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Abstract 

Researcher: Mohammed Khammat Sagban 

Title: A CFD Investigation of the Hydrodynamic Characteristics of Fluid Flow 

through an Impeller and Multi-Objective Design Optimization of a 

Centrifugal Pump  

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Mechanical Engineering 

Year: 2014 

     In this thesis, the first part is conducting an investigation of the hydrodynamic 

characteristics (pressure and velocity) of fluid flow (water) through an impeller of a 

centrifugal pump. To illustrate a one-dimensional model is used to identify an impeller of 

a GDM 10 x 12 HD centrifugal pump using Vista CPD design and BladeGen tools. A 

three-dimensional model is then built with a commercial software package ANSYS Blade 

Modeler. The structured mesh of the impeller blade is obtained by using TurboGrid 

system. The volute of the centrifugal pump is built in ANSYS geometry, and an 

unstructured mesh is accomplished by using a very fine mesh. Afterwards, 

Computational Fluid Dynamics (CFD) is applied in ANSYS-CFX to set output 

parameters of objectives and constraints of the centrifugal pump. A multi-objective 

design optimization (MDO) process is defined for a centrifugal pump GDM 10 x 12 HD 

impeller and volute to get optimum values of efficiency, total head and performance. In 

addition, the objective of this research is to maximize the efficiency and the total head for 

the centrifugal pump GDM 10 x 12 HD, making sure that the performance target does not 

exceed the value of the relative ratio of outlet and inlet pressure so that the head losses do 

not increase. The CAD modeler of the impeller, with optimal inlet and outlet angles, are 
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modeled using BladeGen modeler. The efficiency and the head of the standard 

centrifugal pump is observed to be 61% and, 42.6 m respectively.  

    Finally,  HEEDS MDO-Modeler is used to perform the multi-objective optimization 

process to obtain the optimal results of the pump efficiency and the head. After 

optimization the efficiency of the centrifugal pump is increased by 3.2% and the 

optimized head is decreased by 2% as compared to baseline values. In addition, the blade 

thickness and the volute thickness are decreased by 13.5 % and 10.2 % respectively from 

the original values. 
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Chapter 1  

        Background 

 

1.1 Introduction 

      Centrifugal pumps are widely used in different fields, and found today in almost all 

industries. In addition, it has many different applications. For example, it is found in 

municipal works, power plants, agriculture, transport and many other utility services.  A 

centrifugal pump is a mechanical device used to transport the liquid from one place to 

another. It is also considered a hydraulic machine used to convert mechanical energy into 

hydraulic energy [1]. The pump contains of a set of rotating blades (vanes), which are 

surrounded by the volute (casing scroll). Moreover, there are many advantages of a 

centrifugal pump over a reciprocating pump such as high volume flow rate, easy control, 

lower manufacturing and maintenance costs.  

    Furthermore, a centrifugal pump depends on many factors according to its design. For 

instance, a specialist should test the pump before predicting the performance because 

there are many extensive patterns, which take time to satisfy the requirements, such as 

cost, manufacturing, and testing. Computational Fluid Dynamics analysis (CFD) can 

solve many problems regarding these issues. For example, it is used in the design of 

centrifugal pumps as an alternative tool. By using computer ability, it becomes possible 

to increase the performance of the pump using CFD-CFX, which can contribute to 

helping designers and engineers to overcome many problems in this field [2].   
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     Moreover, when considering a centrifugal pump the impeller is the most important 

component. It has a significant effect in developing the performance of the pump because  

energy is generated by fluid flow through the impeller. As a result, experts and engineers 

in this field must take care of the precise analysis to optimize variables that can impact 

the performance of the pump. Furthermore, the flow of the pump is sometimes 

complicated and characterized by diffusion and a strong swirl. Therefore, it is extremely 

necessary to investigate the internal flow of the centrifugal pump impellers by using 

some CFD approaches, and optimize its performance using HEEDS MDO-Modeler to 

increase the efficiency [3]. 

1.2 Literature Review 
 

     Many researchers have conducted CFD (Computational Fluid Dynamic)  

investigations and design optimizations. Weidong Zhou, Zhimei Zhao and S. H. Winoto, 

in 2003, conducted a three dimensional simulation of internal flow in three different types 

of centrifugal pumps. One of the pumps had four straight blades and the other two had six 

twisted blades.  They found that the computational results for compression (from results 

in both pressure distributions and flow patterns) gave better results for the twisted blade 

pumps. On the other hand, for the straight blade pump, the computational results from 

simulation were different from widely published experimental results. It was also found 

that the predicted results relating twisted-blade pumps were better than those relating to 

the straight-blade pump, suggesting greater efficiency [4]. 

     J H Kim, K T Oh, et. al, in 2012, used Response Surface Method to optimize the 

impeller and the design of the volute of a centrifugal pump to increase the efficiency at 
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target head. Their research was carried out in order to improve the performance of the 

centrifugal pump using the results from a numerical analysis. Moreover, this method of 

design that they used was suggested by many researchers, like C K Kim, for designing 

the volute that was suitable for the optimized impeller. It was observed that, by using 

these methods, the efficiency could be decreased from 98.5 % to 98.2 %, while the head 

could be increased from 62 m to 64.6 m. The volute was designed using Stepanoff 

method. The design optimization also incorporated performance evaluations and volute 

cross sectional area modifications [5].  

    In 2013, Mehul P and Prajesh conducted CFD analysis of a mixed flow pump impeller. 

They analyzed the outlet and inlet conditions, such as pressure and velocity, in order to 

calculate the efficiency of the pump impeller. For the existing impeller, the empirical 

relations were used to calculate optimum values of the inlet and outlet angles of the 

impeller. The head of the impeller was improved by changing the outlet angles. The 

results that were obtained from CFD analysis showed that the head was 7.45 m whereas 

the experimental results showed that the head was 8.08 m. Moreover, the efficiency was 

observed 54.27 % in experimental data, but the efficiency of the impeller was as 49.6% 

using CFD analysis [6]. 

    Ashok Thummar, et. al, in 2012, measured the performance analysis of four various 

kinds of open well centrifugal pumps. A performance analysis of the centrifugal pump 

was conducted in order to obtain the best performance point. The four types of pumps 

chosen for the performance analysis varied in the size of the impeller, which were 165 

mm, 210 mm, 170 mm and 123 mm respectively. By conducting a CFD investigation, it 

was observed that the efficiency of the pump and the flow rate were increased whereas 
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the head was decreased. However, the power input was also increased. It was found that 

with the test open well-165 mm impeller pump, the head and power increased 

proportionally with the increase in the flow rate. In addition to that, the efficiency was 

increased by more than 60 % of the maximum flow rate. Moreover, it was found that the 

best efficiency point (BEP) was 43 % [7]. 

     T. Prabu, in 2007, improved the design of an impeller and optimized the design 

parameters, such as vane profile, inlet and outlet vanes angles and the number of vanes in 

order to improve the performance of the impeller. He also measured and collected flow 

rate data from experiments. CFD and ANSYS Fluent were used to simulate the 

performance of the pump. In addition to that, T. Prabu established theoretical and 

experimental methods for design and testing of a pump as well as studying pressure 

distribution along two blades with different speeds (2300 rpm, 2500 rpm and 2880 rpm). 

It found that pressure around the impeller was a non-uniform pressure distribution with 

2880 rpm, but it less significant when compared to that of the other speeds (2300 rpm and 

2500 rpm) [8]. 

      After an extensive literature review of the past and ongoing research in the field, it 

was observed that a further investigation of the fluid flow characteristics through the 

impeller blade, such as pressure, velocity and kinetic energy, and an optimization 

technique, were required. This paper addresses these issues and explains the details of a 

research that was carried out for hydrodynamic design optimization. 
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1.3  History of Centrifugal Pumps 

     At around 2000 BC, a device called the shadoof was invented by the Egyptians in 

order to raise water with a bucket at one end a weight at the other. Furthermore, the 

centrifugal pump was invented by a Greek inventor and mathematician Ctesibius in 200 

BC. He invented the water organ, an air pump with valves on the bottom by putting a 

tank of water between them while putting the rows of pipes at the top. In addition, it is 

considered a principal design for the reciprocating pump that is used today. In 200 BC, 

Archimedes designed a screw pump. This invention is considered one of the most 

important inventions of all time, and it is still utilized today in pumping liquids  as well as 

in agriculture fields, for activities such as irrigation, without depending on electric 

pumps. 

     In 1475, a mud lifting machine was invented by  Brazilian soldier and scientist, Reti. 

It could be characterized as a centrifugal pump. In 1588, Italian engineer Agostino 

Ramelli in his book “The Diverse and Art factitious Machines of Captain Agostino 

Ramelli,” described the sliding vane water pump technology, in addition to other pump 

technologies. Also, a German engineer, Pappenheim, invented the double deep-toothed 

rotary in 1636 which is still utilized today to lubricate engines. The gear pump that he 

made was possible to dispense water with  reciprocating slide valves, which were used by 

Ramelli. In addition to this, Pappenheim drove his machine using an overshot water 

wheel that was set in motion by stream of water, which was then utilized to feed water 

fountains.   
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    In 1782, James Watt invented the steam engine, and he connected a rod  to the engines 

in order to convert the motion of the piston’s reciprocating motion in to the rotary motion 

of wheels [9]. 

 

 

 

 

 

 

 

 

    

 

 

    The first centrifugal pump patent was filed by John Gwynne in 1851. The pumps that 

he invented were used for land drainage, which are seen nowadays in pump house 

museums. Gwynnes' steam engines powered those pumps. Then, the pumps of all sizes to 

cover all industrial applications, from small electric pumps to those rated at 1,000 tons 

per minute were created by Gwynne by the end of the 19th century. Furthermore, the first 

German patent for liquid ring vacuum pumps and compressors was filed by  Siemens in 

1900. In addition, in 1901, the first deep well vertical turbine pump was established by 

Byron Jackson. The Wood trash pump was invented by Albert Baldwin Wood in 1915. 

Figure 1: Peerless Large Split Case Design from the 1940s. 
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“Some of Wood's pumps have been in continuous use for more than 80 years without 

need of repairs. New ones continue to be built from his designs” [9]. 

 

 

 

 

 

 

 

 

 

1.4  Centrifugal Pumps Development 

    In the early stages, the research on centrifugal pumps was limited to theoretical study 

and testing. However, in the past three decades, many advanced methods have been 

added to develop centrifugal pumps. For example, in many projects, what the engineers 

and the designers of process plants do is the establish requirements for pumps, which 

outwits stagnated ranges available from a wide range of pump manufacturing. Because 

the flow in centrifugal pumps is very complex, technique is required methods to 

overcome all issues in developing pumps and to increase their performance. For instance, 

one of these techniques is using a bleeding system with nozzle units. To illustrate, in 

order to avoid increasing the cavitation in the eye of pump impeller, making the pressure 

Figure 2: A Single and Two Stage Pipeline Pump Assembly in the 1960s. 
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passages of impeller is greater when compared to vapor pressure of the pumped fluid at 

any of the points of pressure [10].  

    Due to the development of computer aided design codes, there are many techniques  

added. A new technique in the modern era is using CFD techniques to develop 

centrifugal pump to make them consume less power as well as produce less vibrations, 

and MDO is used to optimize by either reducing the weight or increasing the efficiency. 

For example, the flow behavior inside the pump and the flow stream flow is analyzed and 

the optimal design of the centrifugal pump is proposed. In the present days, pumps are 

more reliable and more powerful. So, they are used in different fields [11]. 

1.5  Motivation  

   Centrifugal pumps are common in use, and they can contribute to serving the industry 

in many things in addition to develop the economies of many countries-for example,  

agriculture. In the coming years, there is a priority for improving efficiency and for 

increasing the production and the quality of pumps in terms of the materials. 

    In order to make the manufacturing of centrifugal pumps more tangible and feasible,  

studying and conducting investigation of the internal flow through the centrifugal pump 

especially through the impeller and increasing the efficiency of pumps is more necessary 

to increase the life expectancy of the centrifugal pumps, by using advanced software 

codes to perform CFD and MDO. As a result, technology now has improved the 

performance of the pumps by reducing the cost and producing  pumps that have high 

durability [11]. 
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1.6  Objectives 

    The objective of this thesis is to conduct an investigation of the hydrodynamic 

characteristics (pressure and velocity) of flow through the impeller of the centrifugal 

pump using CFD, and to evaluate a multi-objective optimization process of the 

centrifugal pump impeller and volute (casing scroll) using HEEDS MDO in order to 

increase the efficiency and enhance the pump performance. 

    GDM 10 x 12 HD centrifugal pump is used as a reference pump and the objectives are 

follows: 

 Conduct a CFD investigation of the hydrodynamic characteristics of the fluid 

flow through the impeller of the pump (pressure and velocity) by performing 2D 

and 3D on the baseline of GDM 10 x 12 HD pump. 

 Define a multi-objective design optimization using HEEDS MDO-Modeler to 

optimize the efficiency and head. 

 Modify the efficiency and head as objectives and relative ratio of inlet and outlet 

pressure expression as constraints to avoid an increase in head losses.   
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Chapter 2 

              Centrifugal Pump Theory 

 

2.1  Impeller and Volute Principle and Theory 

    A centrifugal pump can be defined as a rotodynamic pump which uses rotating 

impeller to rise the pressure of a fluid. Fluid enters the pump as a stream into the rotating 

impeller. The impeller contains a rotating disc with several blades called vanes which are 

attached to each other, and sometimes recline away from the direction of rotation. 

Because of suction, flow is seized in the rotating vanes when it comes close to the 

impeller. As soon as the fluid gets to the impeller’s trailing edge it gets accelerated, and 

the maximum velocity of the fluid gets higher at the impeller’s outer diameter. This 

leaves the impeller into a volute hollow as shown in Figure 3.  

 

 

    The centrifugal force increases the acceleration of the fluid elements due to the 

difference in radius. Moreover, the process of energy conversation in fluids mechanics 

                  Figure 3: Principle Work and Parts of Centrifugal Pump 
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follows the Bernoulli’s equation, and the total head energy in the pump system is the 

result of potential head energy, static pressure head energy and velocity head energy. 

 

   
  
 

   
 

  

   
    

  
 

   
 

  

   
                                   (1) 

 

Because the centrifugal pump increases the flow speed of a certain fluid, it is 

fundamentally a velocity machine. After the fluid leaves the impeller, the velocity 

decreases whereas the pressure increases as it is revealed in Bernoulli’s principle. As 

fluid leaves the pump from its side more fluid is sucked on other side, causing flow. 

    However, since a volute is a device that gathers outflow and connects to a spiral pipe; 

it has been widely used in centrifugal pumps. Therefore, the cross sectional area from the 

inlet to outlet widens proportionality [12]. 

2.2  Pump Selection 

    The important part in designing the centrifugal pump are the impeller blade, the choice 

of twist angle and the material, which allows the customer to purchase only those parts 

which are necessary for repair. GDM 10 x 12 HD pump was selected for this research, 

which offers three packing choices. Solid lip seals provide efficient service with a 

minimum amount of required maintenance. Split compression and V-type packing are 

available for more severe service conditions, and they can easily be replaced without 

dismantling the pump.  
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2.3  GDM 10 x 12 HD Centrifugal Pump 

    This type of centrifugal pump is more reliable, and has many advantages. For example, 

it has a heavy steel frame and mounting bracket for horizontal or vertical positioning. In 

addition, the driving system of GDM 10 x 12 HD is a keyed shaft. Also, it is available for 

a special coupling and mounting bracket, allowing for a hydraulic motor to be directly 

mounted to the pump. Further, segmented construction allows the customer to purchase 

only those parts necessary for repair and maintenance. Change of rotation may be easily 

accomplished by simply removing. Turning, and repositioning the volute changing the 

impeller to match the desired direction of rotation is easy. The dynamically closed pattern 

impellers are designed for moving heavy, abrasive and laden slurries and are available in 

either clockwise or counterclockwise rotation. The impellers are secured to the shaft by a 

locking system with a superior design [13]. 

2.4  Relative Velocities at the Inlet and Outlet of Impeller 

    The concept of relative velocity in turbo machinery is considered a key idea in turbo 

machinery. To understand the flow, consider a person standing on the rotating turbo 

machine as shown in Figure 4 . The person experiences a radial velocity (V) due to the 

movement of the blades, and tangential velocity (U) due to the rotation of the impeller.  

The resultant velocity (W) experienced by the person is given by: 

    (2) 

 

 

 

 

https://lh5.googleusercontent.com/-j7oQuo7PB08/Uh7mKQgtF8I/AAAAAAAACuM/IZDTwzcNsvc/s1600/eqn4.jpg
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     For a stationary part of a centrifugal pump to have smooth operation, flow should be 

tangential to the impeller blade. Similarly in a moving device relative velocity should be 

tangential to the blade profile. With a knowledge of the direction of relative velocity and 

the vectorial representation of the relative velocity, these three velocities could be drawn 

as shown in Figure 5. As a result, this is called a velocity triangle [14]. 

 

 

 

 

 

 

 

 

*Source of photo: New Mexico Tech. 

 

Figure 4: Velocity Triangle in a Turbo Machinery 

Figure 5: Relative Velocity Direction of Impeller Blade
* 
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2.5  Velocities and Pressures Direction of Volute (Scroll Casing) 

    The impeller does all the work in a turbo machine. However, the volute collects the 

flow from the runner and guides it to the discharge. It can be said that the impeller and 

the volute are operationally dependent on each other, because the pump volute 

determines the surrounding in which the impeller operates. In addition, the pump volute 

can have a profound influence on impeller performance and may cause the impeller to 

work at low efficiency [15].  

 

2.6 Affinity(Similarity) Laws for Centrifugal Pumps 

      The “Affinity Laws” for centrifugal pumps describe the impact of changes in speed or 

impeller diameter on pump flow, head, and BHP (brake horsepower). They are useful 

tools in predicting pump performance changes when speed or impeller diameter are 

changed under conditions as: 

 variable speed devices are employed, 

 impellers are trimmed, and  

 pump curves, which are plotted at 60 Hz speeds, are to be used across 

international borders at 50 Hz speeds (and vice versa). 
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2.7 Affinity(Similarity) Laws  

 

    The affinity laws can be defined that, (1) flow will change directly when there is a 

change in speed or diameter, (2) heads will change as the square of a change as the cube 

of a change in speed or diameter. Affinity laws are defined in Table 1.  

Table 1: Formula Representation of Affinity Laws 

  

  
 

  

  
       Or     

  

  
 

  

  
  

 
  

  
  

  

  
       Or       
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where, 

Q= Flow Volume Rate 

D= Impeller Diameter 

N= Speed 

H= Head (TDH) 

BHP= Brake Horsepower 

The subscript 1 indicates “existing condition”; the subscript 2 indicates “new 

conditions”[16]. 
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2.8 Different Types of Pump Head 

 

 “Total static head – total head when the pump is not running”. 

 “Total dynamic head (total system head) - total head when the pump is running”. 

 “Static suction head – head on the suction side, with pump off, if the head is 

higher than the pump impeller”. 

 “Static suction lift –head on the suction side, with pump off, if the head is lower 

than the pump impeller”. 

 “Static discharge head –head on the discharge side of  pump with the pump off”. 

 “Dynamic suction head/lift –head on suction side of pump with pump on”. 

 “Dynamic discharge head –head on discharge side of pump with pump on” [17].  

 

   
  
 

   
 

  

   
    

  
 

   
 

  

   
                                                (3) 

 

   
   

 

 
         

   
 

 
                                               (4) 

 

Assumptions:  

No elongation          

Fluid is in steady ( V2=0)         

                 
                                                                            (5) 

 

  
               

   
                                                                            (6) 

where, 

h = total head developed (m) 

P2 = pressure at outlet (N/  ) 

P1 = pressure at inlet (N/  ) 

ρ = density (kg/  ) 

g = acceleration of gravity (9.81 m/  ) 
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2.9 Pump Efficiency 

 

    Pump efficiency,   (%) is a relationship between the energy generated by the impeller 

and the energy put into flow. [17] 

  
    

   
                                                                             (7) 

where, 

  = efficiency (%) 

   =  input power 

    = output power 

Figure 6: Relationship between Head and Flow for Backward Curved Blade 
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Total pump efficiency 
    

        
                                     (8)        

            

 

 

 

ρ: water density = 1000 (kg/m3)  

ɡ: gravitational acceleration = 9.81 (m/s2) 

H: total head (m) 

N: Rotation speed (RPM) 

T: Torque (N m) 

Ω: Angular speed (rad/s) 

2.10  Number of Blades 

    The number of the impeller blades of the centrifugal pump  largely effect on the 

performance. For example,  power consumption depends on the number of the blades. It 

means the more there are, the more consumption of power as well as high cost. In 

addition, the number of blades plays a major role to influence on  the flow turbulence. 

Therefore, it can design the number of the impeller blades according to the Pfleiderer 

equation [18]. 

Number of vanes    
     

     
                                    (12) 

 

η  
      ρ

  Ω
                                               (9) 

η  
[
P      − P     

ρ g
]     ρ

  Ω
                                (10) 

η  
                   

  Ω
                                   (11) 
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      First, calculate the average vane angle, and then calculate the number of blades as per 

Pfleiderer equation: 

  
     

 
 

       

 
      

where,           

                   

Then, 

Number of vanes    
     

     
           

           

           
                                               

where,             

                       

 

2.11  Centrifugal Pump Classification by Flow 

    Pumps can be classified according the fluid flow through the pump as follows, 

 Radial flow pump 

 Axial flow pump 

 Mixed flow pump 

    The radial flow pump is a centrifugal pump in which the liquid enters at the center of 

the impeller and is directed out along the impeller blades in a direction at right angles to 

the pump shaft [19]. Nowadays, the radial flow pump is centrifugal pumps standard 

working principle and is required in most applications as shown in Figures 7 and 8. 



20 
 

 

 

     

 

 

 

    However, in the axial pumps, in which the liquid exits the pump axial, the flow 

deflections in the impellers of the radial flow pumps gather higher centrifugal forces.       

Therefore, this leads to higher pump heads in radial flow pumps, but also to smaller 

capacity flows [20] as shown in Figure 9. 

 

Figure 7: Radial Flow Pump 

Figure 9: Axial Flow Pump 

Figure 8: Suction and Discharge in Centrifugal Pump 
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   The third type of the flow pump is mixed flow pump. This flow type collects between 

the radial and the axil flow pump. As liquid flows through the impeller of the mixed flow 

pump, the impeller blades push the flow out away from the pump shaft and to the pump 

suction at the angle is greater than 90 degree [20]. Figure 10 illustrates the impeller of a 

mixed flow pump and the flow through the mixed flow pump. 

  

 

 

 

 

 

  

2.12  Types of Centrifugal Pumps 

     Generally, pumps consist of two groups. positive displacement pumps and the 

dynamic pumps.  

2.12.1  Positive Displacement Pump 

 

    Fluid flow moves by trapping a fixed amount and forcing (displacing), the trapped 

volume into the discharge pipe. In addition, an expanding cavity on the suction side and a 

decreasing cavity on the discharge side are used by some positive displacement pumps. 

For instance, liquid, which flows into  the pump as the cavity on the suction side, expands 

while the liquid flows out of the discharge as the cavity collapses. However,  The volume 

Figure 10: Mixed Flow Pump 
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is constant through each cycle of operation. Figure 11 shows the rotary type of positive 

displacement of pumps [21]. 

 

 

 

 

 

 

 

 

    Another type of positive displacement pumps is progressing cavity sucker-rod 

pumping (PCP). The pump has a stator, which is typically run into the well on the bottom 

of the production tubing, whereas the rotor is linked to the bottom of the sucker rod 

string. Moreover, rotation of the rod string by means of a surface drive system is 

considered a main part for  making  the rotor to spin within the fixed stator, creating the 

pumping action essential to produce fluids to surface as shown in Figure 12 [21]. 

 

 

Figure 11: Lop Pump Internals 

http://upload.wikimedia.org/wikipedia/commons/9/9d/Common_Lobe_Pump.png
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2.12.2  Dynamic Pumps 

 

    These types of pumps are represented by centrifugal pumps with scroll casing and 

ESPs systems (Electrical Submersible Pump).  Electrical submersible pumps are driven 

by the cable which is connected to the electric motor. Moreover, the principle work of 

ESPs is the kinetic energy of the fluid becomes much higher before it is converted to high 

pressure energy during the through flow. However, the centrifugal pump with scroll 

casing is usually driven by combustion engine or gas turbine [21]. 

 

Figure 12: Configuration of a Typical Progressing Cavity Pumping (PCP) System. 

http://petrowiki.org/images/1/15/Vol4_Page_758_Image_0001.png
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Figures 13, 14 illustrate centrifugal pump with volute and ESP’s system respectively. 

 

 

 

 

 

 

 

 

 

   

 

 

 *Source of photo: New Mexico Tech. 

 

 

 

 

 

 

 

 

       Figure 13: Centrifugal Pump Figure 14: ESP's System* 

http://upload.wikimedia.org/wikipedia/commons/4/4a/Centrifugal_Pump.png
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Chapter 3 

         Software Details 

 

3.1  ANSYS Workbench 14.5 

3.1.1 Vista CPD Design 

 

    ANSYS CPD Design is an open source  centrifugal pump design software, and it can 

be used to input the values of  the pump efficiency and head required to obtain the 

standard dimensions of the centrifugal  pump. Using Vista CPD Design is easy to put the 

initial design of the pumps in BladeGen modeler. In other words, it makes BladeGen 

tools easy to use in order to create the proper design of the impeller blade. 

3.1.2 BladeGen 

 

BladeGen feature is used to build the impeller  blades from 1D to 3D at geometry 

modeling. BladeGen is also a part of ANSYS Blade Modeler. It is used as a  tool for 3D 

rotor machinery parts. It is utilized to design mixed and radial pumps. Therefore, with 

this feature, it can be re-design blades for the impeller which is existing to accomplish 

and create a new design target. BladeGen is extremely important to export files to 

modeling geometry after creating blade dimensions from 1 D to 3D.  

     In addition, this feature helps to design different impeller blade models, such as 

impeller, diffuser of ESP (electrical submersible pump), blade turbine, and compressor 

blade.  
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    There are two types of the impeller that BladeGen introduces. The first one is standard 

with initial angle-thickness dialog, and the second is pressure –section type. In this 

research, the blades are created using angle- thickness, and radial impeller blade of the 

centrifugal pump. Leading and trailing edges are specified at full diameter simple cutoff 

and ellipse ratio. As a result, the provision of BladeGen allows the users to do full 3D 

viscous flow analysis after modeling geometry CAD system [22].  

3.1.3 ANSYS TurboGrid Mesh 

 

     ANSYS TurboGrid in ANSYS workbench provides a very import mesh feature to 

turbo machinery system, and it is represent a powerful tool, which allows experts, 

analysts, and designers of rotating machinery create high-quality hexahedral meshes, 

whereas conserving the underlying geometry. These meshes are used in the ANSYS 

workflow to solve complex impeller blade problems. Moreover, ANSYS TurboGrid 

Standalone has the CFX launcher that makes it easy to run all the modules of CFX 

without having to use a command line. Therefore, it is used to get fine mesh of the 

impeller blade of the centrifugal pump using ATM topology method [23]. 
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3.1.4 ANSYS CFD-CFX 

 

    ANSYS CFX is used to  simulate fluid in different ways, and  it has many benefits to 

allow experts and engineers to test systems in different fields. For example, it is used to 

simulate water flowing past ship hulls, gas turbine engines, pumps, fans, aircrafts, and 

compressors [23]. During Computational Fluid Dynamics  CFD process, it starts with 

initial design to geometry generation and mesh. Steady-state preprocessing is used to 

solve fluid analysis problems depending on Navier-stoke equations. Three parts of CFD 

as following [24]: 

1- CFX-Pre- processer: 

 Geometry domain definition. 

 Grid generation by diving into very small elements. 

 Fluid properties definition.  

 Boundary condition definition. 

2- CFX-Flow solver. 

 Solving the equations is done by CFX solver. 

3- CFX-Post processor 

 Geometry domain and grid show. 

 Vectors and contours plots. 

 3D-2D plots 
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3.2  HEEDS MDO-Modeler 

    HEEDS MDO-Modeler is used in order to obtain the best and optimum values, or even 

get design optimum qualities to improve the design criteria. On the other hand, the 

normal solution approaches do not affect at all time. For instance, sometimes the goals 

(pressure, mass, efficiency…etc.) get complex and difficult, when experts try to 

maximize achievability of these goals. In addition, time and cost also play a big role. 

HEEDS MDO can easily define the parameters, and it is a good option in order to 

achieve multi-objective design goals. Moreover, using HEEDS MDO-Modeler has 

significant advantages to choose analysis tools to judge design performance. For 

example, HEEEDS MDO automatically carries out design iterations while searching for 

optimum values of the design parameters [25].   

3.2.1 SHERPA Method 

 

    SHERPA is a hybrid and adaptive algorithm method which is used by HEEDS MDO-

Modeler. Moreover, multiple search strategies at once and acclimatizes to the trouble as 

“learns” about the design space is implemented by SHERPA method.  In addition, it 

utilizes the elements of the multiple search methods at the same time in the proper 

manner. Besides that, SHERPA has many advantages. For instance, it can find the better 

solutions at first time, and identifies the better quality of design [26]. 
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Chapter 4 

          Design of Baseline Model of Pump 

 

4.1  GDM 10 x 12 HD Pump 

    This type of centrifugal pump is chosen because it has a heavy steel frame and 

escalating bracket for horizontal or vertical positioning. In addition, special coupling and 

escalating bracket allows a hydraulic motor to be directly mounted to the pump. 

Furthermore, segmented construction allows the customer to buy only those parts 

necessary for required maintenance. Therefore, the selection of this type of the 

centrifugal pump is more reliable for heavy duty in many different fields [27]. 

 

4.2  Baseline Impeller Geometry 

    Figure 15 shows the meridional view of the impeller, which is created in BladeGen 

tools in 1D, while Figure 16 illustrates the blade to blade view.   A 3D view of the GDM 

10 x 12 HD blade impeller is shown in Figure 17. The impeller has seven twist blades, 

which are created and designed using BladeGen tools in ANSYS workbench.  
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                  Figure 15: Meridional View of Impeller Blade 

Figure 16: Blade to Blade View 
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The details of the impeller blade are given in Table 2. 

 

 

Table 2: Impeller Specifications 

     Design                                                   Specification  

Flow rate                                                        0.251  m3/s 

Head                                                               42.6    m 

Rotating Speed                                               1400   rpm 

Efficiency                                                       61  % 

Inlet Diameter                                                 255.7 mm 

Outlet Diameter                                               430.6 mm 

Hub Diameter                                                  77.2   mm 

Inlet Angle                                                       20.1°  

Outlet Angle                                                    14° 

Blade Thickness                                              12.9  mm 

Blade number                                                     7 

Outlet width                                                     60.5  mm 

 

  

Figure 17: 3D of GDM 10 x 1 HD Blade Impeller 
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4.3  Baseline Volute(Scroll casing) Geometry 

    Figure 18 shows the geometry of the centrifugal pump volute. Table 3 illustrates the 

specifications of the scroll casing of GDM 10 x 12 HD centrifugal pump.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Section Details of the Scroll Casing 

 

 

   Section Detail                                                                     Value  

Inlet width                                                                         114.3   mm 

Cutwater clearance                                                            23.5     mm 

Cutwater thickness                                                              9        mm 

Exit hydrodynamic diameter                                             215.1   mm 

 

 

  

        Figure 18: Volute (Scroll Casing) Geometry 
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Table 4 shows the section details of the centrifugal pump scroll casing. 

 

Table 4: Volute Specifications 

 

 

 

 

 

 

 

 

 

 

 

No.      Area     Centroid radius    Outer radius     Major radius    Minor radius 

            (mm
2
)         (mm)                   (mm)                 (mm)                     (mm)                                                  

 

0             0                238.8                  238.8                 57.1                        0.0     

1             2298         249.6                  264.4                 57.1                        25.6 

2             4816         261.5                  292.4                 57.1                        53.6 

3             7509         271.9                  314.9                 59.5                        59.5 

4             10352      281.1                   333.8                 64.7                        64.7 

5             13328      289.6                   350.8                 70.6                        70.6 

6             16428      297.4                   366.5                 76.6                        76.6 

7             19640      304.8                   381.1                 82.6                        82.6 

8             23128      314.0                   397.4                 88.8                        88.8       

Cutwater 

 
 
 
 
 
 
 
 

Throat 

  



34 
 

Chapter 5 

       CFD Modeling 

 

     There are three elements to CFD analysis. The first one is CFX- PRE processor  used 

to case file and definition. The second one is CFX-Solver for results file, and the last is 

CFX-Post for resulting and data analysis. In addition, ANSYS simulation software 

simplifies the numerical solution of turbomachinery  impeller blades rows. Blade is 

drawn in a simple 1D meanline method  in BladeGen after getting the dimensions from 

the Vista CPD design tools for GDM 10 x 12 HD centrifugal pump, then exported in 

Design Modeler to do the geometry of the impeller blade. In similarity, volute geometry 

is done using Modeler geometry and an unstructured mesh in order to be exported to 

CFX processor [28]. 

    The mesh generation of the impeller blade is done with ANSYS TurboGrid, after that 

it exported to CFX for physical model definition, solving, and post-processing. Figure 19 

shows the ANSYS schematic starting from Blade Design Modeler, CFD analysis, and 

Multi-Objective Design Optimization using HEEDS MDO. 

    In this chapter, it will be on the studying of the pre-processing, which contains as 

following: 

 Geometry definition of the impeller blade. 

 Mesh generation playing a big role in a precise solution. 

 Physical model definition. 

 Achieving fluid parameters. 
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Figure 19 illustrates the procedure for pump design optimization. 

 Impeller TurboGrid Mesh 

Start 

Impeller Geometry 

BladeGen Impeller profile 

          CFX-pre 

  CFX-solver 

CFX-post  

HEEDS MDO-Modeler 

Blade Design 

Modeler  

CFD Analysis 

Multi-Objective 

Design 

Optimization 

Volute Geometry 
and Unstructured 

Mesh 

 

End 

Vista CPD Design 

 Volute Design 

Modeler  

                       Figure 19: Block Diagram of a Multi-Objective Design Optimization Process 

Optimized Results 
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5.1  Geometry of Pump (Impeller and Volute) 

      In this research, the impeller is considered as a rotor part of the centrifugal pump 

[R1], while the stationary part [S1] is the volute (scroll casing). The design for two parts 

is done with ANSYS BladeGen and Geometry Model to develop and determine the 

hydrodynamic characteristics of fluid flow through the parts especially the rotor part, 

which is the impeller of the pump. Figures 20 and 21 show the geometry of the pump 

rotor part and stationary, while Figure 22 shows the two parts of the pump. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inlet 

Exit 

Vane 

Periodic Interfaces 

                        Figure 20: [R1] Rotor Part of Pump 
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           Figure 21: [S1] Stationary Part of Pump 

Figure 22: Centrifugal Pump with Impeller and Volute 

Throat Area 

Cutwater Area 

Volute (Scroll Casing) 

Impeller 
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5.2  Mesh 

5.2.1  Impeller Mesh 

 

    The blade models were meshed through the use of ANSYS TurboGrid. Therefore,  

ANSYS CFD tools and TurboGrid structured mesh are used and ATM optimized 

topology mesh method is selected in the modeler as shown in Figure 23. 25,000 grids 

were generated to create one passage in the model. The details of the grid system for 

impeller blade are presented in Table 5. Relatively fine grids were used near the inlet, 

outlet, and wall surface, while the grids in other areas were relatively coarse [29].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Rotor 1 ATM Topology Structured Mesh 
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Table 5: Grid Mesh System for Impeller 

 

 

 

 

5.2.2  Volute (Scroll Casing) Mesh 

 

     The unstructured mesh of the volute was generated by ANSYS workbench with 68322 

nodes as shown in Table 6. Unstructured grids used were concentrated near the cutwater 

areas. Figures 24 and 25 illustrate the details of the grid system of pump volute [4]. 

Tables 5 and 6 show the grid mesh and the number of nodes and elements for the 

impeller and the scroll casing. 

 

 

 

 

 

 

 

 

 

 

 

          Number of Nodes                 Number of  Elements                       

         Fine (250000)                                 432125       

  

Figure 24: Unstructured Mesh of Volute Figure 25: Unstructured Mesh of Volute Throat 
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Table 6: Grid Mesh System for Volute 

 

 

 

 

 

 

 

 

 

APPENDEX A details the whole project schematic of Blade Modeler, ANSYS 

Design Modeler, ANSYS TurbGrid, and ANSYS-CFX. 

 

 

 

 

 

 

 

 

           Number of Nodes                   Number of  Elements                       

                   63822                                         188138  

  

 

 

 

 

     Figure 26: Project Schematic of ANSY Design Modeler and TurboGrid 
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5.3  Physical Model 

    Computational Fluid Dynamics (CFD) simulations have been performed with uniform 

inlet and outlet boundary conditions of the centrifugal pump, which are taken from the 

meanline analysis. The fluid flow is modeled as incompressible flow using water as a 

working fluid. K-e turbulence model is used because of its stability, widespread 

application in commercial software, and it gives good convergence. Moreover, the wall 

of solid is modeled as no-slip condition. Table 7  provides the specifications of the 

general CFX pre-processing setup [30]. 

 

Table 7: Description of Pre-processor Parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Pre-processing Specification                     

                 Analysis type                                   Steady state 

                     Interference                                     Rotor frozen 

                     Turbulence model                           K-ɛ                                                    

                      Reference pressure                         1  atm 

                  Convergence criteria : 
                       Residual type                                RMS 

                       Residual target                              1E-6 

                   Inlet [R1] 
                    Mass flow rate                              0.251 m

3
/s 

                      Total temperature                          25 
°
C 

                      Turbulence intensity                     Medium (5 %) 

                   Outlet [S1] 
                    Static pressure                               0 atm  

                  Wall boundaries: 
                   Mass and momentum                     No slip wall 

                       Wall roughness                              Smooth 
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Chapter 6 

CFD Simulation and Investigation of the Hydrodynamic Characteristics 

 

6.1  CFD Simulation and Boundary Condition 

    With the aid of Computational Fluid Dynamics (CFD), the complex internal flow in 

the pump impeller can be predicted quite well. In this thesis, a steady state solution with 

k-epsilon turbulence model was used in ANSYS-CFX for both baseline and modified 

GDM 10 x 12 HD pump models because of its stability, and it gave good convergence. 

ANSYS-CFX was employed to find velocity distribution, pressure distribution, kinetic 

energy, and streamlines of the impeller blade as well as setting the efficiency and head as 

output parameters to make optimization on HEEDS-MDO Modeler [27]. The impeller is 

modeled in the blade frame, and the volute is in the fixed frame of the reference and both 

of them are related each other through the “frozen rotor”. Moreover, mass flow rate is 

applied at the inlet of the pump, and the outlet pressure is used at the outlet of the pump. 

Furthermore, a smooth nonslip wall is considered over the entire physical surfaces except 

at the regions between interfaces [5]. 

6.2  Boundary Condition 

    At the inlet of computational domain, the mass flow rate is specified (Table 8 and 

Figure 27). At the outlet, pressure is imposed following the operating condition (Table 8). 

In addition, a no-slip flow condition is applied on the walls (on the blade, hub and 

shroud). Because of the change between the reference frame of the static volute and 

rotating impeller, the interaction of the impeller- volute has been simulated using the 

Frozen-Rotor interface model as shown in Table 8 [5]. 
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Table 8: Boundary Conditions of Centrifugal Pump 

 

 

Flow simulation domain                                   Impeller and Volute                    

Grid                                                          Impeller structured,  volute unstructured                                                    

Fluid                                                         Water at standard conditions 

Inlet                                                          Mass flow = Q (kg/s) 

Outlet                                                       Total pressure = 1 am 

Turbulence model                                    K-ε 

Interface impeller-volute                         Frozen rotor 

RMS (residuals)                                      10
-6 

                                                              

 

  

Figure 27: Boundary Conditions applied to the Centrifugal Pump 
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6.3  Pressure and Velocity Distribution 

    In order to examine pressure and velocity distribution of the impeller blades, the 

pressure and velocity plots of the impeller blade were generated in post-solver ANSYS-

CFX. All simulations are made assuming incompressible flow conditions. 

6.3.1  Pressure Distribution 

 

    Pressure distribution plots of the impeller blade used in baseline pump are shown in 

Figures 28, 29 (a, b). It can be clearly seen that pressure is different  over the impeller 

blade surfaces. It is much higher at the trailing edge and less toward the leading edge of 

the blade, which is normal at the cutwater area between the impeller and the volute.  

6.3.2  Velocity Distribution 

 

    For the velocity distribution, it can be seen that the velocity flow is higher at the 

trailing edge where the turbulence occurs at cutwater region between the impeller and the 

volute. On the other hand, the velocity at the inlet of the impeller blade (suction) is 

smaller, and increases drastically toward the outlet of the blade. The velocity distribution 

of the impeller blade is shown in Figures 30, 31 (a, b) 
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Figure 28: Pressure Distribution through the Impeller Blade (a) 

Figure 29: Pressure Distribution through the Impeller Blade (b) 
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Figure 30: Velocity Distribution through the Impeller Blade (a) 

Figure 31: Velocity Distribution through the Impeller Blade (b) 
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    Figure 32 (a, b) shows that the streamlines of the centrifugal pump. It can be observed 

that the vortices are generated due to turbulence at the trailing edge. This causes head 

losses as a result of acceleration of water flow in this region, and increases torque and 

power consumption unless the relative ratio of outlet pressure and inlet pressure is kept 

constant.  

 

 

 

 

 

 

 

                     (a) 

 

 

 

 

 

 

 

 

                     (b) 

 Figure 32: Velocity Vector Distribution through the Impeller Blade (a, b) 
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 (b) 

 Figure 33: Streamline Distribution through the Impeller Blade (a, b) 
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Figure 34: Velocity Contour in Stn Frame through the Impeller Blades 

Figure 35: Velocity Vector in Stn Frame through the Impeller Blades 
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Figure 36: Velocity Contour View Blade to Blade 

Figure 37: Turbulence Kinetic Energy Contour View Blade to Blade 
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    Figure 33 (a, b) shows the streamline distribution through the impeller blade. It can be 

clearly seen that the fluid flow stream is much higher at the trailing edge as compared 

with the leading edge, while Figures 34, 35 illustrate the velocity of fluid flow through 

the impeller blade. Figures 36, 37 show the velocity and turbulence kinetic energy view 

blade to blade respectively. Also, Tables 9, 10 illustrate minimize and maximize velocity 

and pressure fluid flow through the impeller blade respectively. Figure 38 shows the 

water flow through the pump and both velocity and vector contours.  

 

Table 9: Minimum and Maximum Fluid Flow Velocity through the Impeller Blade 

Minimum Velocity (m/s) Maximum Velocity (m/s) 

1.027e + 001 3.162e + 001 

 

 

Table 10: Minimum and Maximum Fluid Flow Pressure through the Impeller Blade 

Minimum Pressure (Pa) Maximum Pressure (Pa) 

-4.828e + 005 4.696e + 005 

 

Figures 39 and 40 show the pressure and velocity change along the blade and the volute 

of the centrifugal pump. After the fluid leaves the impeller, the velocity increases 

whereas the pressure decreases. In addition, the load distribution along the blade is 

observed to be smooth. 
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(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 Figure 38 (a, b): Fluid Velocity Contour and Vector through the Impeller Blades and Volute 
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Figure 39: Pressure along the Centrifugal Pump 

Figure 40: Velocity along the Centrifugal Pump 
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Chapter 7 

  Multi-Objective Hydrodynamic Design Optimization 

 

7.1  HEEDS-MDO Modeler 

    HEEDS MDO-Modeler is used to find the optimum values of centrifugal pump 

impeller and volute.  The hybrid and adaptive algorithm (SHERPA) optimization method 

is used by HEEDS MDO-Modeler. It uses the elements of the multiple search methods at 

the same time in the proper manner [31].  

7.1.1  Advantages of SHERPA 

SHERPA method has advantages for optimization values as following: 

 In Sherpa method, the performance improves with every several iterations, 

whereas the performance with Algorithm method does not. 

 Sherpa method can be used for removing user specified tuning parameters 

because it acclimatizes with each problem. 

 In the first time of simulation, it can find the better solutions by using this method 

of optimization successfully. 

 It helps many non-experts in different fields to apply optimization successfully. 

 Global and local research can be performed at the same time by this method [31]. 
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7.1.2  Multi-Objective Design Optimization 

    The objective of this design study is to maximize efficiency and head of GDM 10 x 12 

HD centrifugal pump. The relative ratio of outlet pressure at the exit of the pump to the 

inlet pressure at the entrance should not increase to more than 0.15166, which is set as a 

constraint because the more the relative pressure ratio increases, the more head loses will 

occur. The optimization will be accomplished using 23 variables, related to the shape of 

the impeller and the volute of the centrifugal pump. SHERPA method is used to perform 

the optimization study. Table 11 shows the constraint and the multi-objective of the 

MDO process. 

 

Table 11: Constrain and Multi-Objective for MDO Process 

 

 

 

 

 

Objectives 

Efficiency 0.61 

Head     42.6  m 

 

Constraint Ratio of head losses   
  

  
  0.15166 



56 
 

7.2  Centrifugal Pump Optimization 

    The optimization is accomplished using 23 variables relating to the shape of the 

impeller and the volute of the centrifugal pump. Table 12 illustrates the baseline design 

of the impeller and the volute.  

Table 12: Baseline Design  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impeller 

Variables 

Geometry 

Parameter Name value 

Beta-1 34.316 

Beta-2 22.5 

Beta-3 20.683 

Beta-4 22.5 

Blade-thickness 12.919 

Blade-number 7 

 

Volute 

Model 

Geometry 

r3 238.78 

b3 114.3 

b2 60.49 

Clear side 23.469 

Volute thickness 9.0429 

theta2 0 

thetaCR 14 

minor 1 25.602 

minor 2 53.645 

minor 3 59.506 

minor 4 64.7 

minor 5 70.605 

minor 6 76.64 

minor 7 82.62 

minor 8 88.773 

diffLength 355.36 

Ex Hyd-diffDiam 215.07 

All dimensions in (mm) and angles in degree 
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7.3  Optimum Results 

    For the new GDM 10 x 12 HD centrifugal pump optimum design, HEEDS MDO was 

set and optimum results were generated. 100 iterations were used to get the feasible and 

non-feasible results (maximum and minimum values) of the baseline variable 

evaluations. Figure 41 shows the various design evaluations of the variables through the 

iterations carried out to arrive at the final optimized design. 

 

 

 

 

 

 

 

 

 

 

Figure 41: Objectives and Constraint 
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Table 13 shows the optimized design of the impeller and the volute getting from HEEDS 

MDO-Modeler process. 

 

Table 13: Optimized Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impeller 

Variables 

Geometry 

Parameter Name value 

Beta-1 33.15 

Beta-2 20.4 

Beta-3 21.97 

Beta-4 24.75 

Blade-thickness 11.18 

Blade-number 7 

 

Volute 

Model 

Geometry 

r3 239.68 

b3 114.26 

b2 59.1 

Clear side 25.2 

Volute thickness 8.12 

theta2 -2.64 

thetaCR 15.68 

minor 1 24.92 

minor 2 52.35 

minor 3 60.3 

minor 4 66.05 

minor 5 69.7 

minor 6 75.4 

minor 7 80.5 

minor 8 88.7 

diffLength 356.18 

Ex Hyd-diffDiam 213 

All dimensions in (mm) and angles in degree 
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Table 14 shows a comparison of the baseline design and the optimized design in terms of 

efficiency and head. The efficiency was increased by about 3.2 % and the head was 

decreased by about 2 % from baseline values. Tables 15 and 16 illustrate the optimized 

minimum and maximum velocities and pressure through the impeller blade respectively. 

The vortex of turbulence of fluid flow in optimized values is much less than baseline 

values, as shown in Figure 43. 

Table 14: Baseline and Optimized Model Values 

                                 Head (m)                 Efficiency [%]  

Baseline Model             42.626                           61  

 

Optimized Model          41.62                             63 

 

  

 

Table 15: Optimized Minimum and Maximum Fluid Flow Pressure through the Impeller 

Blade 

Minimum Velocity (m/s) Maximum Velocity (m/s) 

1.028e + 001 3.164e + 001 

 

 

Table 16: Optimized Minimum and Maximum Fluid Flow Pressure through the Impeller 

Blade 

Minimum Pressure (Pa) Maximum Pressure (Pa) 

-4.508e + 005 4.525e + 005 
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Figures 42 and 43 show  pressures , velocities and the turbulence concentration after 

optimization. It can be clearly seen that the turbulence is reduced after optimization. 

 

  

 

 

 

 

 

 

                                                                                  (a) 

 

 

 

                                                                       

 
 

 

 

 

                                                                     (b)  

 

Figure 42: Optimized Min and Max Velocity and Pressure through the Impeller Blade (a, b) 
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Baseline 

Optimized 

Figure 43: Turbulence Flow over Blade to Blade before and after Optimization 

High Vortex of Turbulence   

Low Vortex of Turbulence 
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7.4  Performance In SHERPA Method Optimization 

 

It can be clearly observed that the performance is much better with SHERPA method, as 

shown in Figure 44. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: SHERPA Optimization Method 
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Chapter 8 

       Conclusion 

 

    A CFD investigation of the hydrodynamic characteristics of fluid flow through the 

impeller blade of the centrifugal pump was conducted, and was represented in terms 

of pressure and velocity. A pressure analysis was conducted, and it was found that the 

pressure is higher at the trailing edge than the leading edge of the impeller blade, 

decreasing rapidly at the outlet. The velocity of fluid flow through the blade was 

higher at the trailing edge as compared to the leading edge, which was determined to 

be normal because the kinetic energy was increased in this area of the blade. A multi-

objective design optimization process was carried out for the GDM 10 x 12 HD 

centrifugal pump using 2D BladeGen and ANSYS for CFD analysis, and HEEDS 

MDO-Modeler for optimization. It could be clearly seen that every single objective 

could not simultaneously reach the optimum value in the multi-objective 

optimization, but a compromise among the objectives was needed. The hydrodynamic 

performance of the optimized pump efficiency was improved as compared to the 

baseline design. However, the head was decreased from the baseline design to prevent 

the increase of head losses.   

The following were observed in the optimized design: 
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Efficiency was increased by 3.2 % 

Head was decreased by 2 % 

Blade thickness was decreased by 13.5 % 

Volute thickness was decreased by 10.2 % 

The vortex of the turbulence after optimization is improved as compared with the 

baseline. It is decreased drastically through the blade area. 
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Future Considerations 
 

 

 More realistic design could be produced. 

 Considering more design variables. 

 Considering a more complex design. 

 Including more stages, hub, casing, and more adding layers between shroud and 

the hub of the impeller blade. 

 Performing acoustic and thermodynamic analyses. 

 Reduce the number of blades. 

 Understanding HEEDS MDO methods.  

 Solve discrepancy between HEEDS MDO and ANSYS workbench solution. 
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 Appendix A (Project Schematic Process) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 45: Project Schematic Process in ANSYS Workbench 
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Appendix B (Number of Iterations) 
 

 

              Figure 46: Number of Iterations in HEEDS MDO-Modeler 
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Appendix C (Efficiency and Head Process) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Head Objective Process 

Figure 48: Efficiency Objective Process 
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Appendix D (Variables Evaluations and Constraints) 
 

 

 

 

 

 

 

 

Figure 49: MassFlow (Head losses) Constraints Process (P2/P1) 

Figure 50: Variables Evaluation 
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Appendix E (Design Variables) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 51: Responses of Design Variables 
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