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Abstract

Many processes in nature and industry can be described by partial differential

equations. PDEs employ quantities such as density, temperature, velocity, etc. and

their partial derivatives to model these phenomena. However, in the case of dis-

tributed parameter systems, it is not always possible to have access to the states of

the systems due to technical difficulties such as lack of sensors. Therefore, there is the

need for state observers to estimate the states of the system only having the output

of the system available. In this research, the theory of sliding mode and variable

structure systems are employed in order to design observers for different classes of

distributed parameter systems such as advection equation, Burgers’ equation, Euler

equations, etc. Some contributions of this research are: suggesting the state transfor-

mation which allows the arbitrary design of sliding manifold in sliding mode observer,

developing some formulae for observer gain, discussing the shock wave situation and

its properties and solutions, designing sliding mode observer and anomaly detection

system for a system of advection equations.
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Chapter 1

Background

1.1 Motivation of the Research

This research discusses the problem of developing state observers for distributed pa-

rameter systems. When dealing with systems described by partial differential equa-

tions, the access to the states of the system can not be guaranteed, most of the time

due to technical difficulties such as lack of sensors.

The motivation of the research came from the lack of enough researches on the sub-

ject of designing state observer for systems described by partial differential equations.

These types of observers have applications in industry and science. For instance, the

motivation of the research done in chapter 4 came from the need to localize the

possible leak in the fuel lines of J-2X rocket engine test bed.

Here the problem of designing state observers for distributed parameter systems

is attacked using the powerful theory of sliding mode control. This theory allows to

design controllers and observers for nonlinear systems in a robust way. Different cases

1



1.2. OUTLINE OF THE DISSERTATION

of linear and nonlinear PDEs such as advection equation and Burgers’ equation are

investigated. In addition, some formulae for designing the observer gain are developed.

In designing sliding mode observer, in contrast to sliding mode control, the choice

over sliding manifold is not arbitrary. In chapter 2, a novel state transformation

is suggested that allows the freedom in designing the desired sliding manifold. In

chapter 4, the advection equation is studied and an anomaly detection system is

developed that is able to find the parameters of possible anomalies in the system as

well as serving as the state observer for the distributed parameter system.

1.2 Outline of the Dissertation

The dissertation begins with an overview on the mathematical background required

for the rest of the research in chapter 1. It includes materials on partial differential

equations, state observers, and sliding mode theory as the main tool in designing

observers in this research. Chapter 1 ends with literature reviews on designing state

observers and sliding mode observers for different types of distributed parameter

systems. Designing sliding mode observer for a specific class of distributed parameter

systems is discussed in chapter 2. A novel state transformation is developed to allow

for arbitrary design of sliding manifold in sliding mode observer and a formula is

suggested for the observer gain. In chapter 3, the mathematical base for chapters 3

and 4 is provided. The equations describing fluid dynamics and the different variations

of them such as Burgers’ and advection equations are discussed. A sliding mode

observer is designed for the case of Burgers’ equation in chapter 3. A sliding mode

observer as well as an anomaly detection system for a system of advection equations

2



1.3. PARTIAL DIFFERENTIAL EQUATIONS

are developed in chapter 4. The applications of the suggested techniques are simulated

in order to predict the behavior of fluid flow in a pipeline and to detect the location

and intensity of the possible leakage in it. Each chapter ends with its own conclusion

and the suggestions for future work. The overall view of the research and suggestions

for future work are provided in chapter 5. Samples of MATALB codes used throughout

this research are presented in appendix A.

1.3 Partial Differential Equations

Many natural, biological, chemical, mechanical, and economic phenomena can be

described by a set of partial differential equations. These concepts are investigated by

employing differential equations, which consist of quantities such as density, pressure,

velocity, etc. (Frey & de Buhan, 2008), (Polyanin et al., 2008). Most of the models

based on partial differential equations used in practice, have been introduced in the

19th century (Brezis & Browder, 1998).

A differential equation is an equation relating an unknown function and its

derivatives of different orders. An ordinary differential equation (ODE) is a

differential equation in which the unknown function depends on a single independent

variable. A partial differential equation (PDE) is a differential equation in which

the unknown function F : Ω → R is a function of two or more independent variables

and of their partial derivatives. Let Ω denote an open subset of Rd. Given F :

R
dn × R

dn−1 × · · ·Rd × R × Ω → R where n ≥ 1 and is an integer. The following

3



1.3. PARTIAL DIFFERENTIAL EQUATIONS

expression shows a PDE of order n

F

(
x, v,

∂v

∂x
, · · · , ∂

n−1v

∂xn−1
,
∂nv

∂xn

)
= 0, x ∈ Ω, (1.1)

where v(x) : Ω → R is the unknown function. A system of partial differential equa-

tions is a set of some PDEs for several unknown functions. Solving a PDE means

finding all functions v satisfying (1.1) and the additional boundary conditions on

some part of the domain boundary ∂Ω.

The PDE (1.1) is called linear if it has the form

∑

|α|≤n

aα(x)
∂αv

∂xα
= f(x), (1.2)

for a given functions f and aα. Equation (1.2) is called homogeneous if f ≡ 0.

Equation (1.1) is called semilinear if

∑

|α|=n

aα
∂αv

∂xα
+ a0

(
x, v,

∂v

∂x
, · · · , ∂

n−1v

∂xn−1

)
= 0, (1.3)

it is called quasilinear if

∑

|α|=n

aα

(
x, v,

∂v

∂x
, · · · , ∂

n−1v

∂xn−1

)
∂αv

∂xα
+ a0

(
x, v,

∂v

∂x
, · · · , ∂

n−1v

∂xn−1

)
= 0, (1.4)

and fully nonlinear if it depends nonlinearly upon the highest order derivatives.

A partial differential equation is called well-posed if

(a) a solution exists,

(b) the solution is unique,

4



1.3. PARTIAL DIFFERENTIAL EQUATIONS

(c) the solution depends continuously on the information given in the problem.

Otherwise it is ill-posed. The well-posedness condition does not define what the

unique solution will be and it does not indicate if the solution v is analytic or in-

finitely differentiable. For a PDE of order n the solution needs to be at least n times

continuously differentiable, so all the derivatives in the equation will exist and remain

continuous. Such a solution is called a classical solution of the PDE. However, not

all of the well-posed PDEs have a classical solution, conservation law is considered one

of the exceptions. These types of equations develop shock wave situation, which is a

discontinuity in the solution. In such cases, a physically meaningful solution known

as weak solution is introduced, which will be examined in more details in chapter 3.

In order to study the properties of solutions for PDEs, let us consider Hilbert spaces

H1, H2, and an equation as

Lv = f (1.5)

where L : H1 → H2 is a linear operator and f ∈ H2. The null space N(L) of

a linear operator is the set N(L) = {v ∈ H1 : L(v) = 0} and the range of the

operator is R(L) = {w ∈ H2 : ∃v ∈ H1 such that L(v) = w}. The existence

of a solution of (1.5) for any right-hand side function f ∈ H2 is equivalent to the

condition R(L) = H2, while the uniqueness of the solution is equivalent to the

condition N(L) = {0}.

Given two Banach spaces H1, H2, an operator L = H1 → H2 is said to be closed

if for any sequence (vn)1≤n≤∞ ⊂ H1, vn → v and L(vn) → w imply that v ∈ H1 and

w = Lv.

Existence: Let H1, H2 be Hilbert spaces and L : H1 → H2 be a bounded linear

operator. Then R(L) = H2 if and only if R(L) is closed and if R(L)⊥ = {0}.

5



1.3. PARTIAL DIFFERENTIAL EQUATIONS

Existence and uniqueness: Let H1, H2 be Hilbert spaces and L : H1 → H2 be

a closed linear operator. Suppose that there exists a constant C > 0 such that

||Lv||H2 ≥ C||v||H1, for all v ∈ H1 (coercivity estimate) (1.6)

If R(L)⊥ = {0}, then the operator equation Lu = f has a unique solution.

When working with ODEs, theorems like Picard-Lindelöf (Lindelöf, 1894) can

be applied to determine the existence and uniqueness of the solution. However, it

is different for PDEs. Cauchy-Kovalevskaya theorem investigates the existence and

uniqueness of the solution of Cauchy problems, although the solution may accompany

undesirable properties which will result in weak solutions. For more information on

this matter, refer to (Abell & Braselton, 2014), (Egorov & Shubin, 1998).

Functional Analysis

Function spaces are descriptive methods for functions and their norms, in qualitative

and quantitative concepts (Frey & de Buhan, 2008), (Tao, 2008), (Showalter, 1994).

A metric space is a couple (X, d) where X is a set and d is a metric (or a distance)

on X that is a function d : X → R+ such that

(a) d(x, y) ≥ 0, non-negativity

(b) d(x, y) = 0 if and only if x = y, identity

(c) d(x, y) = d(y, x), symmetry

(d) d(x, z) ≤ d(x, y) + d(y, z), triangle inequality.

Let (X, d) be a metric space and r a stricly positive scalar value. At any point x

in a metric space, we define the open ball (closed ball) of radius r about x as the

6



1.3. PARTIAL DIFFERENTIAL EQUATIONS

set B(x, r) = {y ∈ X : d(x, y) < r} (Bc(x, r) = {y ∈ X, d(x, y) ≤ r}). These balls

generate a topology on X , making it a topological space. A subset Y of X is called

open if it is a union of open balls, its complement is called a closed.

Let us consider a vector space E on K, where K is R or C. A mapping N : E → R+

is a seminorm on E, if and only if

(a) N(x+ y) ≤ N(x) +N(y),

(b) for every λ ∈ K, N(λx) = |λ|N(x).

A norm is a seminorm with the additional property: N(x) = 0 if and only if x = 0.

Let E and N be a vector space and a norm on E, respectively. The pair (E,N)

is called a normed space. Let (E, || · ||) be a normed space. The map E × E →

R+, (x, y) 7→ ||x − y|| is a distance on E, called the distance associated to the

norm || · ||.

Let (X, d) be a metric space. A Cauchy sequence in X is a sequence (xn)n∈N of

elements of X such that

∀ǫ > 0, ∃n0 ∈ N, ∀n ≥ n0, ∀m ≥ n0, d(xn, xm) ≤ ǫ. (1.7)

Any Cauchy sequence in a metric space is bounded. A metric space (X, d) in which

every Cauchy sequence converges, has a limit in X, is called complete.

Let (E, || · ||) be a normed space. (E, || · ||) is a Banach space if and only if

the metric space (E, d) is a complete space, where d is the distance associated to the

norm || · ||, for instance d(x, y) = ||x− y||.

Hilbert spaces, named after the German mathematician David Hilbert (1862-

1943), are complete infinitedimensional spaces in which distances and angles can be

7



1.3. PARTIAL DIFFERENTIAL EQUATIONS

measured. These spaces provide a convenient and proper setting for the functional

analysis of partial differential equations.

Let us define the vector spaces on K. A mapping f : E × E → K is called an

inner product (< ·, · >) on E if and only if it is sesquilinear and is a positive-definite

hermitian form satisfying the following axioms

(a) ∀(x, y) ∈ E2, f(y, x) = f(x, y)

(b) ∀x ∈ E, f(x, x) ∈ R+

(c) ∀x ∈ E, f(x, x) = 0 ⇔ x = 0

A (complex) vector space with an inner product satisfying (a)-(c) is sometimes called

a pre-Hilbert space. A pre-Hilbert space E is a Hilbert space if and only if it is

a complete normed space, i.e. a Banach space, under the norm associated with the

inner product.

This research concentrates on the specific Hilbert spaces such as the Hilbert spaces

in L2, C2 or Sobolev space.

Since most of the processes are described as first- or second-order PDEs, they are

introduced briefly in the following sections, accompanied by classifications and some

examples .

First-Order PDEs

The general form of a first-order PDE with n independent variable, including control

input is expressed as

F

(
x1, x2, · · · , xn, v,

∂v

∂x1
,
∂v

∂x2
, · · · , ∂v

∂xn
, u1, · · · , um

)
= 0 (1.8)

8



1.3. PARTIAL DIFFERENTIAL EQUATIONS

where F (· · · ) is a given function, v(x1, x2, · · · , xn) is the unknown function and

ui, i = 1, · · · , m are the control inputs. The questions of existence and uniqueness

of the solution have to be answered considering the closed-loop system including the

feedback control ui = ui(x1, x2, · · · , xn, v). This research is concerned with situations

where the independent variables are (t, x), (t, x, y) or (t, x, y, z).

Classification of System of First-Order PDEs

Let us consider a system of PDEs as follows

∂Φ

∂t
+ [A]

∂Φ

∂x
+ [B]

∂Φ

∂y
+Ψ(x, y,Φ) = 0 (1.9)

where Φ is a vector containing the unknown variables, and the elements of the coeffi-

cient matrices [A] and [B] are functions of x, y and t. If the eigenvalues of the matrix

[A] (or [B]) are all real and distinct, the set of equations are classified as hyperbolic

in t and x (or y). If the eigenvalues are complex the system of equations are elliptic

in t and x (or y). For instance, for a system of first-order PDEs as

∂v1

∂t
+ a1

∂v1

∂x
+ a2

∂v2

∂x
+ a3

∂v1

∂y
+ a4

∂v2

∂y
+Ψ1 = 0, (1.10)

∂v2

∂t
+ b1

∂v1

∂x
+ b2

∂v2

∂x
+ b3

∂v1

∂y
+ b4

∂v2

∂y
+Ψ2 = 0, (1.11)

the matrices are defined as follows

Φ = [v1 v2]
T
, [A] =



a1 a1

b1 b2


 , [B] =



a3 a4

b3 b4


 , Ψ = [Ψ1 Ψ2]

T
. (1.12)
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1.3. PARTIAL DIFFERENTIAL EQUATIONS

In the case of steady state form of (1.9)

[A]
∂Φ

∂x
+ [B]

∂Φ

∂y
+Ψ(x, y) = 0, (1.13)

the classification is defined based on the sign of H

H = R2 − 4|A||B|, where R =

∣∣∣∣∣∣∣

a1 a4

b1 b4

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

a3 a2

b3 b2

∣∣∣∣∣∣∣
. (1.14)

The set of PDEs is recognized as hyperbolic when H > 0, parabolic if H = 0 and

elliptic when H < 0 (Hoffmann & Chiang, 2000).

Second-Order PDEs

The general form of a second-order PDE with n independent variable is given as

F

(
x1, x2, · · · , xn, v,

∂v

∂x1
, · · · , ∂v

∂xn
,
∂2v

∂x1
∂x1, · · · ,

∂2v

∂x1∂xn
, · · ·

)
= 0 (1.15)

where v(x1, x2, · · · , xn) is the unknown function and F (· · · ) is a given function.

Classification of Second-Order PDEs

Consider a second-order PDE of the following form

C : D2v + b ·Dv + av = f (1.16)

where ∀x ∈ Ω, a(x) ∈ R, b(x) ∈ Rn, C(x) ∈ Rn×n are the coefficients of the equation,

A : B =
∑n

i,j=1 aijbij and D = ∂v
∂x
. Equation (1.16) is called elliptic at x ∈ Ω if C(x)

10



1.3. PARTIAL DIFFERENTIAL EQUATIONS

is positive definite, parabolic at x ∈ Ω if C(x) is positive semidefinite, hyperbolic

at x ∈ Ω if C(x) has one negative and n− 1 positive eigenvalues (Frey & de Buhan,

2008).

A linear second-order PDE with two independent variables

a
∂2v

∂x2
+ b

∂2v

∂x∂y
+ c

∂2v

∂y2
+ e

∂v

∂y
+ fv = g, in Ω (1.17)

is called parabolic if b2 − 4ac = 0, hyperbolic when b2 − 4ac > 0 and elliptic when

b2 − 4ac < 0.

Beside the geometric interpretation, classification of PDEs helps to estimate the

smoothness of the solution, the speed of information propagation, and the effect of

initial and boundary conditions on the solution. Hyperbolic PDEs often describe the

phenomena featuring propagation in preferred directions while keeping its strength,

the smoothness of the solution depends on the smoothness of initial and boundary

conditions. In the case of nonlinear hyperbolic PDEs, discontinuities might occur in

the solution even for smooth data, one example is shocks in compressible flow. Elliptic

PDEs describe propagation in all directions while decaying in strength, the solution is

always smooth independent of smoothness and roughness of the initial and boundary

conditions. Parabolic PDEs are a case of hyperbolic PDEs, they are usually time

dependent, solutions are smooth in space but may show singularities and the speed

of propagation is infinite (Belytschko et al., 2014), (Debnath, 2005), (Manaa et al.,

2015).

11



1.4. STATE OBSERVER

Some Examples of First- and Second-Order PDEs

Conservation Law vt +∇ · F (v) = 0

Transport/Advection Equation vt + vx = 0

Inviscid Burgers’ Equation vt + vvx = 0

Heat Equation vt − vxx = 0

Wave Equation vtt − vxx = 0

Laplace Equation vxx − vyy = 0

Poisson’s Equation vxx − vyy = f(x, y)

Shrödinger’s equation ivt + vxx = 0

Viscous Burgers’ Equation vt + vvx = vxx

Kolmogorov-Petrovskii-Piskunov Equation vt − avxx = f(v), a > 0

1.4 State Observer

Following the goal of this dissertation, the next step is to introduce state observers and

explore their reason to exist. As discussed previously, partial differential equations

render many engineering and scientific inquiries. However, in many practical cases

the complete information regarding the states of the system is not available due to the

technical difficulties such as lack of sensors. State observer provides an approximation

of the internal states of a system, with holding only input and output available.

Observers approximate missing state variable x(t) based on the measurements of the

system output y(t) and input u(t), Figure 1.1. Different types of observers exist where

each possesses advantages for various problems, i.e. systems with disturbances or/and

12
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uncertainties in modeling, linear systems, etc. Nevertheless, the idea remains the

same and it is based on mimicking the system’s behavior and comparing the output

with the actual output and minimizing the difference between these two, Figure 1.1,

(Luenberger, 1964) and (Luenberger, 1979).

System

System′s Model

feedback

u

u

y

ŷ

+

−

· · ·
x =?

· · ·
x̂

Figure 1.1: Schematic diagram of a state observer.

As an example let us consider a linear time-invariant system as in Figure 1.2

ẋ(t) = Ax(t) +Bu(t), x ∈ R
n, (1.18)

In this example u(t) = −kx(t) is the feedback control law. Since the state is not

directly measurable, the estimation of the state x̂(t) is used

u(t) = −kx̂(t), u ∈ R
r. (1.19)

The output y(t) is

y(t) = Cx(t), y ∈ R
m. (1.20)
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1.4. STATE OBSERVER

The observer is designed as follows

˙̂x(t) = Ax̂(t) +Bu(t) + L (y(t)− ŷ(t)) , (1.21)

where L is the observer gain matrix and ŷ(t) = Cx̂(t). For the estimation error and

its derivative we have

e(t) = x(t)− x̂(t), (1.22)

ė(t) = (A− LC)e(t). (1.23)

The error estimation can be driven to zero by selecting proper L (considering the

observability conditions). In the case of a deterministic system, with no measurement

noises or unmeasured disturbances, the observer is called Luenberger observer,

Figure 1.2 (Luenberger, 1971). For a linear time-invariant (LTI) system as in (1.18)

and (1.20) if matrices A and C are completely observable, L can be assigned in a way

that eigenvalues of A − LC locate arbitrarily, notice that complex eigenvalues must

appear in complex conjugate pairs.

A system is completely observable if every state x(t0) can be uniquely determined

by measuring the output y(τ) over a finite time interval τ ∈ [t0, t1]. For LTI systems

it is equivalent to having a full rank observability matrix O (Luenberger, 1979).

O =

[
CT (CA)T (CA2)T · · · (CAn−1)T

]
, rank(O) = n. (1.24)
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ẋ = Ax+Bu

y = Cx

u = −Kx̂

˙̂x = Ax̂+Bu+ L(y − Cx̂)

u y

x̂

Figure 1.2: Luenberger observer.

For more detailed information on observers refer to (Srivastava et al., 2009), (Bakshi & Bakshi,

2009), (Zabczyk, 2007).

When disturbances and/or measurement noises exist in the system, the Kalman

filter is considered as an alternative observer, Figure 1.3. This type of filter uses

the knowledge of statistical properties of the system in its design. It is an optimal

estimate in the sense that the mean value of the sum of the estimation errors gets a

minimal value. Refer to (Vaseghi, 2000), (Grewal & Andrews, 2014), (Catlin, 2012)

and (Zarchan & Musoff, 2009) for additional information on Kalman filter.
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System

System′s Model

feedback

u

u

y

ŷ

+

−

· · ·
x =?

· · ·
x̂

Disturbance

Figure 1.3: Kalman filter demonstration.

1.5 Variable Structure Control

In this research, the sliding mode control theory which is a subset of variable structure

control is employed for nonlinear observer design. This section introduces the concept

of variable structure control. Variable structure systems maintain varying structures

either caused by change in the parameters of the system or by having different inputs

as the controller. In variable structure control, the control input varies depending on

the state of system, Figure 1.4. The first implementation of variable structure control

dates back to 1939 when Irmgard Flügge-Lotz, the German engineer, was working on

the automatic control theory and development of a discontinuous, on and off, control

system (Flügge-Lotz, 1953). She studied the automatic guidance of the V2 rocket,

and the question was to assign parameters β1 and β2 in (1.25) to possess a system

with the desired behavior, in this case rapid damping of large perturbations (Hájek,

16



1.5. VARIABLE STRUCTURE CONTROL

2009)

ẍ+ α1ẋ+ α2x = β1sign(x+ β2ẋ). (1.25)

The first mention of variable structure theory in literature was by Emelyanov (Emelyanov,

1967).

System

Control 2

Switching Law

Control 1

Figure 1.4: Schematic presentation of variable structure control.

To see how a variable structure system works let’s consider the following second-

order system (Utkin, 1977)

ẍ = −Ψx (1.26)

where assigning different positive Ψs results in systems with different behaviors. Fig-

ures 1.5 and 1.6 show the state space representation for two cases with constant Ψs

that lead to marginally stable systems. However assigning Ψ as in (1.27) results in a
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system with asymptomatic convergence, Figure 1.7.

Ψ =





α2
1 xẋ > 0

α2
2 xẋ < 0

α2
1 > α2

2 (1.27)

−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25

x

ẋ

 

 
x0 = 0, ẋ0 = 20
x0 = 5, ẋ0 = 0

Figure 1.5: System (1.26) trajectories if Ψ = 3.
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−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x

ẋ

 

 
x0 = 0, ẋ0 = 10
x0 = 5, ẋ0 = 0

Figure 1.6: System (1.26) trajectories if Ψ = 1.

−4 −2 0 2 4 6 8 10 12
−15

−10

−5

0

5

10

15

x

ẋ

 

 
x0 = 10, ẋ0 = 10

Figure 1.7: Stable variable structure system, switching between α2
1 = 20 and α2

2 = 2.
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1.6 Sliding Mode Control

Sliding mode control is a subset of variable structure control, in which the states of the

system are guided into a switching surface and then the states slide to the origin, as

shown in Figure 1.8. Variable structure system and control were developed by Utkin

and sliding mode control was introduced by Utkin as well (Utkin, 1978). For further

information on sliding mode control refer to (Utkin, 1993), (Drakunov & Utkin, 1992),

(Young et al., 1999) and to further examine sliding mode control design for infinite-

dimensional systems consider (Orlov & Utkin, 1987), (Levaggi, 2001) and (Levaggi,

2013).

x1

xn

xk

σ(x) = 0

σ(x) > 0

σ(x) < 0

ẋ = f(x, u+(x))

ẋ = f(x, u−(x))

Figure 1.8: Sliding mode demonstration.

As an example let’s consider the following system

ẍ− ξẋ+Ψx = 0, ξ > 0 (1.28)
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If Ψ = α or −α where α > 0 the system is unstable, Figures 1.9 and 1.10. By choosing

Ψ as

Ψ =





α xσ > 0

−α xσ < 0

(1.29)

where σ = cx + ẋ and c = − ξ

2
±

√
ξ2

4
+ α, the system converges to the origin in

a sliding manner (Utkin, 1977). As can be seen in Figure 1.11 for different initial

conditions the states of the system are guided to the line σ = 0 and then they slide

into the origin.

x
-4 -3 -2 -1 0 1 2 3 4

ẋ

-8

-6

-4

-2

0

2

4

6

8

Figure 1.9: System (1.28) if Ψ = 4 (ξ = 0.1, x0 = 2, ẋ0 = 2).
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x
0 2 4 6 8 10 12

ẋ

0

5

10

15

20

25

Figure 1.10: System (1.28) if Ψ = −4 (ξ = 0.1, x0 = 2, ẋ0 = 2).

x
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

ẋ

-4

-3

-2

-1

0

1

2

3

4

Figure 1.11: System (1.28) for different initial conditions, and Ψ as in (1.29).

The idea of sliding mode control has been applied even prior to the documentation

of the concept. Let us consider the circuit with time-varying input voltage Vin(t) in

the Figure 1.12.
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Vin(t) Vout(t) = V ∗

u

C

R

Figure 1.12: Circuit, example.

The desired output is Vout(t) = V ∗ where V ∗ is a constant. The differential

equations for the circuit are 1

RI +
1

C

∫ t

0

I(τ)dτ = Vin, (1.30)

Vout =
1

C

∫ t

0

I(τ)dτ. (1.31)

Taking the derivative of (1.31) and substituting in (1.30) we have

V̇out +
1

RC
Vout =

1

RC
Vin. (1.32)

By designing u as

u =
1

2
[1− sign(Vout − V ∗)] =





1 Vou ≤ V ∗

0 Vou > V ∗
(1.33)

the goal of having a constant voltage is achieved by opening and closing the switch u,

1We consider the situation when the output resistance is ∞. In the case of presence of a load,
the similar analysis can be performed.
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and charging and discharging the capacitor C repeatedly, Figure 1.13. The switching

law is similar to the one used in sliding mode control.

V ∗

t

Vout

Figure 1.13: Voltage output for the circuit.

Sliding mode uses a discontinuous control law (1.35) to steer the states of the

system (1.34) from any initial condition to a manifold, and then to slide them to

the origin on the manifold. This manifold σ is called sliding manifold or switching

manifold. There are two phases in the sliding mode control. First is the reaching

phase where the trajectory is steered into sliding manifold σ in finite time, and second

is the sliding phase in which the trajectory approaches the origin asymptotically,

Figure 1.8. Some of the advantages of sliding mode control and observer are their

simple implementation, the insensitivity to the parameter uncertainty and external

disturbances (robustness), and order reduction (during sliding mode the trajectory

dynamics has lower order than the original system).

ẋ = f(t, x, u), x(0) = x0 (1.34)
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u =





u+(t, x) σ(x) > 0

u−(t, x) σ(x) < 0

(1.35)

To demonstrate the sliding mode control idea let us consider the mathematical

model describing an inverted pendulum

θ̈ = sin θ + u, (1.36)

where θ is the inclination from the vertical axis and u is the control input. Writing

the system in the state space form

x1 = θ, ẋ1 = x2, (1.37)

x2 = θ̇, ẋ2 = sin x1 + u, (1.38)

and designing the discontinuous control law as

u = −ksignσ, (1.39)

where σ is the sliding manifold

σ = x2 + λx1, (1.40)

result in the convergence of the states of the system into origin. For instance for

the nominal values θ0 = 2, θ̇0 = 2, λ = 1 and k = 1.5, Figure 1.14 shows how the

inclination angle and the velocity converge to zero. Figure 1.15 represents the sliding

mode happening on the manifold σ, note that the chattering effect is visible in
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this plot, which basically is the result of switching the controller values in order to

maintain the states on the sliding surface. Chattering is the result of implementation

of the signum function and not the signum function itself. In the actual systems, the

swift switching devices are not available due to imperfections such as delay, hysteresis,

etc. Reaching and sliding phases are presented in Figure 1.16.

In case of a system with bounded disturbance d

θ̈ = sin θ + u+ d, d < |d1| (1.41)

everything will remain the same, the only difference is appointing k in (1.39) large

enough to compensate for the disturbance.

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

4

time

θ,
θ̇

 

 

θ
θ̇

Figure 1.14: Inverted pendulum, states convergence.
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Figure 1.15: Inverted pendulum, sliding manifold and the chattering effect.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5
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−1.5

−1

−0.5

0

0.5

1

1.5

2

θ

θ̇

Figure 1.16: Inverted pendulum, reaching and sliding phases.

In order to investigate the convergence of sliding mode, the following quadratic

Lyapunov candidate is introduced (Lyapunov techniques and theory are explained in

section 1.7)

V (σ) =
1

2
σ2. (1.42)
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For the time derivative we have

V̇ = σσ̇, (1.43)

where

σ̇ = ẋ2 + λẋ1 = sin x1 + u+ λx2 = sin x1 − ksignσ + λx2

By choosing k > | sin x1 + λx2| the term −ksignσ will be the dominant term and

σ̇ = −ksignσ, so we have





σ > 0 → σ̇ < 0

σ < 0 → σ̇ > 0

⇒ V̇ < 0 (1.44)

which is a desired result based on the Lyapunov method and guarantees the conver-

gence of the sliding mode control. In the case of presence of a bounded disturbance,

the controller gain k has to compensate for the disturbance term as well, so having

k > | sin x1 + λx2 + d| guarantees the sliding mode convergence. Note that in both

cases, the region of attraction is not the entire space, although by assigning the con-

troller gain as a function of the states k(x1, x2), we are able to adjust the region of

attraction.

Sliding Mode Control Continuation

According to Drakunov & Utkin (1992) the properties of group and semigroup are

employed to further describe the sliding mode. Let us start with some definitions.
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The general solution of ẋ = f(t, x), x(t0) = x0 is in the form of x(t) = g(t0, x0, t)

where g is a transformation of Rn → R
n that means by considering a fixed t and t0

each x(t) = g(t0, x0, t) maps x0 → x. Consider two transformations one from t0 to t1:

g1(x) = g(t0, x, t1) and the other from t1 to t2: g2(x) = g(t1, x, t2). To have a map

from t0 to t2, the operator ◦ is used

g1 ◦ g2 = g2(g1(x)) = g(t1, g(t0, x, t1), t2). (1.45)

Let G be a set of all such transformations of Rn → R
n, with the operator o, then G

is a group if it satisfies the following properties

1. ∀g1, g2, g3 ∈ G g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3, associativity.

2. ∃e(x) ∈ G such that e ◦ g = g ◦ e ≡ g for all g ∈ G. e is called identical

transformation (unit element of the group) and e(x) = g(t0, x, t0) = x.

3. ∀g ∈ G, ∃g−1 ∈ G such that g◦g−1 = g−1◦g = e. For instance g(x) = g(t0, x, t1)

results in g−1(x) = g(t1, x, t0) and g(g
−1(x)) ≡ x and g−1 is called an inverse of

g.

A semigroup only needs to satisfy the associativity property.

Studying the classical differential equations, they can be described using group

definition. However, the discontinuity in the right-hand side of the equation for

sliding mode results in the families of state space transformations representing closed-

loop systems to be semigroups rather than groups. In the sliding manifold, the

inverse transformations for states in the sliding manifold are not unique due to the
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discontinuity on the manifold. The families of transformations

F (t, t0, ·) : κ → κ (1.46)

with t0, t ∈ T, t0 ≤ t, T represents continuous or discrete-time cases, transformation

(1.46) is the most general description of dynamic systems in metric space κ. F

is a continuous function of x satisfying semigroup condition F (t, t1, F (t1, t0, x0)) =

F (t, t0, x0) for every t0 ≤ t1 ≤ t, x0 ∈ κ and F (t, t, x) = x for every t ∈ T, x ∈ κ.

However, if F corresponds to the system of ODEs with the existence and uniqueness

of the Cauchy problem’s solution, then for every t0 ≤ t, x ∈ κ the transformation F

is invertible. This means that the family {F (t0, t, x)}t0,t∈T is a group.

A point x in the state space κ of a dynamic system with a family of semigroup

transformations {F (t, t0, ·)}t0≤t is considered a sliding mode point at the moment

t ∈ T , if for every t0 ∈ T, t0 < t, the transformation F (t, t0, ·) is not invertible at this

point and an equation F (t, t0, ξ) = x has more than one solution ξ. A set Σ ⊂ T ×κ

in the state space is a sliding mode set, if for every (t, x) ∈ Σ, the point x is a

sliding mode point at the moment t.

The manifold σ = 0 in the domain D is called a sliding mode domain if ∀ǫ > 0

∃δ > 0, such that any motion starting in the vicinity δ of D may leave ǫ on D only

through the ǫ vicinity of the boundaries of D, Figure 1.17.
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σ = 0

ǫ

δ

Figure 1.17: Sliding mode domain.

An ideal sliding mode exists only when the state trajectory x(t) reaches the

manifold σ(t, x) = 0 in the finite time. Due to imperfections of switching devices, this

condition results in fast switching actuators that cause the chattering effect. Note

that sliding mode does not necessarily consist of chattering. Let us consider a system

including coulomb friction as

mẍ = F − kfsignẋ (1.47)

where F is an impulse force that makes the object move with some initial velocity, in

this case the sliding manifold will be σ = ẋ. As can be seen in Figure 1.18 the object

stops as soon as the velocity reaches zero.
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m

x

ẋ

F
kf sign ẋ

Figure 1.18: Non-chattering sliding mode.

A sliding mode exists if in the vicinity of the switching surface σ = 0, the tangent

vector of the state trajectory, the velocity vector of the state trajectory, always point

toward the σ = 0. For existence of a sliding mode, after some finite time t1 the state

of the system x(t) must be in some neighborhood of σ: {x| ||σ|| < ǫ}.

The region of attraction is the largest subset of the state space from which

sliding is achievable, as shown in the inverted pendulum example. A sliding mode is

globally reachable if the domain of attraction is the entire state space (DeCarlo et al.,

2011).

In the classical case, since the right-hand side of the differential equation is con-

tinuous with respect to x, the solution exists

ẋ = f(t, x), x(t0) = x0, x ∈ R
n, ∀t ∈ R, f(t, ·) ∈ C∞(Rn). (1.48)

One of the most well-known conditions for the uniqueness of the solution is described

by Lipschitz condition

||f(t, x1)− f(t, x2)|| ≤ L||x1 − x2||, (1.49)
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where L is called Lipschitz constant.

Variable structure systems as a result of possessing discontinuous function at the

right-hand side require special consideration. Filippov suggested one of the first

propositions in order to define the control input on the sliding manifold (Filippov,

1988). Let us consider the system and control law as

ẋ = f(t, x, u), x(0) = x0 (1.50)

u =





u+(t, x) σ(x) > 0

u−(t, x) σ(x) < 0

(1.51)

As it can be seen, the dynamics of the system is not defined on σ = 0. Filippov

definition expresses that the state trajectories of (1.50) with control law (1.51) on

σ = 0, are the solution of

ẋ(t) = αf+ + (1− α)f− = fF ilippov, 0 ≤ α ≤ 1 (1.52)

where f+ = f(t, x, u+) and f− = f(t, x, u−) and fF ilippov is the resulting velocity

vector of the trajectory while on sliding mode, Figure 1.19. α is determined by

the solution of < ∇σ, fF ilippov >= 0 (fF ilippov is the tangential vector to the sliding

manifold)

α =
< ∇σ, f− >

< ∇σ, (f− − f+) >
(1.53)

where < ∇σ, f− >≥ 0, < ∇σ, f+ >≥ 0 and < ∇σ, (f− − f+) > 6= 0, (DeCarlo et al.,

2011), (Perruquetti & Barbot, 2002).
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σ(t, x) = 0

f+

f−

fFillipov

x1

x2

∇σ

Figure 1.19: Filippov definition.

For a multi-dimensional case, the definitions of differential inclusions and convex

hull are employed to introduce the generalized Filippov definition as

ẋ ∈ F (t, x) = lim
ǫ→0

co {f (t, x, U(x))} , (1.54)

where u ∈ U(x) is a set of all possible control inputs 2.

Depending on the behavior of the switching system such as delay, hysteresis,

etc., Figure 1.20, Filippov definition might not result in the correct solution, so the

equivalent control was introduced by Utkin, Figure 1.21, (Utkin, 1992). On the

sliding manifold σ = 0 therefore σ̇ = 0, so the equivalent control is the solution of

Lfσ =
d

dt
σ(t, x(t)) = 0. (1.55)

For example for ẋ = f(t, x, u) we have

∂σ(t, x)

∂t
+
∂σ(t, x)

∂x
f(t, x, ueq) = 0 ⇒ ueq(t, x) ⇒ f(t, x, ueq(t, x)) (1.56)

2The convex hull may exclude zero measure sets (Filippov, 1988).
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Note that Filippov’s method and the equivalent control deliver the same results in

the case of control affine systems, ẋ = f(t, x) + B(t, x)u. Figure 1.22 demonstrates

FF ilippov and Feq when the boundary layer around the sliding manifold is approaching

zero.

u

σ

u

σ

u

σ

u+

u−

u+

u−

u+

u−

2ǫ 2ǫ

Figure 1.20: Ideal and nonideal switching controllers.

σ(t, x) = 0

f+

f−

x1

x2

feq

Figure 1.21: Equivalent control.
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fFilippov

feq

ǫ
ǫ

f−

f+

σ = 0

Figure 1.22: Filippov and equivalent control demonstration.

Lyapunov theory is applied in order to investigate convergence of the reaching

phase and stability of the sliding phase. First, a positive definite Lyapunov candidate

V (σ) is introduced and having the total time derivative of V (σ) negative definite,

guarantees the asymptotic convergence of the reaching phase. However, for the case

of sliding mode control, we want the trajectory to converge in finite time so we need

to establish d
dt
V (σ) ≤ G(V ) where |G(V )| ≤ CV α and 0 < α < 1. For the sliding

phase to converge to zero, eigenvalues of the Jacobian of the system at the steady-

state region need to have negative real parts (for instance by using Routh-Hurwitz

stability criterion for the linear sliding manifold).

In the next section the basics of Lyapunov theory are explained briefly.

1.7 Stability Conditions and Lyapunov Theory

In this research, the Lyapunov techniques are applied to investigate the convergence

of the designed controller/observer. In this section, the basics of Lyapunov theory are

explained without examining the details, for further information on Lyapunov theory
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refer to (Khalil, 2002).

Let’s start with an ordinary differential equation that satisfies the convergence

and uniqueness condition (Lipschitz condition)

ẋ = f(t, x), x(t0) = x0, x ∈ R
n (1.57)

A point x∗ ∈ Rn is an equilibrium point of (1.57) if f(t, x∗) ≡ 0. The trajectory

x∗ is called stable in Lyapunov sense, Figure 1.23, if

∀ǫ > 0, ∃δ > 0 such that ||x(t0)− x0|| < δ ⇒ ||x(t)− x∗(t)|| < ǫ. (1.58)

δ

2ǫ

x0
x(t0)

x∗(t)

x(t)

Figure 1.23: Stability definition in Lyapunov sense.

The equilibrium x∗(t) is called asymptotically stable if it is stable and

lim
t→∞

||x(t)− x∗(t)|| = 0. (1.59)

In the case of linear systems, stability and asymptotic stability are the same. An

equilibrium is unstable if it is not stable. Note that asymptotic stability does not

quantify the rate of convergence. For that, the exponential stability is defined as
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if there exist constants m,α > 0 and ǫ > 0 such that

||x(t)|| ≤ me−α(t−t0)||x(t0)|| (1.60)

for all ||x(t0)|| ≤ ǫ and t ≥ t0. α is called the rate of convergence (Murray et al.,

1994). Any of the above definitions are called global if there is no limitation on the

location of x(t0).

Lypunov’s direct method or the second method of Lyapunov is a tech-

nique to determine the stability of a system ẋ = f(x) without explicitly solving the

differential equation. First we need to introduce a Lyapunov candidate V (x) where

x ∈ Rn and V : Rn → R such that V (x) is differentiable for x 6= x∗ and V (x) > 0

if x 6= x∗ and V (x∗) = 0 (V is positive definite). V (x) is some measure of energy

in the system, therefore studying the rate of energy change gives us ideas about the

behavior of the system. The Lyapunov candidate is called a Lyapunov function if

the derivative of V in the direction of f is not positive

V̇ (x) =
∂V

∂x
ẋ =

∂V

∂x
f(x) = LfV ≤ 0. (1.61)

If for x∗ in (1.57), there is a Lyapunov function V̇ (x) ≤ 0 for some vicinity of x∗,

then x∗ is stable. If V̇ (x) < 0, x 6= x∗ then x∗ is asymptotically stable. If x∗ is

asymptotically stable and V (x) is radially bounded (V (x) → ∞ if ||x|| → ∞), then

x∗ is globally asymptotically stable equilibrium. If V̇ (x) < CV α, 0 < α < 1 the

equilibrium of the system is exponentially stable.

The indirect method of Lyapunov uses the linearization of a system to deter-

mine the local stability of the original system. Let x∗ = 0 be an equilibrium point for
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the nonlinear system

ẋ = f(x), (1.62)

having

A =
∂f(x)

∂x

∣∣∣∣
x∗

, (1.63)

then the origin is asymptotically stable if Reλi < 0 where λi are eigenvalues of A and

it is unstable if Reλi > 0 for at least one λ.

1.8 State Observers for Distributed Parameter Sys-

tems, Literature Review

In this section the different methods exercised to design observer for distributed pa-

rameter systems are investigated.

Distributed parameter systems (DPSs), or infinite-dimensional systems, are

systems described by partial differential equations. In contrast with distributed pa-

rameter systems, there are lumped parameter systems which are described by ordinary

differential equations.

Hidayat et al. (2011) provided a survey on designing observers for linear dis-

tributed parameter systems. Their research investigated early-lumping, late-lumping,

and adaptive methods to design the observer for the first-order PDEs, in addition,

it examined the second-order distributed parameter systems. In general, the appli-

cation of early- or late-lumping methods might possibly lead to the loss of some

properties of the system and therefore unsatisfactory results. Demetriou (2004) pre-

sented a natural second-order observer for second-order distributed parameter sys-
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tems, a parameter dependent Lyapunov function used to show the asymptotic con-

vergence. Demetriou & Rosen (2005) suggested an unknown input observer for a class

of infinite-dimensional systems. The idea was to decouple the disturbances from the

observer and it guaranteed exponential convergence of the state observation to zero.

Bitzer & Zeitz (2002) designed a nonlinear observer using a late-lumping approach

to estimate the temperature and pressure profile of an oxygen production plant. The

observer design procedure was based on the physical and dynamical interpretations

of the correction function. The correction function was constructed based on the

difference between the measured and estimated values, and their connection with the

equation of observer. Vries et al. (2007) designed a Luenberger-type observer for a

model of a UV disinfection process with boundary inputs and boundary outputs. In

Pourkargar & Armaou (2013) an output feedback control was designed for distributed

parameter systems with limited number of sensors. The controller design combined a

robust state controller with a dynamic observer of the states of the system. Using the

method of weighted residuals, the PDE was approximated into a system of ODEs and

the principles of Luenberger observer were corporated in order to design the observer.

An infinite-dimensional observer-based controller for partial differential systems was

developed in Gahlawat & Peet (2011). The one-dimensional heat equation was ex-

pressed as an ODE in the Hilbert space by sum-of-squares method. As can be seen, in

the aforementioned researches, Luenberger type of observers had been implemented.

In Nguyen (2008), a second-order observer for the second-order DPSs using output

injection terms was proposed, the observer was exponentially stable, and different

cases for the damping coefficient were investigated. Without going into the details,
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for the dynamical system and measurements as

ρwtt + Cwt +Kw = Bu, (t, x) ∈ R
+ × Ω (1.64)

yi(t, x) = wtξi(x) (1.65)

where ξi : Ωi → R+ are given smooth distribution functions. The observer, with

Hj > 0 as the observer gain, will be

ρŵtt = −Cŵt −Kŵ + Bu−
N∑

i=1

Hi(ŵtξi − yi). (1.66)

Xu & Schuster (2009) examined the stabilization problem of an unstable parabolic

partial differential equation with constant diffusion coefficient using Sturm-Liouville

theory and numerical spectral analysis of differential operators. Designing a state

observer based on a boundary measurement was also considered. Meglio et al. (2013)

and Smyshlyaev & Krstic (2005), considered backstepping observer design for a class

of linear first-order hyperbolic and a class of parabolic PDEs. Backstepping is a ro-

bust extension of the feedback linearization approach for nonlinear finite-dimensional

systems (Krstic & Smyshlyaev, 2008). In Krstic et al. (2007) and Krstic et al. (2011)

Schrödinger equation was considered as heat equation with imaginary diffusion coef-

ficient and backstepping method was utilized to design the observer. In backstepping

method the nonlinearity does not necessarily get canceled, however, it might be kept

if it is useful or might be dominated if it is potentially uncertain and harmful. In this

method an invertible change of variables is used such that the system appears linear

in the new variables; except for a nonlinearity, which is in the span of the control
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input vector. For example in the case of the unstable reaction-diffusion equation

ut = uxx + λu (1.67)

u(t, 0) = 0, u(t, 1) = U(t) = control (1.68)

since term λu is the source of instability, the natural objective for a boundary feedback

is to eliminate this term. The following state transformation can be applied

w(t, x) = u(t, x)−
∫ x

0

k(x, y)u(t, y)dy, (1.69)

with the feedback control

u(t, 1) =

∫ 1

0

k(1, y)u(t, y)dy, (1.70)

to have the target system in the form of

wt = wxx (1.71)

w(t, 0) = 0, w(1, t) = 0. (1.72)

The goal will be finding the gain kernel k(x, y), which makes the plant (1.67)-(1.68)

with the controller (1.70) equivalnet to the target system (1.71)-(1.72). This is

done using the Volterra integral transformation of (1.69), for further details refer

to (Krstic & Smyshlyaev, 2008).
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1.9 Sliding Mode Observers for DPSs, Literature

Review

In this section the history of the sliding mode observer is briefly presented and some

researches that employed sliding method in designing observer for distributed param-

eter systems are introduced. In addition, the advantage of the current work to other

researches is explained.

Sliding mode observer follows the same ideas as the sliding mode control. Figure

1.24 shows the schematic diagram of the sliding mode observer for a linear system

ẋ = Ax+Bu, y = Cx, x ∈ R
n, y ∈ R

m (1.73)

˙̂x = Ax̂+Bu+ Lsign(y − ŷ), ŷ = Cx̂. (1.74)

y(t)

˙̂x = Ax̂+Bu+ Lsign(y − ŷ)

ẋ = Ax+Buu(t)

· · ·

x =?

· · ·

x̂

+

−

y(t)

ŷ(t)

L

y = Cx

Figure 1.24: Sliding mode observer for a linear system.

In the sliding mode observer the difference between the outputs of the system and
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the observer in Luenberger observer is replaced by a discontinuous function of the

difference. Utkin and Drakunov introduced sliding mode observer for linear systems

(Drakunov, 1983) (Drakunov & Utkin, 1995). Later on, Drakunov (1992) developed

sliding mode observer for nonlinear systems, that was a research goal of many con-

trol theorists for a long time (Krener & Respondek, 1985), (Walcott et al., 1987),

(Misawa & Hedrick, 1989) and (Slotine et al., 1987).

Edwards et al. (2000) presented a sliding mode observer for linear system includ-

ing certain faults. The equivalent output injection concept was obtained to explicitly

reconstruct fault signals. This research continued for the linear uncertain systems

and developed for the nonlinear case in Spurgeon (2008). Efe et al. (2005) proposed

a reduced order and infinite dimensional forms of observers for viscous Burgers’ equa-

tion. Efe (2008) suggested a finite-dimensional sliding mode observer for a second-

order PDE, heat equation, which undergoes an order reduction into a lumped sys-

tem. Sliding mode theory and backstepping method were practiced in Miranda et al.

(2010) to design an observer with a finite time convergence for a class of parabolic

PDEs. The output’s error injection functions were designed by employing a backstep-

ping procedure introduced by Smyshlyaev & Krstic (2005). Orlov (2000b) presented

a model reference adaptive control for distributed parameter systems described by

second-order partial differential equations of parabolic and hyperbolic types. In the

design process of the controller, a sliding mode-based state derivative observer was

constructed which estimated the derivative of the spatial variable.

Drakunov & Barbieri (1997) examined designing sliding mode control complica-

tions for a PDE, which includes diffusion with multidimensional spatial variable. The

standard technique of separation of variables was employed in the research and the
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problem of the special case of a diagonal system matrix was solved. Barbieri et al.

(2000) expanded the result from the previous research and suggested sliding mode con-

troller and observer for a specific class of distributed parameter systems, heat equation

for a robotic arc-welding application, that was written in the Jordan canonical form.

The manifold design was based on the desired closed-loop characteristics polynomial

evaluated at the known open-loop eigenvalues, developed by Ackermann & Utkin

(1998). The transformation examined in chapter 2 of the at hand research, can be

used for nonlinear partial differential equations in contrast with the suggestion in

Barbieri et al. (2000) .
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Chapter 2

SMO for DPS, Sliding Manifold

Design, Formula for Observer Gain

2.1 Introduction

In this chapter designing nonlinear observer, and developing formula for the observer

gain for a specific class of distributed parameter systems are discussed (Kamran & Drakunov,

2015). The technique suggested in this chapter can be used for hybrid systems, such

as systems including the observer dynamics.

The chapter is organized as follows. A general representation of the distributed

parameter system is provided in section 2.2. Using the separation of variables the

spatial (orthonormal basis) and time (modes) components of the state are separated,

and considering the properties of the operator, we end up with a system in the form

of ordinary differential equation. Sliding mode observer is developed for the system

of ODEs in finite-dimensional space in section 2.4. In the design process, the system
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in diagonal form is transformed into a new format with the state matrix in the con-

trollable canonical form. Using the freedom provided by the defined transformation,

we are able to design the observer based on the desired polynomial coefficients. In

addition, a novel formula for the observer gain is developed based on the properties

of the Vandermonde matrix. The distributed parameter observer is formulated in

section 2.5. The technique is simulated for diffusion equation in section 2.6. The

chapter ends at section 2.7 with conclusion and suggestions for future research.

2.2 Problem Statement

The distributed parameter system that is in our interest belongs to the class of systems

governed by the following partial differential equation

∂Q(t, x)

∂t
= AQ(t, x) + Bu(t) (2.1)

where Q(t, x) is the state, t ≥ 0 is time, and x ∈ Rp is the spatial variable. For

fixed t and x: Q ∈ RN . We assume x ∈ Ω where Ω ⊂ Rp is a one-component

domain in p-dimensional space with a smooth, C1, boundary ∂Ω. A is a closed,

linear differential operator which is a infinitesimal generator of an exponentially stable

semigroup TA(t) onH1, H1 = L2(Ω) is a Hilbert space (Russell, 2010), (Orlov, 2000a),

(Curtain & Zwart, 1995).

By assumption, operator A has all distinct eigenvalues λi ∈ C

Aφj(x) = λjφj(x). (2.2)
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For instance A could be a linear differential operator of the form

A = A(0)(x) +

Ñ∑

ν=1

p∑

i1,··· ,iν=1

A
(ν)
i1,i2,...,iν

(x)
∂ν

∂xi1 ...∂xiν
, (2.3)

with corresponding boundary condition, where A(0)(x) and A
(k)
i1,i2,...,iν

(x) are N × N

matrix-valued C1(Ω) functions of x.

If A is a self-adjoint operator, then all the eigenvalues λj ∈ R are real and the

eigenvectors φj(x) ∈ H1 correspond to distinct eigenvalues are orthogonal (Hanson & Yakovlev,

2002).

B maps the space of the controls into the state space B ∈ L(H2,H1)
1 (Glowinski et al.,

2008). Here B = B(x) is considered. B(x) belongs to the class C1(Ω) of matrix-valued

functions of appropriate dimensions. The process is controlled by a finite number of

inputs, the control is finite-dimensional u ∈ Rm, and it is a function of time but not

the spatial variable, u(t).

In order to define the solution of (2.1) uniquely, one needs to specify a set of

boundary conditions on the boundary ∂Ω of the domain Ω in addition to appro-

priate initial conditions. Our development does not require specific form of these

boundary conditions, the only assumption we will make is that the corresponding

solution of boundary value problem is unique and well-posed, which is satisfied for

many important cases. For instance, if the differential operator has the second-order

spatial derivative, we consider the following general type of homogeneous boundary

1For Hilbert spacesH1,H2, L(H2,H1) denotes the Hilbert space of bounded linear operators from
H2 to H1.
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conditions

ν0(x)Q(t, x) + ν1(x)
∂Q

∂n̄
(t, x)

∣∣∣∣
x∈∂Ω

= 0, (2.4)

where the matrix-valued functions of appropriate dimensions ν0(x) and ν1(x) are

defined on ∂Ω and belong to the class C1(∂Ω) with respect to the spatial variables

and n̄ is a normal vector to ∂Ω. The initial condition is

Q(0, x) = Q0(x), (2.5)

where Q0(x) ∈ C1(Ω). If Q0(x) ∈ L0(Ω) then for any u(t) ∈ L0[0, T ], ∀T > 0. The

problem (2.1), (2.4) and (2.5) is known to be well-posed, having a unique generalized

solution Q(t, x) (Drakunov & Reyhanoglu, 2010).

The output is a scalar variable y(t) ∈ R, it is assumed to be measurable and it is

a linear functional of the state of the system represented as

y(t) =

∫

Ω

cT (x)Q(t, x)dx, (2.6)

where c(x) ∈ L2(Ω,R
N).

Note that the operator A, the control gain B(x) and c(x) have to satisfy the

boundary conditions corresponded to the state Q(t, x), and they need to be twice

diffrentiable with respect to the spatial variable.
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2.3 Separation of Variables

Our goal is to design an observer for estimation of Q(t, x) from data provided by y(t).

Using the standard technique of separation of variables we have

Q(t, x) =

∞∑

k=1

zk(t)ϕk(x), B(x) =

∞∑

k=1

bkϕk(x), c(x) =

∞∑

k=1

ckϕk(x), (2.7)

where zk(t) is scalar function of time known as mode and ϕk(x) is orthonormal basis

on spatial variable. Equations (2.7) converge in L2(Ω) for any t ≥ 0.

As an example, A can be the Strum-Liouville operator

A = r(x) +
∂

∂x

(
p(x)

∂

∂x

)

= r(x) + s(x)
∂

∂x
+ p(x)

∂2

∂x2
, s(x) =

∂p(x)

∂x
, (2.8)

where r(x), p(x) > 0 and r(x), p(x), s(x) ∈ C0(x), along with the homogeneous

boundary condition similar to (2.4).

Applying separation of variables on (2.1) under the assumptions is section 2.2 and

using (2.7) we have

∞∑

k=1

żk(t)ϕk(x) =

∞∑

k=1

[λkzk(t) + bku(t)]ϕk(x), (2.9)

The relation (2.9) must be true for every ϕk(x) so

żk(t) = λkzk(t) + bku(t), k = 1, 2, · · · . (2.10)
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In the same way the output (2.6) is written as

y(t) =

∫ l

0

∞∑

k=1

ckϕk(x)

∞∑

m=1

zm(t)ϕm(x)dx

=
∞∑

k,m

ckzm(t)

∫ l

0

ϕk(x)ϕm(x)dx

=
∞∑

k=1

ckzk(t). (2.11)

Let φk(x) be (possibly complex valued) normalized eigenvectors (‖φk‖ = 1) in L2(Ω,R
N )

and λk denote the corresponding eigenvalues of the associated boundary value prob-

lem.

Remark: The described class of systems cover two important cases of DPSs: the

diffusion equation

∂Q(t, x)

∂t
= a

∂2Q(t, x)

∂x2
+ b(x)u,

and the wave equation

∂2ξ(t, x)

∂t2
= a

∂2ξ(t, x)

∂x2
+ b(x)u. (2.12)

The operator A for the wave equation, can be represented in the form of (2.3) by

defining

Q(t, x) =



Q1(t, x)

Q2(t, x)


 =



ξ(t, x)

∂ξ(t,x)
∂t


 (2.13)

as

A =




0 1

0 0


+




0 0

a 0



∂2

∂x2
. (2.14)
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Our class of models allows to consider systems which are combination of a distributed

parameter system described by PDE and a linear finite-dimensional sensor dynamics.

For instance considering the wave equation given by (2.12) and assuming the variable

y is observed that satisfies

ẏ(t) = a0y(t) + d0z(t), (2.15)

where

z(t) =

∫

Ω

cT (x)ξ(t, x)dx. (2.16)

The system in (2.12), (2.15) and (2.16) can be represented as (2.1). By introducing

the variable η(t, x) satisfying

∂η(t, x)

∂t
= a0η(t, x) + d0ξ(t, x), (2.17)

the state Q of the combined process-sensor system can be chosen as

Q(t, x) =




Q1(t, x)

Q2(t, x)

Q3(t, x)



=




η(t, x)

ξ(t, x)

∂ξ(t,x)
∂t



. (2.18)

The operator A is

A =




a0 d0 0

0 0 1

0 0 0



+




0 0 0

0 0 0

0 a 0



∂2

∂x2
.
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The output equation is

y(t) =

∫

Ω

CT (x)Q(t, x)dx,

where

C =

[
c(x) 0 0

]T
. (2.19)

Similar representation can be obtained for the systems with multidimensional sensor

dynamics (Drakunov & Reyhanoglu, 2010).

Our goal is to design an observer to estimate Q(t, x) employing the observation

y(t). Using the separation of variables, the original system (2.1) and the output (2.6)

are replaced by the ordinary differential equation (2.10) along with the observation

(2.11). In the matrix representation we have

Ż = ΛZ + bu(t), (2.20)

where

Z =

[
z1 z2 · · ·

]T
, Λ = diag{λ1, λ2, · · · }, b =

[
b1 b2 · · ·

]T
,

and

y = cTZ, c =

[
c1 c2 · · ·

]T
. (2.21)

To demonstrate our technique, at this point we assume bk = 0 for k = n+1, n+2, · · · ,

and only a finite number of modes are excited zk(0) = 0, k = n+ 1, n+ 2, · · · . These

assumptions are not necessary for the actual proof and they are used to show the
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method in a clear way. So for the system k = 1, · · · , n we have

Ż(t) = ΛZ(t) + bu(t) (2.22)

where u(t) ∈ R and

Z(t) =

[
z1 z2 · · · zn

]T
, b =

[
b1 b2 · · · bn

]T
, Λ = diag{λ1, · · · , λn}.

The output (2.21) will be

y(t) = cTZ(t), c =

[
c1 c2 · · · cn

]T
. (2.23)

2.4 Observer Design

Let us introduce the sliding mode observer for the system (2.22) as

˙̂
Z(t) = ΛẐ(t) + bu(t) + Lsign(y − ŷ), (2.24)

where L = diag{L1, · · · , Ln} and ŷ = cT Ẑ(t). The goal is to design the gain matrix

L ∈ Cn such that Ẑ → Z as t → ∞. Obviously there are many Ls that guarantee

the convergence of the finite dimensional sliding observer, however we are specifically

looking for the one that leads to convergence when n→ ∞.

In order to introduce the freedom in designing manifold for the sliding mode

observer as well as developing some formulae for the observer gain, the system in

diagonal form (2.22) is transformed into a system with the state matrix in controllable
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canonical form, by defining the following transformation

X = V β−1Z, (2.25)

where V is the Vandermonde matrix, using the λ from matrix Λ, as

V (λ1, · · · , λn) =




1 1 · · · 1

λ1 λ2 · · · λn

λ21 λ22 · · · λ2n
...

... · · · ...

λn−1
1 λn−1

2 · · · λn−1
n




,

and β is a diagonal matrix with free parameters β1, · · · , βn

β = diag{β1, · · · , βn}. (2.26)

Applying the transformation (2.25) on (2.22) and (2.23) we have

Ẋ = AX + b̃u, (2.27)

and

y(t) = c̃TX, (2.28)
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where

A = V β−1ΛβV −1 =




0 1 0 · · · 0

0 0 1 · · · 0

...
...

... · · · ...

−a1 −a2 −a3 · · · −an




,

and

b̃ = V β−1b =

[
b̃1 b̃2 · · · b̃n

]T
, (2.29)

c̃T = cTβV −1 =

[
c̃1 c̃2 · · · c̃n

]
. (2.30)

Let’s design observer for the system (2.27) as follows

˙̂
X = AX̂ + b̃u+ L0ensignσ, (2.31)

where L0 is a scalar, en =

[
0 0 · · · 1

]T
and

σ = y − ŷ = c̃X, X = X − X̂. (2.32)

Writing the observer (2.31) in the estimation error X we have

Ẋ = AX − L0ensignσ. (2.33)
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Equation (2.33) can be written as

˙̄x1 = x̄2

˙̄x2 = x̄3

... (2.34)

˙̄xn−1 = x̄n

˙̄xn = −
n∑

k=1

akx̄k − L0signσ.

For sufficiently large L0 sliding mode exists on the manifold σ = 0 in (2.34) (Utkin,

1978). Setting sliding surface equal to zero σ = 0 we end up with

x̄n = −c̄n−1x̄n−1 − · · · − c̄1x̄1, (2.35)

where

c̄j =
c̃j

c̃n
, j = 1, · · · , n− 1. (2.36)

Substituting (2.35) into (2.34) we have the following reduced order system

˙̄x1 = x̄2

˙̄x2 = x̄3

... (2.37)

˙̄xn−1 = −c̄n−1x̄n−1 − · · · − c̄1x̄1
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or in the compact form

Ẋred.order = ĀXred.order, Xred.order ∈ R
n−1, (2.38)

where

Ā =




0 1 0 · · · 0

0 0 1 · · · 0

...
...

... · · · ...

−c̄1 −c̄2 −c̄3 · · · −c̄n−1




. (2.39)

The reduced order system (2.38) needs to be stabilized. Assigning the desired roots

as µ1, · · · , µn−1 the desired polynomial is

Pdes.(λ) = (λ− µ1) · · · (λ− µn−1) (2.40)

= λn−1 + c̄dn−1λ
n−2 + · · ·+ c̄d2λ+ c̄d1, (2.41)

and in the form of desired matrix

Ād =




0 1 0 · · · 0

0 0 1 · · · 0

...
...

... · · · ...

−c̄d1 −c̄d2 −c̄d3 · · · −c̄dn−1




. (2.42)

In order to reach a stable system, (2.39) is set to be equal to (2.42). c̃T from (2.30)

can be written in the new form as

c̃T = βrowcdiagV
−1, (2.43)
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where

βrow =

[
β1 · · · βn

]
, cdiag = diag{c1, · · · , cn}.

Solving (2.43) for β and using relation (2.36) we have

βrow = c̃nĀ
d
rowV c

−1
diag, (2.44)

where

Ād
row =

[
c̄d1 · · · c̄dn−1 1

]
. (2.45)

For the elements of β we have

βk =
c̃n

ck

(
c̄d1 + c̄d2λk + c̄d3λ

2
k + · · ·+ c̄dn−1λ

n−2
k + λn−1

k

)
. (2.46)

By comparing (2.46) and the desired polynomial (2.41) we have

βk = c̃n
Pdes.(λk)

ck
. (2.47)

The observer gain for the system with diagonal representation (2.22), is found by

comparing (2.31) and (2.24)

L = L0βV
−1en =

[
L1 L2 · · · Ln

]T
. (2.48)

Note that V −1en represents the last column of the matrix V −1, so the elements of the
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observer gain will be

Lk = L0βkV
−1(k, n), k = 1, · · · , n. (2.49)

where V −1(k, n) is the k-th row in the last column (n) of the inverse of the Vander-

monde matrix. The k-th row of the last column of V −1 is

V −1(k, n) =
adjV (k, n)

|V | =

(−1)k−1
∏

1≤i<j≤n
i,j 6=k

(λi − λj)
∏

1≤i<j≤n(λj − λi)
=

(−1)k−1

∏
i=1,··· ,n.

i 6=k
(λk − λi)

. (2.50)

Using (2.47), (2.49) and (2.50) the k-th element of the matrix L will be

Lk = L̃0
(−1)k−1

ck

Pdes.(λk)∏
i=1,··· ,n.

i 6=k
(λk − λi)

, (2.51)

where L̃0 = L0c̃n.

In order to develop a more straightforward formula for the observer gain, let us

assign the desired roots in (2.40) as follows

µk = λm+1, for k = 1, 2, · · · , m.

µm+1 = λm+2

...

µn−1 = λn.
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The desired polynomial will be

Pdes.(λ) = (λ− µ1) · · · (λ− µm)(λ− µm+1) · · · (λ− µn−1)

= (λ− λm+1)
m(λ− λm+2) · · · (λ− λn). (2.52)

By employing the observer gain formula (2.51) and the new desired polynomial (2.52),

for k = 1, 2, · · · , m the elements of observer gain will be

Lk = L̃0
(−1)k−1

ck

(λk − λm+1)
m−1

∏
i=1,··· ,m.

i 6=k
(λk − λi)

. (2.53)

For k = m+ 1, m+ 2, · · · , n considering any k, we end up with zero for the desired

polynomial (2.52) and as a result zero for the observer gain Lk = 0.

In the summary, the following formula represents the observer gain

Lk = L̃0





(−1)k−1

ck

(λk−λm+1)m−1
∏

i=1,··· ,m.
i 6=k

(λk−λi)
, k = 1, · · · , m

0 k = m+ 1, · · · , n.
. (2.54)

2.5 Observer for Distributed Parameter System

To obtain the observer gain for the distributed parameter system (2.1), the limit of

the observer gain for the system in diagonal form (2.54) when n→ ∞ is considered

L(x) = L̃0 lim
n→∞

n∑

k=1


 (−1)k−1

ck

(λk − λm+1)
m−1

∏
i=1,··· ,m.

i6=k

(λk − λi)
ϕk(x)




= L̃0

m∑

k=1


(−1)k−1

ck

(λk − λm+1)
m−1

∏
i=1,··· ,m.

i6=k

(λk − λi)
ϕk(x)


 . (2.55)
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Based on the assumptions made in the previous section, we end up with a finite sum

for the observer gain. Finally, the observer for the original distributed parameter

system will be

∂Q̂

∂t
= AQ̂+B(x)u(t) + L(x)sign

(
y(t)−

∫ l

0

cT (x)Q̂(t, x)dx

)
. (2.56)

2.6 Diffusion Equation and Simulation Results

Here a one-dimensional diffusion equation with homogeneous boundary condition is

considered, the differential operator is A = ∂2

∂x2

∂Q(t, x)

∂t
=
∂2Q(t, x)

∂x2
+ b(x)u, (2.57)

where 0 ≤ x ≤ l, t ≥ 0, the diffusivity is assumed to be equal to one. Let us consider

Dirichlet boundary conditions

Q(t, 0) = Q(t, l) = 0, (2.58)

and the initial condition as

Q(0, x) = Q0(x).

Applying separation of variables technique, we end up with the following ordinary

differential equation

Ż(t) = ΛZ(t) + bu(t), (2.59)
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where

Z(t) =

[
z1 z2 · · ·

]T
, Λ = diag{−ω2

1,−ω2
2, · · · }, b =

[
b1 b2 · · ·

]T
.

The observer for the distributed parameter system will be

∂Q̂(t, x)

∂t
=
∂2Q̂(t, x)

∂x2
+ b(x)u+ L(x)sign(y − ŷ).

where the observer gain is designed using the proposed formula. If the roots are

evenly spread on the negative part of the real axis: λk = −kω2, k = 1, 2, · · · , n for

the observer gain from (2.55) we have

L(x) = L̃0

m∑

k=1

(
(−1)k−1

ck

(k − (m+ 1))m−1

(−1)m−k(k − 1)!(m− k)!
ϕk(x)

)
. (2.60)

For diffusion equation the orthonormal basis are ϕk(x) = sin(kπ
l
x).

For the simulation, the PDE in (2.57) with b(x) = 0, Dirichlet boundary conditions

in (2.58) and the initial condition as

Q(0, x) =
2x

1 + x2
.

are considered. For the observer we have

∂Q̂(t, x)

∂t
=
∂2Q̂(t, x)

∂x2
+ L(x)sign(y − ŷ),
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along with the boundary and initial conditions as

Q̂(t, 0) = Q̂(t, l) = 0, Q̂(0, x) = x.

Figure 2.1 shows the behavior of the system over the time and length. Figure 2.2

represents the performance of the observer. Figure 2.3 shows the absolute differ-

ence between the state of the system and the observer. Figure 2.4 demonstrates the

convergence of the sliding mode over the time. For the MATLAB code refer to A.1.

Figure 2.1: Diffusion equation solution.
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Figure 2.2: Distributed parameter observer for diffusion equation.

Figure 2.3: Difference between system and observer.
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2.7. CONCLUSION AND FUTURE WORK
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Figure 2.4: Sliding mode convergence.

2.7 Conclusion and Future Work

In this chapter the sliding mode observer for a specific class of distributed parame-

ter systems was designed. The suggested state transformation allows the arbitrary

design of the sliding manifold. A formula for the observer gain was obtained that

guarantees stability and convergence of the distributed observer to the actual system.

The observer and the observer gain design can be extended to be used for hybrid

systems employing the same technique. Applying the suggested ideas on different

systems such as fluid flows and quantum systems, can be considered in the future

work. Another extension of this research will be eliminating the assumptions on the

differential operator.
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Chapter 3

Background on Fluid Dynamics,

SMO for Burgers’ Equation

This chapter is devoted to Burgers’ equation, the literature review, mathematical

background, shock wave situation and its solution. The problem of designing a state

observer for Burgers’ equation is studied at the end. Note that the mathematical

background in this chapter serves as the basic mathematics for chapter 4 as well.

3.1 Burgers’ Equation, Literature Review

Stabilizing the unstable shock-liked equilibrium profiles of the viscous Burgers’ equa-

tion using control at the boundaries was studied in Krstic et al. (2008). In a follow

up paper, more advanced problems like trajectory generation, trajectory tracking,

nonlinear observer and output feedback stabilization were investigated (Krstic et al.,

2009). Two finite element methods were applied on the viscous Burgers’ equation in

Atwell & King (2000) and a standard LQR controller was employed to optimize the

67



3.1. BURGERS’ EQUATION, LITERATURE REVIEW

cost function. Sliding mode control of the forced generalized Burgers’ equation was

considered in Smaoui et al. (2006), Karhunen-Loéve Galekrin method was practiced

to decompose the original equation into a set of ODEs that mimics the dynamics of

the forced generalized Burgers’ equation.

Aubin et al. (2005) investigated the problem of controlling Burgers’ equation by

employing the general framework of viability theory, and constructed the controlled

entropy solutions. The problem of stabilization of the inviscid Burgers’ equation using

boundary actuation was explored in Blandin et al. (2010). By applying a Lyapunov

approach, it was shown that this equation is stabilized around a constant uniform

state under appropriate boundary control.

Shock Wave

Shock waves are the result of sudden release of energy in a very small spatial region.

The energy released by shock waves can be used in many innovative applications.

For further information about shock wave theory and the history behind it refer to

Zel’dovich (1967), Rathakrishnan (2006), Krehl (2009) and Salas (2006).

A survey including different topics related to shock wave such as hyperbolic con-

servation laws, well-posedness theory, shock and radiation-diffusion wave, etc. was

presented in Razani (2007). Boundary value problems for Burgers’ equation through

nonstandard analysis was investigated in Bendaas (2015) and the confluence and in-

teracting shocks were considered. Solovchuk & Sheu (2011) practiced a Mott-Smith

distribution function for the Maxwell molecules in order to predict the structure of

shock wave in a neutral monatomic gas. The results showed agreement with Monte-

Carlo simulation at different Mach numbers. Regulation of an inviscid Burgers’ equa-
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tion using an averaged or low-pass filtered velocity in order to avoid shock wave

situation was investigated in Mohseni et al. (2006). Norgard & Mohseni (2008) ap-

plied a convectively filtered Burgers’ equation in order to model and regulate Burgers’

equation. This model is also employed to investigate the shock behavior, shock thick-

ness and kinetic energy decay. In Zhang et al. (2012) the nature of the shock wave

in inviscid Burgers’ equation was studied and it has been proven that there is a thin

spatial zone that a saddle-node bifurcation happens. It was shown that by intro-

ducing viscosity the discontinuity resulting from saddle-node bifurcation disappears.

Pironneau (2003) examined the sensitivity of the shock wave position with respect

to the domain occupied by the fluid. The problem has applications in minimizing

the sonic boom of airplanes and the stability of the stream in fast-flowing canals. In

Bardos & Pironneau (2003) the solution of Burgers’ equation was derived using the

weak solution and the initial condition data. In addition in order to control shocks

an optimal control was designed. Pironneau (2002) showed how the shock wave posi-

tion in a nozzle can be controlled using the optimal control theory and the transonic

equation. Marchesin & Paes-Leme (1983) considered shocks in gas pipelines. By

applying numerical method for the one-dimensional laws of conservation of mass,

conservation of momentum and a constitutive equation of state, the authors showed

the effects of the Moody friction term in resolving shocks whenever they were present.

Marchesin & Plohr (2001) investigated the theory of mixed-type systems of conser-

vation laws with small diffusive terms and the application of the theory to increase

the rate of oil recover. They showed that in addition to the classical shock and re-

flection waves, there are two other features: the first one is a new type of shock

wave with intermediate speed and the second is a fast, decaying, oscillatory injection
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wave. The Saint-Venant equation written in prismatic is practiced to model the flow.

The behavior of shock wave propagation of circular dam break problems was investi-

gated in Mungkasi (2014). Three approximate Riemann solver scheme were presented

by Zhao et al. (1996) in order to solve two-dimensional shallow water equations for

modeling shock waves. In Onizuka & Odai (1998) Burgers’ equation was employed

as an approximation for Saint-Venant equations to simulate slow transient in wide

rectangular open channels of finite length.

3.2 Compressible Fluid Dynamics

The mathematical background starts with deriving the equation for compressible

fluid. A single-phase homogeneous fluid is completely described if the velocity ~u, any

two thermodynamics variables and an equation of state are known (Lomax et al.,

2001). In the classical Gibbs axiomatic formulation, the equation of state is

e = e(V, s), (3.1)

where V = 1
ρ
is the specific volume, ρ is the density, and s is the specific entropy.

The pressure and temperature are defined as

p = − ∂e

∂V
, T =

∂e

∂s
. (3.2)

Using the above relations the fundamental thermodynamics relation is derived

Tds = de+ pdV. (3.3)
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The specific total energy is given by

E = e+
1

2
(~u · ~u). (3.4)

Another important positive quantity is the speed of sound, which is the traveling

speed of sound waves in the fluid

c2 =
∂p

∂ρ s

. (3.5)

A thermally perfect gas, ideal gas, is a fluid that obeys

p = ρRT (3.6)

where R is the gas constant and is defined as the ratio of the universal gas constant

to the effective molecular weight of the particular gas.

The Navier-Stokes equations are the differential form of conservation laws and

they govern the motion in time for classical fluid. They include, conservation of mass

or continuity equation

∂ρ

∂t
+∇ · (ρ~u) = 0, (3.7)

conservation of momentum

∂(ρ~u)

∂t
+∇ · (ρ~u~uT ) +∇p = ∇ · τ, (3.8)
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and conservation of energy

∂(ρE)

∂t
+∇ · (ρE~u) +∇ · (p~u) = ∇ · ~q +∇ · (τ~u), (3.9)

where τ is the viscous stress tensor, ~q = −κ∇T is the heat flux and κ shows the

thermal conductivity. The Navier-Stokes equations have to be supplemented with an

equation of state, for instance the relation for the ideal gas.

When considering the volumetric forces ~f , the conservation of momentum and

energy become balance laws and we end up with the more general case of the Navier-

Stokes equations as follows

∂ρ

∂t
+∇ · (ρ~u) = 0, (3.10)

∂(ρ~u)

∂t
+∇ · (ρ~u~uT ) +∇p = ∇ · τ + ~f, (3.11)

∂(ρE)

∂t
+∇ · (ρE~u) +∇ · (p~u) = ∇ · ~q +∇ · (τ~u) + ~f · ~u. (3.12)

Compressible Euler equations are the specific case of the Navier-Stokes equations

when the Reynolds number Re→ ∞ or shear (dynamic) viscosity µ → 0, as a result

all the terms at the right-hand side are vanished

∂ρ

∂t
+∇ · (ρ~u) = 0, (3.13)

∂(ρ~u)

∂t
+∇ · (ρ~u~uT ) +∇p = 0, (3.14)

∂(ρE)

∂t
+∇ · (ρE~u) +∇ · (p~u) = 0. (3.15)

The compressible Euler equations in one dimension can be written as a general
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hyperbolic conservation law

~vt +∇x · ~f(~v) = 0, (3.16)

where

~v = (ρ, ρu, E)T , ~f(~v) =
(
ρu, ρu2 + p, (E + p)u

)T
, (3.17)

here ρ is the density, u is the velocity, ρu is the momentum, E is the energy and p is

the pressure given as a function of other state variables (Qiu, 2013).

In the following sections some modified models for fluid flow are developed based

on the compressible Euler equations and the problem of designing sliding mode ob-

server for them is studied in this and the next chapter.

3.3 Burgers’ Equation

In order to derive the Burgers’ equation, the one-dimensional (~u = u) form of the

first two Euler equations (3.13), (3.14) are employed

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (3.18)

∂(ρu)

∂t
+

∂

∂x
(ρuu+ p) = 0. (3.19)

Conservation of momentum (3.19) can be written as

ρ
∂u

∂t
+ u

∂ρ

∂t
+ u

∂

∂x
(ρu) + (ρu)

∂u

∂x
+
∂p

∂x
= 0, (3.20)
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rearranging (3.20) we have

u
∂ρ

∂t
+ u

∂

∂x
(ρu) + ρ

∂u

∂t
+ (ρu)

∂u

∂x
+
∂p

∂x
= 0, (3.21)

as can be seen in (3.21) the first two terms are the same as the equation for con-

servation of mass (3.18), therefore they equal to zero and by neglecting the pressure

gradient we have

ρ
∂u

∂t
+ ρu

∂u

∂x
= 0, (3.22)

and finally

∂u

∂t
+ u

∂u

∂x
= 0, (3.23)

which is the one-dimensional Euler equation of motion or inviscid Burgers’ equa-

tion. In the case of viscous fluid we have viscous Burgers’ equation as

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (3.24)

where ν = µ

ρ
is the kinematic viscosity (also called momentum diffusivity) and µ

is dynamic viscosity. Viscosity in fluid is equivalent to friction in solids. Dynamic

viscosity is the relation between the stress and strain tensor, while the kinematic

viscosity is the dynamic viscosity divided by the density.

Burgers’ equation is named after the Dutch physicist Johannes Martinus Burgers

(1895-1981). It has application in various areas of applied mathematics, such as

modeling of gas dynamics, traffic flow, etc. In this chapter the term Burgers’ equation

is used for inviscid version of Burgers’ equation.
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VISCOSITY

3.4 Solution of Viscous Burgers’ Equation, The

Effect of Viscosity

In this section the solution of the viscous Burgers’ equation and the effect of de-

creasing viscosity are investigated. Consider the following viscous Burgers’ equation

(Cameron, 2011)

ut + uux = νuxx. (3.25)

The solution will be the propagation wave type u(t, x) = w(x−st) = w(y), y = x−st.

For the derivatives we have

ut = −sw′, ux = w′, uxx = w′′, w′ =
∂w

∂y
. (3.26)

Substituting (3.26) into (3.25)

−sw′ + ww′ = νw′′, (3.27)

−sw′ +

(
w2

2

)′
= νw′′, (3.28)

and taking the first integral of (3.28)

− sw +
w2

2
= νw′ + C, (3.29)

and imposing the conditions w(−∞) = ul, w(∞) = ur, ul > ur and w′(±∞) = 0, we

have

− sul +
u2l
2

= −sur +
u2r
2

= C. (3.30)
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VISCOSITY

In order to keep the equality valid, and for the shock speed to be the same as in the

inviscid Burgers’ equation, s = ul+ur

2
, we have C = −ulur

2
. Substituting these values

into (3.29)

νw′ =
w2

2
− ul + ur

2
w +

ulur

2
, (3.31)

and rearranging (3.31) by w′ = dw
dy

we have

dy

2ν
=

dw

(w − (ul+ur)
2

)2 − (ul−ur)2

4

. (3.32)

Using the integral formula

∫
dw

(w − a)2 − b2
=

1

2b
log

w − a− b

w − a + b
, (3.33)

for (3.32) we have

y

2ν
+ C =

1

ul − ur
log

ul − w

w − ur
, ul > w > ur. (3.34)

Defining A = y(ul−ur)
2ν

+ C, for w we have

w = ur +
ul − ur

2

2

eA + 1
. (3.35)

Multiplying and dividing 2
eA+1

by e−
A
2 and using the identity

2e
A
2

e
A
2 + e

−A
2

= 1− e
A
2 − e

−A
2

e
A
2 + e

−A
2

= 1− tanh
A

2
, (3.36)
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VISCOSITY

the solution for w will be

w(y) = ur +
ul − ur

2
tanh

(
y(ul − ur)

4ν
+ C

)
, (3.37)

finally for u(t, x) we have

u(t, x) = ur +
ul − ur

2
tanh

(
(x− x0 − st)(ul − ur)

4ν

)
. (3.38)

As ν → 0, u(x, t) tends to the step function for every t, which is the unique weak

solution of the Burgers’ equation. Figure 3.1 shows how reducing viscosity leads to a

sharp solution for the viscous Burgers’ equation. For the code refer to A.3.
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Figure 3.1: Solution of viscous Burgers’ equation for diffrent ν.

3.5 Conservation Law

Consider the evolution of the density v of a substance, the total amount inside a set

Ω at time t is ∫

Ω

v(t, x)dV, (3.39)
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assuming change only happens as the substance goes through the boundary, that is

quantified by flux F

d

dt

∫

Ω

v(t, x)dV = −
∫

∂Ω

F · ndS, (3.40)

where n is the outer normal. Using Gauss theorem, the right-hand side of (3.40) will

be ∫

∂Ω

F · ndS =

∫

Ω

∇ · FdV, (3.41)

so we have

d

dt

∫

Ω

v(t, x)dV +

∫

Ω

∇ · FdV = 0, (3.42)

that can be written as ∫

Ω

(vt +∇ · F ) dV = 0. (3.43)

Since Ω is arbitrary we have the following differential equation

vt +∇ · F = 0. (3.44)

A conservation law is obtained when F is a function of v only (Yu, 2012)

vt +∇ · F (v) = 0, v(0, x) = v0(x). (3.45)

3.6 Advection Equation

Advection equation is a specific case of conservation law. Considering the one-

dimensional conservation law

∂v

∂t
+
∂f(v)

∂x
= 0, (3.46)
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3.6. ADVECTION EQUATION

where v(t, x) is an unknown conserved quantity and f(v) is the flux. Equation (3.46)

can be written as

∂v

∂t
+ a(v)

∂v

∂x
= 0. (3.47)

where a(v) = df

dv
. In the case of flux function depending on x

∂v

∂t
+ a(v)

∂v

∂x
= g(v), (3.48)

where g(v) = −∂f

∂x
shows the source term.

Assigning the conserved quantity by ρ and the velocity vector field by ~u we end

up with the advection equation

∂ρ

∂t
+∇ · (ρ~u) = 0. (3.49)

By assuming an incompressible flow, ∇ · ~u = 0, we have

∂ρ

∂t
+ ~u · ∇ρ = 0. (3.50)

In the case of constant velocity ~u = a we end up with the linear advection equation

∂ρ

∂t
+ a

∂ρ

∂x
= 0, (3.51)

which describes the flux of a substance in the flow passing some point in the stream.

If there is no diffusion in the flow, the concentration profile will convect downstream

with the velocity a. Linear advection equation is a hyperbolic equation. Hyperbolic
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PDEs usually describe propagation in preferred direction, while keeping its strength.

Considering molecular diffusion and turbulence the advection-diffusion equa-

tion is introduced, which includes the effect of molecular diffusion by applying the

diffusive flux from Fourier’s law of heat conduction −D ∂ρ

∂x
, where D is diffusivity,

∂ρ

∂t
+

∂

∂x
(aρ−D

∂ρ

∂x
) = 0, (3.52)

in this case, the flux depends on ∂ρ

∂x
as well as ρ. Equation (3.52) is a parabolic

second-order PDE (Khoo et al., 2003).

3.7 Method of Characteristics

A common method for solving first-order PDEs is method of characteristics and in

this section the basics of it is explained. For further information on the history of

method of characteristics refer to (Middendorp & Verbeek, 2006). Let us consider a

general first-order quasi-linear PDE

a(x, y, v)vx + b(x, y, v)vy = c(x, y, v). (3.53)

Equation (3.53) can be written in the following form

(a(x, y, v), b(x, y, v), c(x, y, v)) · (vx, vy,−1) = 0, (3.54)
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3.7. METHOD OF CHARACTERISTICS

which means (a(x, y, v), b(x, y, v), c(x, y, v)) and (vx, vy,−1) are perpendicular. Hav-

ing the solution as v(x, y) and introducing the new function G we have

G(x, y, v) = v(x, y)− v, (3.55)

using (3.54) and (3.55)

(vx, vy,−1) = (Gx, Gy, Gv) = ∇G, (3.56)

where ∇G is a normal vector of the surface G = 0. Using the definition (3.55),

G = 0 gives us v = v(x, y). Therefore (vx, vy,−1) is perpendicular to the surface

solution v = v(x, y). It was shown (a(x, y, v), b(x, y, v), c(x, y, v)) is perpendicular to

(vx, vy,−1) as a result (a(x, y, v), b(x, y, v), c(x, y, v)) has to be tangent to the surface

v = v(x, y). Thus the quasi-linear PDE is equivalent to the geometrical requirement

in the x-y-v space that the vector (a(x, y, v), b(x, y, v), c(x, y, v)) is tangent to the

solution surface v = v(x, y) (Yu, 2012). Therefore the following conditions have to be

satisfied

dx

ds
= a(x, y, v) (3.57)

dy

ds
= b(x, y, v) (3.58)

dv

ds
= c(x, y, v). (3.59)

Note that the independent variables x, and y are used to illustrate the method of

characteristics and they can be replaced with any other variables like time t, as in

the following sections.
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3.7. METHOD OF CHARACTERISTICS

Solving Advection Equation Using Method of Characteristics

For the case of linear advection equation

ρt + aρx = 0, ρ(0, x) = ρ0(x), (3.60)

where ρ = ρ(t, x) is the density. Employing (3.57)-(3.59) we have

dt

ds
= 1 → t = s, (3.61)

dx

ds
= a → x = at + x0 → x0 = x− at, (3.62)

du

ds
= 0 → ρ = c = u0(x0) ⇒ ρ(t, x) = ρ0(x− at). (3.63)

As an example, Figure 3.2 shows the characteristics for the linear advection equation

for time between 0 and 10 and for x0 = 0, 2, 4, 6, 8, 10 as the initial conditions. Figure

3.3 indicates the movement of the current over x = 0 − 50, for different times and

when ρ0(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 .

x
0 5 10 15 20 25 30

t

0

1

2

3

4

5

6

7

8

9

10

Figure 3.2: Characteristics for linear advection equation.
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x
0 5 10 15 20 25 30 35 40 45 50

ρ
(t
,
x
)

0
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t=0 t=5 t=10 t=15 t=20

Figure 3.3: Current profiles for linear advection equation in different times.

3.8 Shock Wave

Let us apply method of characteristics on the Burgers’ equation

∂u

∂t
+ u

∂u

∂x
= 0, (3.64)

with the following initial and boundary conditions

u(0, x) = u0(x), (3.65)

u(t, 0) = ub(t). (3.66)

Rewriting (3.64)

1

u

∂u

∂t
+
∂u

∂x
= 0, (3.67)

and considering the characteristics starting on the initial condition, the new vari-

able ϕ(x, ξ) = u(t(x, ξ), x+ ξ) is introduced, where x a parameter and t(x, ξ) is the

characteristic for ξ ≥ 0. For the characteristics originated on the initial condition
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3.8. SHOCK WAVE

t(x, 0) = 0, we have

ϕ(x, 0) = u(t(x, 0), x) = u(0, x) = u0(x). (3.68)

Employing method of characteristics for the characteristics initiating over the spatial

variable

d

dξ
t(x, ξ) =

1

ϕ(x, ξ)
, (3.69)

d

dξ
ϕ(x, ξ) = 0 (3.70)

Equation (3.70) gives

ϕ(x, ξ) = ϕ(x, 0) = u0(x), (3.71)

and substituting (3.71) in (3.69) we have

d

dξ
t(x, ξ) =

1

u0(x)
. (3.72)

Relation (3.72) shows 1
u0(x)

has to be decreasing to avoid the shock wave situation,

intersecting characteristics, which means u′0(x) ≥ 0 leads to the absence of shock

wave.

Figures 3.4 and 3.5 demonstrate examples for decreasing and increasing initial

conditions, respectively.
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Figure 3.4: Initial condition and corresponding characteristics for u0 = e−x2
0 .
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Figure 3.5: Initial condition and corresponding characteristics for u0 = ex
2
0.

Having Burgers’ equation in the original form

∂u

∂t
+ u

∂u

∂x
= 0, (3.73)

and considering the characteristics starting on the boundary condition, the new vari-
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3.8. SHOCK WAVE

able ψ(t, s) = u(t+ s, x(t, s)) is introduced, where t is a parameter and x(t, s) is the

characteristic for s ≥ 0 . For the characteristics originated on the boundary condition

we have

ψ(t, 0) = u(t, x(t, 0)) = u(t, 0) = ub(t). (3.74)

Employing method of characteristics for the characteristics initiating at the boundary

d

ds
x(t, s) = ψ(t, s), (3.75)

d

ds
ψ(t, s) = 0. (3.76)

Solving for (3.76)

ψ(t, s) = ψ(t, 0) = ub(t), (3.77)

and substituting (3.77) in (3.75) we end up with the following characteristics equation

d

ds
x(t, s) = ub(t). (3.78)

From (3.78), ub(t) has to be decreasing to avoid the shock wave situation which means

as long as u̇b ≤ 0 shock wave will not occur in the system.

Figures 3.6 and 3.7 show two examples of characteristics originated on the bound-

ary, for decreasing and increasing boundary conditions.

87



3.8. SHOCK WAVE

t0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u
b

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t
0 1 2 3 4 5 6 7

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3.6: Boundary condition and corresponding characteristics for ub = e−t20 .
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Figure 3.7: Boundary condition and corresponding characteristics for ub = et
2
0 .

In the summary to avoid shock wave, the following conditions have to be satisfied

u′0(x) ≥ 0 (3.79)

u̇b(t) ≤ 0 (3.80)
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In order to find a meaningful solution in the case of shock wave, one needs to

know the following concepts

• Weak solution

• Jump condition

• Entropy solution

These concepts explain when shock wave occurs and how to determine the reasonable

solution.

3.8.1 Weak Solution

It was shown that the solution of the Burgers’ equation can become discontinuous

even if the initial and boundary data are smooth. The concept of weak solution was

introduced to allow discontinuous solutions for differential equations and it satisfies

the following conditions:

• a smooth function is a weak solution if and only if it is a regular solution,

• a discontinuous function can be a weak solution,

• only those discontinuous functions which satisfy the associated integral equation

can be weak solutions.

In order to find the weak solution, the conservation law is multiplied by a test function

φ ∈ C1 and integrated by parts as if v is in C1

[vt + f(v)x]φ(t, x) = 0 (3.81)

−
∫ ∫

Ω

(vφt + f(v)φx) dxdt+

∫

∂Ω

φ(t, x)[vnt + f(v)nx]dS = 0 (3.82)
∫

t>0

∫

Ω

(vφt + f(v)φx) dxdt+

∫

R

v0φdx = 0. (3.83)

89



3.8. SHOCK WAVE

Equation (3.83) is the weak solution of the Burgers’ equation. Note that v no longer

needs to be C1 to make the above integral meaningful. The only requirement for

φ on C1 is that v and f(v) are measures. It means it is OK for v to be piecewise

continuous (Cameron, 2011), (Yu, 2012).

3.8.2 Jump Condition

We can assess what a weak solution would be like considering piecewise C1 solutions.

It means v has discontinuities along some curves but is C1 everywhere else. Consider

such a curve: Γ, and let φ ∈ C1
0 be supported in a small ball centering on Γ. The

ball is so small that it does not intersect with the x-axis and v is C1 everywhere in

the ball, D, except along Γ. Divide the ball D into two parts D1 and D2 by Γ. The

weak solution is continuously differentiable in two parts D1 and D2 of the domain D.

v has a jump discontinuity, shock, along the dividing smooth curve Γ. v, vt and vx

are continuous in D1 and D2. For more details refer to (Yu, 2012), (Zauderer, 2006),

(LeVeque, 1992), (Strang, 2006) and (Bhamra, 2010).

φ is the test function with compact support in D, and it does not necessarily

vanish along Γ. φ is zero along the x-axis so for the definition of weak solutions we

have

∫ ∫

D

(vφt + f(v)φx) dxdt = 0,
∫ ∫

D1

(vφt + f(v)φx) dxdt+

∫ ∫

D2

(vφt + f(v)φx) dxdt = 0. (3.84)
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vφt + f(v)φx can be written as (vφ)t + (f(v)φ)x, so (3.84) can be written as

∫ ∫

D1

((vφ)t + (f(v)φ)x) dxdt+

∫ ∫

D2

((vφ)t + (f(v)φ)x) dxdt = 0, (3.85)

using divergence theorem,
∫
V
(∇ · F )dV =

∫
∂V
F · da, for (3.85) we have

∫ ∫

∂D1

φ (vnt + f(v)nx) dxdt+

∫ ∫

∂D2

φ (vnt + f(v)nx) dxdt = 0.

Let us define s = − nt

nx
and since φ vanishes on ∂D except along Γ, we have

∫ ∫

∂D

φ (−s[v] + [f(v)]) dxdt = 0

where [v] is jump of v across Γ. Considering φ is arbitrary, the weak solution must

satisfy

[f(v)] = s[v], or s =
[f(v)]

[v]
. (3.86)

This is called jump condition or Rankine-Hugoniot jump condition, where s

is the speed of discontinuity.

Considering the specific case of Burgers’ equation f(u) = 1
2
u2 we have

s =
f(u)xl

− f(u)xr

u(xl)− u(xr)
=

1
2
u2l − 1

2
u2r

ul − ur
=

1

2
(ul + ur) (3.87)

3.8.3 Entropy Solution

We have observed that the classical/strong solution might not exist for conservation

laws. In addition, the weak solution does not give a unique solution. Entropy condi-
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tion is introduced to make the solution unique. The solution satisfying the entropy

condition is called an entropy solution. Entropy solution is the unique and phys-

ically relevant solution among weak solutions (Qiu, 2013). Let us introduce some

entropy conditions that can be used in problems

Olenik entropy condition

f(v)− f(vl)

v − vl
≥ s ≥ f(v)− f(vr)

v − vr
(3.88)

Lax entropy condition

f ′(vl) > s > f ′(vr) (3.89)

where s = [f(v)]
[v]

is the speed of propagation of discontinuity given by the Rankine-

Hugoniot jump condition, v is between vl and vr, and vl and vr are the left and right

states along the discontinuity, respectively.

It can be seen that Oleinik entropy condition implies Lax entropy condition but

not the other way around. Lax entropy condition is a necessary but not sufficient

condition to single out the entropy condition. In the case of having strictly convex or

strictly concave f(v), the Lax entropy condition is equivalent to the Olenik entropy

condition and it will be sufficient to single out the entropy condition.
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3.9 Riemann Problem

Burgers’ equation with the following initial condition is called Riemann problem

(Cameron, 2011)

ut + uux = 0, u(0, x) =





ul x < a

ur x ≥ a

(3.90)

and has the following unique weak solutions:

Shock wave when ul > ur

u(t, x) =





ul x < st + a

ur x ≥ st+ a

s =
ul + ur

2
(3.91)

Rarefaction wave when ul < ur

u(t, x) =





ul x < ult

x
t

ult ≤ x ≤ urt

ur x > urt

(3.92)

Let us consider the following example

ut + uux = 0, u(0, x) = u0(x0) =





ul x < a

ur x ≥ a

(3.93)
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where ul > ur, using method of characteristics for characteristics we have

x(t) =





ult+ x0 x < a

urt+ x0 x ≥ a

plotting the characteristics, for the nominal values: ul = 4, ur = 2, a = 3, we have

the intersecting characteristics as in Figure 3.8. Defining s = ul+ur

2
as the speed at

intersection and keeping the slope the same before and after the intersection, the

characteristics and the solution for u(t, x) using the Riemann problem (3.91) are as

in Figure 3.9. In the case of rarefaction wave, ul < ur, the characteristics and the

solution for u(t, x) are given in Figure 3.10.

0 2 4 6 8 10 12 14
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0.5
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x

t

Figure 3.8: Intersecting charactersitics for Burgers’ equation.
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Figure 3.9: Charactersitics and shock wave solution for Reimann problem.

Figure 3.10: Characteristics and rarefaction solution for Reimann problem.

In the second example the Burgers’ equation including two shock waves is consid-
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ered

ut + uux = 0, u(0, x) = u0(x) =





ul x < a

um a ≤ x < b

ur x ≥ b

(3.94)

where ul > um > ur and b > a. For nominal values of ul = 2, um = 1, ur = 0 and

a = 1, b = 2 the characteristics are depicted in Figure 3.11. After the shock waves

intersect, a new combined shock wave that has the speed as the average speed of the

two initial shock waves is generated, for the code refer to A.2 .
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Figure 3.11: Characteristics for Burgers’ equation with two shock waves.

3.10 Sliding Mode Observer for Burgers’ Equation

Let’s consider a Burgers’ equation including disturbance at the right-hand side

∂u

∂t
+ u

∂u

∂x
= f(t, x, u), u(t, 0) = y0(t), (3.95)
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and with the discontinuous measurements over spatial variable as follows

u(t, xk) = yk(t), k = 1, · · · , m. (3.96)

where xk shows the location of the sensors. Applying method of characteristics, the

new variables Ψ(t, s) = u(t+ s,X(t, s)) and X(t, s) are introduced, such that

d

ds
X(t, s) = Ψ(t, s), (3.97)

where t is a parameter. The derivative of Ψ, using (3.95), will be

d

ds
Ψ(t, s) =

∂u

∂t
(t+ s,X(t, s)) +

d

ds
X(t, s)

∂u

∂t
(t+ s,X(t, s))

= f(t+ s,X(t, s),Ψ(t, s)). (3.98)

Equations (3.97) and (3.98) called characteristic equations and their initial conditions

correspond to the boundary condition of (3.95) as

X(t, 0) = 0 (3.99)

Ψ(t, 0) = y0(t) (3.100)

The measurements in (3.96) translated into the characteristics are

X(t, sk) = xk (3.101)

Ψ(t, sk) = yk(tk) (3.102)
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where sk = tk − t and sk is the time of characteristic reaching a sensor position

X(t, sk) = xk, see Figure 3.12.

t

s = 0

xk

tk

sk = tk − t

x

t

Figure 3.12: Characteristic and the relation between t, s and tk.

For each characteristic the assumption of f ≥ 0 needs to be held to make the

characteristic meet the sensors position.

The characteristic equations for the observer are as follows

d

ds
X̂(t, s) = Ψ̂(t, s), (3.103)

d

ds
Ψ̂(t, s) = f(t+ s, X̂(t, s), Ψ̂(t, s)) (3.104)

+
∑[

yk(t+ s)− Ψ̂(t, s)
]
δ(s− sk).

with the initial conditions as

X̂(t, 0) = 0 (3.105)

Ψ̂(t, 0) = y0(t) (3.106)

By changing the argument of the δ-function from s to X̂(t, s), using (3.103), (3.104)
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can be written as

d

ds
Ψ̂(t, s) = f(t+ s, X̂(t, s), Ψ̂(t, s)) (3.107)

+
∑[

yk(t+ s)− Ψ̂(t, s)
]
Ψ̂(t, s)δ(X̂(t, s)− xk).

Writing the equation for the observer in the integral form and replacing the δ-function

by the discontinuous function, that leads to û(t, xk) = yk(t) after some finite time but

not instantly as in (3.107), we have

Ψ̂(t, s) =

∫ s

sk−ε

f(t+ v, X̂(t, v), Ψ̂(t, v))dv (3.108)

+

∫ s

sk−ε

L(v − sk)sign(yk(t + v)− Ψ̂(t, v))dv

where

L(v − sk) =





Lmax v − sk < 0

0 v − sk > 0

(3.109)

where Lmax is big enough to guarantee sliding mode existence at s = sk and therefore

yk(tk)−Ψ(sk, t) = 0. The observer gain L(v− sk) can be replaced by L̃(X̂(v, t)−xk)

for the measurements on spatial variable, and for the state observer we have

Ψ̂(t, s) =

∫ s

sk−ε

f(t+ v, X̂(t, v), Ψ̂(t, v))dv (3.110)

+

∫ s

sk−ε

L̃(X̂(t, v)− xk)sign(yk(t+ v)− Ψ̂(t, v))dv.
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The distributed observer in the PDE form will be

∂û

∂t
+ û

∂û

∂x
= f(t, x, û) +

∑

k

L̃(x− xk)sign(yk(tk)− û(t, xk)). (3.111)

where the schematic representation of L̃(x) is depicted in the Figure 3.13.

x−ε

Lmax

Figure 3.13: Demonstration of obserever gain.

The simulation results for a case of increasing step function as boundary condition

are presented in Figures 3.14 and 3.10. Figure 3.14 shows the convergence of the

sliding mode and Figure 3.10 depicts the performance of the observer over time.
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Figure 3.14: Sliding mode for Burgers’ equation observer.
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Figure 3.15: Sliding mode observer performance for Burgers’ equation.

3.11 Conclusion and Future work

In this chapter, Burgers’ equation was introduced and its properties and solutions in

the presence of shock wave were studied. At the end, a sliding mode observer was

developed for Burgers’ equation. One extension for this chapter will be considering

designing observer for Burgers’ equation in the presence of shock wave and predicting

the behavior of shock wave for different cases. In addition, this chapter can be

extended to cover different variations of fluid flow equations such as the situations of

having more realistic models of the systems.
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Chapter 4

SMO and Anomaly Detection

System for Advection Equation

4.1 Introduction

In this chapter, the nonlinear observer is designed for a system of advection equa-

tions based on the idea of structure variable systems with sliding mode control

(Kamran et al., 2015). The observer algorithm is designed in such a way that the

output of the model coincides with the output of the system, in spite of the possible

mismatches between the model and the actual system.

The initial motivation for this research has come from the need to localize pos-

sible leak in the fuel lines of J-2X rocket engine test bed. The J-2X is a liquid-

oxygen/liquid-hydrogen fueled rocket engine that is designed to start at altitude as

part of a second or third stage of large, multi-stage launch vehicle (Drakunov & Solano,

2012), (NASA, 2011).
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4.1. INTRODUCTION

Here the focus is on estimating the states of the system and detecting possible

anomalies for a class of first order partial differential equations, known as advection

equation, only having boundary measurements available. Employing the mathemati-

cal theory of variable structure systems with sliding mode, the observer algorithm is

designed in such a way that it steers the output of the model to the output of the

system, in the presence of the possible differences between the model and the actual

system. The properties of sliding mode make it possible to steer the sate of observer

to the states of real-life system, as well as to identify the parameters of anomalies

that may occur in the actual system.

The chapter is organized as follows. In section 4.2 the advection equation is intro-

duced and the system is transformed into a set of scalar equations using the appropri-

ate transformation and next the system is written in the characteristic form. Section

4.3 represents the design process for the observer based on sliding mode method us-

ing only boundary measurements, and the proof of existence and convergence of the

proposed observer are provided. Section 4.4 concentrates on designing the anomaly

detection system and its proof of convergence. Sections 4.5 and 4.6 demonstrate ap-

plications of the suggested nonlinear observer and anomaly detection system. The

corresponding simulation results can be found in section 4.7. The chapter ends with

the conclusion and suggestions for future work in section 4.8.
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4.2. ADVECTION EQUATION, PROBLEM STATEMENT

4.2 Advection Equation, Problem Statement

The distributed parameter system under consideration governed by partial differential

equation of the form

∂Q(t, x)

∂t
+AQ(t, x) = f(t, x, Q), (4.1)

where Q(t, x) is the state, A is a linear differential operator, f(t, x, Q) ∈ C1(Ω) is the

disturbance vector, continuous in t and continuous differentiable function of x ∈ Ω

where Ω ∈ R3 is spatial region with a smooth boundary ∂Ω. The standard restrictions

on A state that it is a closed, linear, differential operators, that generates a semigroup

of strongly continuous bounded operators eAt defined for t ≥ 0 (Russell, 2010). In

the case of advection equation the operator A is A(t, x, Q) ∂
∂x

so

∂Q(t, x)

∂t
+ A(t, x, Q)

∂Q(t, x)

∂x
= f(t, x, Q), (4.2)

where 0 ≤ x ≤ l, t ≥ 0, Q ∈ Rn, and A : Rn+2 → Rn×n. Such equations play an

important role in modeling gas dynamics, flood waves in canals and rivers, transport

of pollutant, traffic flow and many other areas.

In order to define the solution uniquely the initial and boundary conditions are

needed. The initial condition is

Q(0, x) = Φ(x), (4.3)

and the boundary condition is

Q(t, 0) = Y0(t). (4.4)
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4.2. ADVECTION EQUATION, PROBLEM STATEMENT

Based on the properties of the matrix A(t, x, Q) there might be the need of having

the boundary condition at the end of the spatial variable, Q(t, l) = Yl(t) in (4.4). The

equation including boundary condition at the end, needs to be solved backward in

time.

Let us consider a new state Q̃(t, x) = G(Q(t, x)), where G(Q) is a diffeomorphism,

i.e. continuously differentiable map G : Rn → Rn such that there exist Q = G−1(Q̃).

Differentiating Q̃(t, x) with respect to time and spatial variable we have

∂

∂t
Q̃(t, x) =

∂G(Q)

∂Q

∂

∂t
Q(t, x), (4.5)

and

∂

∂x
Q̃(t, x) =

∂G(Q)

∂Q

∂

∂x
Q(t, x). (4.6)

Using (4.2) the following equation is obtained

∂

∂t
Q̃(t, x) + Ã(t, x, Q̃)

∂

∂x
Q̃(t, x) = f̃(t, x, Q̃), (4.7)

where the matrix Ã is a similarity transformation of the matrix A

Ã =
∂G(G−1(Q̃))

∂Q
A(t, x, G−1(Q̃))

[
∂G(G−1(Q̃))

∂Q

]−1

, (4.8)

and the disturbance f at the right-hand side is transformed into f̃ as

f̃(t, x, Q̃) =
∂G(Q)

∂Q
f(t, x, G−1(Q̃)). (4.9)
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4.2. ADVECTION EQUATION, PROBLEM STATEMENT

Here a class of systems with diagonalizable matrix A is considered. So employing

the state transformation matrix A is transformed into a diagonal form. It means the

transformation decouples the original system into a set of scalar equations of the form

∂q̃j

∂t
+ ãj(t, x, Q̃)

∂q̃j

∂x
= f̃j(t, x, Q̃), (4.10)

where ãj is the jth element of the diagonal matrix Ã

Ã =




ã1 0 0 · · · 0

0 ã2 0 · · · 0

...
...

... · · · ...

0 0 0 · · · ãn




.

Each j = 1, ..., n shows different parameters in the system such as pressure, veloc-

ity, temperature, etc. Assuming each ãj and f̃j only include the corresponding q̃j ,

ãj(t, x, Q) = ãj(t, x, q̃j) and f̃j(t, x, Q̃) = f̃j(t, x, q̃j), the system of decoupled ad-

vection equations along with the corresponding initial and boundary conditions are

obtained as

∂q̃j

∂t
+ ãj(t, x, q̃j)

∂q̃j

∂x
= f̃j(t, x, q̃j), (4.11)

q̃j(0, x) = φ̃j(x), (4.12)

q̃j(t, 0) = ỹj0(t) or q̃j(t, l) = ỹjl(t), (4.13)

where φ̃j(x), ỹj0(t) and ỹjl(t) are the transformed initial and boundary conditions.

Our goal is to design a nonlinear observer as well as an anomaly detection sys-

tem for the system described by (4.11)-(4.13), having only boundary measurements
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4.2. ADVECTION EQUATION, PROBLEM STATEMENT

available. The solution of (4.11) can be determined by applying method of charac-

teristics. Here method of characteristics is practiced in order to obtain a clear view

of the design outline and to understand the conditions and restrictions on the design

process.

Let us introduce the new variable Ψj(t, s) = q̃j(t + s,Xj(t, s)), where t is a pa-

rameter and Xj(t, s) satisfies ordinary differential equation

Ẋj(t, s) =
d

ds
Xj(t, s) = ãj(t+ s,Xj(t, s),Ψj(t, s)). (4.14)

Differentiating Ψj we have

Ψ̇j =
d

ds
Ψj(t, s) = f̃j(t+ s,Xj(t, s),Ψj(t, s)). (4.15)

So the system of ordinary differential equations, also known as characteristic equa-

tions, is obtained as

Ẋj(t, s) = ãj(t+ s,Xj(t, s),Ψj(t, s)), (4.16)

Ψ̇j(t, s) = f̃j(t+ s,Xj(t, s),Ψj(t, s)). (4.17)

Equations (4.16) and (4.17) are equivalent to the partial differential equation (4.11).

The initial and boundary conditions are needed to be rewritten in the the charac-

teristic form as well. Ignoring the characteristics originated on the x-axis, because of

their transient effect, the boundary conditions in (4.13) serve as the initial conditions
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4.3. DESIGNING SLIDING MODE OBSERVER USING BOUNDARY

MEASUREMENT

for the characteristic equations.

Xj(t, 0) = 0, Ψj(t, 0) = ỹj0(t) or Ψj(t, sl) = ỹjl(t). (4.18)

such that Xj(t, sl) = l. Figure 4.1 shows characteristics and locations of the sensors

for characteristics originated on the boundary conditions. Base on section 3.8, the

non-increasing boundary conditions lead to the absence of the shock wave which is

one of our assumptions in this chapter.

l

x

0

x0

x1
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t0 t1 tm−1. . . t
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0
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.

.

.
.
.
.

Figure 4.1: Demostration of the characteristics and locations of the sensors.

4.3 Designing SlidingMode Observer Using Bound-

ary Measurement

In this section our goal is to design state observer for the system (4.11) using discon-

tinuous boundary measurements as

q̃j(t, xk) = [ỹjk(t)], (4.19)
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MEASUREMENT

where j = 1, · · · , n. shows different variables and k = 0, ..., m− 1 shows positions of

the sensors along the spatial variable: 0 = x0 < x1 < ... < xm−1 = l. As it will be

shown in the example, just one measurement for each variable would be enough as

the minimum required number of the measurements. The distributed measurements

in (4.19) are translated into characteristic equations as

Xj(t, sk) = xk, (4.20)

Ψj(t, sk) = ỹjk(sk), (4.21)

where sk = tk − t is time of characteristic reaching a measurement point xk (4.20).

Characteristic equations for the observer are written as

˙̂
Xj(t, s) = ãj(t + s, X̂j(t, s), Ψ̂j(t, s)), (4.22)

˙̂
Ψj(t, s) = f̃j(t+ s, X̂j(t, s), Ψ̂j(t, s)) (4.23)

+
∑

sk

[ỹjk(t+ s)− Ψ̂j(t, s)]δ(s− sk).

The initial conditions for the observer are considered as X̂j(t, 0) = 0 and Ψ̂j(t, 0) = 0.

By changing the argument of the δ-function from s − sk to X̂j(t, s) − xk in (4.23),

using (4.22), we have

˙̂
Ψj(t, s) = f̃j(t+ s, X̂j(t, s), Ψ̂j(t, s)) (4.24)

+
∑

xk<x

[ỹjk(t+ s)− Ψ̂j(t, s)]ãj(t+ s, X̂j(t, s), Ψ̂j(t, s))δ(X̂j(t, s)− xk).

This observer works as follows: at each measurement point xk the output of the
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4.3. DESIGNING SLIDING MODE OBSERVER USING BOUNDARY

MEASUREMENT

observer Ψ̂j is set to the measured value ỹjk(sk). In other words, the interval between

available measurements is treated as a new observer with the corresponding boundary

measurements.

Writing observer (4.24) in the distributed form we have

∂ ˆ̃qj(t, x)

∂t
+ ãj(t, x, ˆ̃qj)

∂ ˆ̃qj(t, x)

∂x
= f̃j(t, x, ˆ̃qj) (4.25)

+
m−1∑

k=1

(ỹjk(t)− ˆ̃qj(t, xk))ãj(t, x, ˆ̃qj)δ(x− xk),

The same can be achieved by sliding mode using a discontinuous function. Defining

L̃jk(x, ˆ̃qj(t, x)) = ãj(t, x, ˆ̃qj)δ(x−xk) and replacing ỹjk(t)− ˆ̃qj(t, xk) with sign(ỹjk(t)−
ˆ̃qj(t, xk)) we have

∂ ˆ̃qj(t, x)

∂t
+ ãj(t, x, ˆ̃qj)

∂ ˆ̃qj(t, x)

∂x
= f̃j(t, x, ˆ̃qj) (4.26)

+

m−1∑

k=1

L̃jk(x, ˆ̃qj(t, x))sign(ỹjk(t)− ˆ̃qj(t, xk)).

Equation (4.26) gives robustness in the presence of possible disturbances and has

better filtering property in comparison with (4.25). This observer is designed to

steer the state of the system to the measured value at any point that information is

available. δ-function can be approximated by Gaussian curve as

δ(x− xk) ≃
1

ε
√
2π
e−

(x−xk)2

2ε2 ,
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MEASUREMENT

where ε is a small constant, so

L̃jk(x, ˆ̃qj(t, x)) = ãj(t, x, ˆ̃qj)
1

ε
√
2π
e−

(x−xk)2

2ε2 . (4.27)

According to (4.27), in the vicinity of x = xk, L̃jk is large so the sliding mode exists

on the manifold σk = ỹjk(t) − ˆ̃qj(t, xk) = 0. Having large L̃jk helps to suppress for

the possible disturbances and makes the observer more effective in the case of big

difference between the predicted value and the actual system.

In order to investigate the existence of the sliding mode let us introduce the

following quadratic Lyapunov candidate

V =
1

2
σ2
k ≥ 0. (4.28)

For the existence purpose the derivative of the Lyapunov candidate needs to be V̇ =

σ̇kσk < 0, refer to section 1.7. For σk and σ̇k we have

σk(t) = ỹjk(t)− ˆ̃qj(t, xk) (4.29)

σ̇k(t) = ˙̃yjk(t)− ˙̂qj(t, xk), (4.30)

= ˙̃yjk(t) + ãj(t, xk, ˆ̃qj)
∂ ˆ̃qj
∂x

(t, xk)− f̃j(t, xk, ˆ̃qj(t, xk))−
m−1∑

k=1

L̃jk(xk, ˆ̃qj(t, xk))sign(σk),

having |L̃jk(xk, ˆ̃qj(t, xk))| > | ˙̃yjk(t) + ãj(t, xk, ˆ̃qj)
∂ ˆ̃qj
∂x

(t, xk) − f̃j(t, xk, ˆ̃qj(t, xk))|, guar-

antees the existence of the sliding mode.

By combining all the variables of system in the matrix form, relation (4.26) for
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the system with diagonal matrix Ã, will be

∂
ˆ̃
Q

∂t
+ Ã(t, x, ˆ̃Q)

∂
ˆ̃
Q

∂x
= f̃(t, x, ˆ̃Q) +

m−1∑

k=1

L̃k(x,
ˆ̃
Q)sign

(
Ỹk(t)− ˆ̃

Q(t, xk)
)
, (4.31)

where

ˆ̃
Q(t, x) = [ˆ̃q1(t, x) · · · ˆ̃qn(t, x)]

T
,

ˆ̃
Qk(t) = [ˆ̃q1(t, xk) · · · ˆ̃qn(t, xk)]

T
,

Ỹk(t) = [q̃1(t, xk) · · · q̃n(t, xk)]T ,

L̃k(x,
ˆ̃
Q) = diag[L̃1k(x, ˆ̃q1(t, x)), · · · , L̃nk(x, ˆ̃qn(t, x))].

4.4 Designing Anomaly Detector

Consider a system in the original variable Q(t, x) including a disturbance depending

on the unknown vector parameter d ∈ Rn as

∂Q

∂t
+ A(t, x, Q)

∂Q

∂x
= d(t, x), (4.32)

with the measurements as

y = Q(t, x). (4.33)

The goal is to estimate the parameter d(t, x).

Designing the distributed observer as

∂Q̂

∂t
+ A(t, x, Q̂)

∂Q̂

∂x
= Lsignσ, (4.34)
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where

σ = Q(t, 0)− Q̂(t, 0). (4.35)

Then the state of the observer converges to the state of the system as t→ ∞

Q̂(t, x)−Q(t, x) → 0 (4.36)

In order to prove the existence of the sliding mode, let us introduce the following

Lyapunov candidate as

V = (signσ)T σ ≥ 0. (4.37)

For σ̇ we have

σ̇ = Q̇(t, 0)− ˙̂
Q(t, 0) (4.38)

= A(t, 0, Q)
∂Q

∂x
(t, 0)− d− A(t, 0, Q̂)

∂Q̂

∂x
(t, 0)− Lsignσ (4.39)

having |L| > |A(t, 0, Q)∂Q
∂x
(t, 0) − d − A(t, 0, Q̂)∂Q̂

∂x
(t, 0)|, guarantees the existence of

the sliding mode. The estimate of d is determined by equivalent control law d̂ =

{Lsignσ}eq..

4.5 Application of State Observer: Fluid Flow in

a Pipe

In this section the focus is on designing the nonlinear observer for fluid flow in

a pipe. For more information about pipelines and the related problems refer to

Geiger & Werner (2003), Leckerkennung (2003), Matko et al. (2000) and Matko et al.
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(2001).

The general model for fluid flow is provided by Euler equations by conservation

of mass and conservation of momentum equations as

∂ρ

∂t
+∇ · ρ~u = 0, (4.40)

ρ

[
∂~u

∂t
+ (~u · ∇)~u

]
+∇p = 0, (4.41)

where ρ is the fluid density, ~u is the velocity vector field and p is the pressure 1.

Assuming the fluid satisfies the ideal gas law: p = ρRT , (4.40) can be written as

∂p

∂t
+ u

∂p

∂x
+ p

∂u

∂x
= 0, (4.42)

and writing (4.41) in one-dimensional space we have

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0. (4.43)

For an ideal gas, pressure, density and the speed of sound c are related through

p = c2ρ. (4.44)

Including disturbances f1 and f2 in the right-hand side, (4.42) and (4.43) can be

1In this section a one-dimensional flow in pipe is considered so ∇ = ∂
∂x

.
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written in the matrix form as

∂
∂t



p

u


+ A(p, u) ∂

∂x



p

u


 =



f1

f2


 , (4.45)

where

A(p, u) =



u p

c2

p
u


 . (4.46)

In order to decouple the equations, a transformation similar to Aamo et al. (2006) is

employed

q1 = c ln
p

p̄
+ u− ū, (4.47)

q2 = −c ln p
p̄
+ u− ū (4.48)

where the point (p̄, ū) corresponds to the nominal values in the new coordinates. The

pressure and velocity are transformed into the new variables q1 and q2. Taking the

time derivative of q1 and q2, substituting values of pt and ut and using q1x and q2x,

we have the following decoupled equations

∂q1

∂t
+ ã1

∂q1

∂x
= f̃1, (4.49)

∂q2

∂t
+ ã2

∂q2

∂x
= f̃2, (4.50)

where

ã1 = u+ c, ã2 = u− c, f̃1 =
c

p
f1 + f2, f̃2 = − c

p
f1 + f2

u = ū+
q1 + q2

2
, p = p̄e

q1+q2
2c .
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PIPELINES

Linearization around q1 and q2, (4.49) and (4.50) will be

∂q1

∂t
+ ã1l

∂q1

∂x
= f̃1l, (4.51)

∂q2

∂t
+ ã2l

∂q2

∂x
= f̃2l, (4.52)

where

ã1l = ū+ c, ã2l = ū− c, f̃1l =
c

p̄
f1 + f2, f̃2l = − c

p̄
f1 + f2.

For the system (4.51), (4.52) the corresponding distributed observers, using the design

from section 4.3, are expressed as

∂q̂1

∂t
+ ã1l

∂q̂1

∂x
= f̃1l +

∑

k

L1k(x)sign (y1k(t)− q̂1(t, x)) , (4.53)

∂q̂2

∂t
+ ã2l

∂q̂2

∂x
= f̃2l +

∑

k

L2k(x)sign (y2k(t)− q̂2(t, x)) . (4.54)

4.6 Application of Anomaly Detector: Leak De-

tection in Pipelines

Let us consider a system such as is (4.32) with a specific disturbance as f(t, x, Q, d) =

b(t, x, Q)wδ(x − x∗), where w and x∗ represent the intensity and position of the

anomaly. This type of disturbance is applicable in estimation the leakage in pipelines.

Our goal is to determine these two parameters in the system. Based on (4.34) and

(??) we have the following observer

∂Q̂

∂t
+ A(t, x, Q̂)

∂Q̂

∂x
= b̂(t, x, Q)ŵδ(x− x̂∗), (4.55)
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4.7. SIMULATION

˙̂
d =



˙̂x∗

˙̂w


 = Lsignσ. (4.56)

Since we are dealing with two unknowns, w and x∗, having a system with two mea-

surable parameters n = 2 (j = 1, 2), for instance pressure and velocity (p and u) of

the fluid in pipeline, is enough to determine the disturbance parameters, so the gain

matrix will be L ∈ R2×2 and σ = [σ1 σ2]
T .

Following the same steps from (??) to (??) the system (4.55) is written as

∂q̃j

∂t
+ ãj(t, x)

∂q̃j

∂x
= b̃j(t, x)wδ(x− x∗), (4.57)

q̃j(0, x) = φ̃j(x), q̃j(t, 0) = ỹ0j(t), (4.58)

and for the observer

∂ ˆ̃qj
∂t

+ ãj(t, x)
∂ ˆ̃qj
∂x

= ˆ̃
bj(t, x)ŵδ(x− x̂∗), (4.59)

where the estimates x̂∗ and ŵ satisfy the equation (4.56). The initial and boundary

conditions for the observer (4.58) are

ˆ̃qj(0, x) = 0, ˆ̃qj(t, 0) = ỹ0j(t), ŵ(0) = ŵ0, x̂∗(0) = x̂∗0. (4.60)

4.7 Simulation

In this section the simulation results for the applications in sections 4.5 and 4.6 are

provided.
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4.7.1 State Observer

For the system in (4.49) and (4.50) the initial conditions are considered as half-normal

distribution

p(0, x) =
2√
π
e−x2

, u(0, x) =
2√
π
e−(x−0.5)2 . (4.61)

For the boundary condition it is assumed that only measurements at the upstream

(or downstream) are available

p(t, 0) = sin t, u(t, l) = cos t. (4.62)

The system is described by (4.49), (4.50) and the observer is presented by (4.53) and

(4.54). By writing the observer equation using boundary condition at upstream/downstream

for pressure/velocity, we have

∂p̂(t, 0)

∂t
+ a1

∂p̂(t, 0)

∂x
= L(x)sign[p(t, 0)− p̂(t, 0)], (4.63)

∂û(t, l)

∂t
− a2

∂û(t, l)

∂x
= L(x)sign[u(t, l)− û(t, l)], (4.64)

These observers are designed to construct the sliding mode at the upstream/downstream

of the pipeline. The data generated at the upstream/downstream employed to predict

the states of the system over the entire spatial variable. L(x) is chosen according to

the recommendations in section 4.3.

Figures 4.2 and 4.3 show performance of the observers for the pressure and velocity

estimation in the pipe. Figures 4.4 and 4.5 present the sliding mode constructed on

the upstream and downstream of the pipe, respectively. As it can be seen they
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4.7. SIMULATION

converge to zero and keep chattering around the equilibrium. Figures 4.6 and 4.7

show the differences between the pressure and velocity and their estimates respect to

time and the pipe length. For the MATLAB code refer to A.4.
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Figure 4.2: Pressure and pressure observer, after 50 seconds over the pipe length.
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Figure 4.3: Velocity and velocity observer, after 50 seconds over the pipe length.
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Figure 4.4: Sliding mode for pressure observer at upstream.
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Figure 4.5: Sliding mode for velocity observer at downstream.
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Figure 4.6: Difference between the pressure and pressure estimate.

Figure 4.7: Difference between the velocity and velocity estimate.
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4.7.2 Leak Detection

In this section the situation of estimating the intensity of leakage only using boundary

measurement is simulated. Here the same initial and boundary conditions as in section

4.7.1 are assumed.

Figure 4.8 shows performance of the observer in detecting the pressure drop in the

system after 120 seconds. Figure 4.9 represents estimation of the anomaly over time.

The disturbance intensity in the system has been set to w = −3 and as it could be

seen in Figure 4.9, ŵ reaches the nominal value of w after few seconds. Figure 4.10

depicts the sliding mode constructed in the observer. For the MATLAB code refer to

A.5.
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Figure 4.8: Pressure and pressure estimate along the length of the pipe.
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Figure 4.9: Estimation of the leakage intensity.
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Figure 4.10: Sliding mode for anomaly detection.
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4.8 Conclusion and Future Work

In this chapter a nonlinear observer for a class of first-order PDEs known as advection

equation is developed. The design which is based on the idea of variable structure

systems with sliding mode, leads to a fast converging observer. The boundary mea-

surements are provided as the input of the observer, and the number of boundary

measurements could be as small as just one measurement for each variable. In ad-

dition, an anomaly detection system is developed which is able to determine the

parameters of the possible disturbance in the system. To demonstrate some appli-

cations of the suggested methods, the performance of the observer and the anomaly

detection system have been simulated for a system of fluid flow pipeline.

As the future work for this chapter, removing restrictions on the differential op-

erator and the disturbance function can be considered. As well as accounting for the

situation of having an increasing boundary condition that leads to the presence of

shock wave. The suggested observer and anomaly detection system can be applied to

different practical cases. In addition, the performance of the observer and anomaly

detector can be examined under the situations of having turbulent flow or under the

noise condition.
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Chapter 5

Conclusion and Future work

This research explored designing sliding mode observer for different classes of dis-

tributed parameter systems. The main tool in designing the state observers was

sliding mode control theory and the idea of variable structure systems. Different

types of systems described by partial differential equations such as advection equa-

tion, Burgers’ equation, Euler equations, etc. have been studied. In dealing with

some first-order PDEs, one might encounter the shock wave situation which is the

unwanted discontinuity in the solution in spite of smooth initial and boundary con-

ditions. The shock wave situation, its properties and solutions were discussed in this

research. In designing the state observer, by using the theory of sliding mode they

are designed to be robust to the mismatches between the model and the system. In

addition, an anomaly detection system was developed to estimate the parameters of

possible anomaly in the system. Most of the time in the process of designing sliding

manifold for sliding observer, the designer does not have the freedom to choose the

desired roots. However, this problem has been addressed in chapter 2 by suggesting
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a novel transformation which allowed to assign the arbitrary roots. In addition, a

formula for designing the observer gain was proposed. For each chapter, the conclu-

sion is provided that discussed the suggestions for future work. In general the idea

of removing different assumptions and restrictions on the systems, and considering

the presence of shock wave could be considered as a general idea to continue the re-

search. In addition, developing sliding mode controller for the mentioned distributed

parameter systems are under consideration by the author.
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Appendix A

Matlab Code

In this section, MATLAB codes for the examples and simulations in the research

are presented. The code used to create the various plots have not been included for

brevity.

A.1 SMO for Diffusion Equation

clear all; close all; clc

% time variable

T = 0.3;

dt = T/6000;

M = T/dt; % number of time steps to be iterated over

t(1) = 0;

% spatial variable

length = 1;

dx = length/100;

N = (length/dx)+1; % number of grid points in x

x = 0:dx:length; % vector of x values, to be used for plotting

% second derivative ratio
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A.1. SMO FOR DIFFUSION EQUATION

r = dt/dx^2;

% system boundary conditions

%(any time at beginning and end of spatial variable)

Q(:,1) = 0;

Q(:,N) = 0;

% system initial condition (anywhere at time=0)

for j = 2:N-1;

Q(1,j) = (2*x(j))/(1+x(j)^2);

end

% observer boundary conditions

Qh(:,1) = 0;

Qh(:,N) = 0;

% observer initial condition

for j = 2:N-1;

Qh(1,j) = x(j);

end

% observer gain using eigenvalues

m = 10;

Lbar = 0.000001;%10^13;

L(1) = 0;

c = ones(1,m);

for k=1:m

L(k+1) = Lbar * sin(k*pi*x(k)/length)*((-1)^(k-1)*(k-(m+1))^(m-1))

/(c(k)*(-1)^(m-k)*factorial(k-1)*factorial(m-k));

end

L = sum(L);

% updating through the time

for i = 1:M,

t(i+1) = t(i)+dt;

% updating at each time for spatial variable except

% the boundary points

for j = 2:N-1;

% outputs
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A.1. SMO FOR DIFFUSION EQUATION

y(i,:) = sum(Q(i,:));

yh(i,:) = sum(Qh(i,:));

sigma(i,:) = y(i,:)-yh(i,:);

% system

Q(i+1,j) = Q(i,j) + r *( Q(i,j+1) - 2*Q(i,j) + Q(i,j-1));

%observer

Qh(i+1,j) = Qh(i,j) + r *( Qh(i,j+1) - 2*Qh(i,j) + Qh(i,j-1))

+ L * sign(sigma(i,:));

end

end

figure(1)

mesh(x,t,Q)

xlabel(’$length$’,’FontSize’,12,’interpreter’,’latex’)

ylabel(’$time$’,’FontSize’,12,’interpreter’,’latex’)

zlabel(’$Q$’,’FontSize’,14,’interpreter’,’latex’)

ylim([0,0.3])

figure(2)

mesh(x,t,Qh)

xlabel(’$length$’,’FontSize’,12,’interpreter’,’latex’)

ylabel(’$time$’,’FontSize’,12,’interpreter’,’latex’)

zlabel(’$\widehat{Q}$’,’FontSize’,14,’interpreter’,’latex’)

ylim([0,0.3])

figure(3)

mesh(x,t,abs(Q-Qh))

xlabel(’$length$’,’FontSize’,12,’interpreter’,’latex’)

ylabel(’$time$’,’FontSize’,12,’interpreter’,’latex’)

zlabel(’$|Q-\widehat{Q}|$’,’FontSize’,14,’interpreter’,’latex’)

ylim([0,0.3])

figure(4)

plot(t(1:400),sigma(1:400)); grid on

ylabel(’$\sigma$’,’FontSize’,12,’interpreter’,’latex’)

xlabel(’$time$’,’FontSize’,12,’interpreter’,’latex’)
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A.2 Burgers’ Equation with Two shock Waves

clear all; close all; clc

% ut + u ux = 0

% u(0,x) = u0(x) = ul x<a, um a=<x<b, ur x>=b

% ul>um>ur

ul = 2;

um = 1;

ur = 0;

a = 1;

b = 2;

dx0 = 0.1;

dt = 0.01;

s1 = (ul+um)/2;

s2 = (um+ur)/2;

s3 = (s1+s2)/2;

% intersection of shocks

ts = (b-a)/(s1-s2);

xs = (s1*b-s2*a)/(s1-s2);

x01 = ( (s1-ul)*b+(ul-s2)*a )/(s1-s2);

x02 = ( (s1-ur)*b+(ur-s2)*a )/(s1-s2);

% after shock waves intersection

tf = 2;

c = xs-s3*ts;

x0min = (s3-ul)*tf + c;

x0max = (s3-ur)*tf + c;

for x0 = x01:dx0:a-dx0

for t = 0:dt:(a-x0)/(ul-s1)

x = ul*t + x0;
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A.2. BURGERS’ EQUATION WITH TWO SHOCK WAVES

plot(x,t,’.’); hold on

end

end

for x0 = a;

for t = 0:dt:ts

x = s1*t + x0;

plot(x,t,’. r’); hold on

end

end

for x0 = a+dx0:dx0:xs-um*ts;

for t = 0:dt:(x0-a)/(s1-um);

x = um*t + x0;

plot(x,t,’.’); hold on

end

end

for x0 = xs-um*ts:dx0:b-dx0;

for t = 0:dt:(b-x0)/(um-s2)

x = um*t + x0;

plot(x,t,’.’); hold on

end

end

for x0 = b;

for t = 0:dt:ts

x = s2*t + x0;

plot(x,t,’. r’); hold on

end

end

for x0 = b+dx0:dx0:x02;

for t = 0:dt:(b-x0)/(ur-s2);

x = ur*t + x0;

plot(x,t,’.’); hold on; grid on

end

end

for x0 = x0min:dx0:x01
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for t = 0:dt:(c-x0)/(ul-s3);

x = ul*t + x0;

plot(x,t,’.’); hold on

end

end

for x0 = c

for t = ts:dt:tf;

x = s3*t + x0;

plot(x,t,’.r’); hold on

end

end

for x0 = x02:dx0:x0max;

for t = 0:dt:(c-x0)/(ur-s3);

x = ur*t + x0;

plot(x,t,’.’); hold on; grid on

end

end

xlabel(’$x$’,’FontSize’,16,’interpreter’,’latex’)

ylabel(’$t$’,’FontSize’,16,’interpreter’,’latex’)

A.3 Viscous Burgers’ Equation

clear all; close all; clc

uL = 4;

uR = 2;

s = (uL+uR)/2;

a = 3;

T = 1.5;

l = 8;

nu = 0.01;

x0 = 5;

for t = 0:0.01:T;

for x = 0:0.05:l;

u = uR + ((uL-uR)/2)*tanh( (x-x0-s*t)*(uL-uR)/(4*nu));
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plot3(t,x,u,’b.’); hold on

end

end

xlabel(’$t$’,’FontSize’,16,’interpreter’,’latex’)

ylabel(’$x$’,’FontSize’,16,’interpreter’,’latex’)

zlabel(’$u$’,’FontSize’,16,’interpreter’,’latex’)

grid on

A.4 SMO for System of Advection equations

clear all; close all; clc

T = 50;

dt = 0.01;

t(1) = 0;

M = T/dt;

xmin = 0;

xmax = 20;

dx = 0.1;

x = [xmin:dx:xmax];

N = round((xmax-xmin)/dx);

% system parameters

c = 0.75;

tiu = 0.25;

ap = (c+tiu);

ahp = (c+tiu);

% observre gain

L = 10 ;

% system initial

p(1,:) = (2/sqrt(pi))*exp(-x.^2);

% observer initial

ph(1,:) = 0*x;
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% observer

ph0 = 0;

for i = 1:T/dt,

t(i+1)=t(i)+dt;

t;

% system

p0 = sin(t(i));

p(i+1,:) = p(i,:) - (dt*ap/dx) .* [p(i,1)-p0 diff(p(i,:))];

% observer on the begining of the pipe

ph0(i+1) = ph0(i) - dt * L * sign(ph0(i)-p(i,1));

% predicting system based on boundry condition

ph(i+1,:) = ph(i,:) - dt * ahp

.* ([ph(i,1)-ph0(i) diff(ph(i,:))]./dx);

% checking sliding mode

deltap0(i) = p(i,1)-ph0(i);

end

figure(1)

plot(t(1:200),deltap0(1:200))

xlabel(’time (s)’,’FontSize’,16,’interpreter’,’latex’)

ylabel(’$\delta{p_{0}}$’ ,’FontSize’,16,’interpreter’,’latex’)

grid on;

figure(2)

plot(x, p(i,:), ’b’ , x, ph(i,:), ’b-.’,’LineWidth’,2)

xlabel(’$x$’,’FontSize’,16,’interpreter’,’latex’)

grid

ylabel(’$p$, $\hat{p}$’,’FontSize’,16,’interpreter’,’latex’)

legend(’Pressure’, ’Pressure Estimate’)

figure(3)

mesh(x,t,abs(p-ph))

xlabel(’$length$’,’FontSize’,12,’interpreter’,’latex’)
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ylabel(’$time$’,’FontSize’,12,’interpreter’,’latex’)

zlabel(’$|p-\hat{p}|$’,’FontSize’,14,’interpreter’,’latex’)

set(gca,’ylim’,[0 50])

xb = [xmax:-dx:xmin];

au = - 0.5;

ahu = -0.5;

% system final

u(M+1,:) = (2/sqrt(pi))*exp(-(xb-0.5).^2);

% observer initial

uh(M+1,:) = 0*x;

% observer

uhL(M+1) = 0;

tb(M+1) = T;

for ii = M+1:-1:2,

tb(ii-1)= tb(ii)-dt;

tb;

% system

uL = cos(t(ii));

u(ii-1,:) = u(ii,:) - (dt*au /dx) .* [diff(u(ii,:)) uL-u(ii,N+1)];

% observer on the begining of the pipe

uhL(ii-1) = uhL(ii) - dt * L * sign(uhL(ii) - u(ii,N+1));

% predicting system based on boundry condition

uh(ii-1,:) = uh(ii,:) - (dt*ahu/dx)

.* [diff(uh(ii,:)) uhL(ii)-uh(ii,N+1)];

% checking sliding mode

deltauL(ii) = -uhL(ii) + u(ii,N+1);

end
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figure(4)

plot(tb(M+1:-1:M+1-200),deltauL(M+1:-1:M+1-200))

xlabel(’time (s)’,’FontSize’,16,’interpreter’,’latex’)

ylabel(’$\delta{u_{L}}$’,’FontSize’,16 ’interpreter’,’latex’)

grid on;

figure(5)

plot(x, u(ii,:), ’b’, x, uh(ii,:), ’b-.’,’LineWidth’,2)

xlabel(’$x$’,’FontSize’,16,’interpreter’,’latex’)

grid

ylabel(’$u$, $\hat{u}$’,’FontSize’,16,’interpreter’,’latex’)

legend(’Velocity’, ’Velocity Estimate’)

figure(6)

mesh(x,tb,abs(u-uh))

xlabel(’$length$’,’FontSize’,12,’interpreter’,’latex’)

ylabel(’$time$’,’FontSize’,12,’interpreter’,’latex’)

zlabel(’$|u-\hat{u}|$’,’FontSize’,14,’interpreter’,’latex’)

set(gca,’ylim’,[0 50])

A.5 Leak Detection System

clear all; close all; clc

T = 100;

xmin = 0;

xmax = 10;

dt = 0.01;

dx = 0.1;

x = [xmin:dx:xmax];

t(1) = 0;

N = round((xmax-xmin)/dx);

% System parameters

c = 0.75;

tiu = 0.25;

a1 = (c+tiu);
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% system initila condition

p(1,:) = (2/sqrt(pi))*exp(-x.^2);

% Anomaly parametr

w = -3;

f1 = [zeros(1,N/2) w zeros(1,N/2)];

% Anomaly detector

h1 = xmax/a1;

hmax = h1;

% Detector gain

L11 = 0.1;

% Detector Initial Conditions

ph(1,:) = 0*x;

f1h(1,:) = 0*x;

sigma1(1,:) = 0;

wh(1,:) = 0;

for i=1:T/dt,

t(i+1)=t(i)+dt;

t;

% system boundary at upstream (measuremnts at upstream)

p0 = sin(t(i));

% system simulation

p(i+1,:) = p(i,:)-dt*a1.*([p(i,1)-p0 diff(p(i,:))]./dx)+ dt*f1;

% detector

if i<= hmax

ph(i+1,:) = ph(1,:);

wh(i+1,:) = wh(1,:) ;

else

f1h(i,:) = [zeros(1,N/2) wh(i) zeros(1,N/2)];

ph(i+1,:) = ph(i,:)-dt*a1.*([ph(i,1)-p0 diff(ph(i,:))]

./dx)+dt*f1h(i,:);

sigma1(i+1,:) = p(i+1,N+1) - p(i+1-h1,1)- ph(i+1,N+1)
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+ ph(i+1-h1,1);

wh(i+1,:) = wh(i,:) + dt * L11 * sign(sigma1(i,:)) ;

end

end

figure(1)

plot(x, p(i,:) , x , ph(i,:), ’r-.’,’LineWidth’,2)

xlabel(’$x$’,’FontSize’,16,’interpreter’,’latex’)

grid

ylabel(’$p$, $\hat{p}$’,’FontSize’,16,’interpreter’,’latex’ )

legend(’Pressure’, ’Pressure Estimate’)

figure(2)

plot(t, wh, ’b’ ,’LineWidth’,2);

xlim([0 T])

xlabel(’$t$’,’FontSize’,16,’interpreter’,’latex’)

grid

ylabel(’$\hat{w}$’,’FontSize’,16,’interpreter’,’latex’ )

figure(3)

plot(t, sigma1, ’b’,’LineWidth’,2)

xlim([0 T])

xlabel(’$t$’,’FontSize’,16,’interpreter’,’latex’)

grid

ylabel(’$\sigma$ ’,’FontSize’,16,’interpreter’,’latex’ )
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Birkhäuser. doi: 10.2307/2938728
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144

http://gallica.bnf.fr/ark:/12148/bpt6k3074r/f454.table
www.iosrjournals.org


REFERENCES

Matko, D., Geiger, G., & Gregoritza, W. (2000). Pipeline Simulation Techniques.
Mathematics and Computers in Simulation, 52 (3-4), 211–230. Retrieved from
http://linkinghub.elsevier.com/retrieve/pii/S037847540000152X doi: 10
.1016/S0378-4754(00)00152-X

Matko, D., Geiger, G., & Werner, T. (2001). Modelling of the Pipeline as a Lumped
Parameter System. Automatica, 42 , 177–188.

Meglio, F. D., Krstic, M., & Vazquez, R. (2013). A Backstepping Boundary Ob-
server for a Class of Linear First-Order Hyperbolic Systems. In European Control
Conference (ECC) (pp. 1597–1602).

Middendorp, P., & Verbeek, G. E. H. (2006). Thirty Years of Experience with the
Wave Equation Solution Based on the Method of Characteristics. In Geo-Congress.
ASCE.

Miranda, R., Chairez, I., & Moreno, J. (2010). Observer Design for a Class of
Parabolic PDE Via Sliding Modes and Backstepping. In 11th International Work-
shop on Variable Structure Systems (pp. 215–220).

Misawa, E. A., & Hedrick, J. K. (1989). Nonlinear Observers: A State-of-the-
Art Survey. Journal of Dynamic Systems, Measurement, and Control , 111 (3),
344. Retrieved from http://dynamicsystems.asmedigitalcollection.asme.

org/article.aspx?articleid=1404338 doi: 10.1115/1.3153059

Mohseni, K., Zhao, H., & Marsden, J. E. (2006). Shock Regularization for the Burgers
Equation. In 44th AIAA Aerospace Sciences Meeting and Exhibit. Retrieved from
http://arc.aiaa.org/doi/pdf/10.2514/6.2006-1516

Mungkasi, S. (2014). Shock Wave Propagation of Circular Dam Break
Problems. Journal of Physics: Conference Series , 539 . Retrieved from
http://stacks.iop.org/1742-6596/539/i=1/a=012022?key=crossref.

4530de63653e029b93af489e80d02760 doi: 10.1088/1742-6596/539/1/012022

Murray, R. M., Li, Z., & Sastry, S. S. (1994). A Mathematical Introduction to Robotic
Manipulation. CRC Press.

NASA. (2011). The J-2X Engine NASA’s New Upper Stage Engine. NASA Facts ,
FS-2011-11 .

Nguyen, T. D. (2008). Second-Order Observers for Second-Order Distributed Param-
eter Systems in R2. Systems & Control Letters , 57 (10), 787–795. Retrieved from
http://linkinghub.elsevier.com/retrieve/pii/S0167691108000418 doi: 10
.1016/j.sysconle.2008.03.011

145

http://linkinghub.elsevier.com/retrieve/pii/S037847540000152X
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?ar ticleid=1404338
http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?ar ticleid=1404338
http://arc.aiaa.org/doi/pdf/10.2514/6.2006-1516
http://stacks.iop.org/1742-6596/539/i=1/a=012022?key=crossref.4530de 63653e029b93af489e80d02760
http://stacks.iop.org/1742-6596/539/i=1/a=012022?key=crossref.4530de 63653e029b93af489e80d02760
http://linkinghub.elsevier.com/retrieve/pii/S0167691108000418


REFERENCES

Norgard, G., & Mohseni, K. (2008). A Regularization of Burgers Equation using a
Filtered Convective Velocity. Journal of Physics A: Mathematical and Theoretical ,
41 (34), 1–33. Retrieved from http://iopscience.iop.org/1751-8121/41/34/

344016 doi: 10.1088/1751-8113/41/34/344016

Onizuka, K., & Odai, S. N. (1998). Burgers’ Equation Model for Unsteady Flow in
Open Channels. Journal of Hydraulic Engineering , 124 (5), 509–512. doi: 10.1061/
(ASCE)0733-9429(1998)124:5(509)

Orlov, Y. V. (2000a). Discontinuous Unit Feedback Control of Uncertain Infinite-
Dimensional Systems. IEEE Transactions on Automatic Control , 45 (5), 834–
843. Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=855545 doi: 10.1109/9.855545

Orlov, Y. V. (2000b). Sliding Mode Observer-Based Synthesis of State Derivative-Free
Control of Distributed Parameter. Journal of Dynamic Systems, Measurement, and
Control , 122 , 725–731.

Orlov, Y. V., & Utkin, V. I. (1987). Sliding Mode Control in Indefinite-dimensional
Systems. Automatica,, 23 (6), 753–757.

Perruquetti, W., & Barbot, J. P. (2002). Sliding Mode Control In Engineering. CRC
Press.

Pironneau, O. (2002). Control of Transonic Shock Position. ESAIM: Control, Opti-
misation and Calculus of Variations , 8 , 907–914. doi: 10.1051/cocv

Pironneau, O. (2003). Shape Sensitivity and Design for Fluids with Shocks.
International Journal of Computational Fluid Dynamics , 17 (4), 235–242. doi:
10.1080/1061856031000113617

Polyanin, A. D., Schiesser, W. E., & Zhurov, A. I. (2008). Partial Differential
Equation. Scholarpedia, 3 (10), 4605. Retrieved from http://www.scholarpedia.

org/article/Partial differential equation

Pourkargar, D. B., & Armaou, A. (2013). Control of Dissipative Partial Differential
Equation Systems Using APOD Based Dynamic Observer Designs. In American
Control Conference (pp. 502–508). Retrieved from http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=6579887 doi: 10.1109/ACC.2013
.6579887

Qiu, J. (2013). Hyperbolic Conservation Laws and Numerical Methods. University of
Houston.

146

http://iopscience.iop.org/1751-8121/41/34/344016
http://iopscience.iop.org/1751-8121/41/34/344016
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=855545
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=855545
http://www.scholarpedia.org/article/Partial{_}differential{_}equation
http://www.scholarpedia.org/article/Partial{_}differential{_}equation
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6579887
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6579887


REFERENCES

Rathakrishnan, E. (2006). Gas Dynamics. Prentice-Hall of India.

Razani, A. (2007). Shock Waves in Gas Dynamics. Surveys in Mathematics and its
Applications , 2 , 59–89.

Russell, D. L. (2010). Observibility of Linear Distributed Parameter Systems. In
Control System Advanced Methods (Second ed., pp. 70–1–70–12). CRC Press.
Retrieved from http://www.crcnetbase.com/doi/book/10.1201/b10384 doi:
10.1201/b10384

Salas, M. D. (2006). The Curious Events Leading to the Theory of Shock Waves. In
Invited lecture at the 17th Shock Interaction Symposium.

Showalter, R. E. (1994). Hilbert Space Methods for Partial Differential Equations.
Electronic Journal of Differential Equations , Monograph(01).

Slotine, J.-J. E., Hedrick, J. K., & Misawa, E. A. (1987). On Sliding Mode Observers
for Nonlinear Systems. Journal of Dynamic Systems, Measurement, and Control ,
109 , 245–252.

Smaoui, N., Zribi, M., & Almulla, A. (2006). Nonlinear Boundary Control of the Gen-
eralized Burgers Equation. IMA Journal of Mathematical Control and Information,
23 , 301–323. doi: 10.1023/B:NODY.0000040023.92220.09

Smyshlyaev, A., & Krstic, M. (2005). Backstepping Observers for a Class of Parabolic
PDEs. Systems & Control Letters , 54 (7), 613–625. Retrieved from http://

linkinghub.elsevier.com/retrieve/pii/S0167691104001963 doi: 10.1016/
j.sysconle.2004.11.001

Solovchuk, M. A., & Sheu, T. W. H. (2011). Prediction of Strong-Shock Structure Us-
ing the Bimodal Distribution Function. Physical Review E - Statistical, Nonlinear,
and Soft Matter Physics , 83 (2). doi: 10.1103/PhysRevE.83.026301

Spurgeon, S. K. (2008). Sliding Mode Observers: A Survey. International Journal
of Systems Science, 39 , 751–764. Retrieved from http://www.tandfonline.com/

doi/abs/10.1080/00207720701847638 doi: 10.1080/00207720701847638

Srivastava, M., Srivastava, M. C., & Bhatnagar, S. (2009). Control Systems. Tata
McGraw-Hill Education. doi: 10.4271/610588

Strang, G. (2006). Nonlinear Flow and Conservation Laws. MIT.

Tao, T. (2008). Function Spaces. Retrieved from https://terrytao.files.

wordpress.com/2008/03/function spaces1.pdf

147

http://www.crcnetbase.com/doi/book/10.1201/b10384
http://linkinghub.elsevier.com/retrieve/pii/S0167691104001963
http://linkinghub.elsevier.com/retrieve/pii/S0167691104001963
http://www.tandfonline.com/doi/abs/10.1080/00207720701847638
http://www.tandfonline.com/doi/abs/10.1080/00207720701847638
https://terrytao.files.wordpress.com/2008/03/function{_}spaces1.pdf
https://terrytao.files.wordpress.com/2008/03/function{_}spaces1.pdf


REFERENCES

Utkin, V. I. (1977). Variable Structure Systems with Sliding Modes. IEEE Transac-
tions on Automatic Control , 22 (2), 212–222. doi: 10.1109/TAC.1977.1101446

Utkin, V. I. (1978). Sliding Modes and their Application in Variable Structure Sys-
tems. Mir Publisher.

Utkin, V. I. (1992). Sliding Modes in Control Optimization. Springer-Verlag.

Utkin, V. I. (1993). Sliding Mode Control Design Principles and Applications to
Electric Drives. IEEE Transactions on Industrial Electronics , 40 (1), 23–36. doi:
10.1109/41.184818

Vaseghi, S. V. (2000). Advanced Digital Signal Processing and Noise Reduction
(Second ed.). John Wiley & Sons Ltd.

Vries, D., Keesman, K. J., & Zwart, H. (2007). An H∞-Observer at the Boundary
of an Infinite Dimensional Sytem. In IFAC Workshop on Control of Distributed
Parameters Systems.

Walcott, B. L., Corless, M. J., & Zak, S. H. (1987). Comparative Study of Non-
Linear State-Observation Techniques. International Journal of Control , 45 (6),
2109–2132. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/

00207178708933870 doi: 10.1080/00207178708933870

Xu, C., & Schuster, E. (2009). Observer-based Stabilization of an Unsta-
ble Parabolic PDE Using the Pseudospectral Method and Sturm-Liouville The-
ory. In 17th Mediterranean Conference on Control and Automation (pp. 175–
180). Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=5164535 doi: 10.1109/MED.2009.5164535

Young, K. D., Utkin, V. I., & Ozguner, U. (1999). A Control Engineer’s Guide to
Sliding Mode Control. IEEE Transaction on Control Systems Technology , 7 (3).

Yu, X. (2012). Method of Characteristics. University of Alberta.

Zabczyk, J. (2007). Mathematical Control Theory: An Introduction. Springer.

Zarchan, P., & Musoff, H. (2009). Fundamentals of Kalman Filtering: A Practical
Approach. AIAA.

Zauderer, E. (2006). Partial Differential Equations of Applied Mathematics. Wiley.

Zel’dovich, Y. B. (1967). Theory of Shock Waves and Introduction to Gas Dynamics.
Foreing Technology Division.

148

http://www.tandfonline.com/doi/abs/10.1080/00207178708933870
http://www.tandfonline.com/doi/abs/10.1080/00207178708933870
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5164535
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5164535


REFERENCES

Zhang, J.-z., Liu, Y., Ren, X.-l., & Duan, S.-m. (2012). Saddle-Node Bifurcations in
Burgers Equation as Shock Wave Occurrence. In 4th IEEE International Confer-
ence on Nonlinear Science and Complexity (pp. 195–200).

Zhao, D. H., Shen, H. W., Lai, J. S., & Tabios, G. Q. (1996). Approximte Riemann
Solvers in FVM for 2D Hydraulic Shock Wave Modeling. Journal of Hydraulic
Engineering , 122 (12), 692–702.

149


	Sliding Mode Observers for Distributed Parameter Systems: Theory and Applications
	Scholarly Commons Citation

	List of Figures
	Background
	Motivation of the Research
	Outline of the Dissertation
	Partial Differential Equations
	State Observer
	Variable Structure Control
	Sliding Mode Control
	Stability Conditions and Lyapunov Theory
	State Observers for Distributed Parameter Systems, Literature Review
	Sliding Mode Observers for DPSs, Literature Review

	SMO for DPS, Sliding Manifold Design, Formula for Observer Gain
	Introduction
	Problem Statement
	Separation of Variables
	Observer Design
	Observer for Distributed Parameter System
	Diffusion Equation and Simulation Results
	Conclusion and Future Work

	Background on Fluid Dynamics, SMO for Burgers' Equation
	Burgers' Equation, Literature Review
	Compressible Fluid Dynamics
	Burgers' Equation
	Solution of Viscous Burgers' Equation, The Effect of Viscosity
	Conservation Law
	Advection Equation
	Method of Characteristics
	Shock Wave
	Weak Solution
	Jump Condition
	Entropy Solution

	Riemann Problem
	Sliding Mode Observer for Burgers' Equation
	Conclusion and Future work

	SMO and Anomaly Detection System for Advection Equation
	Introduction
	Advection Equation, Problem Statement
	Designing Sliding Mode Observer Using Boundary Measurement
	Designing Anomaly Detector
	Application of State Observer: Fluid Flow in a Pipe
	Application of Anomaly Detector: Leak Detection in Pipelines
	Simulation
	State Observer
	Leak Detection

	Conclusion and Future Work

	Conclusion and Future work
	Matlab Code
	SMO for Diffusion Equation
	Burgers' Equation with Two shock Waves
	Viscous Burgers' Equation
	SMO for System of Advection equations
	Leak Detection System

	Bibliography

