smaller. The

assembly of the global matrix is getting even more complicated due to the PETSc

[2] parallel linear system solver which was used. Each rank stores only a specific

number of rows of the global matrix, but this way the global DOFs of the elements

in this rank may belong to rows stored in another rank, making communication

unavoidable.

Despite the difficulties encountered in global matrix assembly and element

communication, the cG method was selected for the numerical solution of the

Poisson equation because the discretized Poisson equation is solved only once for

each time step and no auxiliary equations are needed for the pressure gradients.
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3. Finite Element Framework

Figure 3.7: Communication pattern in the dG method for a two dimensional grid.
Each process is sending two messages to its neighbor ranks, shown with the red
and blue arrows.

Figure 3.8: Communication pattern in the cG method for a two dimensional grid.
Each process is sending three messages to its neighbor ranks, shown with the red,
blue and green arrows.
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Chapter 4

Discontinuous/Continuous Finite
Element Discretization of the
Governing Equations

4.1 Introduction

For the numerical implementation a Helmholtz splitting is adopted and the ve-

locity vector field is considered as a sum of a divergence free vector field plus a

rotation free vector field. The momentum equations for the rotation free compo-

nent of the velocity vector (without the pressure gradient term) are discretized

using dG formulation while cG formulation is used for the numerical solution of

the pressure Poisson equation employed to enforce the incompressibility constraint

[13], [35]. Then the velocity vector field is corrected with the pressure gradient

term in order to ensure divergence free velocity field. Following this approach

for momentum conservation, first advection-diffusion type equations are solved

and then the pressure is corrected. This approach is less computationally inten-

sive compared to other approaches for the Navier Stokes equations due to the fact

that the weak formulation and the implementation is simpler compared with other

unsplit methods.

Time marching is performed with explicit and diagonally implicit Runge-Kutta

methods [78]. Upwind flux discretization is used for the non linear convective

terms. However, these terms could also be linearized as suggested by Temam

using the so called trilinear form [21], [87]. In the former case a non linear system



4. Discontinuous/Continuous Finite Element Discretization of the Governing Equations

is solved using Jacobian-free Newton Krylov methods, whereas in the linearized

trilinear form, iterative solution methods such as GMRES are used.

The following space discretization is element-wise, for that purpose let Ωj be

an element: Ωj ∈ Ω, where Ω is the physical space and ∂Ωj are its local faces

which can be either interior (∂Ωj,I) or boundary faces (∂Ωj,B). Boundary faces

are divided into Neumann and Dirichlet type: ∂Ωj,B = ∂Ωj,N ∪ ∂Ωj,D. The jumps

[[]] and averages {} of u between the local element and its neighbors are defined

as:

{u} =
u+ + u−

2
, (4.1)

where u+, u− denote u at the local face of the elements j+ and its neighbors j−,

[[u · n]] = u+ · n+ + u− · n−, (4.2)

and n+, n− denote the boundary outnormal vectors to the elements j+ and its

neighbors j−.

4.2 Projection Method

In the current projection scheme, Helmholtz splitting is used and the velocity

vector is split into divergence free u∗∗ and rotation free u∗ components:

u = u∗∗ + u∗, (4.3)

where

∇× u∗ = 0, (4.4)

∇ · u∗∗ = 0, (4.5)

the momentum equation for the rotation free component of the velocity is:

∂u∗

∂t
+ (u∗ · ∇)u∗ =

1

Re
∆u∗, (4.6)

and for the divergence free component is:
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∂u∗∗

∂t
+ (u∗∗ · ∇)u∗∗ = −∇p+

1

Re
∆u∗∗. (4.7)

Taking the divergence of Eq. (2.7) and splitting the velocity vector field into

divergence free and rotation free components, the following Poisson equation for

the pressure is obtained:

∇2pn+1 =
1

∆t
∇ · u∗, (4.8)

where the viscous and inviscid terms vanished due to Eq. (2.6). Without loss of

the generality, for deriving Eq. (4.8), Euler time integration has been used for

approximating the time derivative in Eq. (4.6):
∂u∗

∂t
=
u∗ − un

∆t
. The diver-

gence of the previous time-step term vanishes, since the velocity is divergence free

at time-step n. In section 4.5 the corresponding coefficients in the momentum

and Poisson equations are derived, depending on the order of accuracy in time.

Equation (4.8) is a second-order elliptic equation which can be solved subject to

the correct boundary conditions. For inflow and outflow the pressure is specified

(Dirichlet boundary condition):

p = pD, on ∂ΩD. (4.9)

For no-slip walls, Neumann-type boundary conditions can be derived by taking the

dot product of the outward normal vector at the boundaries n with the momentum

equation (2.7):

∂p

∂n
=
(
− ∂u

∂t
− (u · ∇)u+

1

Re
∆u
)
· n, on ∂ΩN . (4.10)

The first two terms in the right hand side (rhs) of Eq. (4.10) vanish for fixed and

no-slip boundaries. Using the identity for incompressible flow:

∆u = −∇×∇× u, (4.11)

the Neumann-type boundary condition (4.10) for viscous flows becomes:

∂p

∂n
=
(
− 1

Re
∇× ω

)
· n, on ∂ΩN , (4.12)
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where ω is the vorticity vector field. If this non homogeneous Neumann-type

condition is neglected and
∂p

∂n
is set to zero, the scheme is prone to time-splitting

errors [33]. Finally, the divergence free velocity at the new time step is:

un+1 = u∗ −∆t∇pn+1. (4.13)

If Eq. (4.6) and (4.13) are added, they give the momentum Eq. (2.7).

4.3 dG discretization for the momentum equations

The velocity vector field is discretized using dG formulation, due to its better be-

havior when convection terms are dominant, for example in high Reynolds num-

ber flows. In addition, for the dG discretization, an upwind numerical flux can

be defined [79],[57]. The velocity approximation for the component along the xi

direction, for each element Ωj is of the form:

ui =

nvbd∑
k=1

Φk
du

k
i , Ωj ∈ Ω, i = 1, 2, 3, (4.14)

where Φk
d are the discontinuous bases, shown as Φd from now on and uki are the

nvbd coefficients of the xi velocity component to be calculated. Starting from Eq.

(4.6), integrating on elements and multiplying both parts by the weight function

Φd, the momentum equation in the xi-direction is:

d

dt

∫
Ωj

Φdu
∗
i dV = −

∫
Ωj

u∗k
∂u∗i
∂xk

ΦddV +
1

Re

∫
Ωj

∂sik
∂xk

ΦddV, (4.15)

where the velocity gradients are the tensor ¯̄s:

¯̄s =



∂u

∂x
+
∂u

∂y
+
∂u

∂z

∂v

∂x
+
∂v

∂y
+
∂v

∂z

∂w

∂x
+
∂w

∂y
+
∂w

∂z


. (4.16)

Applying Gauss’ divergence theorem for the viscous and inviscid part in the Eq.

(4.15), the weak formulation is derived:
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d

dt

∫
Ωj

Φdu
∗
i dV = +

∫
Ωj

u∗i
∂u∗kΦd

∂xk
dV −

∫
∂Ωj

û∗iu
∗
knkΦddS

+
1

Re

(
−
∫

Ωj

∂Φd

∂xk
sikdV +

∫
∂Ωj

ŝiknkΦddS
)
.

(4.17)

Proper numerical flux choice must be made for the convective û∗i and the

diffusive ŝik parts, in order to achieve stability. More discussion about numerical

fluxes is made in subsections 4.3.1 and 4.3.2. Finally, Eq. (4.13) is integrated on

elements and multiplied by the discontinuous weight function in order to obtain

the divergence free velocity at time n+ 1:

∫
Ωj

un+1ΦddV =

∫
Ωj

u∗ΦddV −∆t

∫
Ωj

∇pn+1ΦddV. (4.18)

Applying Gauss’ theorem, the weak formulation for the un+1 :

∫
Ωj

un+1ΦddV =

∫
Ωj

u∗ΦddV + ∆t
(∫

Ωj

∇Φdp
n+1dV −

∫
∂Ωj

pn+1nΦddS
)
. (4.19)

The latter equation can be solved in an explicit manner, so it is robust and efficient.

The outline of the algorithm is:

· Find the velocity gradients ¯̄s from the auxiliary Eq. (4.35) by using the

velocity from the previous time step un.

· Solve implicitly or explicitly Eq. (4.17) to find the rotation free velocity

component u∗.

· Calculate the pressure at time step n+ 1 from Eq. (4.41).

· Project the velocities into the divergence free space using Eq. (4.19) and

obtain the velocity at time step n+ 1.

· Update solution and go back to the first step. If higher order of accuracy in

time is used, more cycles are required before obtaining the solution at time step

n+ 1.

4.3.1 Inviscid Numerical Flux

One of the problems in the incompressible flow is the non-linear inviscid term

treatment. In this subsection, different numerical fluxes for the inviscid part will
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be examined. The advection term has three different forms, the convective, the

conservative and the skew-symmetric form:

convective = u · ∇u, (4.20)

conservative = ∇ · uu, (4.21)

skew Symmetric = u · ∇u+
1

2
∇ · uu. (4.22)

The previous terms are equivalent due to the incompressibility condition.

Upwind Flux

The convective form is used in the INS and it was discretized using the upwind

numerical flux [57] which is given by:

û∗i = θu∗,+i + (1− θ)u∗,−i where

θ = 1, if u+ · n+ ≥ 0

θ = −1, if u− · n− < 0
(4.23)

Applying this to Eq.(4.17) the full discretized form using upwind flux for the

inviscid term becomes:

d

dt

∫
Ωj

Φdu
∗
i dV = +

∫
Ωj

u∗i
∂u∗kΦd

∂xk
dV −

∫
∂Ωj

θu∗,+i u∗knkΦddS

−
∫
∂Ωj

(1− θ)u∗,−i u∗knkΦddS +
1

Re

(
−
∫

Ωj

∂Φd

∂xk
sikdV +

∫
∂Ωj

ŝiknkΦddS
)
.

(4.24)

Because of the non-linear nature of the Eq. (4.24), Newton-like method has

been used for solving the non linear system of the discretized equations as it is

further explained in section 4.5.

Trilinear Form

The skew symmetric form has been used for deriving the trilinear form. Starting

from (un+1 · ∇)un+1 +
1

2
(∇ · un+1)un+1, linearization is made using the Taylor

expansion series for 2 variables, un+1, ∇un+1 and un+1, ∇ · un+1 respectively:

The first term becomes:

(un+1 ·∇)un+1 = un ·∇un + (un+1−un) ·∇un + (∇un+1−∇un) ·un, (4.25)
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(un+1 · ∇)un+1 = un+1 · ∇un + un · ∇un+1 − un · ∇un. (4.26)

And the second term is:

1

2
(∇ · un+1)un+1 =

1

2
(∇ · un)un +

1

2
(un+1 − un)∇ · un

+
1

2
(∇ · un+1 −∇ · un)un,

(4.27)

1

2
(∇ · un+1)un+1 =

1

2
(∇ · un)un+1 +

1

2
(∇ · un+1)un − 1

2
(∇ · un)un. (4.28)

Adding Eq. (4.26) and (4.28) the final linearized form is:

(un+1 · ∇)un+1 +
1

2
(∇ · un+1)un+1 = un+1 · ∇un +

1

2
(∇ · un+1)un

+un · ∇un+1 +
1

2
(∇ · un)un+1 + un · ∇un +

1

2
(∇ · un)un.

(4.29)

or in a more compact notation:

un+1·∇un+1+
1

2
∇·un+1un+1 = T (un+1,un)+T (un,un+1)+T (un,un), (4.30)

where

T (w,u) = w · ∇u+
1

2
(∇ ·w)u. (4.31)

Following Di-Pietro, Ern [35] and Temam [87], the discretized form of T (w,u) is

t(w,u,Φd), where:

t(u,w,Φd) =

∫
Ωj

(u · ∇)wΦddV −
1

2

∫
∂Ωj/∂ΩB

(w+ −w−)Φdn · {u}dS+

1

2

∫
Ωj

(∇ · u)wΦddV −
1

4

∫
∂Ωj

n · (u+ − u−)ΦdwdS.

(4.32)

As a result, the inviscid part in Eq.(4.17) becomes:

Convective Term = t(un+1,un,Φd) + t(un,un+1,Φd) + t(un,un,Φd). (4.33)
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The expanded form of Eq.(4.17) using the trilinear form is :

d

dt

∫
Ωj

Φdu
∗
i dV = −

∫
Ωj

(un · ∇)un+1ΦddV+

+
1

2

∫
∂Ωj/∂ΩB

(un+1,+ − un+1,−)Φdn · {un}dS − 1

2

∫
Ωj

(∇ · un)un+1ΦddV+

+
1

4

∫
∂Ωj

n · (un,+ − un,−)Φdu
n+1dS −

∫
Ωj

(un+1 · ∇)unΦddV+

+
1

2

∫
∂Ωj/∂ΩB

(un,+ − un,−)Φdn · {un+1}dS − 1

2

∫
Ωj

(∇ · un+1)unΦddV

+
1

4

∫
∂Ωj

n · (un+1,+ − un+1,−)Φdu
ndS −

∫
Ωj

(un · ∇)unΦddV

+
1

2

∫
∂Ωj/∂ΩB

(un,+ − un,−)Φdn · {un}dS − 1

2

∫
Ωj

(∇ · un)unΦddV

+
1

4

∫
∂Ωj

n · (un,+ − un,−)ΦdwdS

+
1

Re

(
−
∫

Ωj

∇Φd · ¯̄sdV +

∫
∂Ωj

ˆ̄̄s · nΦddS
)
.

(4.34)

Once the advection term is linearized, linear solver techniques can be used due to

the linearity of the rest of the terms in the discretized momentum equation.

4.3.2 Viscous Numerical Flux

The viscous term is linear, since it is the Laplacian of each velocity component. As

it is already mentioned, Bassi, Rebay [5] and later Cockburn, Shu [25] introduced

auxiliary variables in the dG formulation, for second order differential equations

such as diffusion terms. Since the velocity gradients are defined as new indepen-

dent variables, additional equations are needed so as the system to be closed.

The BR1 numerical flux [6] is an example of the latter case, whereas in the BR2

numerical flux [8], lifting operators are needed, making the method even more

computationally expensive but reducing the stencil at the same time. However,

there is no need for auxiliary equations in the so called Interior Penalty Method

(IPM) [1] and only the value of arbitrary parameters must be specified.

BR1 Scheme

The velocity gradients are assigned from Eq. (4.16): ¯̄s = ∇u. Integrating element

wise, multiplying by the Φd weight function and applying Gauss theorem, the
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4.4. cG discretization for the pressure Poisson equation

discretized equation for the auxiliary variables is derived:

∫
Ωj

sikΦddV = −
∫

Ωj

∂Φd

∂xk
uidV −

∫
∂Ωj

ûiΦdnkdS. (4.35)

In the beginning of time step n+1, Eq. (4.35) is solved from un in order to

calculate ¯̄s which is needed in Eq. (4.17). In the BR1 scheme, the numerical

fluxes for the velocity and the velocity gradients are defined as:

û = {u}, (4.36)

ˆ̄̄s = {¯̄s}. (4.37)

Using this formulation, 9 × DOFs unknowns are calculated explicitly for each

element before solving the split form of the momentum equations.

4.4 cG discretization for the pressure Poisson equa-

tion

The local discontinuous Galerkin (LDG) has been used for solving convection-

diffusion problems by Cockburn and Shu [25] but this way four equivalent equa-

tions are solved instead of solving only the Poisson equation. Another way of

calculating the pressure is the HDG method for linear convection-diffusion equa-

tions [65] which is difficult to parallelize and memory demanding. Therefore, the

space discretization for the pressure is taken to be continuous because this is an

effective way of reducing the coupling between the momentum and the mass con-

servation equations [34]. Moreover, the cG framework is effective and efficient,

since no auxiliary equations are needed for the pressure gradients and the Poisson

equation is solved implicitly one time per time step. The pressure approximation

for each element Ωj is of the form:

p =
nvbc∑
k=1

Φk
cp

k, Ωj ∈ Ω, (4.38)

where Φk
c are the k continuous bases and pk the unknown coefficients to be found.

Since Φk
c are in terms of ξ1, ξ2 and ξ3 from the computational space, proper

transformations to the physical space Ω must be made. For the rest of this work,
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the subscript k will be skipped, so the notation of the continuous basis vector will

be Φc. Starting from Eq. (4.8), integrating element-wise and multiplying by the

weight function Φc:

∫
Ωj

∇ · ∇pn+1ΦcdV =
1

∆t

∫
Ωj

∇ · u∗ΦcdV. (4.39)

In order to derive the weak form of the Poisson equation, Gauss’ theorem is applied

on both rhs and left hand side (lhs) of Eq. (4.39):

−
∫

Ωj

∇Φc·∇pn+1dV+

∫
∂Ωj

∇pn+1·nΦcdS =
1

∆t

(
−
∫

Ωj

∇Φc·u∗dV+

∫
∂Ωj

û∗·nΦcdS
)
,

(4.40)

where the surface integral from the rhs is transformed into the Neumann boundary

condition, since the pressure is continuous and there is no effect from the interior

faces:

∫
Ωj

∇Φc·∇pn+1dV =
1

∆t

(∫
Ωj

∇Φc·u∗dV−
∫
∂Ωj

û∗·nΦcdS
)

+

∫
∂Ωj,N

∇pn+1·nΦcdS.

(4.41)

A numerical flux for the velocity approximation must be derived, since it is dis-

continuous. Following [34] and [13], the approximated velocity in the local faces

is:

û∗ = {u∗}, (4.42)

4.4.1 Poisson solver Validation

Preliminary results for Poisson equation using cG discretization are shown in this

subsection. In the first case, a 2D Poisson problem is solved, having as source

term: f(x, y) = 6xy(1− y)− 2x3 in a rectangular plate domain of unit length and

boundary conditions u(x, 0) = 0, u(x, 1) = 0, u(0, y) = 0 and u(1, y) = y(1 − y).

The exact solution is u(x, y) = y(1 − y)x3 and comparison with the computed is

shown in Fig. (4.1). A grid of 100 × 100 equally spaced elements was created.

In the second case, a 3D Poisson problem is examined, having as source term

f(x, y, z) = 14sin(πx)sin(2πy)sin(3πz) in a cube with unit length and boundary
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4.5. Time Marching Scheme

conditions u(1, y, z) = u(0, y, z) = u(x, 1, z) = u(x, 0, z) = u(x, y, 1) = (x, y, 0) =

0. The analytical solution is given by u(x, y, z) = sin(πx)sin(2πy)sin(3πz) and

it is compared with the computed in Fig. (4.2). A mesh of 40 × 40 × 40 equally

spaced elements was created for this case.

Figure 4.1: Comparison of the exact and numerical solutions (cG) for the plate,
cut at y=0.5 (left) and cut at x=0.5 (right).

Figure 4.2: Comparison of the exact and numerical solution (cG) for the cube,
cut at y=0.75 and z=0.5 (left), cut at x=0.5 and z=0.5 (middle) and cut at x=0.5
and y=0.25(right).

Furthermore cG discretization was used for the numerical solution of the system

of equations for linear elasticity. The method is described in detail in Appendix

A and verification for steady and time dependent problems with exact solution is

presented.

4.5 Time Marching Scheme

In order to advance in time the incompressible flow equations, high order explicit

and implicit schemes can be used. Runge-Kutta (RK) methods for both schemes
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4. Discontinuous/Continuous Finite Element Discretization of the Governing Equations

demonstrate accuracy and strong stability properties [44]. Increasing the order

of polynomial expansion P , which means the order of spatial accuracy is P +

1, the maximum CFL number in the explicit time marching methods reduces

approximately to CFL ∼ 1

P 2
[94]. Therefore for inviscid flow computations,

with relatively large cells and relatively low order of accuracy P , explicit time

advancement in the dG discretization can be used.

However, in viscous flow simulations, the near wall region where steep flow

gradients are encountered must be discretized with small size elements or larger

size elements but using higher order approximation [28]. In both cases, the re-

sulting small time step for the explicit time marching scheme makes the scheme

inefficient in both steady state and time-accurate computations. The large time

step restriction imposed by the explicit scheme, necessitates the use of high order

implicit scheme in order to allow large enough time steps and small temporal errors

when time-accurate problems are solved. Furthermore, it has been demonstrated

that the efficiency of the high-order dG scheme for both steady and unsteady flow

computations, can be greatly enhanced with the use of implicit time marching

methods [28], [4], [20], [12].

Therefore, in the present work explicit RK2 and Diagonally Implicit Runge-

Kutta (DIRK) schemes have been developed, suitable for large scale parallel

computations. The latter is based on the Jacobian free Newton-Krylov method [52]

with the use of a suitable preconditioning applied on the linear systems produced

by the Newton’s method linearization. Each linear system between the Newton’s

iterations is solved by the Generalized Minimum Residuals method (GMRES)

provided by the Portable Extensible Toolkit for Scientific computation (PETSc)

[2].

4.5.1 Explicit Algorithm

First order backward Euler and second order Runge-Kutta explicit methods have

been used in the inviscid simulations. Multistage Runge-Kutta methods RK(s, p),

where s denotes the number of the stages and p its order, are a class of numerical

methods for computing numerical solutions to the initial value problems. They

are applied on time dependent form of Eq. (4.17):
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∂c
∂t

=M−1R (c, t) , (4.43)

using as initial condition: c(t0) = c0. WhereM is the mass matrix defined as:

M =

∫
Ωj

ΦdΦd
>dV, (4.44)

c is the solution vector of the rotation free velocity coefficients:

c = [u1 u2 · · · unvbd v1 v2 · · · vnvbd w1 w2 · · · wnvbd ]>, (4.45)

and R
(
cn+1

)
is the rhs of the equation (4.17) at time n+ 1.

Explicit RK methods compute a solution cn+1 at time tn+1 = t0+(n+1)∆t, by

only using the known solution in the previous time step n at time tn = t0 + (n)∆t

and the time step ∆t is restricted by the CFL condition. Therefore, in Table (4.1)

s stages are recursively build:

c1 = cn

c2 = cn + α21∆tM−1R(c0)

...

cs = cn +
s∑
j=1

αsj∆tM−1R(cj).

(4.46)

0

c2 a21

c3 a31 a32

...
...

... . . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

Table 4.1: The Butcher tableau for the explicit Runge-Kutta method.

The RK(2, 2) is applied to the differential-algebraic system of INS and Poisson

equations by following [78]:

c1 = cn + α21∆tM−1R(cn), (4.47)
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p1 =
1

c2∆t
L−1D(c1), (4.48)

c1
f = c1 − c2∆tM−1G(p1). (4.49)

Where c1f is the divergence free velocity coefficients after the first stage and D, G

are the rhs of Eq. (4.41), (4.19) respectively. The second RK stage is:

c2 = c1
f + b2∆tM−1R(cn), (4.50)

pn+1 =
1

∆t
L−1D(c2), (4.51)

cn+1 = c2 −∆tM−1G(pn+1), (4.52)

finding the divergence free velocity coefficients cn+1 at time step n + 1, whereas

the α, b, c values are taken from Table (4.2).

c2 α21

b1 b2

1

2

1

2

0 1

Table 4.2: The Butcher tableau for the explicit RK(2, 2) method.

4.5.2 Implicit Algorithm

Implicit time marching methods ensure high-order time accuracy and lead to sub-

stantially increased time steps thus avoiding the severe time step limitations of ex-

plicit schemes imposed by the dG discretization. The Diagonally Implicit Runge-

Kutta (DIRK2) and the first order backward Euler scheme have been used and

implemented providing second and first order time accuracy in the solution.

The DIRK methods have an advantage over other implicit methods RK. At

each RK stage s, only the solution of this stage cs is solved implicitly, as it is

shown in Table (4.3), without resulting into extremely large non-linear system

(having as unknown variables the solution of all stages) which must be solved in

order to obtain the solution of the next stage. In addition, because of the same

diagonal coefficients αii, the linear systems which arise by the Newton’s method at

each RK stage, have the same matrix (linear operator), so each time is changing
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only the right hand side of the system. However, the DIRK2 scheme developed

in the current work, needs only one implicit step.

First, for the sake of simplicity, the Implicit Euler scheme is described. Apply-

ing the Euler scheme, the discrete form of flow equations (4.24) become:

Mcn+1 − cn

∆t
= R

(
cn+1

)
(4.53)

To solve the above system of equations, Newton’s method linearizes the non-linear

function,

F
(
cn+1

)
=Mcn+1 − cn

∆t
−R

(
cn+1

)
(4.54)

and k Newton’s steps are produced:

∂F
(
ck
)

∂ck
δkc = −F

(
ck
)
⇒

JN︷ ︸︸ ︷[
M
∆t
− ∂R (c)

∂c

∣∣∣∣
k

]
δkc = R

(
ck
)
−M

∆t

(
ck − cn

)
(4.55)

ck+1 = ck + δkc (4.56)

In order to get the solution of the next time n + 1, the linear system (4.55)

must be solved, updating at each Newton’s step the solution c until the L2 norm

of the non-linear function F (Eq. 4.54) becomes smaller than a constant tolerance

which in this case has been set to 10−8.

The linear system of each Newton’s step is not solved exactly but iteratively

until the relative residual

∂F(c)
∂c

∣∣∣∣
k

δkc + F
(
ck
)

F (ck)
≤ η = 10−3 (4.57)

becomes smaller than a parameter η ∈ [0, 1) called forcing term. In this inexact

Newton’s method and for all problems the forcing term is set η = 10−3 so that the

quadratic convergence of the Newton’s method is retained.

To solve each linear system at each Newton’s step the iterative generalized

minimal residual method (GMRES) method in conjuction with a preconditioner,

in order to achieve better convergence of the iterative procedure, is used. PETSc
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offers a GMRES solver for parallel solution of linear systems and preconditioning

techniques for convergence acceleration.

In order to apply to each linear system a preconditioning technique, the pre-

conditioning matrix P must be constructed and used to accelerate the convergence

of the GMRES. For all problems, a right preconditioner can be applied which is

defined as:

JNP
−1y = b y = P−1x (4.58)

where x is the a vector containing the unknown degrees of freedom and b the

residual.

Despite the fact that the operator JN (Jacobian matrix) of each linear system

(4.55) is sparse following the pattern of Fig. (4.4), for large or even moderate

problems it contains extremely large number of entries which are the derivatives
∂R (c)

∂c
. For that reason, the storage amount required for this operator is quite

large, especially when high order of dG approximation is used e.g P 3 or P 4. In

this case the operator is not possible to be stored in the memory of the massive

distributed systems. Moreover, the analytic or even the numerical differentiation

for all the aforementioned derivatives is computational expensive. Some graph

coloring techniques [26, 42] can exploit the known sparcity of the Jacobian JN

and accelerate the numerical computation of the jacobian entries but the compu-

tational cost still remains high. Note that a P 1 expansion in a hexahedral element

has 8 DOFs and 27 DOFs for a P 2 expansion. For the system of flow equations, we

have 8× 3 = 24 (81 for P 2) DOFs per element. Therefore, for three dimensional

meshes of real large-scale problems which contains very large number of elements

≈ 107, the number of required derivatives increases very much and the cost in

terms of memory and CPU time is rather large. The Jacobian-free idea [52, 18]

overcomes this difficulty by using numerical differentiation when it is needed as

it is shown next and makes possible the use of the inexact Newton’s approach for

very large-scale problems with millions of degrees of freedom in the domain.

The Jacobian-free Newton Krylov method (JFNK) [52] as a combination of

a Newton’s like method with a Krylov subspace iterative method which in this

case is the GMRES for the non-exact solution of the linear systems, computes

numerically only the derivatives needed for the Jacobian-vector product used by
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the Krylov method without storing the entire Jacobian (matrix-free method). The

Jacobian-free algorithm is summarized in Fig. (4.3).

The matrix-vector products required by the GMRES solver with the Jacobian-

free method are computed numerically using first-order finite differences:

∂F (c)

∂c
P−1vn ≈

F (c + εP−1vn)−F (c)

ε
(4.59)

where ε is a small scalar parameter. A suitable choice of ε is important because

very small values can lead to round off errors whereas large values can introduce

truncation error. A proper formula suggested by Brown and Saad [18] for the

definition of ε is:

ε =
b

||vn||2
max

[
|cTvn|, typ(cT |vn|)

]
sign(cTvn) (4.60)

where typ(cT |vn|) is a user supplied typical size of c, vn denotes a unit vector, and

b is small number proportional to the square root of the machine round off error,

and it is taken equal to b = 10−8. Even though in the Jacobian-free method,

the sparse matrix (Jacobian) of the linear system is not stored, however, the

preconditioning matrix P must be formed and stored. A suitable preconditioning

matrix is often the same Jacobian matrix JN and a fit preconditioner method tries

to find a approximate inverse P−1 of this preconditioning matrix so that when it

is multiplied by the Jacobian matrix in Eq. (4.58), the final operator of the linear

system will be well conditioned and the convergence of GMRES faster. The choice

of the most appropriate preconditioner is not a straightforward task due to the fact

that different numerical problems require different preconditioning techniques in

order to achieve a reasonable convergence rate of the GMRES solver with the less

effort in terms of storage and numerical operations. As long as a the matrix-free

method is used, the preconditioning matrix which must be constructed and stored,

has to contain as less as possible entries so that the advantages of the matrix free

method for little use of memory and fast computation can be exploited. Especially

in the case of a dG method with high-order of accuracy (P 2 or higher) where many

DOFs are introduced, the preconditioning matrix becomes extremely large, and its

construction is expensive in terms of computational effort and storage. For that

reason, in order to take full advantage of matrix-free method, only the diagonal
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blocks of the preconditioning matrix which are the diagonal blocks of the Jacobian

JN are computed and stored as it is shown in Fig. (4.4).

Figure 4.3: Jacobian-free Newton Iteration for implicit time marching.

Figure 4.4: Jacobian matrix (left) and block Jacobi preconditioner (right) patterns.

Therefore, the most suitable preconditioner which inverts approximately the

Jacobian JN or inverts exactly the constructed preconditioning matrix P is the

block-Jacobi preconditioner defined as:
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P−1 =



B−1
1,1 0 0 · · · 0

0 B−1
2,2 0 · · · 0

0 0 B−1
3,3 · · · 0

...
...

... . . . ...
0 0 0 · · · B−1

Ne,Ne


, JN =



B1,1 B1,2 B1,3 · · · B1,Ne

B2,1 B2,2 B2,3 · · · B2,Ne

B3,1 B3,2 B3,3 · · · B3,Ne

...
...

... . . . ...
BNe,1 BNe,2 BNe,3 · · · BNe,Ne


(4.61)

where B denotes the non-zero blocks.

Apart from the block Jacobi preconditioner which is easy invertible and mainly

used in this work, one can use especially for small problems other preconditioner

such as ILU(0), ILU(1), SOR computing more blocks per block line for the con-

struction of the preconditioning matrix. This can lead even better convergence

of the GMRES method but the cost of the preconditioning matrix computation

and the inversion is much larger than that of the block Jacobi. Moreover, as it

is shown in [12], the block Jacobi preconditioner is quite efficient compared with

other preconditioning techniques such as ILU.

In order to make the implicit scheme more efficient, a new preconditioning

matrix has been constructed and stored every 50 time steps. Since between 50

time steps the solution of a time accurate or steady problem doesn’t vary much, the

preconditioning matrix which depends on the solution at each Newton iteration k

and time step, behaves quite well.

The implicit RK methods can be constructed in a way that the kinetic energy

in incompressible flows is conserved, making the scheme free of numerical diffusion

[78]. This can become very useful in DNS or LES simulation and it also enables

stability for even coarse meshes and large time steps [78]. The energy-conservation

condition can only be satisfied in implicit RK methods, and more specifically,

Gauss methods have the highest possible order for a given number of stages. The

same procedure applied to the first order backward Euler scheme, is performed for

the DIRK2. Hence, the linearization with Newton’s method of the two stages of

DIRK2 method is written as:[
M
∆t
− α11

∂R (c)

∂c

∣∣∣∣
k

]
δkc = α11R

(
ck
)
− M

∆t

(
ck − cn

)
ck+1 = ck + δkc,

(4.62)
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p1 =
1

c1∆t
L−1D(c1), (4.63)

c1
f = c1 − c1∆tM−1G(p1). (4.64)

The second RK stage is explicit:

c2 = c1
f + b1∆tM−1R(cn), (4.65)

pn+1 =
1

∆t
L−1D(c2), (4.66)

cn+1 = c2 −∆tM−1G(pn+1), (4.67)

finding the divergence free velocity coefficients cn+1 at time step n + 1, whereas

the α, b, c values are taken from Table (4.4).

c1 a11

c2 a21 a22

...
...

... . . .

cs as1 as2 · · · as,s−1 as,s

b1 b2 · · · bs−1 bs

Table 4.3: The Butcher tableau for the implicit Runge-Kutta method.

c1 α11

b1

1

2

1

2

1

Table 4.4: The Butcher tableau for the DIRK2 method.

The Jacobian Newton Krylov method in conjuction with the block Jacobi pre-

conditioner for the implicit scheme were provided by the PETSc package. The

user must supply a routine which computes the non-linear function (4.54) and

the parameters of the KSP (linear system solver) and SNES (non-linear system

solver) objects. The systems are solved in parallel, by storing at each processor’s

local memory only the part of the entire data that are involved in the procedure

of the implicit scheme. Although numerical differentiation with first order finite
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differences is provided from PETSc in order to construct in parallel the precondi-

tioning matrix, the differentiation is carried out by user defined routine for memory

efficiency.

4.5.3 The GMRES Method

The method of Generalized Minimum Residuals (GMRES) used in this work solves

iteratively any non-singular large sparse sparse linear system:

[A]x = b, (4.68)

where [A] ∈ Rn and x, b ∈ Rn. Starting with an initial solution x0, the basic idea

of GMRES method is to minimize the residual of the initial solution r0 = b− [A]x0

projecting at each m iteration the solution into the m dimension Krylov subspace

as:

Kn = spanr0, [A]r0, [A]2r0, · · · , [A]n−1r0. (4.69)

The initial solution x0 is converging to the exact solution in no more than

n iterations, which is the dimension of the solution vector. Due to the large

requirements in storage and computational time which is needed to built up the

Krylov subspace with dimension n, the method is restarted after a fixed and small

number of iterations m. The resulted method is called restarted GMRES(m). In

the restarted GMRES(m) method, the approximate solution xm is used as initial

solution in the next restart for the construction of them dimension subspace. This

approximate solution has been computed by minimizing the residual of the system

4.69 using the m dimension Krylov subspace after m iterations. The method

is terminated when the residual becomes smaller than a user specified value or

using the relative residual relation 4.57 for the inexact Newton’s method. In

the present work applications, the dimension of Krylov subspace has been set to

mmax = 50 or mmax = 30. For larger Krylov subspace dimension, the method

becomes computationally expensive, whereas for much smaller dimension, slow

solution convergence is noticed.

The vector r0, [A]r0, [A]2r0, · · · , [A]n−1r0 of the Krylov subspace is almost lin-

early independent and thus the Arnoldi method with Gram-Schmidt process in

order to produce a sequence of orthogonal vectors is used to project the solution.
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4. Discontinuous/Continuous Finite Element Discretization of the Governing Equations

The main feature of the GMRES method is that requires only products of the

form [A]v. Consequently, no direct access or manipulation of the [A] entries is

required. For the GMRES and the Jacobian free methods, PETSc [2] toolkit has

been used.
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Chapter 5

Numerical Examples

5.1 Introduction

The method was verified for several test cases and good agreement with analytical

results was obtained even for polynomial order p = 1 (second order space accurate

solution). In the inviscid cases where steady state solution is achieved after a

short number of iterations, explicit scheme was used, whereas implicit algorithm

was used in the viscous flow simulations. Validation was carried out by comparing

with experiments.

The grid generator used to construct the meshes is Pointwise [68]. Then the

grid was imported to Gambit [39], in order to obtain the Neutral format, because

a translator for Neutral files was created in the code. The capability for trivial

automatic structured mesh is also enabled for square and cube domains.The post-

processing is performed using Tecplot software [86].

5.2 Inviscid Flow

5.2.1 Inviscid Cylinder

The first case examined is the inviscid cylinder. Due to symmetry, mesh was

created around half of the cylinder by using one hundred eighty elements along the

perimeter, for representing accurately the geometry. Comparison with analytical

solutions given by Eq. (2.11)-(2.14) is demonstrated in Fig. (5.1) for the pressure

coefficient (left) and the velocity field (right).
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Figure 5.1: Inviscid cylinder simulation. Pressure coefficient (left) and velocity
magnitude field comparison between analytical and computational solution (right).

5.2.2 Inviscid NACA 0012

Inviscid flow around NACA 0012 was obtained next. In high Reynolds number

viscous terms become negligible, so the flow is almost inviscid. A C-type mesh was

created having 200 elements along the airfoil where the leading and trailing edge

areas were refined in order to capture the geometry and the velocity and pressure

gradients. The pressure was specified using Dirichlet type boundary conditions

in the inflow and outflow. The velocity boundary conditions were taken to be of

Dirichlet type in the inflow and of homogeneous Neumann type in the outflow.

Comparison with experimental pressure coefficient (Cp) and the overall structure

of the computed velocity field are shown in Fig. (5.2). It appears that a perfectly

symmetric solution free of artificial surface entropy layers is obtained. Although

there is good agreement between the experimental and computational data, the

experimental pressure coefficient is slightly higher than the computed for a small

region. This is happening because of the Gregory and O’Reilly [45] data that have

been used for validation, in comparison with Ladson [54] data which give slightly

lower pressure coefficient. Lift and Drag coefficients converge to their final value

after 5 iterations, due to the inviscid nature of the simulation.
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5.3. Viscous Flow

Figure 5.2: Inviscid NACA 0012 simulation. Pressure coefficient at angle of attack
0 degrees (left) and velocity magnitude field (right).

5.3 Viscous Flow

In this section, several problems were examined in order to prove the accuracy

of the code. The implicit algorithm was used for the viscous flow simulations,

enabling this way large time steps and achieving faster convergence.

5.3.1 Kovasznay Flow

Kovasznay flow was used for viscous flow verification of the code in a two dimen-

sional domain at Reynolds number 40. The initial condition for the velocity and

pressure was taken to be zero, whereas Dirichlet boundary conditions were weakly

enforced from the analytical solution given by the Eq. (2.15)-(2.18). In Fig. (5.3)

comparison with the analytical solution is shown and in Fig. (5.4) the velocity and

pressure fields are demonstrated. For that simulation a uniform mesh of 100×100

elements was used at the domain (−0.5, 1.0) × (−0.5, 1.5). For the spatial accu-

racy test of the dG discretization, a square domain (−0.5, 1.5)×(0.0, 2.0) was used

with 50, 80, 100 and 120 equally spaced elements in each dimension. In Fig. (5.5)

the convergence rates are shown, where the slope between 3 successive points is

almost the same.
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Figure 5.3: Kovasznay flow u velocity comparison (left) and pressure comparison
(right) along y=0.5 at Reynolds number 40. The velocity was discretized with
discontinuous and the pressure with continuous Galerkin method.

Figure 5.4: U velocity contours for analytical and computational solutions (left)
and pressure field combined with velocity streamlines (right) for Kovasznay flow
at Reynolds number 40.
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5.3. Viscous Flow

Figure 5.5: Spatial accuracy for Kovasznay flow.

5.3.2 2D Lid Driven Cavity

The steady-state lid driven cavity problem at Reynolds number 100 was examined

next. A square box of unity length where no-slip conditions are imposed on all

walls, except for the upper wall, where u = 1 and v = 0. A grid of 100 × 100

elements and first length 0.001 near the walls was used for this simulation. Ho-

mogeneous Neumann type boundary conditions are used for the Poisson equation

for all the faces. The lid driven cavity is a benchmark test for the Incompress-

ible flows since there is no ambiguity about the boundary conditions used for the

pressure Poisson equation. Comparison of the velocity profiles with the solution

given by Sahin and Owens [77] is shown in Fig. (5.6) whereas in Fig. (5.7) the

computed velocity magnitude (left) and the v velocity component combined with

streamlines (right) are shown. It appears that the upwind flux discretization of

the convective term can better capture the v velocity component change along x

direction, than the trilinear form, as it is shown in Fig. (5.6). The steady state

solution is obtained after T=9 (non dimensional time).
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Figure 5.6: Velocity profiles comparison between Sahin-Owens [77] and present
work, either using trilinear or upwind form at Reynolds number 100. Profiles of
the u velocity component along x=0.5 (left) and the v velocity component along
y=0.5 (right) are shown.

Figure 5.7: Velocity magnitude contours in 2D Cavity (left) and v velocity field
combined with velocity streamlines (right).

5.3.3 Flow over a flat plate

The flow over a semi-infinite flat plate and comparison with Blasius solution for

Reynolds number 1000 was performed next. Within the boundary layer approxi-

mately 30 elements were used in order to capture the velocity gradient even with

p1 (second order accurate in space) numerical approximation. In the inflow the

velocity and the pressure were specified using Dirichlet type boundary conditions
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and in the outlet homogeneous Neumann type boundary conditions were used for

the velocity field and pressure. The velocity field in the fully developed area and

the velocity profile in comparison with Blasius solution are demonstrated in Fig.

(5.8). The Blasius numerical solution is given by solving the following differential

equation:

f ′′ +
1

2
ff ′′ = 0, (5.1)

f = f ′ = 0 at η = 0, (5.2)

f ′ → 1 as η →∞, (5.3)

where η is the non dimension similarity variable, ψ is the stream function, ν the

kinematic viscosity and f(η) is the dimensionless function given by:

η =

√
U∞
νx

y, (5.4)

ψ =
√
νU∞xf(η). (5.5)

Figure 5.8: Velocity field (left) and velocity profile comparison with Blasius solu-
tion (right) for flow over a flat plate at Reynolds number 1000.

5.3.4 Viscous Cylinder

Steady state flow around viscous cylinder is also examined at Reynolds number

40. In the created mesh, three hundred sixty elements were used around the

cylinder and equal size length was used for the normal to the wall mesh lines.
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After the vortex is detached from the cylinder, a symmetric smooth solution is

obtained. In higher Reynolds numbers, the vortices are getting detached creating

the von Karman vortex street. Flow visualization taken from experiment [91] (up)

and computed with the current scheme pressure contours combined with velocity

streamlines (down) for a cylinder are shown in Fig. 5.9.

Figure 5.9: Viscous cylinder flow simulation. Flow visualization taken from ex-
periment [91] (up) and pressure contours combined with velocity streamlines from
the computational solution (down).

5.3.5 Viscous NACA 0012

The next test case is flow around NACA 0012 at Reynolds number 100 with

angle of attack 5 degrees. The grid and the boundary conditions are the same

as in subsection 5.2.2. The velocity and pressure contours are shown in Fig.

(5.10). In order to validate the pressure coefficient, the very same viscous airfoil

simulation was performed using Gnuid code [14], which is based on libMesh open

source finite element library [51]. The reason for this was to avoid comparison

with experimental data where compressibility effects are present and the flow
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5.3. Viscous Flow

is turbulent due to the high Reynolds number that was measured during the

experiment. The Cp comparison between Botti, Di-Pietro scheme [13] and present

work is shown in Fig. (5.11).

Figure 5.10: Velocity magnitude contour (left) and pressure contour (right) for
NACA 0012 at Reynolds number 100 with angle of attack 5 degrees are shown.

Figure 5.11: Pressure coefficient for NACA 0012 at Reynolds number 100 with
angle of attack 5 degrees.
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5.3.6 3D Lid Driven Cavity

Finally, the three dimensional steady-state lid driven cavity is examined at Reynolds

number 1000. A cube of unity length with 50 elements equally spaced in each di-

rection was created. No-slip conditions are imposed on all walls, apart from the

upper moving wall, where u = 1, v = 0 and w = 0. Similar to the 2D case, ho-

mogeneous Neumann type boundary conditions are used for the Poisson equation.

Comparison of the velocity profiles with the 3D solution given by Botti, Di-Pietro

[13] is shown in Fig. (5.12) whereas in Fig. (5.13) the velocity streamlines are

shown in the 2D plane (left) and in the 3D domain (right). It is worth pointing

out that in the velocity profiles computed by Botti and Di-Pietro, p = 2 approxi-

mation, thus 3rd order of spacial accuracy was used, whereas in the present work

simulation, 2nd order of spacial accuracy was used for both the velocity and pres-

sure variables. This can be seen in Fig. (5.12) where Botti’s solution capture

better the maximum value curve.

Figure 5.12: Velocity profiles comparison between Botti, Di-Pietro [13] and present
work for the 3D Cavity. Profiles of the u velocity component along x=0.5 (left)
and the v velocity component along y=0.5 (right) are shown.
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5.3. Viscous Flow

Figure 5.13: Velocity streamlines in 3D Cavity colored by velocity magnitude, in
a 2D plane (left) and in the 3D domain (right).
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Conclusions

An efficient, high order accurate in space finite element method has been employed

for incompressible flows. The projection method which was used, decouples the

velocity with the pressure and satisfies the incompressibility constraint by solving

the Poisson equation. The implicit algorithm developed, which is parallelizable, is

using both continuous and discontinuous finite element approximation. Compari-

son with classical incompressible flow problems gave satisfactory results.

Use of multigrid for the Poisson equation can further enhance the efficiency of

the method. The current method can be applied for fully unstructured, mixed-

type meshes for simulations over complex geometries. Furthermore, the Spalart-

Allmaras turbulence model must be incorporated to the present scheme in order

to make possible RANS simulations at high Reynolds number external flows.



5. Numerical Examples

72



Appendix A

Linear Elasticity

Since the long term application of the scheme is FSI in wind turbine blades, the

linear elasticity equations are solved next, using cG discretization. The displace-

ment vector U = [dx dy dz]
> is approximated by the following equation where

Ui is the displacement component along the xi direction for each element Ωj.

Ui =
nvbc∑
k=1

Φk
cd

k
i , Ωj ∈ Ω, i = 1, 2, 3. (A.1)

The solution vector with the displacement coefficients is

U = [d1
x d2

x · · · dnvbcx d1
y d2

y · · · dnvbcy d1
z d2

z · · · dnvbcz ]>. (A.2)

The strain in the specimen depends only on the stress applied on it and it doesn’t

depend on the rate or history of loading. The stress-strain and strain-displacement

relations are linear and more specifically:

σij =
E

1 + ν

(
εij +

ν

1− 2ν
εkkδij

)
, (A.3)

εij =
1

2

( ∂di
∂xj

+
∂dj
∂xi

)
. (A.4)

Using a vector form for the stress σ and strain ε tensors:

σ = [C]ε, (A.5)



A. Linear Elasticity

[C] =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0
1

2
(1− 2ν) 0 0

0 0 0 0
1

2
(1− 2ν) 0

0 0 0 0 0
1

2
(1− 2ν)


(A.6)

ε = [L]U →



εxx

εyy

εzz

γyz

γzx

γxy



=



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y

∂

∂z
0

∂

∂x

∂

∂y

∂

∂x
0




dx

dy

dz

 (A.7)

where

γij = 2εij, i 6= j. (A.8)

From Newton’s second law

∇¯̄σ + b = ρÜ , (A.9)

where ¯̄σ is the stress in tensor form, b is the field force vector, ρ is the density and

Ü is the acceleration. Using virtual work principle, Eq. (A.9) is multiplied by the

virtual displacement δU> and integrated on the domain.

δΠeq =

∫
Ωj

δU>
(
∇¯̄σ + b− ρÜ

)
dV = 0, (A.10)

using Gauss’ theorem:

−
∫

Ωj

∇δU> ¯̄σdV +

∫
∂Ωj

δU> ¯̄σ · ndS +

∫
Ωj

δU>bdV −
∫

Ωj

δU>ρÜdV = 0, (A.11)

replacing Eq. (A.5) into Eq. (A.11):

−
∫

Ωj

δε> ¯̄σdV +

∫
∂Ωj

δU>tdS +

∫
Ωj

δU>bdV −
∫

Ωj

δU>ρÜdV = 0, (A.12)
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where t = ¯̄σ · n is the traction vector. Using matrix notation:

−
∫

Ωj

[B][C][B]>dVU +

∫
∂Ωj

ΦctdS +

∫
Ωj

ΦcbdV −
∫

Ωj

ΦcΦ
>
c ρdV Ü = 0, (A.13)

rearranging∫
Ωj

[B][C][B]>dVU +

∫
Ωj

ΦcΦ
>
c ρdV Ü =

∫
∂Ωj

ΦctdS +

∫
Ωj

ΦcbdV, (A.14)

where

[B] =



∂Φc

∂x
0 0 0

∂Φc

∂z

∂Φc

∂y

0
∂Φc

∂y
0

∂Φc

∂z
0

∂Φc

∂x

0 0
∂Φc

∂z

∂Φc

∂y

∂Φc

∂x
0


(A.15)

Writing Eq. (A.14) in a more compact form:

KU + MÜ = R(t), (A.16)

where M is the mass matrix, K is the stiffness matrix and R is the load vector

(field forces and tractions). For the static case the acceleration vanishes, thus

KU = R. Verification for the cantilever beam with uniform load is performed

next and comparison between analytical and computational displacement is shown

in Fig. (A.1). The analytical solution for the displacement in this case is given by

w(x) =
Px2(6L2 − 4xL+ x2)

24EI
, (A.17)

where P is the line pressure load on the beam, L is the beam length, I is the

moment of inertia given by I =
2

3
c3 and c is the half of the height of the beam.
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Figure A.1: Displacement comparison between analytical and computational so-
lution in the cantilever beam case for E = 200GPa, L = 10m, c = 1m,

P =
105

L
N/m. 50 elements have been used in the x direction.

For unsteady simulations, Newmark’s time integration [9] has been used, where

the velocity and displacement vectors at time step t+ ∆t are calculated by:

U̇
t+∆t

= U̇
t
+
[
(1− δ)Üt

+ δÜ
t+∆t

]
∆t, (A.18)

Ut+∆t = Ut + U̇
t
∆t+

[
(0.5− α)Ü

t
+ αÜ

t+∆t
]
∆t2. (A.19)

The parameters α and δ can be determined in order to obtain accuracy and sta-

bility: δ ≥ 0.50 and α ≥ 0.25(0.5 + δ)2.

The algorithm for Newmark time integration is presented next:

• Initialize

1. Calculate the stiffness K and mass M matrices.

2. Initialize U, U̇ and Ü.

3. Select time step ∆t and parameters α, δ. Calculate the constants:

α1 =
1

α∆t2
; α2 =

1

α∆t
; α3 =

1

2α
−1; α4 = ∆t(1−δ); α5 = δ∆t.

4. Form effective stiffness matrix K̂ = K + α1M.

5. Inverse K̂.

• For each time step:

1. Calculate the effective loads at time t+ ∆t:

R̂
t+∆t

= Rt+∆t +
(
α1Ut + α2U̇

t
+ α3Ü

t
)
M
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2. Find displacement vector at time t+ ∆t by solving the system:

K̂Ut+∆t = R̂
t+∆t

3. Calculate the acceleration and the velocity vectors at time t+ ∆t:

Ü
t+∆t

= α1

(
Ut+∆t −Ut

)
− α2U̇

t − α3Ü
t
,

U̇
t+∆t

= Ut + α4Ü
t
+ α5Ü

t+∆t
.

The unsteady algorithm has been tested on the string vibration case. The dis-

placement u(x, t) of the string is described by the partial differential equation:

λ2∂
2u

∂x2
=
∂2u

∂t2
, (A.20)

where u(0, t) = 0 and u(L, t) = 0 are the boundary conditions and λ = 3 was

chosen. The initial conditions for the wave propagation problem were chosen to

be u̇(x, 0) = 0 and u(x, 0) = 4sin(πx) − sin(2πx) − 3sin(5πx), because this way

the solution of Eq. (A.20) has finite number of modes, and is given by:

u(x, t) = 4cos(3πt)sin(πx)− cos(6πt)sin(2πx)− 3cos(15πt)sin(5πx). (A.21)

Differentiating Eq. (A.21) with respect to time one and two times, the velocity

and acceleration are derived respectively. Comparison between analytical and

computational solutions for the displacement, velocity and acceleration is shown

in Fig. (A.2).

Figure A.2: Comparison between analytical and computational solutions for the
displacement (left), velocity (middle) and acceleration (right) in the string vibra-
tion case at time t = 0.03. 500 elements have been used in order to capture the
acceleration variations.
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