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ABSTRACT 

Researcher:     Hussein Awad Kurdi Saad 

Title:               Inverse Volume-of-Fluid Meshless Method for Efficient Non-Destructive

 Thermographic Evaluation 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Mechanical Engineering 

Year: 2014 

 

A novel computational tool based on the Localized Radial-basis Function (RBF) 

Collocation (LRC) Meshless method coupled with a Volume-of-Fluid (VoF) scheme 

capable of accurately and efficiently solving transient multi-dimensional heat conduction 

problems in composite and heterogeneous media is formulated and implemented. While 

the LRC Meshless method lends its inherent advantages of spectral convergence and ease 

of automation, the VoF scheme allows to effectively and efficiently simulate the location, 

size, and shape of cavities, voids, inclusions, defects, or de-attachments in the conducting 

media without the need to regenerate point distributions, boundaries, or interpolation 

matrices. To this end, the Inverse Geometric problem of Cavity Detection can be 

formulated as an optimization problem that minimizes an objective function that 

computes the deviation of measured temperatures at accessible locations to those 

generated by the LRC-VoF Meshless method. The LRC-VoF Meshless algorithms will be 

driven by an optimization code based on the Genetic Algorithms technique which can 

efficiently search for the optimal set of design parameters (location, size, shape, etc.) 

within a predefined design space. Initial guesses to the search algorithm will be provided 
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by the classical 1D semi-infinite composite analytical solution which can predict the 

approximate location of the cavity. The LRC-VoF formulation is tested and validated 

through a series of controlled numerical experiments. This approach will allow solving 

the onerous computational inverse geometric problem in a very efficient and robust 

manner while affording its implementation in modest computational platforms, thereby 

realizing the disruptive potential of the multi-dimensional high-fidelity non-destructive 

evaluation (NDE) method. 
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NOMENCLATURE 

RBF                 Radial Based Function 

LRC                 Localized radial based function collection 

VoF                 Volume of Fluid 

NDE                Non-destructive function 

RC     Reinforced concentrate 

FRP                 Fiber-reinforced polymer 

BEM                Boundary element method 

AGP                Anchored grid patterns 

FEM                Finite-element methods 

FVM                Finite volume methods 

DRBEM          Dual reciprocity boundary element method 

LCMM            Localized collection Meshless method 

NC                   Set of data centers 

NB                   Points on the boundary 

NI                     Points on the interior 

Γ                       Boundary 

Ω                      Domain 

T                       Temperature [k]     

x, y, z                Cartesian axis directions 

t                        Time [sec]   

k                      Thermal conductivity [W/m.K]    

c                      Specific heat capacity [J/Kg.K]       
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
                   Density [kg/m

3
]       

e Thermal effusivity [J/m
2.

K.s
1/2

]     

ˆ
j                             Boundary condition coefficients 

NF                   Topology of influence points 

j                              RBF expansion coefficients 

( )j x             Radial-basis functions (RBF) 

( )jr x                Euclidean distance from x [m]        

jx                                 Expansion point 

d                        RBF shape parameter 

cx                                 Topology data center 

L                        Linear differential operator 

 cL                   Derivative expansion vector 

 L                     Derivative interpolation vector 

{T}                     Derivative of the temperature field 

MLS                  Moving Least-Square 

s                         Volume-of-Fluid parameter 

iT    LRC-VoF computed temperature 

q                                    Heat flux [W/m
2
] 

ˆ
iT                        Temperatures acquired through IR measurements 

mN  Finite number of measurement locations 

rN                       Number of cluster rays  
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( )S z                     Objective function 

iM                       Value of the second derivative of the spline at the node i 

i      Node 

i                       Angular spread of each spline 

z                          Number of geometric parameters 
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1 CHAPTER 1   

    INTRODUCTION 

 

The objective of this research is to formulate, test, and validate the Inverse VoF 

Meshless Method for Efficient Non-Destructive Thermographic Evaluation. To this end, 

a novel computational methodology based on the Localized Radial-basis Function (RBF) 

Collocation (LRC) Meshless method coupled with a Volume-of-Fluid (VoF) scheme will 

be implemented to accurately and efficiently solve transient multi-dimensional heat 

conduction problems in composite and heterogeneous media while offering the advantage 

of being able to simulate the presence, location, size, and shape of cavities, voids, 

inclusions, defects, or de-attachments in the conducting media without the need of 

domain or boundary remodeling, point distributions regeneration, or interpolation 

matrices recalculation. This highly automated technique can then be seamlessly 

integrated into an optimization framework formulated to search for such cavities, voids, 

inclusions, defects, or de-attachments by parameterizing their location, size, and shape 

through a series of design variables. The solution method will be validated by comparing 

its predictions to the actual setup of controlled laboratory experiments designed to 

acquire the surface thermal signatures through an IR camera from different heating 

conditions over a variety of composite conducting domains with different defect 

configurations.  

The specific aims of the plan are:  

i) To formulate and implement a novel computational paradigm based on the 

Localized Radial-basis Function (RBF) Collocation (LRC) Meshless method 
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coupled with a Volume-of-Fluid (VoF) scheme capable of accurately and 

efficiently solving transient multi-dimensional heat conduction problems in 

composite and heterogeneous media. While the LRC Meshless method lends its 

inherent advantages of spectral convergence and ease of automation, the VoF 

scheme allows the effective and efficient simulation of location, size, and shape of 

cavities, voids, inclusions, defects, or de-attachments in the conducting media 

without the need to regenerate point distributions, boundaries, or interpolation 

matrices.  

 

ii) To formulate and implement the Inverse Geometric problem of Cavity Detection 

as an optimization problem that minimizes an objective function that computes 

the deviation of measured temperatures at accessible locations to those generated 

by the LRC-VoF Meshless method. The LRC-VoF Meshless algorithms will be 

driven by an optimization code based on the Genetic Algorithms which can 

efficiently search for the optimal set of design parameters (location, size, shape, 

etc.) within a predefined design space. Initial guesses to the search algorithm will 

be provided by the classical 1D semi-infinite composite analytical solution which 

can predict the approximate location but not the size or shape of the cavity.  

 

iii) To test and validate the LRC-VoF Meshless Method Cavity Detection algorithms 

through a series of controlled numerical and laboratory experiments. A 

comprehensive sensitivity analysis and numerical tests will be conducted to 

quantify the robustness of the computational tool to error-induced measurements. 
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In addition, the solution method and tool will be further verified by comparing its 

predictions to the actual setup of a controlled laboratory experiment designed to 

acquire the surface thermal signatures through an IR camera from different 

heating conditions over a variety of composite conducting domains with different 

defect configurations, designed to simulate structural health monitoring scenarios.  

 

The novel idea of integrating the LRC Meshless method coupled with a VoF 

scheme into an optimization framework formulated to search for cavities, voids, 

inclusions, defects, or de-attachments by parameterizing their location, size, and shape 

through a series of design variables will allow solving the onerous computational inverse 

geometric problem in a very efficient and robust manner while affording its 

implementation in modest computational platforms, thereby realizing the disruptive 

potential of the multi-dimensional high-fidelity non-destructive evaluation (NDE) method 

in displacing the current practice of 1D-based NDE.  
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2 CHAPTER 2 

     LITERATURE REVIEW 

 

The Federal Highway Administration approximated in 2010 that there is a lot of 

money being used to replacement or rehabilitation for the bridges in the United States of 

America. The percentage of this money was 89.5% ($12.8 billion) ‎[1] of the total capital 

outlay for the bridges. As the huge rate of the U.S. bridge inventory was established 

between 1950 and 1970 stages to age, with 3/2 of the all bridges in America build before 

1964 ‎[2], the total outlay required to keep the functionality of U.S. bridge infrastructure 

has grown an average of 7.3% per year between 2000 and 2008 ‎[1]. For over thirty years, 

there is a considerable research that has been conducted in the field strengthening 

existing reinforced concrete (RC) structures with fiber-reinforced polymer (FRP) 

composite materials ‎[3]. This study has been conducted in design standards and 

specification that engineers can use to acquire an extensive type of strengthening 

purposes ‎[4]-‎[6], like growing the shear and flexural capacity of reinforced (RC) 

members and supplying extra confinement for RC columns. A main benefit of external 

strengthening with FRP composites is the on-site flexibility that is given by these 

materials (Figure ‎2-1). The wet lay-up method is used by reinforced concrete 

strengthening applications, and this method includes saturating dry fibers on-site with a 

polymer matrix material (usually epoxy) and applying the wetted composite to the 

concrete surface. Mechanical and chemical bond is founded between the concrete and the 

composite during curing and stresses are transported from the concrete to the composite 

via shear through the bondline as the structure is loaded. 
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This wet lay-up method gives the flexibility and puts these systems vulnerable to 

installation flaws. The extent to which installation defects clear as long-term durability 

concerns is not well understood, and non-destructive evaluation technique is not globally 

acceptable for observing durability of these systems. An enormous promise has been 

presented by thermal imaging technique for identifying the presence/absence of defects in 

a specific sense ‎[7]-‎[9]. Moreover, quantitative methods have been used in laboratory 

settings to indicate the potential for defect characterization ‎[10]-‎[11]. However, needing 

for a rapid, robust method is important, and this method can be used for completely 

characterizing the location, size, depth, and material composition of any anomalies that 

are happened during an infrared thermography inspection.  

A simple FRP strengthening application is indicated in Figure ‎2-1 for an interstate 

overpass that was destroyed in a collision with an over-height vehicle out of Jacksonville, 

Florida. Great installation defects were shown by the qualitative thermal, but it is 

impossible to define the implicit cause of the flaws or their possible effects on the long-

term efficiency of the repair. A rapidly deployable method supplies an overall description 

of the nature of encountered defects, and this method is considered as the first step 

towards advancing materials processing techniques to minimize the occurrence of defects 

in the first place. The methodology described in this research will drive to more efficient 

techniques for structural health for observing and ensuring that installed systems execute 

as expected. 
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(a) (b) 

 

(c) 

 

Figure ‎2-1. Application of FRP composite to strengthen existing interstate overpass. a) 

Workers applying carbon-fiber composite. b) Completed project. c) Qualitative thermal 

imaging results obtained during non-destructive evaluation. 

Within the family of inverse heat transfer problems ‎[12]-‎[16], the inverse geometric 

problem finds its application in the nondestructive evaluation of subsurface flaws and 

cavities. Here, the governing equation, the thermophysical properties, the initial 

condition, the boundary conditions, and the portion of the geometry which is exposed, are 

all known. However, the portion of the problem geometry that is hidden from view is 

unknown and to be determined with the help of an overspecified (Cauchy) condition at 

the exposed surface; see Figure ‎2-2. Specifically, the surface temperature and heat flux 

are given at the exposed surface and the geometry of the cavity(ies) that generated the 

measured temperature footprint is to be determined. The boundary condition at the cavity 

side is specified as either homogeneous or nonhomogeneous first, second, or third kind of 

boundary condition. Solution of the inverse geometric problem can be undertaken by 

considering either the transient or steady-state thermal response of the system subjected 
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to a thermal load. Consequently, there are two general categories of techniques for the 

solution of the inverse geometric problem: transient based (also known as thermal wave 

imaging methods) ‎[17]-‎[21] and steady-state based (also known as infrared computerized 

axial tomography, IR CAT) ‎[22]-‎[24]. In the case of the steady-state inverse geometric 

problem Ramm ‎[25] demonstrates mathematically that the solution is unique for media 

with constant thermal conductivity. 

The inverse geometric problem, which has been solved by a variety of numerical 

methods ‎[26]-‎[33], and its closely related shape optimization problem ‎[34]-‎[39], are 

arguably the most computationally intensive of all inverse heat transfer problems. This is 

due to their inherent nature, regardless of whether a numerical or analytical approach is 

taken to solve the associated direct problem, which requires a complete regeneration of 

the mesh as the geometry evolves. Moreover, the continuous evolution of the geometry 

itself poses certain difficulties in arriving at analytical or numerical sensitivity 

coefficients ‎[40]-‎[42] for gradient-based optimization approaches and in the updates of 

the subsurface geometry(ies) and associated mesh(es), particularly in three dimensions, 

whether using domain-meshing methods such as finite-element or finite-volume methods, 

or boundary-meshing methods such as boundary elements ‎[43]-‎[45], which have been 

developed extensively by Divo and Kassab along with their research ‎[46]-‎[48].  
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Figure ‎2-2. Problem setup using IR scanner to measure thermal footprint at the exposed 

boundary. 

An efficient approach was introduced by Divo et al ‎[49] where singularity clusters 

were employed in a boundary element method (BEM) heat conduction formulation to 

simulate the presence of subsurface cavities in 2D and 3D geometries. The efficiency of 

this approach comes from the fact that the problem geometry does not need to be 

regenerated during the search process. Instead, the search is performed for the location, 

distribution, and strength of singularity clusters that act as voids within the medium. This 

allowed for accurate and efficient identification of subsurface cavities without the need of 

regenerating geometries or BEM interpolation matrices. This technique was later 

extended by Ojeda, Divo, and Kassab ‎[50] for biomechanical applications of cavity 

detection in cortical bones. In this case, the deformation field difference with respect to a 

measured field at the exposed boundaries was minimized by using an elastostatics BEM 

code and employing a variety of differently shaped anchored grid patterns (AGP) that 

adapt to the shape of the internal cavity using the efficient singularity superposition idea. 
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While finite-element methods (FEM), finite-volume methods (FVM), and boundary-

element methods (BEM) have been developed to a mature stage such that they are now 

utilized routinely to model complex multi-physics problems, they require significant 

effort in mesh generation and problem setup. Meshless methods are a relative newcomer 

to the field of computational methods, and the term “Meshless Methods” refers to the 

class of numerical techniques that rely on either global or localized interpolation on non-

ordered spatial point distributions. As such, there has been much interest in the 

development of these techniques as they have the hope of reducing the effort devoted to 

model preparation ‎[51]-‎[57]. The approach finds its origin in classical spectral or pseudo-

spectral methods ‎[58]-‎[62] that are based on global orthogonal functions such as 

Legendre or Chebyshev polynomials requiring a regular nodal point distribution. In 

contrast, Meshless methods use a nodal or point distribution that is not required to be 

uniform or regular due to the fact that most such techniques rely on global radial-basis 

functions (RBF) ‎[63]-‎[67]. RBF have proved quite successful in their application to an 

earlier mesh-reduction method, namely the dual reciprocity boundary element method 

(DRBEM). However, global RBF-based Meshless methods have some drawbacks, 

including poor conditioning of the ensuing algebraic set of equations, which can be 

addressed to some extent by domain decomposition and appropriate pre-

conditioning ‎[68]-‎[73]. Moreover, care must be taken in the evaluation of derivatives in 

global RBF-based Meshless methods. Although very promising, these techniques can 

also be computationally intensive. Recently, localized collocation Meshless 

methods ‎[74]-‎[76] have been suggested to address many of the issues posed by global 

RBF Meshless methods. 
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In a series of recent publications ‎[77]-‎[84], Divo, Kassab, and their group have 

developed a Localized Collocation Meshless Method (LCMM) based on Radial-Basis 

Function (RBF) interpolation for modeling of coupled viscous fluid flow, heat transfer 

problems, and fluid-structure interaction problems. The LCMM features Hardy 

Multiquadrics RBF augmented by polynomial expansions over a local topology of points 

for the sought-after unknowns with an efficient formulation for computing the 

interpolations in terms of vector products. This approach is applicable to explicit or 

implicit time marching schemes as well as steady-state iterative methods. The LCMM 

technique lends itself very well to parallel computations and has been shown to be 

computationally more efficient than a comparative finite volume method (FVM) code 

whilst affording the distinct advantage of solving the partial differential conservation 

field equations of fluid flow and heat transfer on a non-ordered set of points. The method 

has been extensively verified against benchmarks and validated finite volume codes for 

several cases. This technique has been implemented in the solution of inverse heat 

transfer problems ‎[85] as well as shape optimization problems ‎[86]. An alternative 

approach to the cavity detection problem using Meshless methods was proposed by 

Karageorghis et al ‎[87]-‎[89] by formulating a moving pseudo-boundary method of 

fundamental solutions to detect voids and boundary locations.  

The need arises for an efficient technique that avoids the implicit requirement of 

performing completely new solutions as the geometry is sought while offering the 

possibility for automation and the robustness of predicting the location, size, and shape of 

cavities, voids, inclusions, defects, or de-attachments within the conducting media.  
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An efficient numerical approach was introduced by Divo and Kassab ‎[49] where 

singularity clusters were employed in a boundary element method (BEM) heat 

conduction formulation to simulate the presence of subsurface cavities in 2D and 3D 

geometries. The search was performed for the location, distribution, and strength of 

singularity clusters that act as voids within the medium and hence the formulation did not 

required remodeling or remeshing. This technique was later extended by Ojeda, Divo, 

and Kassab ‎[50] for cavity detection in cortical bones. In this case, an elastostatics BEM 

formulation was employed to simulate the cavities as clusters of point loads within the 

domain. In these formulations, a Genetic Algorithm (GA) was used to optimize the 

objective function that measured the deviation between measured and BEM-generated 

field data. The technique, although proven to be accurate, efficient, and robust, was not 

capable of employing transient information due to the onerous nature of time-accurate 

formulation in BEM. However, very promising results were obtained validating the 

hypothesis that cavities, voids, and defects can be detected and modeled without the need 

for geometric reconstruction. Figure ‎2-3 shows a BEM-singularity cluster search for two 

cavities in a 2D hollow block after (a) first generation of the GA and (b) 3000 generations 

of the GA showing predicted cavity.   
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(a) 

 

(b) 

Figure ‎2-3. Singularity cluster search for two cavities in a 2D hollow block after (a) first 

generation of the GA and (b) 3000 generations of the GA showing predicted cavity. 
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Figure ‎2-4 shows a BEM-singularity cluster search for a cavity in a 3D hollow 

block after (a) first generation of the GA, (b) 2000 generations of the GA zoomed in at 

cavity, and (c) superimposed actual and retrieved cavities. Very good agreement was 

found between the actual and predicted cavities for the 2D and 3D examples using error-

induced thermal footprint from heating through the exposed walls. 

 

 

(a) 
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(b) 

 

(c) 

Figure ‎2-4. Singularity cluster search for a cavity in a 3D hollow block after (a) first 

generation of the GA, (b) 2000 generations of the GA zoomed in at cavity, and (c) 

superimposed actual and retrieved cavities. 
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3 CHAPTER 3 

    METHODOLOGY 

 

3.1 THE LOCALIZED RBF COLLOCATION (LRC) MESHLESS METHOD 

 

Traditional methods for the numerical solution of Fluid Flow and Heat Transfer 

problems contain Finite Difference Method (FDM), Finite Volume Method (FVM), 

Finite Element Method (FEM), and Boundary Element Method (BEM). In all these 

techniques, a Mesh or Grid is needed so as to create assumptions for the local 

approximation of the field variables and/or its derivatives on the boundary and in the 

interior of the domain of interest. The most time-consuming and man-power-demanding 

part of a numerical analysis is created by Meshing particularly for Fluid Flow problems 

where the numerical solution highly relies on the quality of the mesh. 

A number of Meshless Methods have grown since the beginning of 1990’s from the 

FEM community such as Diffuse Element Methods, Element-Free Galerkin Methods, 

Partition of Unity Methods, H-p Cloud Methods, Local Petrov-Galerkin Methods, and 

Reproducing Kernel Particle Methods. Even though all these methods are called Mesh-

Free or Element-Free, it is necessary to mention that a mesh or shadow elements are 

important for integration goals in all situations. In parallel to the evolution of these 

methods, a various class of techniques appeared based on interpolation and collocation of 

global shape functions like the Trefftz Method, Method of Fundamental Solutions, and 

Radial-Basis Function Collocation Method. These techniques show the capability to 

globally clarify a field variable in a truly Meshless method, with no necessities for 

background meshes, point structure, or polygonalization. 
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However, while these techniques depend on global interpolation functions, large 

fully-populated, non-diagonally dominant, ill-conditioned matrices rise in their 

implementation. Therefore, particular care must be received in the selection and 

formulation of such interpolation functions as well as in the chosen of the resulting 

algebraic systems. 

The Meshless formulation begins by defining a set of data centers, NC, comprised 

of points on the boundary, NB, and points on the interior, NI. These data centers will 

serve as collocation points for the localized expansion of the different field variables in 

the domain, , and on the boundary, , see Figure ‎3-1. The essential difference between 

boundary points and internal points is simply that boundary conditions will be applied at 

the first while governing equations will be applied at the last. 

 

  

Figure ‎3-1. Scattered point distribution in a generalized domain 

 

To illustrate the Meshless formulation the diffusion equation for the temperature, T

, in a generalized coordinate system, x , and time, t , will be taken into consideration as 



Boundary data center

Internal data center


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the governing equation valid in the domain,  , with constant conductivity, k , density, 

 , and specific heat capacity, c , as: 

 
2( , ) ( , )

T k
x t T x t

t c


 


                                      (3-1)  

In addition, a set of generalized boundary conditions on the boundary,  , are given by: 

 1 2 3
ˆ ˆ ˆT

T
n

  


 


                                 (3-2) 

Where: 
1 2 3

ˆ ˆ ˆ, ,and    are imposed coefficients of ( , )x t  that dictate the boundary 

condition type and constraint values. A linear localized expansion over a group or 

topology of influence points, NF, around each data center is sought such that: 

 
1 1

( ) ( ) ( )
NF NP

j j j NF j

j j

T x x P x   

 

                         (3-3) 

The terms j  represent the unknown expansion coefficients while the terms ( )j x  

are expansion functions defined a-priori. While NP is a number of additional polynomial 

functions, ( )jP x , added to the expansion to guarantee that constant and linear fields can 

be retrieved by the expansion exactly. Notice that the time dependency has been dropped 

as a different expansion will be performed for each time level and, therefore, the 

expansion coefficients, j , will vary as time progresses. The expansion functions ( )j x  

are selected as the Inverse Hardy Multiquadrics Radial-basis functions (RBF), defined as: 

1
2 2( )

( ) 1
j

j

r x
x

d




  
   
   

                                                  (3-4) 
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Here, the term ( )jr x  is the Euclidean distance from any point x  to an expansion 

point 
jx , while the term d  is a shape parameter. The larger this shape parameter d  the 

flatter the expansion function becomes and therefore the derivative field becomes 

smoother. However, the value of the shape parameter d  cannot be increased indefinitely 

as the resulting coefficient matrix from the collocation process becomes ill-conditioned. 

A simple search process is performed to determine the optimal value of this shape 

parameter d  for each localized expansion. The behavior of this RBF expansion function 

has been widely studied in the literature ‎[64]-‎[73].   

The selection of an influence region or localized topology of expansion around each 

data center is easily accomplished by a circular (spherical in 3D) search around each data 

center. The search is automated to guarantee that a minimum number of points is 

included and additional criteria, such as including all directions around internal data 

centers, are met. In addition, this search must guarantee that topologies around boundary 

data centers do not include opposing boundaries or points around a re-entry corner. 

Figure ‎3-2 shows a typical collocation topology for a non-uniform point distribution. 
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Figure ‎3-2. Collocation topology selection on a non-uniform point distribution. 

 

 

 

The collocation of the known temperature field (from previous time level or 

iteration step) at the points within the localized topology, can be expressed in matrix-

vector form as: { } [ ]{ }T C  , and, therefore, the expansion coefficients can be 

determined as: 
1{ } [ ] { }C T  . Where the resulting collocation matrix is given by: 

1 1 1 1 1 1

1 1

1 1 1

1 ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
[ ]

( ) ( ) 0 0

( ) ( ) 0 0

NF NP

NF NF NF NF NP NF

NF

NP NP NF NF NP NF NP

x x P x P x

x x P x P x
C

P x P x

P x P x

 

 

 

 
 
 
 

  
 
 
 
 

   (3-5) 

And the right-hand side known vector is augmented as: 

        1 1,
... 0...0

T

NF NF NP
T T x T x


                                      (3-6) 

re

xc
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Note that the polynomial-augmented matrix in Eqn. (3-5) guarantees constant and 

linear (or as high as the polynomial order employed) temperature fields to be expanded 

exactly. The augmentation of the temperature vector in Eqn. (3-6) with values of zero 

does not indicate zero temperatures but rather the dimensional consistency with the 

expansion matrix. The real advantage of the localized collocation approach is capitalized 

in the way the derivatives of the field variable are calculated at the data center, cx
 
of each 

topology. For instance, any linear differential operator L  can be applied over the 

localized expansion equation as: 

       1 1

( ) ( ) ( )
NF NP

c j j c j NF j c

j j

LT x L x LP x   

 

                       (3-7) 

Or, in matrix-vector form: { } { }T

c cLT L  , where the derivative expansion vector  cL  

is given as:  

          1 1 1,
... ...

T

c c NF c c NP c NF NP
L L x L x LP x LP x 


                    (3-8)  

Substitution of the expansion coefficients, { } , leads to:  

1{ } [ ] { }T

c cLT L C T , and defining the derivative interpolation vector  L  as: 

                             1{ } { } [ ]T T

cL L C                                                                     (3-9)  

Leads to the final expression: 

 { } { }T

cLT L T                                                                   (3-10)                                 

The coefficients of the derivative interpolation vector { }L  of size ( ,1)NF  directly 

retrieve the value of the derivative of the temperature field { }T  at the data center of the 

topology cx . Therefore, evaluation of the temperature derivatives at each of the data 

centers cx   is provided by a simple inner product of two small vectors: { }L  which can be 
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pre-built and stored at a setup stage of the problem as it is only dependent on geometry 

and point distribution, and { }T , which is the updated temperature field in the topology of 

the data center. 

Furthermore, imposition of the generalized boundary conditions in Eqn. (3-2), at the 

boundary data centers, cx , can be accomplished in a similar fashion. To aid the boundary 

interpolation an additional set of internal points that “shadow” each boundary point in the 

direction of the normal vector into the domain, as seen in Figure ‎3-3, are included in the 

point distribution and used to directly approximate the normal derivatives at each 

boundary data center.  

  

Figure ‎3-3. Distribution of internal shadow points to compute normal derivatives. 

 

This localized expansion approach reduces the burden of the more common global 

interpolation methods ‎[68]-‎[70] by expanding the field variable locally around each data 

center to obtain its derivatives that are then used in time-marching or iterative schemes. 

This approach yields the generation of multiple but small derivative interpolation vectors 

nj

j

Boundary Point

Internal Shadow Point

Internal Point



 

22 
 

that can be pre-built and stored at a setup stage of the problem as they are only dependent 

on geometry and point distribution. Additional interpolation vectors for Moving Least-

Square (MLS) smoothing and Upwinding schemes can be pre-computed and stored in an 

analogous fashion, see ‎[79]-‎[84]. 

 

3.2 THE VOLUME-OF-FLUID (VOF) METHOD 

The Volume-of-Fluid (VoF) method was introduced by Hirt and Nichols ‎[90] to 

approximate the behavior of two-phase non-mixing fluid flow problems by implicitly 

tracing the interface between the two dissimilar fluids through the transport of a 

continuous variable s  that quantifies the absolute content of one of the fluids ( 1)s  or 

the absolute absence of it ( 0)s   as: 

   0
s

V s
t


  


                                              (3-11) 

Therefore, the VoF parameter s  is used to post-determine the location of the 

interface between the two phases, ( 0.5)s  . This approach offers the great advantage 

that a two-phase flow problem can be modeled in a single domain through a single set of 

governing equations while the VoF parameter s  is used as a weighting factor for the 

thermo-physical properties of the two fluids as, for instance, in the case of the thermal 

conductivities 1k  and 2k : 

                                1 21k s k sk                                                     (3-12)  

One of the premises of this research is that the presence of a cavity within a 

thermally conducting medium can be simulated and approximated using a static version 
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of the VoF method, where the parameter s  is not transported through the static field 

0V   but simply fixed at a value 0s   at the hypothetical location of the cavity and 

1s   elsewhere. And, therefore, there is no need to model the actual geometry of the 

cavity. This technique was implemented by the authors in the setting of Meshless 

methods in ‎[92]. 

 

3.3 THE INVERSE PROBLEM FORMULATION 

The inverse problem of determining the location, size, and shape of the cavity may 

be formulated as an optimization problem whose objective is to minimize a function that 

computes the standard deviation between the LRC-VoF-computed temperatures iT  at the 

exposed boundaries and the temperatures acquired through IR measurements ˆ
iT . This can 

be expressed as a least-squares function over a finite number of measurement locations

mN , or: 

   
2

1

1 ˆ
mN

i i

im

S z T z T
N 

  
                                     (3-13) 

This objective function S  depends on a number of geometric parameters z  that 

define the location, size, and shape of the cluster of LRC Meshless points that are 

imposed with a VoF value 0s  , i.e. a simulated cavity. For instance, in 2D, the cluster 

may be generally defined by an anchored Cubic spline set centered at ( , )o ox y  with a 

number of rays rN  each extending a distance ir  from the center, expressed in polar 

coordinates as: 



 

24 
 

 
3 3 2 2

1 1 1
1 1

( ) ( )

6 6 6 6

i i i i i i i i
i i i i

i i i i

M M
r M M r r

         


   
  

 

        
        

          

(3-14) 

Where iM  is the value of the second derivative of the spline at the node i , and i  is the 

angular spread of each spline, i.e. / 4i    for 8rN  . Requiring that the first and 

second derivatives are continuous at all nodes of the spline set results in a simple 8-dof 

tri-diagonal system for the values of iM .  

A sample anchored Cubic spline set is shown in Figure ‎3-4 for 8rN  . All the LRC 

Meshless points that lie within the resulting anchored Cubic spline set will then be 

imposed with a VoF parameter value of 0s  . 

 

Figure ‎3-4. Anchored Cubic spline set for 8rN   
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Therefore, the parameters z  in the objective function are the coordinates of the 

center and the size ir  of the N  rays of the Cubic (in 2D) or bi-Cubic (in 3D) spline set.  

 

3.4 GENETIC ALGORITHMS 
 

The minimization of the objective function ( )S z  in Eqn. (3-13) to approximate the 

size, shape, and location of the cavity may be accomplished by a non-gradient based 

method such as the Genetic Algorithms (GA), see ‎[91]. GA are robust adaptive search 

techniques that mimic the idea of Darwinian evolution using rules of natural selection to 

investigate highly complex multidimensional problems. As a non-gradient-based 

optimization technique the use of GA is advantageous for this until a best-fit is found that 

application. The parameters that characterize the existence of the cavity may be 

progressively adjusted by the operators of the GA maximizes a fitness function. This 

fitness function can be easily and directly defined as the inverse of the least-square 

functional ( )S z  as: 

1
( )

( )
Z z

S z
   (3-15) 

The GA optimization process begins by setting a random set of possible solutions, 

called the population, with a fixed initial size or number of individuals. Note that one of 

these initial possible solutions may be set to that provided by the 1D initial guess 

described in the previous section. Each individual is defined by optimization variables 

and is represented as a bit string or a chromosome, see Figure ‎3-5. An objective function, 

ZGA, is evaluated for every individual in the current population defining the fitness or 

their probability of survival. At every iteration of the GA, the processes of selection, 
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cross-over, and mutation operators are used to update the population of designs. A 

selection operator is first applied to the population in order to determine and select the 

individuals that are going to pass information in a mating process with the rest of the 

individuals in the population. This mating process is called the crossover operator, and it 

allows the genetic information contained in the best individuals to be combined to form 

offspring. Additionally, a mutation operator randomly affects the information obtained by 

the mating of individuals. This is a crucial step for continuous improvement. 

 

 

Figure ‎3-5. Example of an individual in the population characterized by four parameters 

(genes) encoded in a chromosome yielding the individual's fitness value F1. 

 

A series of parameters are initially set in the GA code, and these determine and 

affect the performance of the genetic optimization process. The number of parameters per 

individual or optimization variables, the size of the bit string or chromosome that defines 

each individual, the number of individuals or population size per generation, the number 

of children from each mating, the probability of crossover, and the probability of 
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mutation are among the parameters that control the optimization process. This set of 

operations is carried out generation after generation until either a convergence criterion (a 

preset level of acceptable fitness) is satisfied or a maximum number of generations is 

reached. It is also important to point out that three important features distinguish GA 

from the others evolutionary algorithms, namely: (1) binary representation of the 

solution, (2) the proportional method of selection, and (3) mutation and crossover as 

primary methods of producing variations. 

 

In nature, the properties of an organism are described by a string of genes in the 

chromosomes. Therefore, if one is trying to simulate nature using computers one must 

encode the design variable in a convenient way. We adopt a haploid model using a binary 

vector to model a single chromosome. The length of the vector is dictated by the number 

of design variables and the required precision of each design variable. Each design 

variable has to be bounded with a minimum and a maximum value and in the process the 

precision of the variable is determined. The number of divisions used in the discretization 

has to be integer power of two. This procedure allows an easy mapping from real 

numbers to binary strings and vice versa. This coding process represented by a binary 

string is one of the distinguishing features of GA and differentiates them from other 

evolutionary approaches. The haploid GA place all design variables into one binary 

string, called a chromosome or off-spring. The information contained in the string of 

vectors comprising the chromosome characterizes an individual in a population. In turn, 

each individual is equipped with a given set of design variables to which corresponds a 

value of the objective function. This value is the measure of "fitness" of the individual 
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design. In GA, poorly fit designs are not discarded, rather they are kept, as in nature, to 

provide genetic diversity in the evolution of the population. This genetic diversity is 

required to provide forward movement of the population during the mating, cross-over, 

and mutation processes which characterize the GA.  

 

The initial population size may grow or diminish to mimic actual biological 

systems. However, in the GA used here, the population size is not allowed to change 

while the program is running. Once the population size is fixed, the algorithm initializes 

all of the chromosomes. This operation is carried out by assigning a random value of 0 or 

1 for each bit contained in each of the chromosomes. After initializing the population, 

evaluation of the fitness of each individual is performed by computing the objective (or 

fitness) which of course represents a set of possible solutions. Having the values of the 

objective function for each individual, the selection process can be started. First values of 

the fitness function for each individual have to be added, and then the probability of 

being a selected individual is calculated as the ratio between the value of the fitness 

function of each individual and the sum of all objectives function values. This is given 

by: 

1

( )

( )
i

i
selected pop size

i

i

Z z
P

Z z







                     (3-16) 

Where zi is the i
th

 member of the population, and Z(zi) is the measure of the fitness of that 

member under its currently evolved parameter set configuration. A weighted roulette 

wheel is generated, where each member of the current population is assigned a portion of 

the wheel in proportion to its probability of selection. The wheel is spun as many times as 
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there are individuals in the population to select which members mate. Obviously, some 

chromosomes would be selected more than once, where the best chromosomes get more 

copies, the average stay even, and the worst die off. Once selection has been applied, 

cross-over and mutation occur to the surviving individuals. These operations further 

expand genetic diversity in the current population. All other probabilities referred to in 

the description of the GA adopted in this research are computed in an analogous fashion 

as the selection probability. 

 

 The probability of crossover Pc is an important parameter that defines the expected 

population size of chromosomes which undergoes crossover operation. This is a mating 

process that allows individuals to interchange intrinsic information contained in the 

chromosomes. The operation may be implemented in two steps: (1) a random selection 

based on the probability of crossover is performed to obtain pairs of individuals, and (2) a 

random number is generated between the first position of the binary vector and the last 

one to indicate the location of the crossing point which delineates the location about 

which genetic information is interchanged between two chromosomes. 

 

The mutation operator is the final operator implemented. The probability of 

mutation Pm gives the expected number of mutated bits and every bit in all chromosomes 

in the whole population has an equal chance to undergo mutation: switch of a bit from 0 

to 1 or vice-versa. This process is implemented by generating a random number within 

the range (0...1) for each bit within the chromosome. If the generated number is smaller 

than Pm  the bit is mutated. When the mutation is done on a bit-by-bit basis is called the 



 

30 
 

creep mutation. Another type of mutation is the jump mutation which is applied to an 

individual selected to be mutated from this perspective. In this case all bits within the 

chromosome are switched from 0 to 1 and vice-versa. Following selection, crossover and 

mutation the new population is ready for its next evolution until the convergence criteria 

“fitness” is reached. It is the very nature of the binary representation of the design 

variables of the objective function and the random search process which provide yet 

another but implicit degree of regularization in this optimization process. The sensitivity 

of the objective function can be tuned depending on the size of each element of the 

chromosome. Thus, low bit representation is insensitive to large variations in input 

(regularized but may lead to poor solution due to low resolution), while high bit 

representation is sensitive to large variations in input (not regularized and therefore may 

lead to poor solution as well). There is a range of bit size which produces a regularized 

and sensitive response leading to stable solutions. 

In the GA employed in this research, the following parameters are chosen: 

population size of 20 individuals per generation, with strings of 8 bits for the x and y 

location of the anchored grid pattern as well as for the 8 rays of the pattern. The mating 

process produces one offspring per mating using uniform crossover which produces a 

higher level of diversity than single point crossover, a 4% probability of jump mutation, 

20% probability of creep mutation, and 50% probability of crossover. The population is 

not allowed to grow (static population) and elitist generation (the best parent survives to 

the next generation). The population is completely eliminated after 50 generations if there 

is no further improvement, keeping the best member of the population (restart). This 
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combination of GA parameters has been shown by the authors to provide robust results in 

cavity detection problems as seen in [49]. 
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4 CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 DIRECT PROBLEM EXAMPLE 
       

To illustrate this approach, the LRC Meshless method coupled with the VoF 

method is tested in a composite domain made of a (1 1m m ) Concrete block (

32300 /kg m  , 880 /c J kgK , and 1.4 /k W mK ) with an attached ( 0.1 1m m ) 

epoxy layer (
31000 /kg m  , 1000 /c J kgK , and 14 /k W mK ) with perfect thermal 

contact. The composite domain is at an initial temperature 20iT C   and heated with a 

constant heat flux 2

0 1000 /q W m  through the exposed epoxy wall while insulated 

elsewhere. A uniform LRC Meshless point distribution with 0.01x y m     was 

employed to model this problem as shown in Figure ‎4-1 along with the resulting 

temperature field after 1000s of heating. 
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Figure ‎4-1. Meshless point distribution and resulting temperature field after 1000s of 

heating. 

 

Furthermore, a cavity is modeled by a ( 0.01 0.2m m ) sliver centered at the contact 

mid-point of the composite. In order to simulate this cavity using the VoF approach, the 

LRC Meshless points at the location of the expected cavity were imposed with a VoF 
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parameter 0s  , while a value of 1s   was imposed elsewhere. The VoF parameter s  

essentially weights the thermo-physical properties of the epoxy with those of Air (

31.2 /kg m  , 1000 /c J kgK , and 0.05 /k W mK ) which acts as an almost perfect 

insulator ( ~ 0k ) but capable of diffusing energy ( /k c  ) better than the epoxy. The 

resulting LRC Meshless temperature field after 1000s of heating is shown in Figure ‎4-2 

for the case of (a) the actual cavity and (b) the VoF-simulated cavity. Notice that the 

temperature footprint provided by the VoF-simulated cavity is qualitatively very similar 

to that provided by the actual cavity. This feature is revealed in more detail in Figure ‎4-3 

where the temperature profiles at the exposed wall are compared after 1000s of heating. 

Notice that the profiles are in very close agreement, demonstrating the capacity of the 

VoF method to simulate not only the presence of a cavity but also its location, size, and 

shape, as these features are captured by the cluster of LRC Meshless points that were 

imposed with the VoF parameter 0s  . Figure ‎4-3 also shows the constant temperature 

profile produced by the attached domain (or composite in perfect thermal contact), 

revealing that there is sufficient sensitivity ( ~ 2 C ) to detect the thermal footprint 

produced by a de-attachment or cavity by standard measurement techniques such as 

infrared (IR) thermography.  
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(a) 

 

 

(b) 

Figure ‎4-2. LRC Meshless temperature field after 1000s of heating. (a) Actual cavity and 

(b) VoF-simulated cavity. 

T

33

32.5

32

31.5

31

30.5

30

29.5

29

28.5

28

27.5

27

26.5

26

25.5

25

24.5

24

23.5

23

22.5

22

21.5

21

20.5

20

T

33

32.5

32

31.5

31

30.5

30

29.5

29

28.5

28

27.5

27

26.5

26

25.5

25

24.5

24

23.5

23

22.5

22

21.5

21

20.5

20



 

36 
 

 

Figure ‎4-3. Temperature distribution on left-hand side wall after t=1000s of heating. 

 

4.2 Circular Cavity Example  

This is another example of the direct problem that shows the LRC Meshless method 

coupled with the VoF method is examined in a composite domain made of a (1 1m m  ) 

Concrete block (
32300 /kg m  , 880 /c J kgK , and  1.4 /k W mK ) with a circular 

cavity centered x=0.2m and y=0.2m from the lower left-hand side walls with a radius of 

the circular cavity r=0.1m  with perfect thermal contact. The composite domain is set 

with an initial temperature 20iT C   and heated with a constant heat flux (

2

0 1000 /q W m ) through the hand left side and bottom side while the other sides are 

insulated. The total time was 10 hours to allow for thermal penetration and thermal 
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signature of the cavity to be discernible on the boundaries. Figure ‎4-4 shows the 

Meshless point collocation (100100).  

       

                          Figure ‎4-4. Meshless point collocation (100x100) 

 

In addition, in order to simulate circular cavity utilizing the VoF approach, the LRC 

Meshless points at the location of the expected cavity were imposed with a VoF 

parameter 0s  , while a value of 1s   was imposed elsewhere. The VoF parameter s  

basically weights the thermo-physical properties of Air (
31.2 /kg m  , 1000 /c J kgK , 

and 0.05 /k W mK ) which acts as an almost perfect insulator ( ~ 0k ). The resulting 

LRC Meshless temperature field after 10hrs of heating is shown in Figure ‎4-5 for the 

case of (a) the actual circular cavity and (b) the VoF-simulated circular cavity. 
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(a) Actual circular cavity 

 

 

 

 

 

 

 

 

 

(b) VoF-simulated circular cavity 

 
Figure 4-5. The resulting LRC Meshless temperature field after 10hrs of heating 
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Notice that the temperature footprint provided by the VoF-simulated cavity is 

qualitatively almost similar to that provided by the actual cavity.  Notice that the profiles 

are in very close agreement, demonstrating the capacity of the VoF method to simulate 

not only the presence of a cavity but also its location, size, and shape, as these features 

are captured by the cluster of LRC Meshless points that were imposed with the VoF 

parameter 0s  . Figure ‎4-6 also demonstrates the comparison of the temperature 

distribution for one hour (between 9hr and 10hr) of heating with (a) bottom side and (b) 

left-hand side. 
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(b) Left-hand side  

Figure ‎4-6. The temperature distribution for one hour (between 9hr and 10hr) of heating 

 

 

 

 

 

 

 

 

 

 

 

 

140

160

180

200

220

240

260

280

300

320

0 0.2 0.4 0.6 0.8 1

Temperature 

 (°C) 

y -direction (m)  

T-Actual circular cavity

T-VoF simulated circular
cavity



 

41 
 

4.3 1D INITIAL GUESS FOR CAVITY LOCATION 

The search process to determine the size, shape, and location of the cavity may be 

aided by a good initial guess provided by the classical 1D temperature distribution 

solution. For instance, for the case of the composite domain studied in the previous 

section, the 1D temperature evolution at the heated wall of a finite layer of length L  and 

properties 0k , 0 , and 0c , attached to a semi-infinite substrate with properties 1k , 1 , 

and 1c  is given by (recall that the thermal diffusivity /k c   and the thermal effusivity

e k c ): 

2 2

0 0 1 0

0 1 0 0 0 0

2
( ) 1 2 exp

1

n
q t e e n L nL nL

T t erfc
k e e t t tn

 

   

        
                     

   (4-1) 

   

  

To predict the temperature response produced by a de-attachment, the properties of 

the substrate material index 1 can be substituted for those of air (for example). The 

temperature responses for the problem described in the previous section with 

2

0 1000 /q W m are shown in Figure ‎4-7. Here, the transient response at the center point of 

the heated wall ( 0.5y m ) provided by the LRC Meshless solution with the actual cavity 

and the VoF-simulated cavity are shown in comparison with the temperature response 

provided by the 1D solution in Eqn. (4-1). Notice that the 1D solution tends to under-

predict the actual temperature response due to its inability to factor in the actual size of 

the de-attachment. However, the 1D solution provides a good initial approximation for 

the cavity location which can be used to feed the search algorithm. 
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Figure ‎4-7. Temperature response at the mid-point of the heated wall provided by the 

LRC-VoF Meshless and the 1D solutions. 

 

 

4.4 INVERSE PROBLEM EXAMPLE 

A numerical example is now devised as a simulated experiment to approximate the 

size, shape, and location of a known cavity. The domain is a 1m1m concrete 

(=2300kg/m
3
, k=1.4W/mK, cp=880J/kgK) block with an elliptical cavity centered 

x=0.1m and y=0.2m from the lower left corner, with a horizontal radius rx=0.025m and a 

vertical radius ry=0.05m. The bottom and left-hand side walls are heated with a uniform 

flux (q=1000W/m
2
) while the other two walls are kept insulated. The initial temperature 

of the block is set to 20C and heating is continued for a total time of 10hrs to allow for 

thermal penetration and for the thermal signature of the cavity to be discernible on the 
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boundaries. Figure ‎4-8 shows the Meshless point collocation (100100) and the resulting 

temperature contours after 10hrs of heating. 

 

Figure ‎4-8. Meshless point collocation and temperature contours of cavity detection 

numerical experiment. 
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Next, the temperatures at the heated boundaries (bottom and left-hand side) were 

recorded every hour throughout the 10hrs of heating to be used as the temperature 

measurements for the simulated inverse problem. These temperatures were rounded to the 

first decimal place to simulate a uniform error distribution of 0.05C. Figure ‎4-9 

displays the hourly evolution of the boundary temperatures over 10hrs of heating along 

the bottom boundary and along the left-hand side boundary. 
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(b) 

Figure ‎4-9. Evolution of the boundary temperatures over 10hrs of heating: (a) bottom 

boundary and (b) left-hand side boundary 

The GA was then executed using the parameters detailed in the previous section. 

The rounded (0.05C) boundary temperatures obtained from the simulated experiment 

(shown in (b) 

Figure ‎4-9) where used as the measurements values for the objective function in 

Eqn. (3-13). A linear weighting factor equal to the elapsed time in hrs was used to impose 

higher weights on later measurements than on earlier ones. This was done to ensure that 

the objective function is tilted towards later measurements which are more sensitive to 

the presence of the cavity. The 1m1m concrete solid block is heated for 10hrs with LRC 

Meshless points that are imposed with VoF values 1s   everywhere except for values of 
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0s   within the location of the anchored grid pattern produced by each GA individual in 

the population. This leads to each GA individual to yield its own boundary temperatures 

to be compared to those obtained by simulated measurements in the fitness function in 

Eqn. (3-15). A plot of the evolution of the fitness function Z(z) for the best individual of 

each of the first 200 GA generations is shown in Figure ‎4-10. 

 

 

Figure ‎4-10. Evolution of GA fitness function. 

The temperature contour plots provided by the actual cavity of the numerical 

experiment and the VoF-simulated cavity found by the GA search process are provided in 

Figure ‎4-11. Notice that the cavity found by the GA search process approximates very 

well the one used in the direct problem to generate the numerical experiment 

measurements. This is seen in more detailed in Figure ‎4-12 with a close-up plot of the 

actual cavity superimposed with the GA-found VoF-simulated cavity, revealing a very 

good approximation in just 200 generations of the GA. 
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Figure ‎4-11. Temperature contour plots provided by the actual cavity of the numerical 

experiment and the VoF-simulated cavity found by the GA search process. 
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Figure ‎4-12. Close-up plot of the actual cavity (solid line) superimposed with the GA-

found VoF-simulated cavity (dashed line). 
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5 CHAPTER 5 

FUTURE WORK 

An experiment can be designed to further validate the methodology. Concrete block 

samples can be manufactured in the Civil Engineering Materials Testing Lab at ERAU. 

There are many concrete mix designs which can account for the variability in material 

properties encountered across the concrete industry. Specific changes such as coarse 

aggregate type and water-cement ratio can be examined. Moreover, the industrial and 

application techniques for the FRP composites used in this research can be investigated. 

Primary stages of the experimental work can comprise of bonding high-quality, pre-cured 

laminates with familiar fiber volume fractions to the concrete substrate utilizing an 

epoxy-based adhesive. This is considered the best situation for replicating the material 

properties utilized in the numerical simulations. Wet lay-up FRP composites can be used 

during later stages to determine how the model’s ability might be reduced by 

manufacturing defects and fiber volume fraction variation to precisely characterize sub-

surface defects. 

Furthermore, there are various manufactured defect types that can be investigated. 

Drilling holes can simulate natural defects in the finished surface of actual concrete 

structures with changing depth (0.125in-0.25in) and diameter (0.25in-0.5in). Utilizing 

teflon inserts can be simulated de-bonding between the FRP and the concrete substrate 

that happens after the composite has completely treated. Changing the diameter of the 

support ring which is put on the surface of the composite can control the size of 

delamination. Conceptual design for test fixture to generate simulated delamination 

within the concrete substrate is shown in Figure ‎5-1. 
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Figure ‎5-1. Conceptual design for test fixture to create simulated delamination within the 

concrete substrate. 

Utilizing thermal paste in a heat flux sensor and flexible rubber heater can be added 

to one side of the concrete block for opposite of the FRP side. The block on all five sides 

which are going away the side with the FRP-exposed can be insulated. Initial tests can be 

implemented in the 1492 ft
2
 Clean Energy Systems (CES) Laboratory at Embry-Riddle 

Aeronautical University. The tests can possess a dedicated Dell Precision Workstation 

T3500 Quad Core Intel® Xeon® E5506 2.8Ghz 4 GB Ram computer. Data recording of 

temperatures utilizing type E thermocouples and heat flux sensors can be implemented 

with an Agilent 34970A Data Acquisition/Data Logger Switch Unit with an Agilent 

34901A 20 Channel Multiplexer. Presently, a Flir E40 49001-2001 IR camera with an 

uncooled micro-bolometer detector and a spectral band of 7.5–13μm is obtainable at the 

CES Lab. The resolution of the IR camera is 160x120 pixels. For the other properties of 

this camera, the thermal sensitivity is 70mK, the field of view is 0.4m, and the image 

frequency is 60Hz. A higher resolution Flir A655sc can be gained if this award is 

achieved. This camera contains a higher resolution of 640x480 pixels and a thermal 

sensitivity of 50mK, letting for a more accurate acquisition of the thermal footprint. The 

experimental setup for block heating and data acquisition is indicated in Figure ‎5-2 
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Figure 5-2. Experimental setup for block heating and data acquisition. 
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6 CHAPTER 6 

   CONCLUSIONS AND RECOMMENDATIONS 

 

CONCLUSIONS 

 A novel computational tool based on the Localized Radial-basis Function (RBF) 

Collocation (LRC) Meshless method coupled with a Volume-of-Fluid (VoF) scheme 

capable of accurately and efficiently solving transient multi-dimensional heat conduction 

problems in composite and heterogeneous media is formulated and implemented. While 

the LRC Meshless method lends its inherent advantages of spectral convergence and ease 

of automation, the VoF scheme allows to effectively and efficiently simulate the location, 

size, and shape of cavities, voids, inclusions, defects, or de-attachments in the conducting 

media without the need to regenerate point distributions, boundaries, or interpolation 

matrices. To this end, the Inverse Geometric problem of Cavity Detection is formulated 

as an optimization problem that minimizes an objective function that computes the 

deviation of measured temperatures at accessible locations to those generated by the 

LRC-VoF Meshless method. The LRC-VoF Meshless algorithms is driven by an 

optimization code based on the Genetic Algorithms technique which efficiently searches 

for the optimal set of design parameters (location, size, shape, etc.) within a predefined 

design space provided by an anchored grid pattern. Initial guesses to the search algorithm 

are provided by the classical 1D semi-infinite composite analytical solution which can 

predict the approximate location of the cavity. The LRC-VoF formulation is tested using 

numerical experiments that reveal a high degree of accuracy and serve to validate the 

approach.   
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RECOMMENDATIONS 

The following recommendations can be considered for future research: 

 Inverse heat transfer problem  

 Using square concrete block (1mx1m) with heat flux in two sides and heat 

convection in the other sides. 

 Implementation Method 

 Using  an optimization code based on the Simplex Linear Programming algorithm 

     to build the code of the LRC-VoF Meshless algorithms.  
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APPENDIX 

 

Main Code Listing (FORTRAN) 
 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

CCC                                                                      

CCC  PROGRAM NDE_iVoF_MMGA                          

CCC                                                                      

CCC  Version 1.0: Parallel (mpich)                               

CCC                                                                      

CCC  Non-Destructive Evaluation                        

CCC                     

CCC  Inverse Volume-of-Fluid 

CCC 

CCC  Meshless Method 

CCC 

CCC  Genetic Algorithm     

CCC                    

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

CCC   

CCC   Embry-Riddle Aeronautical University 

CCC 

CCC   MDBL: Multi-Disciplinary Bioengineering Lab 

CCC 

CCC   Eduardo Divo 

CCC 

CCC   Hussein Saad 

CCC 

CCC   September 23, 2014 

CCC  

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

CCC                                                                      

CCC                             MAIN PROGRAM                             

CCC                                                                      

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

C 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C 

      INCLUDE 'PGA_Parameters.h' 

      INCLUDE 'mpif.h' 

C 

      COMMON/PGAINFO/NGEN,NPOP,NPAR,NBIT(NPARMAX) 

      COMMON/PGAMUTA/PJMU,PCMU 

      COMMON/PARINFO/PARMIN(NPARMAX),PARMAX(NPARMAX),PARRES(NPARMAX) 

      COMMON/PARAMET/PARAM(NPARMAX,NPOPMAX) 
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      COMMON/NEWGENE/CHILD(NPARMAX,NPOPMAX) 

      COMMON/FITNESS/FITNESS(NPOPMAX),PSEL(NPOPMAX),JBEST 

C 

      REAL*8 STARTTIME,ENDTIME 

      REAL*8 TIMEMY,TIMETO 

      REAL*8 TIM(MAXPROC),FRA(MAXPROC) 

      INTEGER ID,IDMASTER,NPRO,IERR 

      INTEGER ILOAD(MAXPROC,NPOPMAX) 

C 

      INTEGER IGEN,IG 

      INTEGER JP1,JP2,IC 

      INTEGER IK 

      INTEGER UNDAT,UNOUT 

C 

C********************************************************************** 

C 

C 

C     START OF PARALLEL BENCHMARKING 

C 

      CALL MPI_INIT(IERR) 

C 

      CALL MPI_COMM_RANK(MPI_COMM_WORLD,ID,IERR) 

C 

      CALL MPI_COMM_SIZE(MPI_COMM_WORLD,NPRO,IERR) 

C 

C     SPECIFY MASTER PROCESS 

C 

      IDMASTER=0 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,*) 

       WRITE(*,*) 'PGA: MULTIVARIABLE PARALLEL GENETIC ALGORITHM' 

       WRITE(*,*) '     OPTIMIZATION TOOL' 

       WRITE(*,*)  

       WRITE(*,*) 'VERSION 1.1' 

       WRITE(*,*)  

       WRITE(*,*) 'EMBRY-RIDDLE AERONAUTICAL UNIVERSITY' 

       WRITE(*,*)  

       WRITE(*,*) 

       WRITE(*,*) 'NUMBER OF PROCESSORS...................:',NPRO 

       WRITE(*,*) 

      END IF 

C 

C********************************************************************** 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,*)  

       WRITE(*,*) 

'****************************************************' 

       WRITE(*,*)  

       WRITE(*,*) 'CLUSTER BENCHMARKING PROCESS STARTED..........: 

[OK]' 

       WRITE(*,*) 

       WRITE(*,*) 

      END IF 

C 

      CALL BENCHMARK(TIM,FRA,ID,IDMASTER,NPRO) 
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C 

      IF (ID.EQ.IDMASTER) THEN 

       DO N=1,NPRO 

        WRITE (*,'("   PROCESS, BENCHMARK TIME & FRACTION...: ",I3, 

     &         2X,F6.2,2X,F6.4)') N,TIM(N),FRA(N) 

       END DO 

       WRITE(*,*)  

       WRITE(*,*) 'CLUSTER BENCHMARKING PROCESS ENDED............: 

[OK]' 

       WRITE(*,*)  

       WRITE(*,*) 

'****************************************************' 

      END IF 

C 

C********************************************************************** 

C 

C 

C     INPUT DATA FILE AND INITIAL PARAMETERS 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,*)  

       WRITE(*,*) 'INPUT GENETIC ALGORITHM PARAMETERS STARTED....: 

[OK]' 

       WRITE(*,*) 

      END IF  

C 

      CALL INPUT(ID,IDMASTER) 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,'("   NUMBER OF GENERATIONS.............: ",I5)') NGEN 

       WRITE(*,'("   POPULATION SIZE...................: ",I5)') NPOP 

       WRITE(*,'("   PROBABILITY OF JUMP MUTATION......:  ",F4.2)') 

PJMU 

       WRITE(*,'("   PROBABILITY OF CREEP MUTATION.....:  ",F4.2)') 

PCMU 

       WRITE(*,*)  

       WRITE(*,*) 'INPUT GENETIC ALGORITHM PARAMETERS ENDED......: 

[OK]' 

       WRITE(*,*)  

       WRITE(*,*) 

'****************************************************' 

      END IF 

C 

C********************************************************************** 

C 

C     LOAD BALANCING ALGORITHM 

C 

C 

C     INITIALIZE RANDOM GENERATOR 

C 

      CALL RANDOM(-1000-100*ID,R) 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,*)  

       WRITE(*,*) 'LOAD BALANCING PROCESS STARTED................: 

[OK]' 

C 
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       CALL LOAD(IDMASTER,ILOAD,FRA,NPRO) 

C 

       WRITE(*,*)  

       WRITE(*,*) '  FINAL POPULATION BALANCE OVER PROCESSORS....:' 

       WRITE(*,*)  

       DO N=1,NPRO 

        WRITE(*,'("  PROCESS & FRACTION: ",I3,1X,F6.4,2X,100(I1))')  

     @                           N,FRA(N),(ILOAD(N,K),K=1,NPOP) 

       END DO 

C 

       WRITE(*,*)  

       WRITE(*,*) 'LOAD BALANCING PROCESS ENDED..................: 

[OK]' 

       WRITE(*,*)  

       WRITE(*,*) 

'****************************************************' 

      END IF 

C 

C     BROADCASTING CLUSTER WORK LOAD 

C 

      CALL MPI_BCAST(ILOAD,MAXPROC*NPOPMAX,MPI_INTEGER, 

     &               IDMASTER,MPI_COMM_WORLD,IERR) 

C 

C********************************************************************** 

C 

C     INPUT DATA FOR FUNCTION EVALUATION 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,*)  

       WRITE(*,*) 'FUNCTION EVALUATION DATA INPUT STARTED........: 

[OK]' 

      END IF 

C 

      CALL FUNCTIONSETUP(ID,IDMASTER,NPRO) 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,*)  

       WRITE(*,'("   NUMBER OF PARAMETERS..............: ",I5)') NPAR 

       WRITE(*,*)  

       WRITE(*,*) 'FUNCTION EVALUATION DATA INPUT ENDED..........: 

[OK]' 

       WRITE(*,*)  

       WRITE(*,*) 

'****************************************************' 

      END IF 

C 

C********************************************************************** 

C 

C     GENERATE INITIAL POPULATION 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,*)  

       WRITE(*,*) 'INITIAL POPULATION GENERATION STARTED.........: 

[OK]' 

      END IF 

C 

C     DATA FILES UNIT NUMBERS 
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C 

      UNDAT=8 

      UNOUT=9 

C 

      CALL INITIAL(ID,IDMASTER,IGEN,UNDAT,UNOUT) 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,*)  

       WRITE(*,*) 'INITIAL POPULATION GENERATION ENDED...........: 

[OK]' 

       WRITE(*,*)  

       WRITE(*,*) 

'****************************************************' 

      END IF 

ccc 

C      PARAM(1,1)=0.1 

C      PARAM(2,1)=0.2 

C      PARAM(3,1)=0.025 

C      PARAM(4,1)=0.05 

ccc 

C 

C********************************************************************** 

C 

C     MAIN OPTIMIZATION LOOP 

C 

      IF (ID.EQ.IDMASTER) THEN 

       STARTTIME=MPI_WTIME() 

       WRITE(*,*)  

       WRITE(*,*) 'MAIN GENETIC OPTIMIZATION LOOP STARTED........: 

[OK]' 

       FITNESSMAX=0. 

       IK=0 

      END IF 

C 

      CALL FUNCTIONEVALUATE(ID,IDMASTER,NPRO,ILOAD) 

C 

      DO IG=1,NGEN 

C 

       DO IC=1,NPOP-1 

C 

        IF (ID.EQ.IDMASTER) CALL SELECTION(JP1,JP2) 

C 

        IF (ID.EQ.IDMASTER) CALL REPRODUCT(JP1,JP2,IC) 

C 

       END DO 

C 

       IF (ID.EQ.IDMASTER) THEN 

        IK=IK+1 

        IF (FITNESS(JBEST).GT.FITNESSMAX) THEN 

         WRITE(*,010) IGEN+IG,FITNESS(JBEST) 

         FITNESSMAX=FITNESS(JBEST) 

         IK=0 

        END IF 

        IF (IK.GE.50) THEN 

         CALL KILLGEN() 

         WRITE(*,010) IGEN+IG,FITNESS(JBEST) 

         IK=0 
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        END IF 

       END IF 

C 

       CALL NEWGEN(ID,IDMASTER,NPRO,IGEN,IG,ILOAD,UNDAT,UNOUT) 

C 

       CALL FUNCTIONEVALUATE(ID,IDMASTER,NPRO,ILOAD) 

C 

      END DO 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,010) IGEN+IG-1,FITNESS(JBEST) 

  010  FORMAT ('  GENERATION: ',I6,'    BEST FITNESS: ',E10.4) 

       WRITE(*,*)  

       WRITE(*,*) 'MAIN GENETIC OPTIMIZATION LOOP ENDED..........: 

[OK]' 

       CLOSE (UNOUT) 

       ENDTIME=MPI_WTIME() 

      END IF 

C 

C********************************************************************** 

C 

C     OUTPUT FUNCTION DATA 

C 

      IF (ID.EQ.IDMASTER) THEN 

       WRITE(*,*)  

       WRITE(*,*) 'FUNCTION DATA OUTPUT STARTED..................: 

[OK]' 

C 

       CALL FUNCTIONOUTPUT() 

C 

       WRITE(*,*)  

       WRITE(*,*) 'FUNCTION DATA OUTPUT ENDED....................: 

[OK]' 

       WRITE(*,*)  

       WRITE(*,*) 

'****************************************************' 

      END IF 

C 

C********************************************************************** 

C 

C     OUTPUT TIMES 

C 

      IF (ID.EQ.IDMASTER) THEN 

       TOTALTIME=ENDTIME-STARTTIME 

       OPEN (21,FILE='Model/PGA.time') 

       WRITE (21,*) 'NUMBER OF GENERATIONS PERFORMED..: ',NGEN 

       WRITE (21,*) 'TOTAL TIME ELAPSED...............: ',TOTALTIME 

       TOTALTIME=TOTALTIME/DBLE(NGEN) 

       WRITE (21,*) 'TIME ELAPSED PER GENERATION......: ',TOTALTIME 

       CLOSE (21) 

      END IF 

C 

C********************************************************************** 

C 

      CALL MPI_FINALIZE(IERR) 

C 

      END  
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

CCC                                                                     

CCC 

CCC                         SUBROUTINE INPUT                            

CCC 

CCC                                                                     

CCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

      SUBROUTINE INPUT(ID,IDMASTER) 

C 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C 

      INCLUDE 'PGA_Parameters.h' 

      INCLUDE 'mpif.h' 

C 

      COMMON/PGAINFO/NGEN,NPOP,NPAR,NBIT(NPARMAX) 

      COMMON/PGAMUTA/PJMU,PCMU 

C 

      INTEGER ID,IDMASTER,IERR 

C 

C**********************************************************************

**** 

C 

      IF (ID.EQ.IDMASTER) THEN 

C 

       OPEN (14,FILE='model/PGA.inp',STATUS='OLD') 

C 

C      MAXIMUM NUMBER OF GENERATIONS 

C 

       READ (14,*) NGEN 

C 

C      POPULATION SIZE 

C 

       READ (14,*) NPOP 

C 

C      PROBABILITY OF JUMP MUTATION 

C      

       READ (14,*) PJMU 

C 

C      PROBABILITY OF CREEP MUTATION 

C 

       READ (14,*) PCMU 

C 

       CLOSE (14) 

C 

      END IF 

C 

C     BROADCAST GENETIC ALGORITHM DATA OVER CLUSTER 

C 

      CALL MPI_BCAST(NGEN,1,MPI_INTEGER,IDMASTER,MPI_COMM_WORLD,IERR) 

C 

      CALL MPI_BCAST(NPOP,1,MPI_INTEGER,IDMASTER,MPI_COMM_WORLD,IERR) 

C 

      CALL MPI_BCAST(PJMU,1,MPI_DOUBLE_PRECISION, 

     &               IDMASTER,MPI_COMM_WORLD,IERR) 
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C 

      CALL MPI_BCAST(PCMU,1,MPI_DOUBLE_PRECISION, 

     &               IDMASTER,MPI_COMM_WORLD,IERR) 

C 

C**********************************************************************

**** 

C 

      RETURN 

C 

      END 
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

CCC                                                                     

CCC 

CCC                    SUBROUTINE INITIAL                               

CCC 

CCC                                                                     

CCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

      SUBROUTINE INITIAL(ID,IDMASTER,IGEN,UNDAT,UNOUT) 

C 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C 

      INCLUDE 'PGA_Parameters.h' 

      INCLUDE 'mpif.h' 

C 

      COMMON/PGAINFO/NGEN,NPOP,NPAR,NBIT(NPARMAX) 

      COMMON/PGAMUTA/PJMU,PCMU 

      COMMON/PARINFO/PARMIN(NPARMAX),PARMAX(NPARMAX),PARRES(NPARMAX) 

      COMMON/PARAMET/PARAM(NPARMAX,NPOPMAX) 

C 

      INTEGER ID,IDMASTER,IERR 

C 

      REAL*8 PAR(NPARMAX) 

      INTEGER IPAR(NPARMAX*NBITMAX) 

      INTEGER IGEN 

      INTEGER IO1,IO2,IO3 

      INTEGER UNDAT,UNOUT 

C 

      REAL*8 B2D 

C 

C**********************************************************************

**** 

C 

      IF (ID.EQ.IDMASTER) THEN 

       OPEN (UNOUT,FILE='Model/PGA.out') 

       OPEN (UNDAT,FILE='Model/PGA.dat',STATUS='OLD',IOSTAT=IO1) 

C 

       IF (IO1.EQ.0) THEN 

C 

        READ (UNDAT,*) IGEN 

        DO J=1,NPOP 

         READ (UNDAT,*,IOSTAT=IO2) JJ,(PARAM(I,J),I=1,NPAR) 

        END DO 

        CLOSE (UNDAT) 

C 

        DO J=1,NPOP 

         DO I=1,NPAR 

          IF (PARAM(I,J).GT.PARMAX(I)) PARAM(I,J)=PARMAX(I) 

          IF (PARAM(I,J).LT.PARMIN(I)) PARAM(I,J)=PARMIN(I) 

         END DO 

        END DO 

C 

        DO I=1,IGEN 

         READ (UNOUT,*,IOSTAT=IO3) II,FIT,(PAR(J),J=1,NPAR) 

        END DO 
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C 

       ELSE 

C 

        IGEN=0 

        DO J=1,NPOP 

         III=0 

         DO I=1,NPAR 

          DO II=1,NBIT(I) 

           III=III+1 

           CALL RANDOM(1,R) 

           IF (R.LT.0.5) THEN 

            IPAR(III)=0 

           ELSE 

            IPAR(III)=1 

           END IF 

          END DO 

         END DO 

         DO I=1,NPAR 

          PARAM(I,J)=B2D(IPAR,I) 

         END DO       

        END DO 

C 

       END IF 

C 

      END IF 

C 

C     BROADCAST PARAMETERS OVER CLUSTER 

C 

      DO J=1,NPOP 

       DO I=1,NPAR 

        PAR(I)=PARAM(I,J) 

       END DO 

       CALL MPI_BCAST(PAR,NPAR,MPI_DOUBLE_PRECISION, 

     &                IDMASTER,MPI_COMM_WORLD,IERR) 

       DO I=1,NPAR 

        PARAM(I,J)=PAR(I) 

       END DO 

      END DO 

C 

C**********************************************************************

**** 

C 

      RETURN 

C 

      END 

  



 

71 
 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

CCC                                                                     

CCC 

CCC                     SUBROUTINE FUNCTIONINPUT                        

CCC 

CCC                                                                     

CCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

      SUBROUTINE FUNCTIONSETUP(ID,IDMASTER,NPRO) 

C 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C 

      INCLUDE 'PGA_Parameters.h' 

      INCLUDE 'mpif.h' 

C 

C     USE THE FOLLOWING SPACE TO INCLUDE THE FILES FOR THE FUNCTION 

INPUT 

C 

      INCLUDE '../Include/Parameters.for' 

      INCLUDE '../Include/Information.for' 

      INCLUDE '../Include/Geometry.for' 

      INCLUDE '../Include/Materials.for' 

      INCLUDE '../Include/Field-S.for' 

      INCLUDE '../Include/Field-M.for' 

      INCLUDE '../Include/Field-E.for' 

      INCLUDE '../Include/Field-P.for' 

      INCLUDE '../Include/Topology.for' 

      INCLUDE '../Include/Interpolation-C.for' 

      INCLUDE '../Include/Interpolation-U.for' 

      INCLUDE '../Include/Triangulation.for' 

C 

C     USE THE FOLLOWING SPACE TO INCLUDE THE COMMON BLOCKS FOR FUNCTION 

VARIABLES 

C 

      PARAMETER (NTMAX=20,NMMAX=200) 

      COMMON/MEASURE/NMN,NMT,MT(NTMAX),MR(NMMAX),MN(NMMAX) 

      COMMON/MEASURT/TM(NMMAX,NTMAX) 

      COMMON/HOLELOC/XCH,YCH,RXH,RYH 

C 

C     STANDARD COMMON BLOCKS AND VARIABLES 

C 

      COMMON/PGAINFO/NGEN,NPOP,NPAR,NBIT(NPARMAX) 

      COMMON/PGAMUTA/PJMU,PCMU 

      COMMON/PARINFO/PARMIN(NPARMAX),PARMAX(NPARMAX),PARRES(NPARMAX) 

C 

      INTEGER ID,IDMASTER,NPRO,IERR 

      CHARACTER*120 TITLE 

      INTEGER IOS 

C 

C**********************************************************************

**** 

C 

C     INPUT AND PROCESS THE NECESSARY DATA FOR FUNCTION EVALUATION 

C     INCLUDE THE INPUT DATA AND PROBLEM SETUP ROUTINES 
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C     USE FUNCTION INPUT DATA TO STABLISH NUMBER OF PARAMETERS TO 

OPTIMIZE 

C     AND THE MINIMUM AND MAXIMUM ALLOWABLE VALUES 

C 

      IF (ID.EQ.IDMASTER) THEN 

C 

       NPAR=4 

C 

C      MEASUREMENT DATA 

C 

       OPEN 

(20,FILE='Model/ALMA_a_measure.txt',STATUS='OLD',IOSTAT=IOS) 

C 

       IF (IOS.EQ.0) THEN        

        READ (20,*) TITLE 

C 

C       NUMBER OF MEASURMENT NODES AND TIMES 

C 

        READ (20,*) NMN,NMT 

C 

C       XMIN,YMIN,XMAX,YMAX 

C 

        READ (20,*) XMIN,YMIN,XMAX,YMAX 

C 

C       X-HOLE LOCATION 

C 

        PARMIN(1)=XMIN+(XMAX-XMIN)/10.D+000 

        PARMAX(1)=XMAX-(XMAX-XMIN)/10.D+000 

        NBIT(1)=8 

C 

C       Y-HOLE LOCATION 

C 

        PARMIN(2)=YMIN+(YMAX-YMIN)/10.D+000 

        PARMAX(2)=YMAX-(YMAX-YMIN)/10.D+000 

        NBIT(2)=8 

C 

C       HOLE X-RADIUS  

C 

        PARMIN(3)=(XMAX-XMIN)/1.D+002 

        PARMAX(3)=(XMAX-XMIN)/2.D+001 

        NBIT(3)=8 

C 

C       HOLE Y-RADIUS  

C 

        PARMIN(4)=(YMAX-YMIN)/1.D+002 

        PARMAX(4)=(YMAX-YMIN)/2.D+001 

        NBIT(4)=8 

C 

C       MEASUREMENT REGION AND BOUNDARY NODE 

C 

        DO I=1,NMN 

         READ (20,*) MR(I),MN(I) 

        END DO 

C 

        DO NT=1,NMT 

C 

C        TIME-STEP 
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C 

         READ (20,*) MT(NT) 

C 

C        MEASURED TEMPERATURE 

C 

         DO I=1,NMN 

          READ (20,*) TM(I,NT) 

         END DO 

C 

        END DO 

C 

       ELSE 

C 

        WRITE (*,*) '...MISSING INFORMATION FILE.' 

        STOP 

C 

       END IF 

C 

       CLOSE (20) 

C 

C      INPUT PARAMETERS, GEOMETRY, CONNECTIVITY AND INTERPOLATION 

C 

       WRITE (*,*) 'READING PROBLEM DATA............................' 

       CALL MESHLESS_INPUT 

       WRITE (*,*) '............................................DONE' 

C 

C      VALIDATING THERMOPHYSICAL QUANTITIES 

C 

       WRITE (*,*) 'VALIDATING THERMOPHYISICAL QUANTITIES...........' 

       CALL VALIDATE 

       WRITE (*,*) '............................................DONE' 

C 

C      INPUT LEVEL-SET 

C 

       IF (MSL.EQ.1) THEN 

        WRITE (*,*) 'READING LEVEL-SET DATA..........................' 

        CALL INPUTLEVELSET 

        WRITE (*,*) '............................................DONE' 

       END IF 

C 

C      INPUT MOMENTUM 

C 

       IF (MSM.EQ.1) THEN 

        WRITE (*,*) 'READING MOMENTUM DATA...........................' 

        CALL INPUTMOMENTUM 

        WRITE (*,*) '............................................DONE' 

       END IF 

C 

C      INPUT ENERGY 

C 

       IF (MSE.EQ.1) THEN 

        WRITE (*,*) 'READING ENERGY DATA.............................' 

        CALL INPUTENERGY 

        WRITE (*,*) '............................................DONE' 

       END IF 

C 

C      INPUT PORE PRESSURE 
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C 

       IF (MSP.EQ.1) THEN 

        WRITE (*,*) 'READING PORE PRESSURE DATA......................' 

        CALL INPUTPOREPRESSURE 

        WRITE (*,*) '............................................DONE' 

       END IF 

C 

C      INPUT STRUCTURAL 

C 

       IF (MSS.EQ.1) THEN 

        WRITE (*,*) 'READING STRUCTURAL DATA.........................' 

        CALL INPUTSTRUCTURAL 

        WRITE (*,*) '............................................DONE' 

       END IF 

C 

      END IF 

C 

C     BROADCAST MESHLESS DATA OVER CLUSTER 

C 

C      CALL MPI_BCAST(XXX,1,MPI_INTEGER,IDMASTER,MPI_COMM_WORLD,IERR) 

C      ... 

C      ... 

C      ... 

C      ... 

C 

C 

C**********************************************************************

**** 

C 

C     COMPUTE PARAMETER RESOLUTION AND BROADCAST OVER CLUSTER 

C 

      IF (ID.EQ.IDMASTER) THEN 

       DO I=1,NPAR 

        PARRES(I)=(PARMAX(I)-PARMIN(I))/(2.**NBIT(I)-1.) 

       END DO 

      END IF 

C 

      CALL MPI_BCAST(NPAR,1,MPI_INTEGER,IDMASTER,MPI_COMM_WORLD,IERR) 

C 

      CALL 

MPI_BCAST(NBIT,NPAR,MPI_INTEGER,IDMASTER,MPI_COMM_WORLD,IERR) 

C 

      CALL MPI_BCAST(PARMIN,NPAR,MPI_DOUBLE_PRECISION, 

     &               IDMASTER,MPI_COMM_WORLD,IERR) 

C 

      CALL MPI_BCAST(PARMAX,NPAR,MPI_DOUBLE_PRECISION, 

     &               IDMASTER,MPI_COMM_WORLD,IERR) 

C 

      CALL MPI_BCAST(PARRES,NPAR,MPI_DOUBLE_PRECISION, 

     &               IDMASTER,MPI_COMM_WORLD,IERR) 

C 

C**********************************************************************

**** 

C 

      RETURN 

C 

      END 
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

CCC                                                                     

CCC 

CCC                     SUBROUTINE FUNCTIONEVALUATE                     

CCC 

CCC                                                                     

CCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCC 

      SUBROUTINE FUNCTIONEVALUATE(ID,IDMASTER,NPRO,ILOAD) 

C 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C 

      INCLUDE 'PGA_Parameters.h' 

      INCLUDE 'mpif.h' 

C 

C     USE THE FOLLOWING SPACE TO INCLUDE THE FILES FOR THE FUNCTION 

EVALUATION 

C 

      INCLUDE '../Include/Parameters.for' 

      INCLUDE '../Include/Information.for' 

      INCLUDE '../Include/Geometry.for' 

      INCLUDE '../Include/Materials.for' 

      INCLUDE '../Include/Field-S.for' 

      INCLUDE '../Include/Field-M.for' 

      INCLUDE '../Include/Field-E.for' 

      INCLUDE '../Include/Field-P.for' 

      INCLUDE '../Include/Topology.for' 

      INCLUDE '../Include/Interpolation-C.for' 

      INCLUDE '../Include/Interpolation-U.for' 

      INCLUDE '../Include/Triangulation.for' 

C 

C     USE THE FOLLOWING SPACE TO INCLUDE THE COMMON BLOCKS FOR FUNCTION 

VARIABLES 

C 

      PARAMETER (NTMAX=20,NMMAX=200) 

      COMMON/MEASURE/NMN,NMT,MT(NTMAX),MR(NMMAX),MN(NMMAX) 

      COMMON/MEASURT/TM(NMMAX,NTMAX) 

      COMMON/HOLELOC/XCH,YCH,RXH,RYH 

C 

C     STANDARD COMMON BLOCKS AND VARIABLES 

C 

      COMMON/PGAINFO/NGEN,NPOP,NPAR,NBIT(NPARMAX) 

      COMMON/PGAMUTA/PJMU,PCMU 

      COMMON/PARINFO/PARMIN(NPARMAX),PARMAX(NPARMAX),PARRES(NPARMAX) 

      COMMON/PARAMET/PARAM(NPARMAX,NPOPMAX) 

      COMMON/FITNESS/FITNESS(NPOPMAX),PSEL(NPOPMAX),JBEST 

C 

      INTEGER ID,IDMASTER,NPRO,IERR 

      INTEGER ILOAD(MAXPROC,NPOPMAX) 

C 

      REAL*8 FIT 

      INTEGER STATUS(MPI_STATUS_SIZE) 

      INTEGER ISENDER,IND 

C 

      INTEGER IDUMMY 
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C 

C**********************************************************************

**** 

C 

      DO J=1,NPOP 

       IF (ILOAD(ID+1,J).EQ.1) THEN 

C 

        FITNESS(J)=0.D+000 

C 

C       TRANSLATE PARAMETERS INTO SOURCE CHARACTERISTICS 

C 

        XCH=PARAM(1,J) 

        YCH=PARAM(2,J) 

        RXH=PARAM(3,J) 

        RYH=PARAM(4,J) 

C 

C       INITIALIZE TIME STEPPING AND MEASUREMENT TIME 

C 

        ITP=0 

        CTIME=0.D+000 

        NT=1 

C 

C       INITIALIZE MODEL SETUP 

C  

        CALL INITIALIZE 

C 

C       LOOP OVER MAXIMUM ITERATIONS 

C 

        DO WHILE (ITP.LT.MAXITER) 

C 

C        INCREASE ITERATION AND ELAPSED TIME 

C 

         ITP=ITP+1 

         CTIME=CTIME+DT 

C 

C        SOLVE LEVEL-SET FIELD 

C 

         IF (MSL.EQ.1) CALL SOLVELEVELSET 

C 

C        SOLVE MOMENTUM FIELD 

C 

         IF (MSM.EQ.1) CALL SOLVEMOMENTUM 

C 

C        SOLVE ENERGY FIELD 

C 

         IF (MSE.EQ.1) CALL SOLVEENERGY 

C 

C        SOLVE PORE PRESSURE FIELD 

C 

         IF (MSP.EQ.1) CALL SOLVEPOREPRESSURE 

C 

C        SOLVE STRUCTURAL FIELD 

C 

         IF (MSS.EQ.1) CALL SOLVESTRUCTURAL 

C 

C        EVALUATE THE FITNESS OF THE Jth INDIVIDUAL GIVEN ITS 

PARAMETERS 
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C      

         IF (ITP.EQ.MT(NT)) THEN 

C 

C         CALCULATE RMS 

C 

          DO I=1,NMN 

           FITNESS(J)=FITNESS(J)+(TM(I,NT)-TCC(MN(I),MR(I)))**2.D+000 

CCC 

CCC           WRITE (*,*) ITP,TM(I,NT),TCC(MN(I),MR(I)) 

CCC 

          END DO 

C 

          NT=NT+1 

C 

         END IF 

C 

        END DO 

C 

C       INVERT RMS TO CALCULATE FITNESS 

C 

        IF (FITNESS(J).GT.EPS) THEN  

         FITNESS(J)=DSQRT(DBLE(NMN*NMT)/FITNESS(J)) 

        ELSE 

         FITNESS(J)=1.D+020 

        END IF      

CCCCC 

        WRITE (*,*) "INDIVIDUAL: ",J 

        WRITE (*,*) XCH,YCH 

        WRITE (*,*) RXH,RYH 

        WRITE (*,*) "FITNESS: ",FITNESS(J) 

CCCCC 

       END IF 

C 

      END DO 

C 

C**********************************************************************

**** 

C 

C     SEND FITNESS TO MASTER COMPUTER 

C 

      CALL MPI_BCAST(IDUMMY,1,MPI_INTEGER,IDMASTER,MPI_COMM_WORLD,IERR) 

C 

      DO J=1,NPOP 

       IF (ID.NE.IDMASTER) THEN 

        IF (ILOAD(ID+1,J).EQ.1) THEN 

         FIT=FITNESS(J) 

         CALL MPI_SEND(FIT,1,MPI_DOUBLE_PRECISION,IDMASTER,J, 

     @                 MPI_COMM_WORLD,IERR)     

        END IF 

       ELSE 

        IF (ILOAD(ID+1,J).EQ.0) THEN 

         CALL MPI_RECV(FIT,1,MPI_DOUBLE_PRECISION,MPI_ANY_SOURCE, 

     @                 MPI_ANY_TAG,MPI_COMM_WORLD,STATUS,IERR) 

         ISENDER=STATUS(MPI_SOURCE) 

         IND=STATUS(MPI_TAG) 

         FITNESS(IND)=FIT  

        END IF 
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       END IF 

      END DO 

C 

      CALL MPI_BCAST(IDUMMY,1,MPI_INTEGER,IDMASTER,MPI_COMM_WORLD,IERR) 

C 

C     ACUMMULATE PROBABILITY OF SELECTION 

C 

      IF (ID.EQ.IDMASTER) THEN 

       FITMIN=FITNESS(1) 

       DO J=2,NPOP 

        IF (FITNESS(J).LT.FITMIN) FITMIN=FITNESS(J) 

       END DO 

       IF (FITMIN.GE.0.) FITMIN=0. 

       FIT=0. 

       DO J=1,NPOP 

        FIT=FIT+(FITNESS(J)-FITMIN) 

       END DO 

       DO J=1,NPOP 

        PSEL(J)=(FITNESS(J)-FITMIN)/FIT 

       END DO 

       DO J=2,NPOP 

        PSEL(J)=PSEL(J)+PSEL(J-1) 

       END DO 

      END IF 

C 

C     SELECT BEST FITNESS 

C 

      IF (ID.EQ.IDMASTER) THEN 

       FIT=FITNESS(1) 

       JBEST=1 

       DO J=2,NPOP 

        IF (FITNESS(J).GT.FIT) THEN 

         FIT=FITNESS(J) 

         JBEST=J 

        END IF 

       END DO 

      END IF 

C 

C     BROADCAST BEST INDIVIDUAL 

C 

      CALL MPI_BCAST(JBEST,1,MPI_INTEGER,IDMASTER,MPI_COMM_WORLD,IERR) 

C 

C**********************************************************************

**** 

C 

C     ASSIGN THE BEST PARAMETERS TO FUNCTION EVALUATION VARIABLE 

C 

      XCH=PARAM(1,JBEST) 

      YCH=PARAM(2,JBEST) 

      RXH=PARAM(3,JBEST) 

      RYH=PARAM(4,JBEST) 

C 

C********************************************************************** 

C 

      RETURN 

      END 
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCC 

CCC                                                                         

CCC 

CCC                       SUBROUTINE INPUT                                  

CCC 

CCC                                                                         

CCC 

CCC   PURPOSE:                                                              

CCC 

CCC                                                                         

CCC 

CCC   READS INPUT, DATA, VECTOR, AND TRIANGULATION                          

CCC 

CCC                                                                         

CCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCC 

      SUBROUTINE MESHLESS_INPUT 

C 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C 

      INCLUDE '../../Include/Parameters.for' 

      INCLUDE '../../Include/Information.for' 

      INCLUDE '../../Include/Geometry.for' 

      INCLUDE '../../Include/Materials.for' 

      INCLUDE '../../Include/Topology.for' 

      INCLUDE '../../Include/Interpolation-C.for' 

      INCLUDE '../../Include/Interpolation-U.for' 

      INCLUDE '../../Include/Triangulation.for' 

C 

C---------------------------------------------------------------------- 

C 

      CHARACTER*120 TITLE 

      INTEGER IOS 

C 

C---------------------------------------------------------------------- 

C 

C     READ ITERATION PARAMETERS 

C 

      OPEN (12,FILE='Model/ALMA_i_inf.txt',STATUS='OLD',IOSTAT=IOS) 

C 

      IF (IOS.EQ.0) THEN 

C 

C      SOLVE MOMENTUM, ENERGY, STRUCTURAL, PORE PRESSURE, LEVEL-SET 

C 

       READ (12,*) TITLE 

       READ (12,*) MSM,MSE,MSS,MSP,MSL 

C 

C      TIME STEP, NUMBER OF STEPS, OUTPUT FREQUENCY, RESIDUAL 

FREQUENCY, SUB-LEVEL ITERATIONS 

C 

       READ (12,*) TITLE 

       READ (12,*) DT,MAXITER,IWRITE,IRES,ISUB 

C 

C      RELAXATION FOR: POTENTIAL, UPWIND, INTERFACE 

C 
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       READ (12,*) TITLE 

       READ (12,*) THP,THU,THI 

C 

C      GRAVITY 

C 

       READ (12,*) TITLE 

       READ (12,*) GX,GY 

C 

      ELSE 

C 

       WRITE (*,*) '...MISSING INFORMATION FILE.' 

       STOP 

C 

      END IF 

C 

      CLOSE (12) 

C 

C---------------------------------------------------------------------- 

C 

C     VALIDATE ITERATION PARAMETERS 

C 

      IF (DT.LT.EPS) THEN 

       WRITE (*,*) 

     & '...TIME STEP IS TOO SMALL.....................' 

       STOP 

      END IF 

C 

      IF (IWRITE.LT.1) IWRITE=MAXITER 

      IF (IRES.LT.1) IRES=1 

      IF (IRES.GT.IWRITE) IRES=IWRITE 

      IF (ISUB.LT.1) ISUB=1 

C 

      IF (THP.LT.0.0D+000) THP=0.0D+000 

      IF (THP.GE.1.0D+000) THP=1.0D+000 

C 

      IF (THU.LT.0.0D+000) THU=0.0D+000 

      IF (THU.GT.1.0D+000) THU=1.0D+000 

C 

      IF (THI.LT.0.0D+000) THI=0.0D+000 

      IF (THI.GT.1.0D+000) THI=1.0D+000 

C 

C---------------------------------------------------------------------- 

C 

C     READ GEOMETRY  

C 

      OPEN (11,FILE='Model/ALMA_d_geo.txt',STATUS='OLD',IOSTAT=IOS) 

C 

      IF (IOS.EQ.0) THEN 

C 

       READ (11,*) TITLE 

C 

C      NUMBER OF REGIONS 

C 

       READ (11,*) NR 

C 

       DO K=1,NR 

C 
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C       NUMBER OF BOUNDARY POINTS AND INTERNAL POINTS 

C 

        READ (11,*) KK,NB(K),NI(K) 

C 

C       BOUNDARY GEOMETRY 

C 

        DO I=1,NB(K) 

         READ (11,*) II,XC(I,K),YC(I,K),AR(I,K),XN(I,K),YN(I,K) 

        END DO 

C 

C       INTERNAL POINTS 

C 

        NC(K)=NB(K)+NI(K) 

        DO I=NB(K)+1,NC(K) 

         READ (11,*) II,XC(I,K),YC(I,K) 

        END DO 

C 

       END DO 

C 

      ELSE 

C 

       WRITE (*,*) '...MISSING GEOMETRIC DATA FILE.' 

       STOP 

C 

      END IF 

C 

      CLOSE (11) 

C 

C---------------------------------------------------------------------- 

C 

C     READ MATERIALS FILE 

C 

      OPEN (11,FILE='Model/ALMA_i_mat.txt',STATUS='OLD',IOSTAT=IOS) 

C 

      IF (IOS.NE.0) THEN 

C 

       WRITE (*,*) '...MISSING MATERIALS FILE.' 

       STOP 

C 

      ELSE 

C 

       DO K=1,NR 

C 

C       READ REGION NUMBER AND MATERIAL TYPE 

C 

        READ (11,*) KK,KR(K) 

C 

C       KR = 0 : SOLID 

C 

        IF (KR(K).EQ.0) THEN 

C 

         READ (11,*) TITLE 

         READ (11,*) DES(K) 

         READ (11,*) VIS(K),POS(K) 

         READ (11,*) TCS(K),SHS(K) 

         READ (11,*) BES(K),TRS(K) 

C 
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         DEE(K)=DES(K) 

         VIE(K)=VIS(K) 

         POE(K)=POS(K) 

         TCE(K)=TCS(K) 

         SHE(K)=SHS(K) 

         BEE(K)=BES(K) 

         TRE(K)=TRS(K) 

C 

        END IF 

C 

C       KR = 1 : FLUID 

C 

        IF (KR(K).EQ.1) THEN 

C 

         READ (11,*) TITLE 

         READ (11,*) DEF(K) 

         READ (11,*) VIF(K),POF(K) 

         READ (11,*) TCF(K),SHF(K) 

         READ (11,*) BEF(K),TRF(K) 

C 

         DEE(K)=DEF(K) 

         VIE(K)=VIF(K) 

         POE(K)=POF(K) 

         TCE(K)=TCF(K) 

         SHE(K)=SHF(K) 

         BEE(K)=BEF(K) 

         TRE(K)=TRF(K) 

C 

        END IF 

C 

C       KR = 2 : POROUS MEDIUM   

C 

        IF (KR(K).EQ.2) THEN 

C 

         READ (11,*) TITLE 

         READ (11,*) DES(K) 

         READ (11,*) VIS(K),POS(K) 

         READ (11,*) TCS(K),SHS(K) 

         READ (11,*) BES(K),TRS(K) 

         READ (11,*) PER(K),POR(K) 

C 

         READ (11,*) TITLE 

         READ (11,*) DEF(K) 

         READ (11,*) VIF(K),POF(K) 

         READ (11,*) TCF(K),SHF(K) 

         READ (11,*) BEF(K),TRF(K) 

         READ (11,*) COF(K) 

C 

         DEE(K)=DES(K) 

         VIE(K)=VIS(K) 

         POE(K)=POS(K) 

         TCE(K)=TCS(K) 

         SHE(K)=SHS(K) 

         BEE(K)=BES(K) 

         TRE(K)=TRS(K) 

C 

        END IF 
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C 

       END DO 

C 

      END IF 

C 

      CLOSE (11) 

C 

C---------------------------------------------------------------------- 

C 

C     READ INTERPOLATION VECTORS 

C 

      OPEN (21,FILE='Model/ALMA_d_vec.bin',FORM='UNFORMATTED' 

     &        ,STATUS='OLD',IOSTAT=IOS) 

C 

      IF (IOS.EQ.0) THEN 

C 

       READ (21) NRC 

       IF (NRC.EQ.NR) THEN 

        DO K=1,NR 

         READ (21) NCC 

         IF (NCC.EQ.NC(K)) THEN 

          DO I=1,NC(K) 

           READ (21) NCONN(I,K) 

           READ (21) RXA(I,K),RYA(I,K) 

           DO II=1,NCONN(I,K) 

            READ (21) ICONN(I,II,K), 

     &                FXC(I,II,K),FYC(I,II,K),  

     &                FXX(I,II,K),FYY(I,II,K),FXY(I,II,K), 

     &                FXE(I,II,K),FXW(I,II,K),FYN(I,II,K),FYS(I,II,K), 

     &                SXE(I,II,K),SXW(I,II,K),SYN(I,II,K),SYS(I,II,K) 

           END DO 

          END DO 

         ELSE 

          IOS=1 

         END IF 

        END DO 

       ELSE 

        IOS=1 

       END IF 

      END IF 

C 

      IF (IOS.NE.0) THEN 

       WRITE (*,*) '...MISSING OR CORRUPTED INTERPOLATION VECTOR FILE.' 

       STOP 

      END IF 

C 

      CLOSE (21) 

C 

C---------------------------------------------------------------------- 

C 

C     READ TRIANGULATION FROM FILE 

C 

      OPEN (35,FILE='Model/ALMA_d_tri.txt',STATUS='OLD',IOSTAT=IOS) 

C 

      IF (IOS.EQ.0) THEN 

C 

      READ (35,*) NRR 
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       IF (NRR.NE.NR) IOS=1 

       DO K=1,NRR 

        READ (35,*) NCC,NMESH(K) 

        IF (NCC.NE.NC(K)) IOS=1 

        DO I=1,NMESH(K) 

         READ (35,*) (MESH(I,II,K),II=1,3) 

        END DO 

       END DO 

C 

      END IF 

C 

      IF (IOS.NE.0) THEN 

       WRITE (*,*) '...MISSING OR CORRUPTED TRIANGULATION FILE.' 

       DO K=1,NR 

        NMESH(K)=0 

       END DO 

      END IF 

C 

      CLOSE (35) 

C 

C---------------------------------------------------------------------- 

C 

C     OUTPUT INFORMATION 

C 

C      OPEN (12,FILE='Model/ALMA_o_inf.txt',STATUS='OLD',IOSTAT=IOS) 

C 

C      IF (IOS.EQ.0) THEN 

C 

C       READ (12,*) ITP,CTIME 

C 

C      ELSE 

C 

       ITP=0 

       CTIME=0.D+000 

C 

C      END IF 

C 

C      CLOSE (12) 

C 

C---------------------------------------------------------------------- 

C 

C     INCREASE MAXIMUM ITERATIONS TO ACCOUNT FOR PREVIOUS RESULTS 

C 

      MAXITER=MAXITER+ITP 

C 

C---------------------------------------------------------------------- 

C 

      RETURN 

      END 
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCC 

CCC                                                                         

CCC 

CCC                       SUBROUTINE INPUTENERGY                            

CCC 

CCC                                                                         

CCC 

CCC   PURPOSE:                                                              

CCC 

CCC                                                                         

CCC 

CCC   READS ENERGY CONDITIONS AND SOLUTION                                  

CCC 

CCC                                                                         

CCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCC 

      SUBROUTINE INPUTENERGY 

C 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C 

      INCLUDE '../../Include/Parameters.for' 

      INCLUDE '../../Include/Geometry.for' 

      INCLUDE '../../Include/Materials.for' 

      INCLUDE '../../Include/Field-E.for' 

      INCLUDE '../../Include/Field-M.for' 

      INCLUDE '../../Include/Topology.for' 

      INCLUDE '../../Include/Interpolation-C.for' 

C 

C---------------------------------------------------------------------- 

C 

      INTEGER IOS 

      REAL*8 TCV(NCMAX) 

C 

C---------------------------------------------------------------------- 

C 

C     READ ENERGY BOUNDARY CONDITIONS 

C 

      OPEN (11,FILE='Model/ALMA_d_ene.txt',STATUS='OLD',IOSTAT=IOS) 

C 

      IF (IOS.NE.0) THEN 

       WRITE (*,*) '...MISSING ENERGY BOUNDARY CONDITION FILE.' 

       STOP 

      END IF 

C 

      DO K=1,NR 

C 

C      READ REGION NUMBER 

C 

       READ (11,*) KK 

C 

C      READ INITIAL VALUES 

C 

       READ (11,*) TINI(K) 

C 

C      READ BODY FORCES 
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C 

       READ (11,*) UBG(K) 

C 

C      BOUNDARY CONDITIONS 

C      KE=0:INSULATED, KE=1:DIRICHLET, KE=2:NEUMANN, KE=3:ROBIN 

C      KE<-1000:INTERFACE TEMPERATURE, KE<-2000:INTERFACE FLUX 

C 

       DO I=1,NB(K) 

        READ (11,*) II,KE(I,K),TB,QB,HB 

C       INSULATED WALL 

        IF (KE(I,K).EQ.0) THEN 

         GT(I,1,K)=0.D+000 

         GT(I,2,K)=1.D+000 

         GT(I,3,K)=0.D+000 

        END IF 

C       DIRICHLET (TEMP) 

        IF (KE(I,K).EQ.1) THEN 

         GT(I,1,K)=1.D+000 

         GT(I,2,K)=0.D+000 

         GT(I,3,K)=TB 

        END IF 

C       NEUMANN (FLUX) 

        IF (KE(I,K).EQ.2) THEN 

         GT(I,1,K)=0.D+000 

         GT(I,2,K)=-TCE(K) 

         GT(I,3,K)=QB 

        END IF 

C       ROBIN (CONVECTION) 

        IF (KE(I,K).EQ.3) THEN 

         GT(I,1,K)=HB 

         GT(I,2,K)=TCE(K) 

         GT(I,3,K)=HB*TB 

        END IF 

C 

       END DO 

C 

      END DO 

C 

      CLOSE (11) 

C 

C---------------------------------------------------------------------- 

C 

C     ENERGY OUTPUT 

C 

      OPEN (13,FILE='Model/ALMA_o_ene.bin',STATUS='OLD',IOSTAT=IOS 

     &        ,FORM='UNFORMATTED') 

C 

      IF (IOS.EQ.0) THEN 

C 

       DO K=1,NR 

        DO I=1,NC(K) 

         READ (13) TCC(I,K),DXT(I,K),DYT(I,K),D2T(I,K) 

        END DO 

       END DO 

C 

      ELSE 

C 
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       DO K=1,NR 

        DO I=1,NC(K) 

         TCC(I,K)=TINI(K) 

         DXT(I,K)=0.D+000 

         DYT(I,K)=0.D+000 

         D2T(I,K)=0.D+000 

        END DO 

       END DO 

C 

      END IF 

C 

      CLOSE (13) 

C 

C---------------------------------------------------------------------- 

C 

C     INTERFACE ENERGY BOUNDARY CONDITIONS 

C 

      DO K=1,NR 

C 

C      INTERFACE BOUNDARY CONDITIONS 

C      KE<-1000:INTERFACE TEMPERATURE, KE<-2000:INTERFACE HEAT FLUX 

C 

       DO I=1,NB(K) 

C       TYPE 1 INTERFACE: IMPOSE TEMPERATURE 

        IF ((KE(I,K).LT.(-1000)).AND.(KE(I,K).GT.(-2000))) THEN 

         GT(I,1,K)=1.D+000 

         GT(I,2,K)=0.D+000 

         GT(I,3,K)=TCC(I,K) 

        END IF 

C       TYPE 2 INTERFACE: IMPOSE HEAT FLUX 

        IF ((KE(I,K).LT.(-2000)).AND.(KE(I,K).GT.(-3000))) THEN 

         GT(I,1,K)=0.D+000 

         GT(I,2,K)=-TCE(K) 

         GT(I,3,K)=-TCE(K)*(DXT(I,K)*XN(I,K)+DYT(I,K)*YN(I,K)) 

        END IF 

C 

       END DO 

C 

      END DO 

C 

C---------------------------------------------------------------------- 

C 

      RETURN 

      END 
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCC 

CCC                                                                         

CCC 

CCC                       SUBROUTINE SOLVEENERGY                            

CCC 

CCC                                                                         

CCC 

CCC   PURPOSE:                                                              

CCC 

CCC                                                                         

CCC 

CCC   SOLVES ENERGY TRANSPORT EQUATION                                      

CCC 

CCC                                                                         

CCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCC 

      SUBROUTINE SOLVEENERGY 

C 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C 

      INCLUDE '../../Include/Parameters.for' 

      INCLUDE '../../Include/Information.for' 

      INCLUDE '../../Include/Geometry.for' 

      INCLUDE '../../Include/Materials.for' 

      INCLUDE '../../Include/Field-S.for' 

      INCLUDE '../../Include/Field-M.for' 

      INCLUDE '../../Include/Field-E.for' 

C 

C---------------------------------------------------------------------- 

C 

C     USE THE FOLLOWING SPACE TO INCLUDE THE COMMON BLOCKS FOR FUNCTION 

VARIABLES 

C 

      PARAMETER (NTMAX=20,NMMAX=200) 

      COMMON/MEASURE/NMN,NMT,MT(NTMAX),MR(NMMAX),MN(NMMAX) 

      COMMON/MEASURT/TM(NMMAX,NTMAX) 

      COMMON/HOLELOC/XCH,YCH,RXH,RYH 

C 

C---------------------------------------------------------------------- 

C 

      REAL*8 DIFF(NCMAX) 

      REAL*8 RHS(NCMAX) 

      REAL*8 QFT(NCMAX) 

C 

C---------------------------------------------------------------------- 

C 

C     INITIALIZE RESIDUAL 

C 

      RESE=0.D+000 

C 

C---------------------------------------------------------------------- 

C 

C     LOOP OVER SUBREGIONS FOR FIELD SOLUTION 

C 

      DO K=1,NR 
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C 

C      DIFFUSIVITY 

C 

       DO I=1,NC(K) 

        DIFF(I)=TCE(K)/(DEE(K)*SHE(K)) 

CCC 

CCC 

CCC 

        ELX=(XC(I,K)-XCH)/(1.33D+000*RXH) 

        ELY=(YC(I,K)-YCH)/(1.33D+000*RYH) 

        IF ((K.EQ.1).AND.((ELX*ELX+ELY*ELY).LT.1.D+000)) THEN 

         DIFF(I)=30.D+000*DIFF(I) 

C         WRITE (*,*) '*' 

        END IF 

CCC 

CCC 

CCC 

       END DO 

C 

C      BOUNDARY CONDITIONS 

C 

       DO I=1,NB(K) 

        RHS(I)=GT(I,3,K) 

       END DO 

C 

C      BODY FORCE 

C 

       DO I=NB(K)+1,NC(K) 

        RHS(I)=UBG(K)/(DEE(K)*SHE(K)) 

       END DO 

C 

C      CONVECTIVE ENERGY FLUX 

C 

       IF (KR(K).EQ.0) THEN 

        DO I=1,NC(K) 

         QFT(I)=0.D+000 

        END DO 

       END IF 

C 

cc       IF (KR(K).EQ.1) THEN 

cc        CALL UPWIND(UCC,VCC,TCC,QFT,DIFF,K) 

cc       END IF 

C 

cc       IF (KR(K).EQ.2) THEN 

cc        CALL UPWIND(VFX,VFY,TCC,QFT,DIFF,K) 

cc        DO I=1,NC(K) 

cc         QFT(I)=DEF(K)*SHF(K)*QFT(I)/(DEE(K)*SHE(K)) 

cc        END DO 

cc       END IF 

C 

C      TRANSPORT ENERGY 

C 

       CALL TRANSPORT(TCC,D2T,DXT,DYT,QFT,DIFF,RHS,GT,DT,REST,K) 

C 

C      ACCUMULATE ENERGY RESIDUAL 

C 

cc       RESE=RESE+REST 
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C 

C      END SUBREGION LOOP 

C 

      END DO 

C 

C---------------------------------------------------------------------- 

C 

C      AVERAGE INTERFACE ENERGY 

C 

      IF (NR.GT.1) THEN 

       CALL INTERFACEENERGY 

      END IF 

C 

C---------------------------------------------------------------------- 

C 

      RETURN 

      END 
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