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An Almost Periodic Function
of Several Variables
with no Local Minimum

GREGORY S. SPRADLIN ()

SOMMARIO. - Si costruisce una funzione almost periodica di due variabili
che sia differenziabile infinite volte e che non abbia alcun minimo locale.
Oltre a violare l'intuizione, l’esempio riwvela una differenza tra funzion:
almost periodiche di una e pii variabili.

SUMMARY. - An almost periodic function of two variables is constructed
that 1s infinitely differentiable and has no local minimum. In addition to
being counterintuitive, the example reveals a difference between almost
pertodic functions of one and of several variables.

1. Introduction

An almost periodic function, defined in a moment, is a generalization
of a periodic function. Like periodic functions, almost periodic func-
tions can be defined on R, on R”™, even on more general topological
groups ([C]). Many properties of almost periodic functions on the
real line are well known. The properties of almost periodic functions
on other domains appear to be less well known. This paper proves
that these properties may be very different.

These differences may have implications for the field of differen-
tial equations. Recently, Serra, Tarallo and Terracini ([STT]) studied
an ordinary differential equation containing an almost periodic term,
finding a solution homoclinic to zero. Efforts to solve the problem

(*) Indirizzo dell’ Autore: University of California-Davis (U.S.A.).
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generalized to a PDE have failed. The proof in [STT] used topolog-
ical properties of the real line not shared by R™ (n > 2). Different
approaches, attempted by the author and others, might have suc-
ceeded had it been true that any almost periodic function on R”™ has
a local minimum. This paper shows, by exhibiting a counterexample,
that this plausible, intuitive property does not hold.

Let us define an almost periodic function on R”. This definition
is the natural generalization of (Bohr) almost periodic and is found
in [Be]. First, a set A C R” is relatively dense if there exists L > 0
such that for every z € R”, there exists y € A with |z —y| < L. Next,
for e > 0, 7 € R?, and h: R® — R, we say ¥ is an e-almost period of
h if for all z € R", |h(z + ¥) — h(z)| < ¢. Finally, h is defined to be
almost periodic if for every ¢ > 0, there exists a relatively dense set
A = A(e) such that for all @ € A, a is an e-almost period of h.

We will prove the following:

THEOREM 1.0 There exists a function G € C*°(R?,R) that is almost
periodic and has no local minimum.

Of course, y € R? is defined to be a local minimum of G if there
exists ¢ > 0 such that G(z) > G(y) for all z € B.(y), that is, for all
r € R? with |z — y| < e. By contrast, it is easy to show that any
almost periodic function on the reals must have infinitely many local
minima. Note: Theorem 1.0 implies that for any n > 2, there is an
almost periodic function on R™ with no local minimum: let G be as
above and define

G(z) = G(z1,29,...,2,) = G(21,72) . (1.1)

Then G € C*(R™ R) has no local minima, because GG has none.
This paper is organized as follows: in Section 2, to make reason-
ing simpler, we formulate a discrete version of the problem. That is,
we define notions of almost periodicity and local minimum for func-
tions Z? — R, then construct a function ¢ : Z2 — R that satisfies an
analogue of Theorem 1.0. In Section 3, we extend ¢ to R? so that it
is infinitely differentiable, almost periodic, and has no local minima.

2. The Discretized Problem

Let us generalize “almost periodic” to functions on Z? in the most
obvious way. If f:Z? — R, ¢ > 0, and a € 7Z? say that a is an
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e-almost period of f if |f(z 4+ a) — f(z)| < € for all z € Z% Define f
to be almost periodic if, for every € > 0, there exists a set of e-almost
periods of f that is relatively dense in R2. Define the metric d on 7Z?
by

d(z,y) = |21 — yi| + |22 — ya2l. (2.0)

We will construct ¢ : Z? — R satisfying:

(7) g is almost periodic,

and for all z € 72,

(i1) g(y) # g(z) for all y € Z? with d(z,y) =1, and

(ii1) There exists y € Z? with d(y,z) = 1 and g(y) < g(z).

(2.1)

Define the basis unit vectors e; = (1,0) and e; = (0,1). Let us say
a function f from Z?% to R is “a-periodic” if f(z) = f(z + a) for all
x €72 Forl=1,2,..., we will construct g; : Z? — R satisfying

(1) 0 < gi(z) < 3! for all z € 72, and

(i1) g; is 2 - 3'e;- and 2 - 3ley- periodic. (2.2)

Then define
00 1 12
= — . 2.3
=3 (55) # (23)

g is well-defined and almost periodic: the above series converges
because for any z € Z2,

00 1 2 00 3 {
0<g(z) <y <E> 3+ <33 <E) < 0. (2.4)
=1 =1

g is almost periodic, since a convergent series of periodic functions
is almost periodic.
Now we define ¢g; more precisely. For [ = 1,2, ..., define g; by

2-3" —[a1| = |wal; |1 <3 —Tand |2y <37 -1,
gi(z) =< 0; |z1] = 3! or|xzg| = 3,
gi(z +2-3') = gi(z) for allz, y € 72.
(2.5)
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This definition is consistent. Figure 2.6 shows g; (with ¢41(0,0) = 6).

202343202
000000000
202343202
303454303
404565404 ---
303454303
202343202
000000000
202343202

Figure 2.6: ¢1 for |z4], |z2] < 4.

g1 can be thought of as a “bump” supported in the square {|z{| <
31— 1, |zq| < 3" — 1) and repeated periodically. g; obviously satisfies
(2.2)(i)-(ii). ¢: also satisfies the following properties (some of which
can be checked for [ = 1 using Figure 2.6):

(1) g ()EZforaH$€Z2

(i1) |21 < 3' = 1and|z9) <3'— 1= gi(z) > 0.
(711) gi(z) = 0= g1(z) = g2(z) = ... = g1_1(z) = 0.
() gi(z) =0=>gi(z —e1) =0=gi(z + €1)

or gi(z —ez) =0=gi(z+eq).
(v) gi(z) > 0= gi(y) # gi(z) for all y € 7% with d(y,z) = 1.
(vi) gi(z) > 0= {gi(z — e1) < gufz) or gi(z +e1) < gi(e)}
and {gi(z — e2) < gi(z) or gi(z+e2) < gi(x)}.
(2.7)
Proof. (2.7)(i) and (ii) are obvious. To prove (iii)-(iv), define S
to be the zero set of g;, that is,

Si={zez’| gi(2) = 0}
={zez?| 2= (31n1,31n2), ny or ng is an odd integer.}

(2.8)

S1 D82 D83 D ..., proving (iii). (iv) is also obvious from the form
of S;. To prove (v), let 2 € Z% with g;(z) > 0. Since g; is 2-3'e;- and
2 - 3ley- periodic, and gi1(z) > 0, assume without loss of generality
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that |z1| and |z5| are less than or equal to 3! — 1. Let y € Z? with
d(z,y) = 1. If 21 = y; then |zg — yo| = 1. If |yp| = 3' also, then
g1(y) = 0# gi(x). So assume |y < 3" — 1. Then

91(z) — g1(y) = |y2| = |z2| # 0, (2.9)

because zy and y, are integers that differ by 1. If 2y # y; then
|21 — y1| = 1 and @9 = yy. If |y1| = 3" also, then g;(y) = 0 # g/(2),
so assume |y;| < 3! — 1. Then

gi(z) — g1(y) = |y1| — |21 # 0. (2.10)

(v) is proven.

To prove (2.7)(vi), let = € Z% with g;(z) > 0. Since g; is 2 - 3e;-
and 2 . 3ley- periodic and symmetric with respect to the z;- and
ro-axes, and g;(z) > 0, assume without loss of generality that z;
and z, are between 0 and 3' — 1, inclusive . Then gi1(z + €1) and
gi(z + e3) are both less than g;(z), proving (vi): If z; = 3' — 1, then
gi(z+e)=0<g/(z). Ifz; <3 — 1, then gj(z +e1) = gi(z) — 1 by
the definition of g;. The reasoning is the same for g;(z + e3).

Now we can prove that g has properties (2.1)(ii)-(iii). Let = € Z?
and y € 7Z? with d(y,z) = 1. By (2.7)(ii) and (2.7)(v), for large
enough [, g:(y) # gi(z). Let N > 1 with gn(y) # gn(z) and gi(y) =
gi(z) foralll=1,2,...,N — 1. Then

I
[~]
N
=
—
~~
2
~~
=
S
|
=
~~~
Neud
S
=

=N ) - )
> (55) - 3 () n@-awl e
I
> (w) -2 (%)™
N? N? oo 2_N2
@

For Il > N + 1,

P-N*=(I4+N)(I-N)>I+N>Il+1. (2.12)
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Therefore
00 1 2_N2 00 1 +1
3 (E) < Y (E) gl
I=N+1 I=N+1 (2.13)
10 /3 \N*t2 270
T 10) = 7000 < 10

Therefore by (2.11)-(2.13),

l9(z) — g(y)| > (%)W (1 — 11—0) > 0, (2.14)

proving (2.1)(ii).

To prove (2.1)(iii), let z € Z%. By (2.7)(ii)-(iii), there exists N > 1
with gn(z) > 0and gi(z) =0forall[=1,2,...,N—1. By (2.7)(iv),
gi(z+é)=gi(x—¢é)=0foralll =1,2,...,N—1, where é = ¢; or e3.
Assume for simplicity that é = e;. By (2.7)(vi), gn(z + €1) < gn(2)
or gn(z —e1) < gn(z). Also assume for simplicity that gn(z+e1) <
gn(z). Then

12

o) —gate) =3 (55) @) ~atet )

- . 2 =1
=3 (35) @@ -t +e)
=N
1 N2 0 1 2
> (55) - X (55) la@ -at+ea)
=N+ . (2.15)
(w) - 2 () o
> — _
10 N 210 .
N N 0 *-N
@
10 10 IZN+1 10
> () - w(m) " o
10 10\ 10
by (2.13). (2.1)(iii) is proven. We have constructed g : 2> — R
satisfying (2.1).

3. Constructing a Continuous Function

Let us extend g to a function G on all of R? that is almost periodic
and has no local minimum. We will define G(z) to be a weighted
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sum of g(¢&) for several ¢ € Z? close to z. Let the function ¢ €
C®(R%[0,1]) be supported on the square [—1,1] x [—1, 1]; that is,
P(z) #0=|z1| < 1 and |z5] < 1. (3.0)
We will define ¢ more precisely later. Define G : R? = R by
= > (- &g(9). (3.1)
¢ez?

Since GG can be regarded as the convolution of a Cj° function with
a measure, (G is well-defined and infinitely differentiable. To prove
that (G is almost periodic, let € > 0. Let A be a relatively dense set
of €/4-almost periods of g, in the sense of Section 2. Let a € A and
z € R2 Then

G(z) - G(z+a)
= Pz —g(€) - D vz +a) - €E)g(é)

ger? ¢en?
=3 0@ -9 — 3 b((x+a) — (E+a)g(E+a)

Een? £€z? (3.2)
= > ble—9(6) = Y vz - g(E+a)

Een? fen?
= > pla—&(9(€) - 9(&+ a)).

Eer?

By (3.0) the last summation has no more than four nonzero terms.
Therefore, since 0 < 9 < 1,

Gl)~ Gat+a) < T 1g(©) f+a)|<4<4):e. (3.3)

Eem?

G is almost periodic.
To show that G has no local minimum, let us define ) more precisely.
Let ¢ satisfy

(i) ¢ € C*(R,[0,1])

E”))Itl(>)1:>cp() 0

112) ¢ =1

(iv) o(—t) = @(t) for all t € R (3.4)
() 0<t<1=pt)+o(l—t)=1
(vi)0<t<1=¢(t) <0
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Now define

P(z) = p(z1)p(z2). (3.5)
This is consistent with (3.0). Let G be defined as in (3.1). We will
prove that for any 2 € R?, z is not a local minimum of . There are
three cases: (i) = € Z?, (ii) z is not in Z?, but belongs to a horizontal
or vertical segment connecting two points in Z2, and (iii)  has the
form z = (& + 5,& + 1) for some & = (£1,&;) € Z? and s,t € (0,1).
If = € Z% then G(z) = g(z) by (3.4)(i)-(iii). By (2.1)(iii), g(z +
€) < g(z) for some é € {ey,—e€y, 9, —€2}. We will show that on the
line segment connecting = and x + é, G behaves like ¢, that is, for

t €[0,1],

Gz +te) =g(z) - (1 - () (g(2) - g(z +€)). (3.6)

Therefore z is not a local minimum of G, since by (3.4)(vi), G(z +
té) < G(z) for all t € (0,1]. We will prove (3.6) for when é = e; or
—e9; the other two cases are similar. First suppose é = e;. For all
t € [0,1], the open square ((z1+1¢) —1, (z1+t)+1) X (z2—1,22+1)
contains no points of Z? other than (possibly) z and z+e;. Therefore

G(z + teq) has the form

Gz +ter) = P((z+ter) —2)g(x) +¥((z + ter)+
—(z+e1))g(z+er)

= P(ter)g(z) + ¥((t = Der))g(z +er)

= ¢()g(z) + ¢t = 1)g(z+e) (3.7)
= o(t)g(z) + (1 —t)g(z + e1) '

(by (3.4)(iv))
p(t)g(x) + (1 - @))g(z+e1)
9(z) = (1 = ¢())(9(2) - g(z + €1))

by (3.4)(v). This proves (3.6) for the case é = e;. If, instead,
€ = —eq, then

Gz —teg) = ¥((x —tex) — x)g(x) + ¥ ((z — tex)+
- (»"C —€2))g(r — eg)

= P(—tea)g(z) + ¥((1 - t)e2))g(z — e2)
= sO( t)g(z) + (1 —t)g(z — e2) (3-8)
= p(t)g(z) + (1~ t)g(z — e2)

p(t)g(z)+ (1 - o(t))g(z — e2)

= g(x) = (1 - ¢(®)(g(z) - g(z — e2)).
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(3.6) is proven.

The second case occurs when x has the form & + té for some
€e7Z%te(0,1)and é = e or ea. By (2.1)(ii), g(&) # g(£+¢€). If
g(&) > g(€+¢é), then (3.6) implies that G({+t'é) < G({+té) = G(z)
for t' € (¢,1]. If g(€) < g(§+ €é), then (3.6) implies that G(z 4 t'é) <
G(&+té) for t' € [0,t). In each case,  is not a local minimum of G.

The third and final case occurs when z has the form z = (& +
s,& +t) for some & = (&1,&;) € Z2 and s,t € (0,1). For convenience
assume that £ = (0,0). Let z € (0,1) x (0, 1). If z is a local minimum
of G, x must be a critical point of G. We will assume z is a critical
point of G and show that z is not a local minimum. For any y in the
open unit square (0,1) x (0,1), ¥(y — &) equals zero for all £ € 72
except for the four points & = (0,0), €1, €2, and e; + e3. Therefore
G(y) has the form

G(y) = ¥(y)g(0,0) + 2 (y — e1)g(er)+
(y—e2)gle) + ¥(y — e1 —ea)g(er + e2)
= o(y1)e(y2)9(0,0) + o(y1 — p(y2)g(er)+
+ (1) e(y2 — )gle2) + oy — Dp(y2 — 1)g(e1 + e2)
= 0(W1)e(y2)9(0,0) + ©(1 — y1)e(y2)g(e1)+
+ e(y1)e(1 —y2)g(e2) + (1 — y1)p(1 — y2)g(er + €2)
(by (3.4)(iv))
= o(y1)e(y2)9(0,0) + (

99(91))S0(y2)§1(€1)+

1 _
+ (1) (1 = ©(y2))g(e2) + (1 = @(y1)) (1 — ©(y2))g(er + e2)

(by (3-4)(v))
=9(1,1) +[g(0, 1) — (1, D]e(yr) + [9(1,0) — g (1, D] (ya)+
+1[9(0,0) = g(1,0) = g(0, 1) + g(1, D] (y1) o (y2)-

(3.9)
Let € (0,1) x (0, 1) be a critical point of G. By (3.9), for ¢ € [0, 1],
G(zy,t) has the form

G(z1,t) = A+ Bo(t) (3.10)
for some real numbels A and B that depend on z;. Since z is a
critical point of G, -2 55;G(2) = 0= By'(22). By (3.4)(vi), ¢'(z2) # 0,
so B =0, and G is constant along the segment connecting (z1,0)

and (z1,1), that is,

G(zy,t) = G(z) = G(21,22) (3.11)
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for all ¢ € [0, 1]. By similar reasoning, there exist numbers A and B
such that
G(s,z9) = A+ Byp(s) (3.12)

for all s € (0,1). Since %G(m) = 0, we obtain B = 0 as above, so
G is constant along the segment connecting (0, z2) and (1, z3), that
is,

G(s,z2) = G(z) = G(21, z2) (3.13)
for all s € [0, 1].
Let ¢ > 0 with

e <min{zy, z9,1 — 2,1 — 22}, (3.14)

Then G(z1 4 ¢,22) = G(x1,22). As above, there exist constants A
and B such that

G(z1+¢,t) = A+ Bop(t) (3.15)

for all ¢ € [0,1]. We claim B # 0: if B = 0, then G is constant along
the vertical segment {z1 + ¢} x [0, 1]. Thus (3.11) and (3.13) give

G(z1,1) =G(z1,22) = G(z1 +€6,22) = G(z1 + ¢, 1). (3.16)

This is impossible because by (3.6), for s € [0,1], G(s,1) has the
form

G5 1) = 9(0,1) — (1 - p(s) (90, 1) = (1, 1)), (3.17)
By (2.1)(i0), 9(0,1) # g(1,1), and by (34)(vD), $(z1) # w(er +
€). Therefore the above gives G(z1,1) # G(z1 + ¢, 1), contradicting

(3.18). Therefore B # 0 in (3.15).
If B> 0in (3.15), then by (3.4)(vi),

G(zi+exz24+¢) = A+ Bp(za+¢)
< A+ By(z3) (3.18)
= G(z1+¢,29) = G(zq, 22).

If B < 0in (3.15), then
G(z1+¢,22—¢) = A+ Bo(zg — ¢)
< A+ Bp(z2) (3.19)
= G(z1+¢,22) = G(21,22).
In either case, we have found a point at distance v/2¢ from z where

the value of G is less than G/(z). Since ¢ can be arbitrarily small, z
is not a local minimum of G.
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Open Questions

Some unanswered questions remain. The function G constructed
here has an absolute maximum at (0,0). Does there exist an almost
periodic function on R"™ with no local minimum or maximum? Does
there exist a real analytic, almost periodic function on R™ with no
local minimum? It is not even obvious that a continuously differ-
entiable, almost periodic function on R™ must have a critical point.
Finally, there are periodicity conditions that are weaker than peri-
odic and stronger than almost periodic, such as quasiperiodic. These
notions are easily formulated for functions on R™. Does a quasiperi-
odic function on R”™ have to have a local minimum?
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