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Abstract 

Researcher: Jang Ho Park 

Title: LUMPED PARAMETER MODEL FOR A SELF POWERED FONTAN 

PALLIATION OF THE HYPOPLASTIC LEFT HEART SYNDROME 

 

Institution: Embry Riddle Aeronautical University 

 

Year: 2015 

 

Out of all newborn infants with congenital heart disease (CHD), 8% have a single 

functioning ventricle. The Fontan surgical procedure, where the superior and inferior 

venous returns are connected directly to the pulmonary arteries to allow the single 

functioning ventricle to perfuse the systemic circulation, has been around for decades, yet 

the patients who undergo this operation suffer from chronic illnesses and their 

survivability is less than 50% by adulthood [1-10]. Some suggest that the Fontan 

operation can be improved by implanting a synthetic pump. However, synthetic pumps 

also present some complications due to mechanical failure, risk of stroke, and risk of 

infection [23-30]. The purpose of this study is to numerically simulate the hemodynamics 

of a self-powered Fontan circulation aided by the reserve ventricular energy captured by 

the entrainment effect of an Injection Jet Shunt (IJS). A simulation is created to identify 

important physiological parameters caused be the IJS. By numerically approximating the 

solution using a lumped parameter model (LPM) of a single ventricle cardiovascular 

system, the physiological parameters can be approximated. Systemic flow, pulmonary 

flow, caval pressure and ratio between the pulmonary and systemic flows will be 

determined to verify whether the IJS is beneficial to the Fontan circulation. 
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Introduction 

 

Background 

 

Out of all newborn infants with congenital heart disease (CHD), 8% have a single 

functioning ventricle [1-10]. Hypoplastic left heart syndrome (HLHS) is a heart defect 

where the left ventricle of the heart is atrophied and the aorta is underdeveloped before 

birth. In healthy babies, the left side of the heart receives oxygenated blood from the 

lungs and pumps into the rest of the body. With a defective left ventricle and 

malfunctioning aorta and mitral valve, the heart cannot circulate a sufficient amount of 

blood to the body and vital organs [68]. 

 

Figure 1 Hypo-plastic Left Heart Syndrome [1] 

The right side of the heart is often used to pump the blood to the body for babies who 

suffer from HLHS. The objective of the stage 1 Norwood operation is to connect the 



single ventricle enabling a systemic circulation. The stage 1 Norwood procedure consists 

on implanting a shunt and opening the ductus arteriosus which connects the pulmonary 

artery and the descending aorta. By leaving the patent ductus arteriosus open and sealing 

off the left ventricle, the right ventricle becomes capable of supplying the blood to the 

systemic circulation. However, the blood flow towards the lungs are disrupted, which 

mandates an alternative path for the blood to pass through the lungs [53].  

The stage 2 procedure, also known as Kawashima Procedure or Glenn procedure, is a 

procedure where venous flow is directed into the lungs. By using the superior vena cava 

(SVC) blood return from the upper body, blood is redirected to the lungs enabling the 

limitation of the disrupted blood flow to the lungs from the stage 1 Norwood procedure. 

However, patients still suffer from hypoxia since the inferior vena cava (IVC) blood 

return from the lower body isn’t fed into the lungs to be oxygenated [69]. 

The Fontan procedure, also known as Kreutzer procedure, is a stage 3 procedure. This 

procedure involves the redirecting blood from IVC to the lungs. However, the poorly 

oxygenated blood from the SVC and IVC flows into the lungs without being pumped but 

is driven only by the pressure that is generated in the vessel. This corrects the problem of 

hypoxia and the right heart is capable of supplying blood to the entire human body [56].  

  



 

Figure 2 [A] Norwood Operation [B] Kawashima Operation [C] Fontan Operation 

[2,3,4] 

Despite the fact of 3 stage procedure which has served as palliation for decades, less than 

50% of the babies survive to adulthood due to chronic illnesses.  In the Fontan 

circulation, the blood flows passively through the human body into the lungs due to the 

absence of the left heart. Over the past 3 decades, patients who have undergone the 

surgery have been improving due to the improvement in surgical procedures and 

pharmacological therapies. Since the original procedure of direct connection between the 

right atrium to pulmonary artery connection, there have been numerous alternative 

methods that were suggested to improve the circulation of blood throughout the human 

body as well as the surgical procedure itself [22]. 

  



Injection Jet Shunt (IJS)  

 

In addition to the Fontan operation, a graft will be added from the ventricle or the aorta 

connecting to the pulmonary artery.  

 

Figure 3 Injection Jet Shunt (IJS) Graft 

The graft will directly assist the flow to the lungs from the ventricle or the aorta using the 

reserve mechanical energy from the heart itself and help the Fontan circulation. This graft 

will be called the Injection Jet System (IJS). The principle of IJS is used widely in the 

fluid mechanics industry, however, it has never been addressed to the Fontan circulation 

[31]. By successfully implementing the IJS, the Fontan circulation will have increase in 

pulmonary blood pressure and flow, better delivery of oxygen throughout the body and 

the lungs and decrease in pressure of the inferior vena cava. Due to the fact IJS system 

has never been validated in the Fontan circulation, the simulation will include the IJS 

being connected from the ventricle to the pulmonary artery to investigate the results 

before the CFD (computation fluid dynamics) models. 

  



Mathematical Modeling 

 

There are numerous methods that have been developed over the past decade to simulate 

the circulatory system of the heart. Due to the advance in computational simulation, 

experimental simulation and computational fluid dynamics can be used to simulate an 

approximation of the outcome. Before moving on to computational fluid dynamics, 

experimental simulation is made using mathematical approach in order to validate the 

parameters that will be used for computational fluid dynamics models.  

 

The circulatory system of human body can be represented as a state-space model of a 

Resistance – Inductance – Capacitance circuit (RLC circuit). By solving the state-space 

variable, the pressure and the flow can be derived and approximated inside the circulatory 

system [34]. The human circulatory system can be simplified by using lumped parameter 

modeling. In this case, lumped parameter modeling can be used to model Fontan 

circulation. The Fontan circulation is initially designed to have 22 variables and IJS will 

be added. These variables will be solved using Runge-Kutta 4th order method (RK4). 

However, the lumped parameter model has been simplified so that there will be 12 

different equations and IJS attached to it. The system of equations will be solved using 

the built in function ‘ode45’. This will allow the system of equations to be solved using 

Runge-Kutta 4th order method. After the system of equations are solved, a plot will be 

generated to demonstrate the pressure and flow at different points in the lumped 

parameter model. 



After the plots are generated, flow measurements and pressure measurements will be 

taken to determine important parameters in the circuit and verify to validate the effect of 

Injection Jet system and compare the values without the Injection Jet System. The 

purpose of the simulation is to compare the values and check whether the flow and 

pressure values resides within the range 

Methods 

 

Cardiovascular system can be represented as a lumped parameter model using RLC 

circuit. The resistance resembles pressure, inductance resembles inertia of the flow and 

capacitance resembles the vessel compliance. This is called lumped parameter model. In 

a mathematical perspective of lumped parameter model, partial differential equations 

(PDE) of a space model are simplified to an ordinary differential equations (ODE) [34, 

54, 70]. 

RL Circuits 

 

Viscous vascular resistance (R), inertia of the flow (L) and flow rate (Q) are used to find 

the pressure difference (ΔP). The analogy to this comes from the idea behind Ohm’s law.  

𝛥𝑃(𝑡) = 𝐿
𝑑𝑄(𝑡)

𝑑𝑡
+ 𝑅𝑄(𝑡)     Equation 1 

 

Voltage (V) is the Potential difference which is equivalent to pressure difference (ΔP), 

current (I) is the flow rate (Q), L is the inertia of the flow and resistance (R) is the 

vascular resistance. The Ohm’s law applies directly to the model of cardiovascular 

system either it is in series or parallel for the resistances to be calculated. The flow rate 

will be calculated over an inductor or inductance also known as the inertia of the flow. 



The inductance works just like a resistance and will be combined together using Ohm’s 

law as well [34, 54, 70]. 

 

Figure 4 R (resistance) L (inductance) Circuit 

In general, the solution of a linear variable coefficient, 1st order ODE: 

𝜕𝑦(𝑡)

𝜕𝑡
+ 𝐹(𝑡)𝑦(𝑡) =  𝑔(𝑡)      Equation 2 

Found through an integration factor I(t) as: 

𝑦(𝑡) =
1

𝐼(𝑡)
∗ ∫ 𝐼(𝑡)∗𝑔(𝑡) 𝜕𝑡   Equation 3 

So that 

𝐼(𝑡) = 𝑒∫ 𝐹(𝑡)𝜕𝑡   Equation 4 

 

The RL circuit equation using the general solution of 1st order ODE can be expressed as: 

𝛥𝑃(𝑡) = 𝐿
𝑑𝑄(𝑡)

𝑑𝑡
+ 𝑅𝑄(𝑡)   Equation 5 

Where general solution can be found as: 

𝑄(𝑡) =
𝛥𝑃

𝑅
+ 𝐶1 ∗ 𝑒

−𝑅

𝐿
𝑡   Equation 6 

 

  



RLC Circuits 

 

The compliance of a vessel in a fluid lumped parameter model can be simulated by using 

a capacitor (C). A compliance is where the blood is stored and released over time. The 

flow rate (Q) flowing through the capacitor is related directly to the change in pressure 

(ΔP). The compliance can be measured directly through the change in volume and 

pressure in the vessel and the compliance is assumed as a constant [34, 54, 70]. 

 

Figure 5 R (resistance) L (inductance) C (capacitance) Circuit 

In a simple RLC circuit, the pressure drop across the RLC elements are given as: 

𝐿
𝜕𝑄(𝑡)

𝜕𝑡
+ 𝑅𝑄(𝑡) +

1

𝐶
∫ 𝑄(𝑡)𝜕𝑡 = 𝛥𝑃(𝑡)

𝑡

−∞
    Equation 7 

By differentiating the equation assuming the capacitance (C) is a constant: 

𝐿
𝜕2𝑄(𝑡)

𝜕𝑡2 + 𝑅
𝜕𝑄(𝑡)

𝜕𝑡
+

1

𝐶
𝑄(𝑡) =

𝑑𝑃(𝑡)

𝑑𝑡
    Equation 8 

A second order constant coefficient liner ODE is generated. 



In the RLC circuit, the circuit will contain a parallel compliance. On the node of 

separation, Kirchhoff’s Current Law (KCL) will be applied. KCL states that the sum of 

currents flowing into that node is equal to the sum of currents flowing out of that node. 

This is equivalent to conservation of mass in fluids. In addition, since it is a close circuit 

with different pressure along the circuit, Kirchhoff’s Voltage Law (KVL) states that the 

directed sum of pressure differences around a closed circuit is zero. This is equivalent to 

conservation of energy in fluids [34, 54, 70]. 

When solving the equation, the idea is to form a system of 1st order ODEs. By forming 1st 

order ODEs, the unknowns are the pressure associated with each compliance and the flow 

rates associated with each inductance. After applying KCL and KVL, a system of 1st 

order ODE can be found. The system of 1st order ODE can be expressed in a state 

variable matrix as: 

𝜕𝑦

𝜕𝑡
= [𝐴]𝑦 + 𝑏    Equation 9 

Where A is the state or system matrix and b is the input matrix. 

In cardiovascular system, there are heart valves. The heart valves allows the blood to 

flow in one direction throughout the cardiovascular system. There are four valves in the 

cardiovascular systems. They are mitral valve, tricuspid valve, aortic valve and 

pulmonary valve. The mitral valve and tricuspid valve are between the upper atria and the 

lower ventricle. The aortic valve and pulmonary valve are the valves located near the 

arteries leaving the heart.  

In the Fontan operation, due to the missing right heart, tricuspid valve and pulmonary 

valve are the ones that are operational. The valve can be represented by using a 



combination of diode and corresponding valve viscous resistance. A diode is an electrical 

element designed to allow flow in one direction as long as the pressure gradient is 

negative but block the flow in the opposite direction if the pressure gradient becomes 

positive. The valve will use Poiseuille’s Law. The discontinuity can be formulated in 

terms of Heaviside step function (H) [34, 54, 70].  

 

Figure 6 Heaviside Function to demonstrate the valves (diodes) 

The valve formulation using Poiseuille’s Law and the Heaviside function becomes as: 

𝑄𝑣(𝑡) = [
𝑃1(𝑡)−𝑃2(𝑡)

𝑅𝑣𝑎𝑙𝑣𝑒
] 𝐻(𝑃1(𝑡) − 𝑃2(𝑡))   Equation 10 

By adding in the valves, the valve alters system of equation to become non-linear because 

of the presence of the Heaviside function (H) [34,70]. This alternates the state variable 

equation as series of non-linear system equations which can be represented as: 

𝜕𝑦

𝜕𝑡
= [𝐴](𝑡)𝑦(𝑡) + 𝑏(𝑦,𝑡)    Equation 11 

However, the non-linear system can be replaced using two linear systems where the input 

matrix (b) is represented by an open valve or a closed valve. When the valve is open, the 



Heaviside function (H) becomes 1 and when it is closed the Heaviside function (H) 

becomes 0.The system can be solved by using Runge-Kutta 4th order ODE (RK4) by 

switching the state depending on the condition of the Heaviside function [71]. 

Runge-Kutta method is a method in numerical analysis for controlling error. The idea is 

to compute two estimates of the solution at time step n+1. One using the original time 

step Δt and another using half of the original time step in two steps. 

𝑦𝑛+1 = 𝑦𝑛 +
1

6
(𝐾1 + 2 ∗ 𝐾2 + 2 ∗ 𝐾3 + 𝐾4)    Equation 12 

The value (yn+1) is determined by yn plus the weighted average of the four increments. 

The increments are K1, K2, K3, and K4. The increments are the product of the size of the 

interval and an estimation of the slope specified to the function using the right hand side 

of the function. K1 is the increment based on the beginning interval and K2 and K3 are the 

increments based on the slope at midpoint and K4 is the increment based on the endpoint. 

Since Runge-Kutta method is highly dependent on the size of the time step, it is 

important to pay attention while the incremental points are switching. 

Since the cardiovascular system is homogeneous, where b = 0, it is important that the 

initial conditions y(0) are non-zero values otherwise the solution will result to be trivial 

solution which is zero. Therefore a good physiological starting value must be determined 

prior to solving the system of equations [71]. 

  



Ventricular Function through Time Varying Compliance 

 

Time varying compliance is used to simulate the ventricles of the cardiovascular system. 

There are some important physiological parameters that must be determined which are 

the maximum (Emax) and minimum (Emin) elastance of the ventricle. The elastance of the 

ventricle (EV(t)) is a measurable quantity which is the inverse of its compliance (CV(t)). 

The elastance of the ventricle can be expressed in terms of maximum and minimum 

elastance as: 

𝐸𝑉(𝑡) = ((𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) ∗ 𝐸𝑛(𝑡𝑛)
) + 𝐸𝑚𝑖𝑛    Equation 13 

 

Normalized elastance (En) is a non-dimensional elastance to curve fit the measured 

parameters throughout the heart cycle and tn is a non-dimensional time according to En. 

Normalized elastance function is also known as the “Double Hill” function [34, 54, 70].  

𝐸𝑛(𝑡𝑛) = 1.55 ∗ [
(

𝑡𝑛
0.7

)1.9

1+(
𝑡𝑛
0.7

)
1.9] ∗ [

1

1+(
𝑡𝑛

1.17
)

21.9]   Equation 14 

The normalized time parameter (tn) is defined as: 

𝑡𝑛 =
𝑡

𝑇𝑚𝑎𝑥
    Equation 15 

Where t is time in seconds and Tmax is the shifted heart cycle period defined as:  

𝑇𝑚𝑎𝑥 = 0.2𝑠 + 0.15𝑡𝑐    Equation 16 

 

Where tc is the standard heart cycle period in seconds (s) calculated through the heart rate 

(HR) in beats per minute (BPM) as: 

𝑡𝑐 =
60

𝐻𝑅
    Equation 17 



 

The Simulink diagram for the Time varying compliance looks like the following. 

 

Figure 7 Time varying Compliance components 

The reason we use a time varying compliance instead of a normal voltage source is due to 

the discontinuities that is caused by the valves. Since the function is discontinuous, it is 

better to use time varying compliance than a normal voltage source. 

  



Fontan Circulation 

 

In a Fontan circulation, the systemic venous return is connected to the pulmonary arteries 

without the interposition of a ventricle. In a Fontan circulation the post capillary energy is 

used to push the blood through the lungs. In other words, Fontan circulation cardiac 

output is no longer determined by the heart but by the pulmonary flow. The Fontan 

circulation can be simulated using a lumped parameter model. The lumped parameter 

model looks like the following: 

 

Figure 8. Lumped Parameter Model of Fontan Circulation 

The lumped parameter model is made by using RLC circuit and a time varying 

compliance (capacitor).  The vascular resistance (R), inductance (L) to measure the flow 

rate (Q), and compliance (C). The time varying compliance will represent the pulmonary 

flow which will allow the circulation in the system. There will be two diodes representing 

the two heart valves. The valves will be opened or closed depending on the Heaviside 

function and two state equation will be generated for each valve [34, 54, 70]. In total, 

there will be 4 matrices which will be dependent on the 2 valves with two states. The 

lumped parameter model will contain 12 degrees of freedom (DOF) which means there 



will be 12 state variables representing different pressure and flow rates. These state 

variables will be listed in a specific order [35-38].  

Injection Jet system 

 

The principle of Injection Jet System is a mechanism that is used in the fluid mechanics 

industry. A graft is added to an existing tube. The graft will help the existing flow and 

push the flow to the region which is needed, in this case, the lungs. This is an alternative 

method and an easier solution compared to adding a synthetic heart pump.  

The IJS will be originating from the ventricle, bifurcates with each tapered distal limb 

sutured into the pulmonary arteries in a way that the flow is directed parallel to the left 

and right pulmonary arteries. The energy and momentum generated from the graft will 

deliver the flow efficiently to the venous flow towards the lungs. 

By adding the IJS, the lumped parameter model will contain 13 degree of freedom, 13 

state variables, 7 equations related to the pressure of the Fontan circulation and 5 

equations related to the flow of the circulation. 

 

Figure 9. Lumped Parameter Model of Fontan Circulation with Injection Jet System 



Simulation in MATLAB 

 

The purpose of the simulation is to verify and validate the simplified model of the Fontan 

operation as well as to implement IJS into the Fontan circulation and check some 

physiological parameters associated with IJS. By quantifying the numerical values and 

validating the range of the values derived from the simulation, an assumption can be 

made and could validate whether the IJS implementation to the Fontan circulation is 

capable or not. 

The simulation is divided into three parts. The first part consists the time varying 

compliance, the second part is the matrix consisting 4 cases depending on the valves 

open-closed conditions and the third part is using ode45 function to solve the state 

variable equation.  

Valve Tricuspid Mitral 

 Closed Closed 

 Open Closed 

 Closed Open 

 Open Open 

Table 1 State of Tricuspid and Mitral Valve 

  



Time Varying Compliance 

 

The time varying compliance is used to simulate the right ventricle of the circulation. The 

time varying compliance is written in MATLAB as a time dependent function. 

Determining the maximum and minimum elastance of the ventricle and the shifted heart 

cycle period to find the normalized elastance, the time varying compliance will be 

determined. 

 

Figure 10 Time varying compliance elastance of the right ventricle and the derivative 

The value of the elastance of the right ventricle is shown above and it is repeating 

between the maximum and minimum elastance. By using the equation: 

𝐸𝑉(𝑡) = ((𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) ∗ 𝐸𝑛(𝑡𝑛)
) + 𝐸𝑚𝑖𝑛    Equation 18 



By taking the inverse of the elastance of the right ventricle, time varying compliance 

value, C(t) can be found.  The derivative of the compliance is taken since it will be used 

throughout the mathematical calculation of the 2nd row vector of the system of equations. 

Determining the State variables 

 

The second part of the simulation is solving and determining the 13 state-variable 

equations. The equations are derived using Kirchhoff’s current rule (KCL) and voltage 

rule (KVL). These equations will determine the pressure at each nodes and determine the 

flow over the inductors presented on the lumped parameter model. There will be 8 nodes 

that will measure the pressure at each nodes and 5 flow measurements over the inductor. 

In the circuit, there are 2 diodes that resembles the heart valve in the circuit. The valves 

will alternate between opening and closing depending on the pressure in the ventricle and 

the atrium. When the pressure of the ventricle is greater than the pressure of the atrium, 

the tricuspid valve opens. When the pressure of the atrium is greater than the pressure of 

the aorta, the pulmonary valves opens while the tricuspid closes. Depending on the state 

of the valves, there will be four states.  

Therefore, four different matrices will be created depending on the states of these valves. 

In addition, since the valves will be closing and opening depending on the pressure of the 

ventricle, atrium and the aorta, there will be discontinuity while plotting of the result 

[34,54,70]. The lumped parameter model has been simplified from a 23 by 23 system of 

equation to a 13 by 13 system of equation.  

The subclavian and the carotid arterial and venus bed has been simplified to superior 

circulation reducing 4 components into one singular component. The same simplification 



occurred with the lower body and coronary arterial and venus bed. Therefore 8 

components has been reduced into 2 large components. In addition, the right and left 

pulmonary arterial and venus bed has been simplified into right and left pulmonary 

circulation reducing 4 components into 2 components as well as eliminating the flow on 

aorta. This simplification reduced the number of system of equations from 23 equations 

to 13 equations. 

 

Figure 11 Comparison between Non-simplified and Simplifed Fontan Circulation 

  



The 3D model of reduced circuit looks like the following. 

 

Figure 12 Simplified Model of Fontan Circulation with IJS 

The green ball represents the right heart, the white section represents the IJS, the blue 

part represents the pulmonary arteries, the yellow region represents simplified aorta with 

the IVC and the SVC. 

 

  



ODE45 in MATLAB 

 

The last part of the simulation is using ode45 function which is a build in function for 

Runge-Kutta 4th order and 5th order approximation. By using this build in function, 

system of differential equations can be solved and approximate the solutions. The 

simulation will include two simulations with and without IJS system. The IJS is the new 

component that was suggested as a hypothetical solution for the Fontan operation. 

Comparisons will be made to identify the difference in flow and pressure according to the 

IJS. These value comparisons will be determined by changing Maximum and Minimum 

Elastance of Ventricle (Emax, Emin), resistance of IJS and heart rate (HR). 

Solving Ordinary Differential Equations using MATLAB 

 

An ordinary differential equation (ODE) is an equation that contains one independent 

variable and one or more derivatives with respect to that independent variable. In most 

cases, the independent variable is time. In the time domain, ODEs are initial value 

problems, so all conditions are specified at when time is zero. For example, 

𝒅𝒚

𝒅𝒙
=

𝒙

𝒚
    Equation 19 

𝒚(𝟎) = 𝟏    Equation 20 

𝒚(𝒙) =  √𝒙𝟐 + 𝟏    Equation 21 

The initial value of the function y is given when the time(x) is zero. The governing 

equation is 
𝐝𝐲

𝐝𝐱
 , y(x) value is the actual solution. This is an initial value problem. Matlab 

utilizes the built-in functions for the solution of the ODEs. Here are the most commonly 

used syntax.  



[outputs] = function_name (inputs) 

[time, state] = solver(@dstate, tspan, I.C,options) 

 

The state represents the solution of ODEs which are the values of each state at given 

time. The solver represents the Matlab algorithm which is a built-in function that is 

determined by functions like ode23, ode45. @dstate handles the function that are 

containing the derivatives, tspan represents the time span and the intervals between each 

time period and I.Cs represents the initial conditions for the system in row or column. 

ODEs are solved by computing the nearby values of y(x) using the information known 

and repeating over the time period. The built in solver function solve the ODEs and they 

have different orders. The higher order of ODE function reduces the error generated 

while solving the ODEs. However, time is compromised. As an example ode45 will have 

better accuracy in data compared to ode23. However, it will take shorter time to calculate 

ode23 than ode45. [74] 

  



Solver Accuracy Description 

ODE45 Medium This should be the first 

solver you try 

ODE23 Low Less accurate than ODE45 

ODE113 Low to High For computational intensive 

problems 

ODE15s Low to Medium Use if ode45 fails because 

the problem is stiff 

Table 2 Types of ODE built-in functions in MATLAB 

This table explains the accuracy of the MATLAB built-in solver functions and the 

descriptions.  

The process of computing the nearby values using the information known is called 

numerical approximation. The table presents multiple methods or numerical 

approximation. ODE113 is Euler’s method, ODE23 is Henn’s method, and ODE45 is 

Runge-Kutta 4th and 5th order method. 

While solving for the Fontan circulation, we are not dealing with a single ordinary 

differential equation but we are dealing with system of first order ordinary differential 

equations. [73] Often, engineering and science problems are governed by a system of 

coupled ordinary differential equations where the unknowns represent the state variable 

of specific instances in the field. Since using lumped parameter model to parameterize the 



problem, the current and voltages in the electric circuit represents the flow and pressure 

in a hydraulic system. Given the system of equations as 

𝒅𝒚𝟏(𝒕)

𝒅𝒕
= 𝒇𝟏(𝒕, 𝒚𝟏, 𝒚𝟐, 𝒚𝟑 , ⋯ 𝒚𝒏)   Equation 22 

𝒅𝒚𝟐(𝒕)

𝒅𝒕
= 𝒇𝟐(𝒕, 𝒚𝟏, 𝒚𝟐, 𝒚𝟑 , ⋯ 𝒚𝒏)   Equation 23 

𝒅𝒚𝒏(𝒕)

𝒅𝒕
= 𝒇𝒏(𝒕, 𝒚𝟏, 𝒚𝟐, 𝒚𝟑 , ⋯ 𝒚𝒏)   Equation 24 

And set of initial conditions 

𝒚(𝟎) =  

𝒚𝟏(𝟎)

𝒚𝟐(𝟎)

𝑦𝒏(𝟎)
      =         

𝒚𝟏̂

𝒚𝟐̂

𝒚𝟑̂

    Equation 25 

Which can be represented as a compact form 

𝒚̇(𝒕) = [𝑨(𝒕)] ∗ {𝒚(𝒕)} + {𝒈(𝒕)}     Equation 26 

Where  

{𝒚̇(𝒕)} =

𝒅𝒚𝟏(𝒕)

𝒅𝒕

⋮
𝒅𝒚𝒏(𝒕)

𝒅𝒕
 

     𝒚(𝒕) =
𝒚𝟏(𝒕)

⋮
𝒚𝒏(𝒕)

       𝒈(𝒕) =  
𝒈𝟏(𝒕)

⋮
𝒈𝒏(𝒕)

    Equation 27 

[𝑨(𝒕)] = [
𝑨𝟏, 𝟏(𝒕) ⋯ 𝑨𝟏, 𝒏(𝒕)

⋮ ⋱ ⋮
𝑨𝒏, 𝟏(𝒕) ⋯ 𝑨𝒏, 𝒏(𝒕)

]   Equation 28 

 

Where g(t) are forcing terms, 𝐲(𝐭) are the initial conditions, 𝐲̇(𝐭) are the governing 

equations and A(t) are constant coefficients. When the forcing term g(t) = 0, the solution 

is homogeneous. When a homogenous system of equations are presented, at least one of 

the initial conditions must be non-zero for the solution to be non-trivial meaning that y(t) 

≠ 0. 



In the simulation, Runge-Kutta method will be used to numerically approach the solution. 

The solution will converge to the answer and with correct time step applied with Runge-

Kutta method, one can control the tolerance and precision of the solution. The general 

form of Runge-Kutta method looks like the following. [73] 

𝑲𝟏 =  ∆𝒕 ∗ 𝒇(𝒚𝒏, 𝒕𝒏)    Equation 29 

𝑲𝟐 =  ∆𝒕 ∗ 𝒇 (𝒚𝒏 +
𝟏

𝟐
𝐾𝟏 , 𝒕𝒏 +

𝟏

𝟐
∆𝒕)    Equation 30 

𝑲𝟑 =  ∆𝒕 ∗ 𝒇 (𝒚𝒏 +
𝟏

𝟐
𝑲𝟐 , 𝒕𝒏 +

𝟏

𝟐
∆𝒕)    Equation 31 

𝑲𝟒 =  ∆𝒕 ∗ 𝒇(𝒚𝒏 + 𝑲𝟑 , 𝒕𝒏 + 𝟏)    Equation 32 

𝒚𝒏 + 𝟏 = 𝒚𝒏 +
𝟏

𝟔
∗ (𝑲𝟏 + 𝟐 ∗ 𝑲𝟐 + 𝟐 ∗ 𝑲𝟑 + 𝑲𝟒)    Equation 33 

 

This is the explicit form of equations for Runge-Kutta 4th order method. By applying 

these set of equation, numerical approximation can be performed for the solution for 

Fontan circulation. First, the equations have to be set up with unknowns using the lumped 

parameter model and generate the 12 equations and an equation for the Injection Jet 

System. The equations are listed below. 

𝑪𝑹𝑨 ∗
𝒅𝑷𝑹𝑨(𝒕)

𝒅𝒕
=  𝑸𝑹𝑨(𝒕)  Equation 34 

𝒅

𝒅𝒕
[𝑪𝑹𝑽(𝒕) ∗ 𝑷𝑹𝑽(𝒕)] =  𝑸𝑹𝑽(𝒕)   Equation 35 

𝑪𝑨𝑶 ∗
𝒅𝑷𝑨𝑶(𝒕)

𝒅𝒕
=  𝑸𝑨𝑶(𝒕)    Equation 36 

𝑷𝑨𝑶(𝒕) − 𝑷𝑺𝑪(𝑡) =  𝑳𝑺𝑪𝑨 ∗
𝒅𝑸𝑺𝑪𝑨(𝒕)

𝒅𝒕
+ 𝑹𝑺𝑪𝑨 ∗ 𝑸𝑺𝑪𝑨(𝒕)    Equation 37 

𝑪𝑺𝑪 ∗
𝒅𝑷𝑺𝑪(𝒕)

𝒅𝒕
=  𝑸𝑺𝑪(𝒕)     Equation 38 

𝑷𝑨𝑶(𝒕) − 𝑷𝑰𝑪(𝒕) =  𝑳𝑰𝑪𝑨 ∗
𝒅𝑸𝑰𝑪𝑨(𝒕)

𝒅𝒕
+ 𝑹𝑰𝑪𝑨 ∗ 𝑸𝑰𝑪𝑨(𝒕)   Equation 39 

𝑪𝑰𝑪 ∗
𝒅𝑷𝑰𝑪(𝒕)

𝒅𝒕
=  𝑸𝑰𝑪(𝒕)   Equation 40 

𝑷𝑱(𝒕) − 𝑷𝑳𝑷𝑪(𝒕) =  𝑳𝑳𝑷𝑨 ∗
𝒅𝑸𝑺𝑪𝑨(𝒕)

𝒅𝒕
+ 𝑹𝑳𝑷𝑨 ∗ 𝑸𝑳𝑷𝑨(𝒕)    Equation 41 



𝑪𝑳𝑷𝑪 ∗
𝒅𝑷𝑳𝑷𝑪(𝒕)

𝒅𝒕
=  𝑸𝑳𝑷𝑪(𝒕)  Equation 42 

𝑷𝑱(𝒕) − 𝑷𝑹𝑷𝑪(𝒕) =  𝑳𝑹𝑷𝑨 ∗
𝒅𝑸𝑹𝑷𝑨(𝒕)

𝒅𝒕
+ 𝑹𝑹𝑷𝑨 ∗ 𝑸𝑹𝑷𝑨(𝒕)   Equation 43 

𝑪𝑹𝑷𝑪 ∗
𝒅𝑷𝑹𝑷𝑪(𝒕)

𝒅𝒕
=  𝑸𝑹𝑷𝑪(𝒕)   Equation 44 

𝑪𝑱 ∗
𝒅𝑷𝑱(𝒕)

𝒅𝒕
=  𝑸𝑱(𝒕)   Equation 45 

𝑷𝑹𝑽(𝒕) − 𝑷𝑱(𝒕) =  𝑳𝑰𝑱𝑺 ∗
𝒅𝑸𝑰𝑱𝑺(𝒕)

𝒅𝒕
+ 𝑹𝑰𝑱𝑺 ∗ 𝑸𝑰𝑱𝑺(𝒕)   Equation 46 

 

These are the 13 equations with unknowns that needs to be solved using the Runge-Kutta 

method. After determining the equations, Kirchhoff’s current rule (KCL) will be applied 

to determine the terms on the right hand side of the equations.  

𝑸𝑳𝑷𝑽(𝒕) + 𝑸𝑹𝑷𝑽(𝒕) = 𝑸𝑹𝑨(𝒕) + 𝑸𝑻𝑽(𝒕)  Equation 47 

𝑸𝑹𝑨(𝒕) = 𝑸𝑳𝑷𝑽(𝒕) + 𝑸𝑹𝑷𝑽(𝒕) − 𝑸𝑻𝑽(𝒕)   Equation 48 

𝑸𝑳𝑷𝑽(𝒕) =  
𝑷𝑳𝑷𝑪(𝒕)−𝑷𝑹𝑨(𝒕)

𝑹𝑳𝑷𝑽
    Equation 49 

𝑸𝑹𝑷𝑽(𝒕) =  
𝑷𝑹𝑷𝑪(𝒕)−𝑷𝑹𝑨(𝒕)

𝑹𝑹𝑷𝑽
     Equation 50 

𝑸𝑻𝑽(𝒕) =  
𝑷𝑹𝑨(𝒕)−𝑷𝑹𝑽(𝒕)

𝑹𝑻𝑽
 𝑯[ 𝑷𝑹𝑨(𝒕) − 𝑷𝑹𝑽(𝒕)]   Equation 51 

𝑸𝑹𝑨(𝒕) =  
𝑷𝑳𝑷𝑪(𝒕)−𝑷𝑹𝑨(𝒕)

𝑹𝑳𝑷𝑽
+

𝑷𝑹𝑷𝑪(𝒕)−𝑷𝑹𝑨(𝒕)

𝑹𝑹𝑷𝑽
−

𝑷𝑹𝑨(𝒕)−𝑷𝑹𝑽(𝒕)

𝑹𝑻𝑽
 𝑯[ 𝑷𝑹𝑨(𝒕) − 𝑷𝑹𝑽(𝒕)]    Equation 52 

 

This is an example for using Kirchhoff’s current rule on one the first node RA. By using 

Kirchhoff’s current rule at all the nodes, the following equations can be determined. 

  



𝑑𝑃𝑅𝐴(𝑡)

𝑑𝑡
=

𝑃𝐿𝑃𝐶(𝑡)−𝑃𝑅𝐴(𝑡)

𝑅𝐿𝑃𝑉
+

𝑃𝑅𝑃𝐶(𝑡)−𝑃𝑅𝐴(𝑡)

𝑅𝑅𝑃𝑉
−

𝑃𝑅𝐴(𝑡)−𝑃𝑅𝑉(𝑡)

𝑅𝑇𝑉
 𝐻[ 𝑃𝑅𝐴(𝑡) − 𝑃𝑅𝑉(𝑡)]    Equation 53 

𝑑𝑃𝑅𝑉(𝑡)

𝑑𝑡
= −

1

𝐶𝑅𝑉(𝑡)
∗

𝑑𝐶𝑅𝑉(𝑡)

𝑑𝑡
∗ 𝑃𝑅𝑉(𝑡) +

𝑃𝑅𝐴(𝑡)−𝑃𝑅𝑉(𝑡)

𝑅𝑇𝑉∗𝐶𝑅𝑉(𝑡)
 𝐻[ 𝑃𝑅𝐴(𝑡) − 𝑃𝑅𝑉(𝑡)] −

𝑃𝑅𝑉(𝑡)−𝑃𝐴𝑂(𝑡)

𝑅𝑃𝑉∗𝐶𝑅𝑉(𝑡)
 𝐻[ 𝑃𝑅𝑉(𝑡) −

𝑃𝐴𝑂(𝑡)]    Equation 54 

𝑑𝑃𝐴𝑂(𝑡)

𝑑𝑡
=

𝑃𝑅𝑉(𝑡)−𝑃𝐴𝑂(𝑡)

𝑅𝑃𝑉∗𝐶𝐴𝑂(𝑡)
 𝐻[ 𝑃𝑅𝑉(𝑡) − 𝑃𝐴𝑂(𝑡)] − 

1

𝐶𝐴𝑂
∗ 𝑄𝑆𝐶𝐴(𝑡) −

1

𝐶𝐴𝑂
∗ 𝑄𝐼𝐶𝐴(𝑡)    Equation55 

𝑑𝑄𝑆𝐶𝐴(𝑡)

𝑑𝑡
=

1

𝐿𝑆𝐶𝐴
∗ 𝑃𝐴𝑂(𝑡) −

1

𝐿𝑆𝐶𝐴
∗ 𝑃𝑆𝐶(𝑡) −

𝑅𝑆𝐶𝐴

𝐿𝑆𝐶𝐴
∗ 𝑄𝑆𝐶𝐴(𝑡)   Equation 56 

𝑑𝑃𝑆𝐶(𝑡)

𝑑𝑡
=

1

𝐶𝑆𝐶
∗ 𝑄𝑆𝐶𝐴(𝑡) −

𝑃𝑠𝑐(𝑡)−𝑃𝐽(𝑡)

𝑅𝑆𝐶𝑉∗𝐶𝑆𝐶
    Equation 57 

𝑑𝑄𝐼𝐶𝐴(𝑡)

𝑑𝑡
=

1

𝐿𝐼𝐶𝐴
∗ 𝑃𝐴𝑂(𝑡) −

1

𝐿𝐼𝐶𝐴
∗ 𝑃𝐼𝐶(𝑡) −

𝑅𝐼𝐶𝐴

𝐿𝐼𝐶𝐴
∗ 𝑄𝐼𝐶𝐴(𝑡)   Equation 58 

𝑑𝑃𝐼𝐶(𝑡)

𝑑𝑡
=

1

𝐶𝐼𝐶
∗ 𝑄𝐼𝐶𝐴(𝑡) −

𝑃𝐼𝑐(𝑡)−𝑃𝐽(𝑡)

𝑅𝐼𝐶𝑉∗𝐶𝐼𝐶
    Equation 59 

𝑑𝑄𝐿𝑃𝐴(𝑡)

𝑑𝑡
=

1

𝐿𝐿𝑃𝐴
∗ 𝑃𝐽(𝑡) −

1

𝐿𝐿𝑃𝐴
∗ 𝑃𝐿𝑃𝐶(𝑡) −

𝑅𝐿𝑃𝐴

𝐿𝐿𝑃𝐴
∗ 𝑄𝐿𝑃𝐴(𝑡)    Equation 60 

𝑑𝑃𝐿𝑃𝐶(𝑡)

𝑑𝑡
=

1

𝐶𝐿𝑃𝐶
∗ 𝑄𝐿𝑃𝐴(𝑡) −

𝑃𝐿𝑃𝐶(𝑡)−𝑃𝑅𝐴(𝑡)

𝑅𝐿𝑃𝑉∗𝐶𝐿𝑃𝐶
    Equation 61 

𝑑𝑄𝑅𝑃𝐴(𝑡)

𝑑𝑡
=

1

𝐿𝑅𝑃𝐴
∗ 𝑃𝐽(𝑡) −

1

𝐿𝑅𝑃𝐴
∗ 𝑃𝐿𝑃𝐶(𝑡) −

𝑅𝑅𝑃𝐴

𝐿𝑅𝑃𝐴
∗ 𝑄𝑅𝑃𝐴(𝑡)    Equation 62 

𝑑𝑃𝑅𝑃𝐶(𝑡)

𝑑𝑡
=

1

𝐶𝑅𝑃𝐶
∗ 𝑄𝑅𝑃𝐴(𝑡) −

𝑃𝑅𝑃𝐶(𝑡)−𝑃𝑅𝐴(𝑡)

𝑅𝑅𝑃𝑉∗𝐶𝐿𝑃𝐶
    Equation 63 

𝑑𝑃𝐽(𝑡)

𝑑𝑡
=

𝑃𝑆𝐶(𝑡)−𝑃𝐽(𝑡)

𝑅𝑆𝐶𝑉∗𝐶𝐽
+

𝑃𝐼𝐶(𝑡)−𝑃𝐽(𝑡)

𝑅𝐼𝐶𝑉∗𝐶𝐽
−

1

𝐶𝐽
∗ 𝑄𝐿𝑃𝐴(𝑡) −

1

𝐶𝐽
∗ 𝑄𝑅𝑃𝐴(𝑡)    Equation 64 

These are the twelve equations without the Injection Jet system. Once the Injection Jet 

system is added into the circuit, equations (53) and (63) are modified. 

𝑑𝑄𝐼𝐽𝑆(𝑡)

𝑑𝑡
= −

1

𝐿𝐼𝐽𝑆
∗ 𝑃𝐽(𝑡) +

1

𝐿𝐼𝐽𝑆
∗ 𝑃𝑅𝑉(𝑡) −

𝑅𝐼𝐽𝑆

𝐿𝐼𝐽𝑆
∗ 𝑄𝐼𝐽𝑆(𝑡)    Equation 65 

𝑑𝑃𝑅𝑉(𝑡)

𝑑𝑡
= −

1

𝐶𝑅𝑉(𝑡)
∗

𝑑𝐶𝑅𝑉(𝑡)

𝑑𝑡
∗ 𝑃𝑅𝑉(𝑡) +

𝑃𝑅𝐴(𝑡)−𝑃𝑅𝑉(𝑡)

𝑅𝑇𝑉∗𝐶𝑅𝑉(𝑡)
 𝐻[ 𝑃𝑅𝐴(𝑡) − 𝑃𝑅𝑉(𝑡)] −

𝑃𝑅𝑉(𝑡)−𝑃𝐴𝑂(𝑡)

𝑅𝑃𝑉∗𝐶𝑅𝑉(𝑡)
 𝐻[ 𝑃𝑅𝑉(𝑡) −

𝑃𝐴𝑂(𝑡)] −
1

𝐶𝑅𝑉(𝑡)
∗ 𝑄𝐼𝐽𝑆(𝑡)    Equation 66 

𝑑𝑃𝐽(𝑡)

𝑑𝑡
=

𝑃𝑆𝐶(𝑡)−𝑃𝐽(𝑡)

𝑅𝑆𝐶𝑉∗𝐶𝐽
+

𝑃𝐼𝐶(𝑡)−𝑃𝐽(𝑡)

𝑅𝐼𝐶𝑉∗𝐶𝐽
−

1

𝐶𝐽
∗ 𝑄𝐿𝑃𝐴(𝑡) −

1

𝐶𝐽
∗ 𝑄𝑅𝑃𝐴(𝑡) +

1

𝐶𝐽
∗ 𝑄𝐼𝐽𝑆(𝑡)    Equation 67 

 

In the equation (52), (53) and (54), there is a Heaviside function H, which will act as a 

valve. The value for the Heaviside function will be determined by 1 or 0.  When H = 1, 

the valve is open and when H = 0, the valve is closed.  Since 4 different cases are dealt 



due to the tricuspid valve and pulmonary valve, four different systems of ordinary 

differential equations must be solved. The equations are then simplified into the form of a 

13x13 matrix in a descending order of the 13 equations. The matrix needs to be organized 

in the corresponding order in order moving up and down, left to right. The values are 

either pressure or flow inside the vessel. The pressure values will be represent with a P 

with the nodes and flow will be represented as Q with the nodes. The order of the 13 

equations is represented below. 

y

PRA

PRV
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

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



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








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

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Depending on the value of the Heaviside function, the valves will alter between open-

closed phases. The 4 states are shown below.

 

Figure 13 Four different states of system of equations with IJS 

Listed in table 1, the four states are determined by the state of the valves. The matrix are 

determined by the 13 equations involving the Heaviside function. Direct comparison 

would be made with or without the IJS.  

  



Comparison with Injection Jet Shunt (IJS) 

 

While making comparison with and without the injection system there are several terms 

that needs to be discussed and be verified in the simulation. The main principle of 

injection jet system replies strictly on the principle of entrainment in the system. 

Entrainment is transportation of the fluid across the bodies. The entrainment occurs due 

to the injection jet system being added into the pulmonary connections toward the lungs. 

[72] The most common failure of Fontan circulation happens due to the high pressure in 

the inferior vena cava. The inferior vena cava come up from the lower part of the body 

and having high pressure can result in kidney failure and other illness. Therefore it is 

crucial to lower the pressure in inferior vena cava. The injection jet system will be added 

to the circulation as a method to reduce the pressure and aid the flow towards the lungs. 

The entrainments happens at the injection jet system and the two pulmonary vessels. A 

vacuum is created before the injection jet system pushing the flow to the lungs thus 

reducing the pressure in the inferior body. PICA and QICA will help us determine the 

values of the pressure in the inferior connection and the flow in the region. It is crucial to 

know the pressure in the inferior vena cava.  

The injection jet system is a practice of Bernoulli’s principle. In this case, it allows us to 

deliver concentrate blood flow towards the lungs. The drop in pressure caused by the 

increased velocity due to restriction pulls in the additional blood through the pulmonary 

vessels. The flow and its velocity will be influenced by the diameter of the jet orifice and 

the size of the entrainment port.  These will allow the same outcome of increase flow in 

the pulmonary vessels. [72] 



 

Figure 14 Entrainment ports and jet [5] 

In case B, due to the large port, the entrainment port is bigger and in case C, the diameter 

of the jet is smaller. However, they result in increased flow over the region of the 

pulmonary vessel. 

In addition, we will need to know the ratio of the flows in the inferior vena cava and 

superior vena cava respect to the pressure in the left and right pulmonary connections. 

The flows in the vena cava will be the flow leaving the heart and the pulmonary 

connections will be the flow coming in to the heart. Diving the two flows such as: 

𝑄𝑖𝑛

𝑄𝑜𝑢𝑡
=  

𝑄𝐿𝑃𝐴+𝑄𝑅𝑃𝐴

𝑄𝑆𝐶𝐴+𝑄𝐼𝐶𝐴
 < 1.5    Equation 68 

The ratio of the flow should be less than 1.5. By comparing the value with and without 

the injection system, we will be able to verify whether the flow has decreased or not.  

Since we are adding the injection jet system, we will also need to verify the amount of 

flow that is delivered by the injection jet system to the lungs. Therefore we will be 



validating the amount of flow that is being transmitted by the injection jet graft. In 

addition, the flow at the junction of the IJS and the two vena cava and the pulmonary 

connections will be calculated to demonstrate the total flow at the junction.  

Some initial values for the simulation will be adjusted due to the entrainment principle 

and due to the fact the problem is 1-D problem. In a 3-D problem where computation 

fluid dynamics (CFD) is used to evaluate the flows caused by the injection set system, in 

a 1-D problem, we have to have a forcing term of the resistance caused in the left and 

right pulmonary circulation. Since there should be a decrease in pressure, it will add a 

forcing term when IJS is added to the system. The initial value of the resistance in the left 

and right ventricle will be altered depending on the injection jet system. This will be 

discussed in depth in the results section of the report. 

Results 

 

The purpose of this simulation is to identify the effect of Injection Jet System (IJS) on the 

original Fontan Circulation. Depending on the patient’s heart rate (HR), maximum and 

minimum elastance (Emax, Emin) the simulation will show how much additional flow is 

transmitted throughout the left and right pulmonary circulation. Comparison of different 

heart rate and elastance values will be made to identify whether the Injection Jet System 

will be helpful to Fontan circulation of not. After determining the 12x 12 system of 

equations for the original Fontan circulation and 13 x13 system of equations with the 

Injection Jet system added into the Fontan circulation, MATLAB was used to solve for 

the system of ordinary differential equations.  

  



Time varying Compliance 

 

The system of equation could be simplified in a form of a matrix consisting the same 

numbers of system of equations. The value inside the matrix are constants besides the 

time varying compliance which won’t allow the usage of the built in functions in the 

MATLAB. Therefore the first step of the simulation is creating the time varying 

compliance and updating the value exactly identical to the times steps of the matrix so 

that the ode45 will be used later to solve the system of equations. 

The time varying compliance can be made by the following codes. 

1 Emax = 0.5; 

2 Emin = 0.06; 

3 HR = 120; 

4 t = mod(t1,60/HR); 

5 tn = @(t)  t./Tmax; % Normalized Time 

6 En = @(t)  

1.55*(((tn(t)./0.7).^1.9)./(1+(tn(t)./0.7).^1.9)).*((1./(1+(tn(t)./1.17).^21.9))); 

7 E  = @(t)  ((Emax - Emin) * En(t))+Emin; 

8 C  = @(t) 1./E(t);            %reciprocal of E 

9 CC = @(t,ts) diff(C(t))./(C(t(1:end-1))*ts); % dC./C 

 

Table 3 Time varying compliance in Matlab 

The Emax and Emin are elastance of the ventricle which are predetermined values as well 

as the heart rate, HR. Time will be determined by using modulo operation in line 4. This 

takes the initial time and final time and divide it by the time steps. In line 5, normal 

elastance is determined using the normalized time. The @ operator creates a function 

handle, which allows the function to be called in like variables. The function handle 

captures all the information about a function that MATLAB needs to execute the 

function. Typically, a function handle is passed in an argument list to other functions. 



The receiving functions can then execute the function through the handle that was passed 

in. [74] By using function handle, it enables to pass function access information to other 

functions, reduces the number of files that define your functions and improves the 

performance of repeated operation by reducing the processing time. Since we will have to 

save the values and access the values of the time varying compliance throughout the 

computation of the matrix as well as the derivative of the time varying compliance, using 

the function handle simplifies and improves the performance of the computation. By 

doing this process, each value of the matrix will be updated according to the time step 

allowing the matrix to be in a form of constants. 

Using ODE45 function and Heaviside Function 

 

After declaring all the constants, a function will be created for the time-varying system of 

matrices. By solving for ӯ =  [A]*x +[b]. This will solved by using ode45 function. 

1 [time,p1]= ode45(dxcc,t_sim,x0); 

2 valuescc = p1; 

3 save p1 

4 [time,p2]= ode45(dxco,t_sim,x0); 

5 valuesco = p2; 

6 save p2 

7 [time,p3]= ode45(dxoc,t_sim,x0); 

8 valuesoc = p3; 

9 save p3  

10 [time,p4]= ode45(dxoo,t_sim,x0); 

11 valuesoo = p4; 

12 save p4 

Table 4Matlab code for ode45 operation 

After solving the system of equation using ode45 function, each values will be saved in to 

file p1, p2, p3 and p4. These four files will be mounted to excel VBA in order to add the 

functionality of the valve to alternate between the open-closed and closed open cases. 



The values of p1, p2, p3 and p4 will be mounted on the excel spreadsheet and will 

determine the state of each valves. The valve will be opening and closing depending on 

the pressure of the right atrium and right ventricle.  

 

Table 5 Defining the states of the valves depending on their pressure 

In the code, assumption will be made that the valves are both closed at rest. This state of 

rest is called iso-volumetric contraction. The tricuspid valve will open when the pressure 

inside the right atrium is greater than the ventricle while the pulmonary valve remains 

closed. This process is called filling. After the process of filling both valves are closed 

again and it is called iso-volumetric relaxation.  The pulmonary valve will open while the 

pressure in ventricle becomes greater than the aorta while the tricuspid valve closes. This 

process is called the relaxation. All of this is done by the execution of Heaviside function. 

The operation of Heaviside function was done through Excel. MATLAB was used to 

calculate system of ordinary differential equations and was saved to p1, p2, p3 and p4. 

The files are the 4 cases depending on the state of the tricuspid valve and the pulmonary 

valve. The phase of open-open is not feasible therefore the data from p4 will not be 



applicable for this application. The sets of values for 4 cases will be determined and will 

be put in a text file. MATLAB will retrieve the determined values after the Heaviside 

function and plot the results.  

  



State of Heart 

 

The human heart has multiple states. The heart can be healthy, can be slightly defected, 

severely defected. In the case of Fontan circulation and due to the patients who undergoes 

Fontan operation, the elastance of the ventricle values will be significantly low due to the 

heart being a defected heart. In addition since we will be dealing with a baby’s heart 

which has a higher heart rate than an adult, the values of HR will be higher than a normal 

heart. The values that will be used for the simulation will be the following. The initial 

simulation will use maximum elastance to be 0.5, minimum elastance to be 0.06 and 

heart rate to be 120. In the simulation, the variables will be the maximum elastance and 

the heart rate. The minimum elastance does not alter the simulation. However the 

maximum elastance and the heart rate will alter the range of simulation. Comparisons 

will be made depending on the effects of increased maximum elastance and the heart rate 

to the initial simulation value. Evaluation will be made when the heart condition is 

slightly better or slightly worse than the initial condition to get a better idea of the 

condition of the patient. 

  



Emax \   Heart 

Rate 

140 120 100 

0.75 0.75 \ 140 0.75 \ 120 0.75 \ 100 

0.50 0.50 \ 140 0.50 \ 120 0.50 \ 100 

0.25 0.25 \ 140 0.25 \ 120 0.25 \ 100 

 

Table 6 Maximum Elastance and Heart Rate that will be used for comparison in the 

simulation. 

A healthier heart of a baby will have a heart rate between 110 to 160 beats per minute 

(BPM). The maximum elastance of the heart would be higher when the heart is healthier 

and lower when the heart is ill.  Values will be taken when the heart rate is between the 

range and out of the range to demonstrate the behavior of the pressure and flow in the 

circulation. In addition elastance values will be changed by 0.25 to determine a better 

functioning heart to a condition where the heart condition got worse. The comparisons 

will be made through excel and provide the values to see the flow ratios in the pulmonary 

circulation and the two vena cava as well as the flow influences by the injection jet 

system. [65, 68] 

  



Without Injection Jet Shunt 

 

General Information 

 

The simulation is influenced by two major parameters which are the maximum elastance 

in the ventricle and the heart rate. The simulation will be created within the parameters of 

a malfunctioning heart of the babies and the two parameters will be controlled to see the 

difference when the heart is slightly healthier or slightly worse than the normal 

parameters. The value of the lumped parameter model will be addressed below. 

 

Table 7 Defined Constants for Fontan circulation lumped parameter model 

These values have been predetermined before the creation of the simulations according to 

the parameters of a patient who had a Fontan operation. These values will be plugged into 



the 12x12 matrix of the system of equations and will be solved by using Runge-Kutta 4th 

order ordinary differential equation.  

 

Figure 15 Tricuspid valve closed - pulmonary valve closed for Fontan circulation without 

the IJS 

The 4 cases of the 12x12 matrix are presented. The first case is when the tricuspid valve 

and the pulmonary valve are closed. The Heaviside functions does not exists since when 

the valves are closed, the value for the Heaviside functions becomes ‘0’ leaving the 

function without any terms. 



 

Figure 16 Tricuspid valve open - pulmonary valve closed for Fontan circulation without 

the IJS 

The second case is when the tricuspid valve is open and when the pulmonary valve is 

closed. We can see that the terms for the Heaviside function that governs the tricuspid 

valve is active. Since the valve is open the Heaviside is represented as ‘1’, thus allowing 

the term to be active. The Heaviside function is active through the first two lines of the 

matrix. 

 



 

Figure 17 Tricuspid valve closed - pulmonary valve open for Fontan circulation without 

the IJS 

The third case is when the tricuspid valve is closed and the pulmonary valves are opened. 

When the pulmonary valve is opened, the second and third term gets modified due to the 

Heaviside function. However the Heaviside term for the tricuspid valve is canceled since 

the valve is closed. 

 



 

Figure 18 Tricuspid valve open - pulmonary valve open for Fontan circulation without 

the IJS 

The fourth case, which is practically impossible, is when the two valves are open. You 

can see that the first three rows of the matrix has the Heaviside term on the first 3 

columns of the matrix. These set of matrix will be alternating depending on the pressure 

difference in the ventricle and the aorta. 

 

  



Simulation Results 

 

Results of the simulation was generated using the built-in function ODE45 in Matlab. 

The function is also called as Runge-Kutta 4th order and 5th order approximation function.  

 

1 [time,p1]= ode45(dxcc,t_sim,x0); 

2 valuescc = p1; 

3 save p1 

4 [time,p2]= ode45(dxco,t_sim,x0); 

5 valuesco = p2; 

6 save p2 

7 [time,p3]= ode45(dxoc,t_sim,x0); 

8 valuesoc = p3; 

9 save p3  

10 [time,p4]= ode45(dxoo,t_sim,x0); 

11 valuesoo = p4; 

12 save p4 

 

Table 8 Matlab code for ode45 operation 

Since the syntax of the order we used was [time, data location of columns], the plots were 

generated by using the plot function with the same order of syntax. Since p1, p2,p3 and 

p4 has been combined into the file called data due to the different states in the circulation, 

by simply changing the column values depending on the different nodes, the following 

sets of data were generated. 



 

Figure 19 Pressure and Flow values without IJS 

The following data was generated for the case where the maximum elastance of the 

ventricle is 0.5, minimum elastance of 0.06 and heart rate of 120 bpm. The format of the 

syntax in order to generate the graph is shown next to the graphs. The comparison of the 

data sets will be made through excel. In addition, the value of the systemic flow, 

pulmonary flow and caval pressure will be found in comparison. 

  



With Injection Jet Shunt 

 

General Information 

 

When injection jet system is introduced into the system of the Fontan circulation, the graft 

is added between the pulmonary valve and the two pulmonary circulation. This changes 

the values inside the original matrix of the Fontan matrix but also adds an extra row and 

column to the matrix making it 13x13 matrix. A new term ‘QIJS’, which is the flow of IJS 

will be introduced into the system of equations. These system of equations are shown below. 

 

Figure 20 Tricuspid valve closed - pulmonary valve closed for Fontan circulation with 

the IJS 

Like the 12x12 matrix without the injection jet system, when the injection jet system is 

introduced to the system as an extra component, the size of the matrix has increased by 1 

row and 1 column and some additional values have been introduced to the system. The 

resistance of the vessel IJS, and inductance of the IJS value has been added as new 



constants. This state represents the case when both tricuspid and the pulmonary valves 

are closed.  

 

Figure 21 Tricuspid valve open - pulmonary valve closed for Fontan circulation with the 

IJS 

In state two, the tricuspid valve opens and the pulmonary valve remains shut. This applies 

the exact same principle with the state where the injection jet system is not introduced 

into the system.  

State 3 and state 4 applies exactly same as the state 3 and 4 when injection jet system has 

not been introduced. The only difference between the two sets of matrix is the last 

column vector and the last row vector since the IJs has been added. Addition of the IJS 

changes the equation for PRV and QJ. In addition another set of equation ‘QIJS’ is 

introduced to the system. 

 



 

Figure 22 Tricuspid valve closed - pulmonary valve open for Fontan circulation with the 

IJS 

 

Figure 23 Tricuspid valve open - pulmonary valve open for Fontan circulation with the 

IJS 



When Injection set system is added into the system, it was mentioned that due to the 

training effect of the entrainment, there will be a pressure drop in the area where the 

injection jet system is added. This pressure drop can be programmed in a three 

dimensional computational fluid dynamics simulation model. However, it is impossible 

to design the pressure drop in a one dimensional problem. Therefore, we will be forcing 

that the pressure drop in the vessel is approximately 0.01 mmHg and there for we will be 

subtracting 0.09 mmHg from 0.1 mmHg which were the initial value of RRPA and 

RRPA which are the pressure of left and right pulmonary circulation. 

 

Simulation Results 

 

In order to get the results, ode45 function has been used with exact same codes from table 

8. This will solve the system of equations and display the values of pressure and flow 

corresponding to different maximum elastance and the heart rate. The initial condition of 

the patient is provided with the maximum elastance of 0.5, minimum elastance of 0.06 

and heart rate of 120 bpm. 



 

Figure 24 Fontan circulation with Injection Jet System 

With the injection jet system added into the Fontan circulation there are changes to the 

pressure at the junction and also a new flow has been added into the circuit. In addition, 

we will be taking the sum of the points of the last cycle, taking an average to determine 

the flow or pressure of each points. This will validate the difference of injection jet 

system compared to the circulation without the injection jet system. 

Comparison 

 

Comparison of the data will be made through excel after importing the data points from 

MATLAB. The comparison of the data will be made between the data point with and 

with injection jet system depending on the heart rate and elastance as well as to the 

general parameter model which had the heart rate of 120bpm, Maximum elastance of 0.5.  

When the resistance of injection jet system changes, the value of caval pressure, systemic 

flow and pulmonary flow changes along with the flow of the injection jet system. In the 

simulation, the value of caval pressure and the ratio of systemic flow over pulmonary 



flow is extremely critical. The ideal caval pressure range is below 15mmHg and it should 

show that it is decreasing depending on the maximum elastance and the resistance of the 

injection jet system. The values that will be used to make comparison would be 0.75, 

0.50, 0.25 for the maximum elastance and 140bpm, 120bpm and 100bpm for the heart 

rate and 1mmHg, 2mmHg and 3mmHg for the resistance of the injection jet system. The 

systemic flow and pulmonary flow values will be found by using the last cycle of the 

generated graphs as well as the caval pressure and the flow in injection jet system. 

 

  



Case 1: Heart Rate 140, Maximum Elastance 0.75 

Without Injection Jet System 

 

Figure 25 Pressure Summary for Maximum Elastance of 0.75, Minimum Elastance of 

0.06 and Heart Rate of 140 bpm 

The change in heart rate will affect the change in time since the heart rate will be divided 

by the number of samples of the last period to determine the flow going in to the 

ventricle, going out of the ventricle and the combined pressure at the junction by the 

pulmonary circulation. The caval pressure in the vena cava is 15.447 mmHg. 

 

Figure 26 Flow Summary for Maximum Elastance of 0.75, Minimum Elastance of 0.06 

and Heart Rate of 140 bpm 



The flow in the circuit with the injection jet system will depend on the systemic flow 

which is Qout and pulmonary flow which is Qin. Flow leaving the ventricle is 2.913 

mmHg/ml and flow entering the ventricle is approximately 2.821mmHg/ml. The ratio of 

the systemic flow over pulmonary flow is 0.968. 

With Injection Jet System 

 

Figure 27 Pressure Summary for Maximum Elastance of 0.75, Minimum Elastance of 

0.06 and Heart Rate of 140 bpm 

The injection jet system has been added into the system. By adding the injection jet 

system, the caval pressure is 14.243mmHg.  

 

 

 



 

Figure 28 Flow Summary for Maximum Elastance of 0.75, Minimum Elastance of 0.06 

and Heart Rate of 140 bpm 

The injection jet system has been added and the flow for the injection jet system was 

0.759mmHg/ml. In addition the systemic flow is 2.924mmHg/ml and the pulmonary flow 

is 3.598mmHg. The ratio of the systemic pressure to pulmonary pressure is 1.231. 

Comparison 

QSYSTEMIC 2.924 mmHg/ml 

QSYSTEMIC (NO IJS) 2.913 mmHg/ml 

QPULMONARY 3.598 mmHg/ml 

QPULMONARY(NO IJS) 2.821 mmHg/ml 

QP/QS 1.230506  

QP/QS (NO IJS) 1  

PCAVAL 14.243 mmHg 

PCAVAL (NO IJS) 15.447 mmHg 

QIJS 0.759 mmHg/ml 

   

Table 9 Heart Rate =140bpm, Maximum Elastance = 0.75, Resistance of IJS = 3 

The resistance of Injection Jet is set at 3mmHg. The flow of the systemic circulation is 

2.913mmHg/ml and 2.821mmHg/ml without the Injection Jet System. Flow of the 

systemic circulation is 2.924mmHg/ml and pulmonary circulation is 3.598mmHg/ml with 



the Injection Jet System. The Injection Jet System added more flow to the systemic 

circulation as well as the pulmonary circulation. In addition the Injection Jet System had 

a flow rate of 0.759mmHg/ml. The ratio of the systemic flow to the pulmonary flow 

resulted to be 1.23 with the injection jet system. However the ratio was 0.968 without the 

Injection Jet System. The ratio of the systemic flow and pulmonary flow is within the 

range of 1.20 and 1.50 which is the ideal range.  

The caval pressure is 14.243mmHg with the Injection jet system and the caval pressure 

without the injection jet system is 15.447mmHg. The caval pressure with the injection jet 

system should be less than the caval pressure without the injection jet system.  

RIJS = 2 RIJS = 1 

QSYSTEMIC 2.869 mmHg/ml QSYSTEMIC 2.726 mmHg/ml 

QPULMONARY 3.899 mmHg/ml QPULMONARY 4.735 mmHg/ml 

QP/QS 1.359  QP/QS 1.736  

PCAVAL 14.497 mmHg PCAVAL 15.174 mmHg 

QIJS 1.113 mmHg/ml QIJS 2.09 mmHg/ml 

Table 10 Heart Rate =140bpm, Maximum Elastance = 0.75, Resistance of IJS = 2 (Left) 

and Heart Rate =140bpm, Maximum Elastance = 0.75, Resistance of IJS = 1(right) 

The resistance of the Injection Jet is set at 2mmHg.The flow of the systemic circulation is 

2.869 mmHg/ml and the flow of the pulmonary circulation is 3.899. The ratio of the 

pulmonary circulation to the systemic circulation is 1.36. The value resides within the 

range of 1.25 to 1.5. The flow of Injection Jet system is 1.11 mmHg/ml. The caval 

pressure is 14.497 mmHg which is also within the range between 12.5 and 15.0. 

The resistance of the Injection Jet is set at 1mmHg. The flow of the systemic circulation 

is 2.726 mmHg/ml and the flow of the pulmonary circulation is 4.735. The ratio of the 

pulmonary circulation to the systemic circulation is 1.73. The value resides above the 

range of 1.25 and 1.5 which is not good for the patient. The flow of Injection Jet system 



is 2.09 mmHg/ml. The caval pressure is 15.174 which is also above 15 which is above 

the range. 

  



Case 2: Heart Rate 120, Maximum Elastance 0.75 

Without Injection Jet System 

 

Figure 29 Pressure Summary for Maximum Elastance of 0.75, Minimum Elastance of 

0.06 and Heart Rate of 120 bpm 

With the change in heart rate to 120bpm, we can tell that the interval between each beat 

has reduced. However the values and the shape of the function remains identical. The 

caval pressure is 14.621mmHg. 

 

Figure 30 Flow Summary for Maximum Elastance of 0.75, Minimum Elastance of 0.06 

and Heart Rate of 120 bpm 

The systemic flow is 2.676 mmHg/ml and the pulmonary flow is 2.674 mmHg/ml. The 

ratio of the systemic pressure over pulmonary pressure is 0.99.  



With Injection Jet System 

 

Figure 31 Pressure Summary for Maximum Elastance of 0.75, Minimum Elastance of 

0.06 and Heart Rate of 120 bpm 

When the injection jet system is added, the caval pressure is 13.413 mmHg.  

 

Figure 32 Flow Summary for Maximum Elastance of 0.75, Minimum Elastance of 0.06 

and Heart Rate of 120 bpm 

When injection jet system is added, the systemic flow is 2.699 mmHg/ml and the 

pulmonary flow is 3.388 mmHg/ml. The ratio between the pulmonary flow and the 

systemic flow is 1.255. 

 



 

Comparison 

QSYSTEMIC   2.699 mmHg/ml 

QSYSTEMIC (NO IJS) 2.676 mmHg/ml 

QPULMONARY 3.388 mmHg/ml 

QPULMONARY(NO IJS) 2.674 mmHg/ml 

QP/QS 1.255   

QP/QS (NO IJS) 1   

PCAVAL 13.413 mmHg 

PCAVAL (NO IJS) 14.621 mmHg 

QIJS 0.687 mmHg/ml 

 

Table 11 Heart Rate =120bpm, Maximum Elastance = 0.75, Resistance of IJS = 3 

 

The resistance of Injection Jet is set at 3mmHg. The flow of the systemic circulation is 

2.676mmHg/ml and 2.674mmHg/ml without the Injection Jet System. Flow of the 

systemic circulation is 2.699mmHg/ml and pulmonary circulation is 3.388mmHg/ml with 

the Injection Jet System. The Injection Jet System added more flow to the systemic 

circulation as well as the pulmonary circulation. In addition the Injection Jet System had 

a flow rate of 0.687mmHg/ml. The ratio of the systemic flow to the pulmonary flow 

resulted to be 1.255 with the injection jet system. However the ratio was 0.999 without 

the Injection Jet System. The ratio of the systemic flow and pulmonary flow is within the 

range of 1.20 and 1.50 which is the ideal range.  

The caval pressure is 13.413mmHg with the Injection jet system and the caval pressure 

without the injection jet system is 14.621mmHg. The caval pressure with the injection jet 

system should be less than the caval pressure without the injection jet system.  

  



RIJS = 2 RIJS = 1 

QSYSTEMIC   2.656 mmHg/ml QSYSTEMIC   2.54 mmHg/ml 

QPULMONARY 3.667 mmHg/ml QPULMONARY 4.451 mmHg/ml 

QP/QS 1.380   QP/QS 1.752   

PCAVAL 13.631 mmHg PCAVAL 14.219 mmHg 

QIJS 1.01 mmHg/ml QIJS 1.909 mmHg/ml 

 

Table 12 Heart Rate =120bpm, Maximum Elastance = 0.75, Resistance of IJS = 2 (Left) 

and Heart Rate =120bpm, Maximum Elastance = 0.75, Resistance of IJS = 1(right) 

The resistance of the Injection Jet is set at 2mmHg.The flow of the systemic circulation is 

2.656 mmHg/ml and the flow of the pulmonary circulation is 3.667mmHg/ml. The ratio 

of the pulmonary circulation to the systemic circulation is 1.38. The value resides within 

the range of 1.25 to 1.5. The flow of Injection Jet system is 1.01 mmHg/ml. The caval 

pressure is 13.631 mmHg which is also within the range between 12.5 and 15.0. 

The resistance of the Injection Jet is set at 1mmHg. The flow of the systemic circulation 

is 2.54 mmHg/ml and the flow of the pulmonary circulation is 4.451. The ratio of the 

pulmonary circulation to the systemic circulation is 1.75. The value resides above the 

range of 1.25 and 1.5 which is not good for the patient. The flow of Injection Jet system 

is 1.909 mmHg/ml. The caval pressure is 15.174 which is also above 15 which is above 

the range. 

  



Case 3: Heart Rate 100, Maximum Elastance 0.75 

Without Injection Jet System 

 

Figure 33 Pressure Summary for Maximum Elastance of 0.75, Minimum Elastance of 

0.06 and Heart Rate of 100 bpm 

With the change in heart rate to 100bpm, we can tell that the interval between each beat 

has reduced. However the values and the shape of the function remains identical. The 

caval pressure is 14.337mmHg. 

 

Figure 34 Flow Summary for Maximum Elastance of 0.75, Minimum Elastance of 0.06 

and Heart Rate of 100 bpm 

The systemic flow is 2.514 mmHg/ml and the pulmonary flow is 2.52 mmHg/ml. The 

ratio of the systemic pressure over pulmonary pressure is 1.00.   



With Injection Jet System 

 

Figure 35 Pressure Summary for Maximum Elastance of 0.75, Minimum Elastance of 

0.06 and Heart Rate of 100 bpm 

When the injection jet system is added, the caval pressure is 13.164 mmHg.  

 

Figure 36 Flow Summary for Maximum Elastance of 0.75, Minimum Elastance of 0.06 

and Heart Rate of 100 bpm 



When injection jet system is added, the systemic flow is 2.54 mmHg/ml and the 

pulmonary flow is 3.178 mmHg/ml. The ratio between the pulmonary flow and the 

systemic flow is 1.251. 

Comparison 

QSYSTEMIC   2.54 mmHg/ml 

QSYSTEMIC (NO IJS) 2.514 mmHg/ml 

QPULMONARY 3.178 mmHg/ml 

QPULMONARY(NO IJS) 2.52 mmHg/ml 

QP/QS 1.25   

QP/QS (NO IJS) 1   

PCAVAL 13.164 mmHg 

PCAVAL (NO IJS) 14.337 mmHg 

QIJS 0.631 mmHg/ml 

 

Table 13 Heart Rate =100bpm, Maximum Elastance = 0.75, Resistance of IJS = 3 

 

The resistance of Injection Jet is set at 3mmHg. The flow of the systemic circulation is 

2.514mmHg/ml and 2.52mmHg/ml without the Injection Jet System. Flow of the 

systemic circulation is 2.54mmHg/ml and pulmonary circulation is 3.178mmHg/ml with 

the Injection Jet System. The Injection Jet System added more flow to the systemic 

circulation as well as the pulmonary circulation. In addition the Injection Jet System had 

a flow rate of 0.631mmHg/ml. The ratio of the systemic flow to the pulmonary flow 

resulted to be 1.25 with the injection jet system. However the ratio was 1.002 without the 

Injection Jet System. The ratio of the systemic flow and pulmonary flow is within the 

range of 1.20 and 1.50 which is the ideal range. The caval pressure is 13.164mmHg with 

the Injection jet system and the caval pressure without the injection jet system is 



14.337mmHg. The caval pressure with the injection jet system should be less than the 

caval pressure without the injection jet system.  

RIJS = 2 RIJS = 1 

QSYSTEMIC   2.502 mmHg/ml QSYSTEMIC   2.403 mmHg/ml 

QPULMONARY 3.438 mmHg/ml QPULMONARY 4.172 mmHg/ml 

QP/QS 1.374   QP/QS 1.736   

PCAVAL 13.356 mmHg PCAVAL 13.877 mmHg 

QIJS 0.929 mmHg/ml QIJS 1.762 mmHg/ml 

 

Table 14 Heart Rate =100bpm, Maximum Elastance = 0.75, Resistance of IJS = 2 (Left) 

and Heart Rate =120bpm, Maximum Elastance = 0.75, Resistance of IJS = 1(right) 

 

The resistance of the Injection Jet is set at 2mmHg.The flow of the systemic circulation is 

2.502 mmHg/ml and the flow of the pulmonary circulation is 3.438. The ratio of the 

pulmonary circulation to the systemic circulation is 1.37. The value resides within the 

range of 1.25 to 1.5. The flow of Injection Jet system is 0.929 mmHg/ml. The caval 

pressure is 13.356 mmHg which is also within the range between 12.5 and 15.0. 

The resistance of the Injection Jet is set at 1mmHg. The flow of the systemic circulation 

is 2.403 mmHg/ml and the flow of the pulmonary circulation is 4.172. The ratio of the 

pulmonary circulation to the systemic circulation is 1.73. The value resides above the 

range of 1.25 and 1.5 which is not good for the patient. The flow of Injection Jet system 

is 1.762 mmHg/ml. The caval pressure is 13.877mmHg which is also within 15. 

  



Case 4: Heart Rate 140, Maximum Elastance 0.50 

Without Injection Jet System 

 

Figure 37 Pressure Summary for Maximum Elastance of 0.50, Minimum Elastance of 

0.06 and Heart Rate of 140 bpm 

With the change in heart rate to 140bpm as well as maximum elastance of 0.50, we can 

tell that the interval between each beat has reduced. However the values and the shape of 

the function remains identical. The caval pressure is 14.867mmHg. 

 

Figure 38 Flow Summary for Maximum Elastance of 0.50, Minimum Elastance of 0.06 

and Heart Rate of 140 bpm 

The systemic flow is 2.105 mmHg/ml and the pulmonary flow is 2.081 mmHg/ml. The 

ratio of the systemic pressure over pulmonary pressure is 0.98.  



With Injection Jet System 

 

Figure 39 Pressure Summary for Maximum Elastance of 0.50, Minimum Elastance of 

0.06 and Heart Rate of 140 bpm 

When the injection jet system is added, the caval pressure is 13.972 mmHg.  

 

 

Figure 40 Flow Summary for Maximum Elastance of 0.50, Minimum Elastance of 0.06 

and Heart Rate of 140 bpm 

When injection jet system is added, the systemic flow is 2.123 mmHg/ml and the 

pulmonary flow is 2.652 mmHg/ml. The ratio between the pulmonary flow and the 

systemic flow is 1.249. 



Comparison 

QSYSTEMIC   2.123 mmHg/ml 

QSYSTEMIC (NO IJS) 2.105 mmHg/ml 

QPULMONARY 2.652 mmHg/ml 

QPULMONARY(NO IJS) 2.081 mmHg/ml 

QP/QS 1.24   

QP/QS (NO IJS) 1   

PCAVAL 13.972 mmHg 

PCAVAL (NO IJS) 14.867 mmHg 

QIJS 0.551 mmHg/ml 

 

Table 15 Heart Rate =140bpm, Maximum Elastance = 0.50, Resistance of IJS = 3 

 

The resistance of Injection Jet is set at 3mmHg. The flow of the systemic circulation is 

2.105mmHg/ml and 2.081mmHg/ml without the Injection Jet System. Flow of the 

systemic circulation is 2.123mmHg/ml and pulmonary circulation is 2.652mmHg/ml with 

the Injection Jet System. The Injection Jet System added more flow to the systemic 

circulation as well as the pulmonary circulation. In addition the Injection Jet System had 

a flow rate of 0.551mmHg/ml. The ratio of the systemic flow to the pulmonary flow 

resulted to be 1.249 with the Injection Jet System. However the ratio was 0.988 without 

the Injection Jet System. The ratio of the systemic flow and pulmonary flow is within the 

range of 1.20 and 1.50 which is the ideal range.  

The caval pressure is 13.972mmHg with the Injection jet system and the caval pressure 

without the injection jet system is 14.867mmHg. The caval pressure with the injection jet 

system should be less than the caval pressure without the injection jet system.  

  



RIJS = 2 RIJS = 1 

QSYSTEMIC   2.091 mmHg/ml QSYSTEMIC   2.005 mmHg/ml 

QPULMONARY 2.88 mmHg/ml QPULMONARY 3.519 mmHg/ml 

QP/QS 1.377   QP/QS 1.755   

PCAVAL 14.157 mmHg PCAVAL 14.659 mmHg 

QIJS 0.811 mmHg/ml QIJS 1.535 mmHg/ml 

 

Table 16 Heart Rate =140bpm, Maximum Elastance = 0.75, Resistance of IJS = 2 (Left) 

and Heart Rate =140bpm, Maximum Elastance = 0.75, Resistance of IJS = 1(right) 

 

The resistance of the Injection Jet is set at 2mmHg.The flow of the systemic circulation is 

2.091 mmHg/ml and the flow of the pulmonary circulation is 2.88mmHg/ml. The ratio of 

the pulmonary circulation to the systemic circulation is 1.377. The value resides within 

the range of 1.25 to 1.5. The flow of Injection Jet System is 0.811 mmHg/ml. The caval 

pressure is 14.157 mmHg which is also within the range between 12.5 and 15.0. 

The resistance of the Injection Jet is set at 1mmHg. The flow of the systemic circulation 

is 2.005 mmHg/ml and the flow of the pulmonary circulation is 3.519. The ratio of the 

pulmonary circulation to the systemic circulation is 1.755. The value resides above the 

range of 1.25 and 1.5 which is not good for the patient. The flow of Injection Jet System 

is 1.755 mmHg/ml. The caval pressure is 14.659mmHg which is also within 15. 



Case 5: Heart Rate 120, Maximum Elastance 0.50 

Without Injection Jet System 

 

Figure 41 Pressure Summary for Maximum Elastance of 0.50, Minimum Elastance of 

0.06 and Heart Rate of 120 bpm 

With the change in heart rate to 120 bpm, we can tell that the interval between each beat 

has reduced. However the values and the shape of the function remains identical. The 

caval pressure is 14.28mmHg. 

Figure 42 Flow Summary for Maximum Elastance of 0.50, Minimum Elastance of 0.06 

and Heart Rate of 120 bpm 

The systemic flow is 1.944 mmHg/ml and the pulmonary flow is 1.966 mmHg/ml. The 

ratio of the systemic pressure over pulmonary pressure is 1.01.  



With Injection Jet System 

 

Figure 43 Pressure Summary for Maximum Elastance of 0.50, Minimum Elastance of 

0.06 and Heart Rate of 120 bpm 

When the injection jet system is added, the caval pressure is 13.388 mmHg.  

 

Figure 44 Flow Summary for Maximum Elastance of 0.50, Minimum Elastance of 0.06 

and Heart Rate of 120 bpm 

When injection jet system is added, the systemic flow is 1.968 mmHg/ml and the 

pulmonary flow is 2.490 mmHg/ml. The ratio between the pulmonary flow and the 

systemic flow is 1.265. 



Comparison 

QSYSTEMIC   1.968 mmHg/ml 

QSYSTEMIC (NO IJS) 1.944 mmHg/ml 

QPULMONARY 2.49 mmHg/ml 

QPULMONARY(NO IJS) 1.966 mmHg/ml 

QP/QS 1.26   

QP/QS (NO IJS) 1   

PCAVAL 13.388 mmHg 

PCAVAL (NO IJS) 14.28 mmHg 

QIJS 0.5 mmHg/ml 

 

Table 17 Heart Rate =120bpm, Maximum Elastance = 0.50, Resistance of IJS = 3 

 

The resistance of Injection Jet is set at 3mmHg. The flow of the systemic circulation is 

1.944mmHg/ml and 1.966mmHg/ml without the Injection Jet System. Flow of the 

systemic circulation is 1.968mmHg/ml and pulmonary circulation is 2.49mmHg/ml with 

the Injection Jet System. The Injection Jet System added more flow to the systemic 

circulation as well as the pulmonary circulation. In addition the Injection Jet System had 

a flow rate of 0.50mmHg/ml. The ratio of the systemic flow to the pulmonary flow 

resulted to be 1.265 with the injection jet system. However the ratio was 1.011 without 

the Injection Jet System. The ratio of the systemic flow and pulmonary flow is within the 

range of 1.20 and 1.50 which is the ideal range.  

The caval pressure is 13.388mmHg with the Injection jet system and the caval pressure 

without the injection jet system is 14.28mmHg. The caval pressure with the injection jet 

system should be less than the caval pressure without the injection jet system.  

  



RIJS = 2 RIJS = 1 

QSYSTEMIC   1.942 mmHg/ml QSYSTEMIC   1.873 mmHg/ml 

QPULMONARY 2.701 mmHg/ml QPULMONARY 3.299 mmHg/ml 

QP/QS 1.390   QP/QS 1.761   

PCAVAL 13.547 mmHg PCAVAL 13.978 mmHg 

QIJS 0.737 mmHg/ml QIJS 1.404 mmHg/ml 

 

Table 18 Heart Rate =120bpm, Maximum Elastance = 0.50, Resistance of IJS = 2 (Left) 

and Heart Rate =120bpm, Maximum Elastance = 0.50, Resistance of IJS = 1(right) 

The resistance of the Injection Jet is set at 2mmHg.The flow of the systemic circulation is 

1.942 mmHg/ml and the flow of the pulmonary circulation is 2.701mmHg/ml. The ratio 

of the pulmonary circulation to the systemic circulation is 1.39. The value resides within 

the range of 1.25 to 1.5. The flow of Injection Jet system is 0.811 mmHg/ml. The caval 

pressure is 13.547 mmHg which is also within the range between 12.5 and 15.0. 

The resistance of the Injection Jet is set at 1mmHg. The flow of the systemic circulation 

is 1.873 mmHg/ml and the flow of the pulmonary circulation is 3.299. The ratio of the 

pulmonary circulation to the systemic circulation is 1.761. The value resides above the 

range of 1.25 and 1.5 which is not good for the patient. The flow of Injection Jet system 

is 1.404 mmHg/ml. The caval pressure is 13.978mmHg which is also within 15. 

  



Case 6: Heart Rate 100, Maximum Elastance 0.50 

Without Injection Jet System 

 

Figure 45 Pressure Summary for Maximum Elastance of 0.50, Minimum Elastance of 

0.06 and Heart Rate of 100 bpm 

With the change in heart rate to 100 bpm, we can tell that the interval between each beat 

has reduced. However the values and the shape of the function remains identical. The 

caval pressure is 14.07mmHg. 

 

 

 

 

 

Figure 46 Flow Summary for Maximum Elastance of 0.50, Minimum Elastance of 0.06 

and Heart Rate of 100 bpm 

 

The systemic flow is 1.813 mmHg/ml and the pulmonary flow is 1.832 mmHg/ml. The 

ratio of the systemic pressure over pulmonary pressure is 1.01.  



With Injection Jet System 

 

Figure 47Pressure Summary for Maximum Elastance of 0.50, Minimum Elastance of 0.06 

and Heart Rate of 120 bpm 

When the injection jet system is added, the caval pressure is 13.214 mmHg.  

 

Figure 48 Flow Summary for Maximum Elastance of 0.50, Minimum Elastance of 0.06 

and Heart Rate of 120 bpm 

When injection jet system is added, the systemic flow is 1.837 mmHg/ml and the 

pulmonary flow is 2.310 mmHg/ml. The ratio between the pulmonary flow and the 

systemic flow is 1.257  



Comparison 

QSYSTEMIC   1.837 mmHg/ml 

QSYSTEMIC (NO IJS) 1.813 mmHg/ml 

QPULMONARY 2.31 mmHg/ml 

QPULMONARY(NO IJS) 1.832 mmHg/ml 

QP/QS 1.25   

QP/QS (NO IJS) 1   

PCAVAL 13.214 mmHg 

PCAVAL (NO IJS) 14.071 mmHg 

QIJS 0.455 mmHg/ml 

 

Table 19 Heart Rate =100bpm, Maximum Elastance = 0.50, Resistance of IJS = 3 

 

The resistance of Injection Jet is set at 3mmHg. The flow of the systemic circulation is 

1.837mmHg/ml and 1.966mmHg/ml without the Injection Jet System. Flow of the 

systemic circulation is 1.813mmHg/ml and pulmonary circulation is 2.31mmHg/ml with 

the Injection Jet System. The Injection Jet System added more flow to the systemic 

circulation as well as the pulmonary circulation. In addition the Injection Jet System had 

a flow rate of 0.455mmHg/ml. The ratio of the systemic flow to the pulmonary flow 

resulted to be 1.257 with the injection jet system. However the ratio was 1.010 without 

the Injection Jet System. The ratio of the systemic flow and pulmonary flow is within the 

range of 1.20 and 1.50 which is the ideal range.  

The caval pressure is 13.214mmHg with the Injection jet system and the caval pressure 

without the injection jet system is 14.07mmHg. The caval pressure with the injection jet 

system should be less than the caval pressure without the injection jet system.  

  



RIJS = 2 RIJS = 1 

QSYSTEMIC   1.815 mmHg/ml QSYSTEMIC   1.758 mmHg/ml 

QPULMONARY 2.505 mmHg/ml QPULMONARY 3.059 mmHg/ml 

QP/QS 1.380   QP/QS 1.740   

PCAVAL 13.352 mmHg PCAVAL 13.73 mmHg 

QIJS 0.672 mmHg/ml QIJS 1.741 mmHg/ml 

 

Table 20 Heart Rate =100bpm, Maximum Elastance = 0.50, Resistance of IJS = 2 (Left) 

and Heart Rate =100bpm, Maximum Elastance = 0.50, Resistance of IJS = 1(right) 

 

The resistance of the Injection Jet is set at 2mmHg.The flow of the systemic circulation is 

1.815 mmHg/ml and the flow of the pulmonary circulation is 2.505mmHg/ml. The ratio 

of the pulmonary circulation to the systemic circulation is 1.38. The value resides within 

the range of 1.25 to 1.5. The flow of Injection Jet system is 0.672 mmHg/ml. The caval 

pressure is 13.35 mmHg which is also within the range between 12.5 and 15.0. 

The resistance of the Injection Jet is set at 1mmHg. The flow of the systemic circulation 

is 1.758 mmHg/ml and the flow of the pulmonary circulation is 3.059mmHg/ml. The 

ratio of the pulmonary circulation to the systemic circulation is 1.74. The value resides 

above the range of 1.25 and 1.5 which is not good for the patient. The flow of Injection 

Jet system is 1.741 mmHg/ml. The caval pressure is 13.73mmHg which is also within 15. 

  



Case 7: Heart Rate 140, Maximum Elastance 0.25 

Without Injection Jet System 

 

Figure 49 Pressure Summary for Maximum Elastance of 0.25, Minimum Elastance of 

0.06 and Heart Rate of 140 bpm 

With the change in heart rate to 140 bpm as well as maximum elastance to 0.25, we can 

tell that the interval between each beat has reduced. However the values and the shape of 

the function remains identical. The caval pressure is 14.121mmHg. 

 

Figure 50 Flow Summary for Maximum Elastance of 0.25, Minimum Elastance of 0.06 

and Heart Rate of 140 bpm 

The systemic flow is 1.029 mmHg/ml and the pulmonary flow is 1.114 mmHg/ml. The 

ratio of the systemic pressure over pulmonary pressure is 1.08.  



With Injection Jet System 

 

Figure 51 Pressure Summary for Maximum Elastance of 0.25, Minimum Elastance of 

0.06 and Heart Rate of 140 bpm 

When the injection jet system is added, the caval pressure is 13.63 mmHg.  

 

Figure 52 Flow Summary for Maximum Elastance of 0.25, Minimum Elastance of 0.06 

and Heart Rate of 140 bpm 

When injection jet system is added, the systemic flow is 1.05 mmHg/ml and the 

pulmonary flow is 1.398 mmHg/ml. The ratio between the pulmonary flow and the 

systemic flow is 1.33. 



Comparison 

QSYSTEMIC   1.049 mmHg/ml 

QSYSTEMIC (NO IJS) 1.029 mmHg/ml 

QPULMONARY 1.398 mmHg/ml 

QPULMONARY(NO IJS) 1.114 mmHg/ml 

QP/QS 1.33   

QP/QS (NO IJS) 1   

PCAVAL 13.63 mmHg 

PCAVAL (NO IJS) 14.121 mmHg 

QIJS 0.276 mmHg/ml 

 

Table 21 Heart Rate =140bpm, Maximum Elastance = 0.25, Resistance of IJS = 3 

 

The resistance of Injection Jet is set at 3mmHg. The flow of the systemic circulation is 

1.029mmHg/ml and 1.114mmHg/ml without the Injection Jet System. Flow of the 

systemic circulation is 1.049mmHg/ml and pulmonary circulation is 1.398mmHg/ml with 

the Injection Jet System. The Injection Jet System added more flow to the systemic 

circulation as well as the pulmonary circulation. In addition the Injection Jet System had 

a flow rate of 0.276mmHg/ml. The ratio of the systemic flow to the pulmonary flow 

resulted to be 1.332 with the injection jet system. However the ratio was 1.082 without 

the Injection Jet System. The ratio of the systemic flow and pulmonary flow is within the 

range of 1.20 and 1.50 which is the ideal range.  

The caval pressure is 13.630mmHg with the Injection jet system and the caval pressure 

without the injection jet system is 14.121mmHg. The caval pressure with the injection jet 

system should be less than the caval pressure without the injection jet system.  

  



RIJS = 2 RIJS = 1 

QSYSTEMIC   1.038 mmHg/ml QSYSTEMIC   1.007 mmHg/ml 

QPULMONARY 1.518 mmHg/ml QPULMONARY 1.86 mmHg/ml 

QP/QS 1.462   QP/QS 1.847   

PCAVAL 13.724 mmHg PCAVAL 13.982 mmHg 

QIJS 0.407 mmHg/ml QIJS 0.781 mmHg/ml 

 

Table 22 Heart Rate =140bpm, Maximum Elastance = 0.25, Resistance of IJS = 2 (Left) 

and Heart Rate =140bpm, Maximum Elastance = 0.25, Resistance of IJS = 1(right) 

 

The resistance of the Injection Jet is set at 2mmHg.The flow of the systemic circulation is 

1.038 mmHg/ml and the flow of the pulmonary circulation is 1.518mmHg/ml. The ratio 

of the pulmonary circulation to the systemic circulation is 1.462. The value resides within 

the range of 1.25 to 1.5. The flow of Injection Jet system is 0.407 mmHg/ml. The caval 

pressure is 13.724 mmHg which is also within the range between 12.5 and 15.0. 

The resistance of the Injection Jet is set at 1mmHg. The flow of the systemic circulation 

is 1.007 mmHg/ml and the flow of the pulmonary circulation is 1.86mmHg/ml. The ratio 

of the pulmonary circulation to the systemic circulation is 1.847. The value resides above 

the range of 1.25 and 1.5 which is not good for the patient. The flow of Injection Jet 

system is 0.781mmHg/ml. The caval pressure is 13.982mmHg which is also within 15. 

  



Case 8: Heart Rate 120, Maximum Elastance 0.25 

Without Injection Jet System 

 

Figure 53 Pressure Summary for Maximum Elastance of 0.25, Minimum Elastance of 

0.06 and Heart Rate of 120 bpm 

With the change in heart rate to 120 bpm, we can tell that the interval between each beat 

has reduced. However the values and the shape of the function remains identical. The 

caval pressure is 13.832mmHg. 

 

Figure 54 Flow Summary for Maximum Elastance of 0.25, Minimum Elastance of 0.06 

and Heart Rate of 120 bpm 

The systemic flow is 0.96 mmHg/ml and the pulmonary flow is 1.035 mmHg/ml. The 

ratio of the systemic pressure over pulmonary pressure is 1.07.   



With Injection Jet System 

 

Figure 55 Pressure Summary for Maximum Elastance of 0.25, Minimum Elastance of 

0.06 and Heart Rate of 120 bpm 

When the injection jet system is added, the caval pressure is 13.35 mmHg.  

 

Figure 56 Flow Summary for Maximum Elastance of 0.25, Minimum Elastance of 0.06 

and Heart Rate of 120 bpm 

When injection jet system is added, the systemic flow is 0.98 mmHg/ml and the 

pulmonary flow is 1.295 mmHg/ml. The ratio between the pulmonary flow and the 

systemic flow is 1.32.  



Comparison 

QSYSTEMIC 0.98 mmHg/ml 

QSYSTEMIC (NO IJS) 0.96 mmHg/ml 

QPULMONARY 1.295 mmHg/ml 

QPULMONARY(NO IJS) 1.035 mmHg/ml 

QP/QS 1.32  

QP/QS (NO IJS) 1  

PCAVAL 13.356 mmHg 

PCAVAL (NO IJS) 13.832 mmHg 

QIJS 0.251 mmHg/ml 

 

Table 23 Heart Rate =120bpm, Maximum Elastance = 0.25, Resistance of IJS = 3 

 

The resistance of Injection Jet is set at 3mmHg. The flow of the systemic circulation is 

0.96mmHg/ml and 1.035mmHg/ml without the Injection Jet System. Flow of the 

systemic circulation is 0.98mmHg/ml and pulmonary circulation is 1.295mmHg/ml with 

the Injection Jet System. The Injection Jet System added more flow to the systemic 

circulation as well as the pulmonary circulation. In addition the Injection Jet System had 

a flow rate of 0.251mmHg/ml. The ratio of the systemic flow to the pulmonary flow 

resulted to be 1.321 with the injection jet system. However the ratio was 1.078 without 

the Injection Jet System. The ratio of the systemic flow and pulmonary flow is within the 

range of 1.20 and 1.50 which is the ideal range.  

The caval pressure is 13.356mmHg with the Injection jet system and the caval pressure 

without the injection jet system is 13.832mmHg. The caval pressure with the injection jet 

system should be less than the caval pressure without the injection jet system.  

  



RIJS = 2 RIJS = 1 

QSYSTEMIC   0.971 mmHg/ml QSYSTEMIC   0.947 mmHg/ml 

QPULMONARY 1.406 mmHg/ml QPULMONARY 1.724 mmHg/ml 

QP/QS 1.447   QP/QS 1.820   

PCAVAL 13.436 mmHg PCAVAL 13.655 mmHg 

QIJS 0.371 mmHg/ml QIJS 0.714 mmHg/ml 

 

Table 24 Heart Rate =120bpm, Maximum Elastance = 0.25, Resistance of IJS = 2 (Left) 

and Heart Rate =120bpm, Maximum Elastance = 0.25, Resistance of IJS = 1(right) 

The resistance of the Injection Jet is set at 2mmHg.The flow of the systemic circulation is 

0.971 mmHg/ml and the flow of the pulmonary circulation is 1.406mmHg/ml. The ratio 

of the pulmonary circulation to the systemic circulation is 1.448. The value resides within 

the range of 1.25 to 1.5. The flow of Injection Jet system is 0.371 mmHg/ml. The caval 

pressure is 13.436 mmHg which is also within the range between 12.5 and 15.0. 

The resistance of the Injection Jet is set at 1mmHg. The flow of the systemic circulation 

is 0.947 mmHg/ml and the flow of the pulmonary circulation is 1.724mmHg/ml. The 

ratio of the pulmonary circulation to the systemic circulation is 1.82. The value resides 

above the range of 1.25 and 1.5 which is not good for the patient. The flow of Injection 

Jet system is 0.714 mmHg/ml. The caval pressure is 13.6555mmHg which is also within 

15. 

  



Case 9: Heart Rate 100, Maximum Elastance 0.25 

Without Injection Jet System 

 

Figure 57 Pressure Summary for Maximum Elastance of 0.25, Minimum Elastance of 

0.06 and Heart Rate of 100 bpm 

With the change in heart rate to 100 bpm, we can tell that the interval between each beat 

has reduced. However the values and the shape of the function remains identical. The 

caval pressure is 13.724mmHg. 

 

Figure 58 Flow Summary for Maximum Elastance of 0.25, Minimum Elastance of 0.06 

and Heart Rate of 100 bpm 

The systemic flow is 0.892 mmHg/ml and the pulmonary flow is 0.94 mmHg/ml. The 

ratio of the systemic pressure over pulmonary pressure is 1.05.  



With Injection Jet System 

 

Figure 59 Pressure Summary for Maximum Elastance of 0.25, Minimum Elastance of 

0.06 and Heart Rate of 100 bpm 

When the injection jet system is added, the caval pressure is 13.28 mmHg.  

 

Figure 60 Flow Summary for Maximum Elastance of 0.25, Minimum Elastance of 0.06 

and Heart Rate of 100 bpm 

When injection jet system is added, the systemic flow is 0.909mmHg/ml and the 

pulmonary flow is 1.175 mmHg/ml. The ratio between the pulmonary flow and the 

systemic flow is 1.29.  



Comparison 

QSYSTEMIC   0.909 mmHg/ml 

QSYSTEMIC (NO IJS) 0.892 mmHg/ml 

QPULMONARY 1.175 mmHg/ml 

QPULMONARY(NO IJS) 0.94 mmHg/ml 

QP/QS 1.29   

QP/QS (NO IJS) 1   

PCAVAL 13.282 mmHg 

PCAVAL (NO IJS) 13.724 mmHg 

QIJS 0.226 mmHg/ml 

 

Table 25 Heart Rate =100bpm, Maximum Elastance = 0.25, Resistance of IJS = 3 

The resistance of Injection Jet is set at 3mmHg. The flow of the systemic circulation is 

0.892mmHg/ml and 0.940mmHg/ml without the Injection Jet System. Flow of the 

systemic circulation is 0.909mmHg/ml and pulmonary circulation is 1.175mmHg/ml with 

the Injection Jet System. The Injection Jet System added more flow to the systemic 

circulation as well as the pulmonary circulation. In addition the Injection Jet System had 

a flow rate of 0.226mmHg/ml. The ratio of the systemic flow to the pulmonary flow 

resulted to be 1.292 with the injection jet system. However the ratio was 1.053 without 

the Injection Jet System. The ratio of the systemic flow and pulmonary flow is within the 

range of 1.20 and 1.50 which is the ideal range.  

The caval pressure is 13.282mmHg with the Injection jet system and the caval pressure 

without the injection jet system is 13.724mmHg. The caval pressure with the injection jet 

system should be less than the caval pressure without the injection jet system.  

  



RIJS = 2 RIJS = 1 

QSYSTEMIC   0.902 mmHg/ml QSYSTEMIC   0.883 mmHg/ml 

QPULMONARY 1.277 mmHg/ml QPULMONARY 1.568 mmHg/ml 

QP/QS 1.4157   QP/QS 1.775   

PCAVAL 13.35 mmHg PCAVAL 13.539 mmHg 

QIJS 0.335 mmHg/ml QIJS 0.646 mmHg/ml 

 

Table 26 Heart Rate =100bpm, Maximum Elastance = 0.25, Resistance of IJS = 2 (Left) 

and Heart Rate =100bpm, Maximum Elastance = 0.25, Resistance of IJS = 1(right) 

The resistance of the Injection Jet is set at 2mmHg.The flow of the systemic circulation is 

0.902 mmHg/ml and the flow of the pulmonary circulation is 1.277mmHg/ml. The ratio 

of the pulmonary circulation to the systemic circulation is 1.415. The value resides within 

the range of 1.25 to 1.5. The flow of Injection Jet system is 0.335 mmHg/ml. The caval 

pressure is 13.35 mmHg which is also within the range between 12.5 and 15.0. 

The resistance of the Injection Jet is set at 1mmHg. The flow of the systemic circulation 

is 0.883 mmHg/ml and the flow of the pulmonary circulation is 1.568mmHg/ml. The 

ratio of the pulmonary circulation to the systemic circulation is 1.775. The value resides 

above the range of 1.25 and 1.5 which is not good for the patient. The flow of Injection 

Jet system is 0.646 mmHg/ml. The caval pressure is 13.539mmHg which is also within 

15. 

  



Discussion 

Throughout the simulation, the systemic flow, pulmonary flow, the ratio between the 

pulmonary flow to systemic flow, caval pressure is important since it explains whether 

the IJS is being beneficial throughout the circulation or not. These values are determined 

by change in maximum elastance, heart rate and resistance of the injection jet system. 

When there is an increase in maximum elastance, there is an increase in caval pressure 

and when the maximum elastance decreases, the caval pressure decreases, Therefore the 

caval pressure is directly affected by the maximum elastance. The caval pressure is 

directly proportional to the maximum elastance. The systemic and pulmonary flows also 

increases as the maximum elastance increases. However, the ratio between the pulmonary 

flow and systemic flow decreases as the maximum elastance increases. The flow also 

increase inside the IJS as the maximum elastance increases. 

When the heart rate changes and the heart rate increases, there is an increases in the 

systemic flow, pulmonary flow. However, the ratio between the two acts differently. 

When the heart rate increases, the ratio decreases and when the heart rate decreases the 

ratio decreases as well. However, when IJS is not in the circulation the lower the heart 

rate, the ratio gets bigger. The caval pressure increases as the heart rate increases and the 

flow increases as the heart rate increases. As the heart rate increases, all the values are 

proportional besides the ratio of the pulmonary flow and the systemic flow. 

When the resistance of the injection jet system increases, the systemic flow increases but 

the pulmonary flow decreases. Thus the ratio between the two flows decreases as the 

resistance is bigger. The caval pressure is increased when the resistance is higher but also 



is increased when the resistance is lower. The flow in the injection jet system increases as 

the resistance decreases. 

Since the problem was solved in one dimensional problem, even with the general 

parameters of the resistance, compliance and the inductance value set, there are a lot of 

limitations compared to a computational fluid dynamics model. However, the values of 

the flow and pressure can be estimated and provide a general idea of range of flow and 

pressure mathematically. 

  



Conclusion 

The important physiological parameters are given below. 

Emax 0.75 0.5 0.25 

HR (bpm) 140 140 140 

RIJS(mmHg) 3 3 3 

Physiological Parameters 
Q systemic(mmHg/ml) 2.924 2.123 1.049 

Q pulmonary mmHg/ml) 3.598 2.652 1.398 

Qp/Qs 1.2305 1.2492 1.3327 

Pcaval(mmHg) 14.243 13.972 13.63 

Table 27 Physiological parameters when Emax changes, HR = 140 and RIJS is 3 

Emax 0.75 0.5 0.25 

HR (bpm) 120 120 120 

RIJS(mmHg) 3 3 3 

Physiological Parameters 
Q systemic(mmHg/ml) 2.699 1.968 0.98 

Q pulmonary mmHg/ml) 3.388 2.490 1.295 

Qp/Qs 1.255 1.265 1.321 

Pcaval(mmHg) 13.413 13.388 13.356 

Table 28 Physiological parameters when Emax changes, HR = 120 and RIJS is 3 

Emax 0.75 0.5 0.25 

HR (bpm) 100 100 100 

RIJS(mmHg) 3 3 3 

Physiological Parameters 
Q systemic(mmHg/ml) 2.5400 1.8370 0.9090 

Q pulmonary mmHg/ml) 3.1780 2.3100 1.1750 

Qp/Qs 1.2512 1.2575 1.2926 

Pcaval(mmHg) 13.164 13.214 13.630 

Table 29 Physiological parameters when Emax changes, HR = 100 and RIJS is 3 

The caval pressure is below 15mmHg for all cases as desired as well as Qp/Qs values 

residing within the range of 1.2-1.5. Therefore, all the physiological parameters are 

within the range for all of the cases when RIJS is 3 for different heart rate and maximum 

elastance.  

  



Emax 0.75 0.5 0.25 

HR (bpm) 140 140 140 

RIJS(mmHg) 2 2 2 

Physiological Parameters 
Q systemic(mmHg/ml) 2.869 2.091 1.038 

Q pulmonary mmHg/ml) 3.899 2.88 1.518 

Qp/Qs 1.359 1.377 1.462 

Pcaval(mmHg) 14.49 14.15 13.72 

Table 30Physiological parameters when Emax changes, HR = 140 and RIJS is 2 

Emax 0.75 0.5 0.25 

HR (bpm) 120 120 120 

RIJS(mmHg) 2 2 2 

Physiological Parameters 
Q systemic(mmHg/ml) 2.656 1.942 0.971 

Q pulmonary mmHg/ml) 3.667 2.701 1.406 

Qp/Qs 1.380 1.390 1.447 

Pcaval(mmHg) 13.63 13.54 13.43 

Table 31 Physiological parameters when Emax changes, HR = 120 and RIJS is 2 

Emax 0.75 0.5 0.25 

HR (bpm) 100 100 100 

RIJS(mmHg) 2 2 2 

Physiological Parameters 
Q systemic(mmHg/ml) 2.502 1.815 0.902 

Q pulmonary mmHg/ml) 3.438 2.505 1.277 

Qp/Qs 1.374 1.380 1.415 

Pcaval(mmHg) 13.35 13.35 13.35 

Table 32 Physiological parameters when Emax changes, HR = 120 and RIJS is 2 

 

The caval pressure is below 15mmHg for all cases as desired as well as Qp/Qs values 

residing within the range of 1.2-1.5. Therefore, all the physiological parameters are 

within the range for all of the cases when RIJS is 2 for different heart rate and maximum 

elastance. However, there was an increase in caval pressure when the resistance of IJS 

decreased. 

  



Emax 0.75 0.5 0.25 

HR (bpm) 140 140 140 

RIJS(mmHg) 1 1 1 

Physiological Parameters 
Q systemic(mmHg/ml) 2.726 2.005 1.007 

Q pulmonary mmHg/ml) 4.735 3.519 1.860 

Qp/Qs 1.736 1.755 1.847 

Pcaval(mmHg) 15.17 14.66 13.98 

Table 33 Physiological parameters when Emax changes, HR = 140 and RIJS is 1 

Emax 0.75 0.5 0.25 

HR (bpm) 120 120 120 

RIJS(mmHg) 1 1 1 

Physiological Parameters 
Q systemic(mmHg/ml) 2.54 1.873 0.947 

Q pulmonary mmHg/ml) 4.451 3.299 1.724 

Qp/Qs 1.752 1.761 1.820 

Pcaval(mmHg) 14.22 13.97 13.65 

Table 34 Physiological parameters when Emax changes, HR = 120 and RIJS is 1 

Emax 0.75 0.5 0.25 

HR (bpm) 100 100 100 

RIJS(mmHg) 1 1 1 

Physiological Parameters 
Q systemic(mmHg/ml) 2.403 1.758 0.883 

Q pulmonary mmHg/ml) 4.172 3.059 1.568 

Qp/Qs 1.736 1.740 1.775 

Pcaval(mmHg) 13.87 13.73 13.53 

Table 35 Physiological parameters when Emax changes, HR = 120 and RIJS is 1 

 

The caval pressure is below 15 mmHg for all cases besides when the Emax is 0.75, HR is 

140bpm and RIJS is 1mmHg. However, the Qp/Qs for all cases are above the range of 

1.2-1.5. This means that there are too much flow that are being cycled which means the 

circulation of the blood is not efficient. Therefore, when RIJS is 1, there is no benefit for 

adding IJS into the system. 
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