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ABSTRACT 
 

 
 
 

 

 

 The main topic of this dissertation is the design, development and implementation 
of intelligent adaptive control techniques designed to maintain healthy performance of 
aerospace systems subjected to malfunctions, external parameter changes and/or 
unmodeled dynamics. The dissertation is focused on the development of novel adaptive 
control configurations that rely on non-linear functions that appear in the immune system 
of living organisms as main source of adaptation. One of the main goals of this 
dissertation is to demonstrate that these novel adaptive control architectures are able to 
improve overall performance and protect the system while reducing control effort and 
maintaining adequate operation outside bounds of nominal design. This research effort 
explores several phases, ranging from theoretical stability analysis, simulation and 
hardware implementation on different types of aerospace systems including spacecraft, 
aircraft and quadrotor vehicles.  

The results presented in this dissertation are focused on two main adaptivity 
approaches, the first one is intended for aerospace systems that do not attain large angles 
and use exact feedback linearization of Euler angle kinematics. A proof of stability is 
presented by means of the circle Criterion and Lyapunov’s direct method. The second 
approach is intended for aerospace systems that can attain large attitude angles (e.g. space 
systems in gravity-less environments), the adaptation is incorporated on a baseline 
architecture that uses partial feedback linearization of quaternions kinematics. In this 
case, the closed loop stability was analyzed using Lyapunov’s direct method and 
Barbalat’s Lemma. It is expected that some results presented in this dissertation can 
contribute towards the validation and certification of direct adaptive controllers. 
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1. Introduction 

 

Recent research efforts have been directed towards the development of novel 

control techniques to increase the safety and operation requirements of manned and 

unmanned aerospace systems to compensate for internal system malfunctions as well as 

external upset conditions (Belcastro & Jacobson, 2010) (Edwards, Lombaerts, & Smaili, 

2010). These technologies aim to increase the intelligence of the flight control system by 

detecting when an upset condition is present and reacting efficiently to maintain the 

system stability (Perez A. E., Moncayo, Perhinschi, Al Azzawi, & Togayev, 2015). The 

equations of motion that describe the dynamics of most aerospace systems are highly 

non-linear, and when subjected to external unknown disturbances (i.e. wind gusts, 

actuator, or structural failures, etc.) out of nominal behavior can be dangerously 

triggered. Classical linear control techniques have been widely studied and used to 

control aerospace systems dynamics, however these approaches rely on linear 

approximations of the plant around a nominal equilibrium condition. As a consequence, 

linear techniques might have limited capabilities to guarantee stability of the system 

when it is out of the nominal (trimmed) conditions.  

Increased research efforts have been devoted over the last decades to explore 

novel control techniques to design compensation laws that are able to adapt to unknown 

external conditions and still guarantee stability of the system. Although a major feat and 

in fact still a matter of extensive research (Jacklin, 2008) (Falkena, van Oort, & Chu, 

2001), adaptive control theory has been developed to increase the versatility of flight 

control systems providing safer and more robust control architectures whenever the 
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system experiences unknown perturbations or malfunctions. 

In general, any adaptation scheme or algorithm is designed to allow the controller 

parameters and gains to change in time depending on the information of the states of the 

plant and/or the knowledge of previous control inputs. In fact, adaptation laws are often 

introduced into baseline control configurations designed for nominal behavior and are used 

as stability augmentation loops to increase robustness when the system experiences out of 

nominal conditions. Adaptive control theory can be majorly classified as direct, indirect 

and hybrid adaptive control (Nguyen & Boskovic, 2008). Direct adaptive control relies 

primarily on tracking errors or states of the system by reconfiguring parameters within a 

baseline control scheme. Indirect adaptive control relies on online estimation of plant 

parameters to update a baseline controller. Finally, hybrid adaptive control combines the 

capabilities of both, direct and indirect, approaches. 

One important question that arises when dealing with adaptation laws is the 

possibility to describe and predict if the system will behave in a stable manner after being 

augmented by a non-linear/adaptive controller.  Stability can be thought of as the 

capability of the system to remain or go back to an equilibrium condition after a 

disturbance. This is in fact a not trivial question to answer when dealing with the inherit 

complexity of adaptive controlled systems and in some instances it might not be possible 

to answer it in a direct closed manner.  

There are some powerful analytical resources such as Lyapunov’s stability, La 

Salle’s invariant principles (or variants), Barbalat’s Lemma, Circle Criterion, Describing 

Functions, etc.,  that can help  draw  stability conclusions about the system without 

actually solving the system equations of motion (Slotine & Li, 1991). In this scenario, it 
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is of interest to know if the adaptive controller will be capable of stabilizing the system 

by recovering the system to a steady state condition after a persistent or temporary 

perturbation, and determine the maximum boundaries of the perturbations to guarantee 

stable behavior.   

In recent years, one promising avenue towards increasing safety of aerospace 

systems, and that has received special attention is the development of intelligent bio-

inspired fault tolerant control laws that can accommodate a variety of failures and 

malfunctions of actuators, sensors, and other aerospace subsystems. Assessing adverse 

interactions with intelligent control laws, and developing mechanisms that can mitigate 

their effects through design could become a major component of future aerospace vehicle 

operation safety. An intelligent control system is expected to be capable to perform an 

assessment of the overall system health and accommodate for upset conditions. 

Typically, adaptive control laws for aerospace systems do not yet benefit from a 

comprehensive design and validation methodologies that guarantee stability and 

performance. In some particular cases, proves for the boundedness of the controlled 

system exist under certain conditions but there are no algorithms allowing the 

implementation of these results into the practical design process while guaranteeing 

stability. 

Biological-based mechanisms such as the immune system have been of particular 

interest for the design of intelligent adaptive systems. The immune system is known to 

have strong robustness, self-adaptiveness, highly distributed cognitive capabilities and fast 

response to hostile invasions. These characteristics combined with other intelligence 

techniques can provide the general conceptual basis for the development of intelligent 
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integrated, comprehensive and robust systems for treatment of the aerospace system 

abnormal condition accommodation problem. 

The main contributions of this dissertation are outlined and summarized below: 

• Development of two different novel bio-inspired direct adaptive control configurations  

tailored for aerospace systems. The control laws were designed to accommodate for 

abnormal conditions and persistent disturbance mitigation. 

• A mathematical analysis of stability and robustness of the control architecture(s) 

developed by means of analytical tools such as Absolute Stability, Circle Criterion, 

Lyapunov’s stability method and extensions of Barbalat’s Lemma. 

• Implementation and preliminary verification of the novel adaptive controllers in 

simulation. 

• Hardware in the Loop (HIL) implementation of the adaptive controllers in a high 

fidelity Six Degree of Freedom (6 DOF) simulation environment of the Extreme 

Access Free Flyer (XAFF). This is a concept unmanned spacecraft developed by 

NASA intended for Mars exploration. Implementation on a motion based simulator that 

incorporates the dynamics of a supersonic fighter aircraft modeled and developed at 

West Virginia University (WVU). 

• Hardware implementation of the novel controllers on different prototype vehicles: a 

cold gas thruster concept prototype built by NASA (Asteroid Cold Gas Free Flyer), an 

Electric Ducted Fan (EDF) thrust vectoring Mini Free Flyer (MFF) designed and built 

by NASA and an eight motor quadrotor. 

• Confirmation of improved stability of the designed controllers compared to baseline 

non-adaptive controllers through simulation, HIL and implementation. 
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 The research effort presented in this dissertation has resulted in a number of 

publications or submissions which are outlined as follows: 

 

Published Journals: 

1. Al Azzawi D., Moncayo H., Perhinschi M. G., Perez, A., Togayev, A., Comparison 

of Immunity-Based Schemes for Aircraft Failure Detection and Identification, Journal 
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2. Literature Review 

2.1. Overview of Adaptive Control 

Efforts to develop systems capable of controlling unknown plants or making self-

adjustments to unpredictable changes in operation conditions have a rich history (Krstic, 

Kanellakopoulos, & Kokotovic, 1995). Starting in the early 1950’s and 1960’s the 

requirement to design autopilots for high-performance aircraft that undergo drastic 

changes in their dynamics when flying from one operating point to another motivated 

intense research efforts in adaptive control theory (Ioannou & Sun, 1995). At this time, 

advanced controllers were required to be able to “self-adjust” and make corresponding 

internal changes in the controller gains so that the closed loop dynamics behaved in stable 

manner even when intrinsic dynamic characteristics or aerodynamic parameters changed 

over time due to changes in the flight envelope.  

Model reference adaptive control was first proposed by Whitaker and Keezer 

(Kaufman, Barkana, & Sobel, 1997) to solve the autopilot problem; this controller used a 

performance index minimization approach which was later known as the MIT rule 

(Ioannou & Sun, 1995). An alternative and similar approach known as the sensitivity 

method was developed in the 1960’s to control systems with uncertainties (Narendra & 

Annaswamy, 2005). This method relies on adaptive estimation of plant parameters in a 

way such that a performance index is minimized. In the 1960’s Kalman proposed a 

technique based on the optimal linear quadratic problem to design an Adaptive Pole 

Placement (APP) adjusting mechanism. Despite some important efforts and initial 

development, the adaptive flight control research was still heuristic and some bad 

implementations were performed as some adaptive algorithms still lacked formal stability 
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arguments.  This triggered the NASA X-15 disaster in a flight test  performed in 1967, 

(Ioannou & Sun, 1995) (Taylor & Adkins, 1965)  which resulted in lack of interest and 

reduced  support for research and development of non-linear and adaptive controllers in 

the aerospace industry.  

In the late 1970’s the development of positivity concepts allowed a more solid 

and well established stability theory that led to development and foundation of Model 

Reference Adaptive Control techniques (MRAC). Many authors such as Monopoli, 

Morse and Narendra made outstanding contributions to Single Input Single Output 

(SISO) adaptive model reference adaptive control (Kaufman, Barkana, & Sobel, 1997). 

However the 70’s advancements in adaptive control still didn’t account for stable 

performance in the presence of disturbances. Many subsequent research efforts in the 

1980’s and 1990’s were noticeable in this direction such the work of Rohr, Kaufman, 

Mabius, Sobel and Balas (Kaufman, Barkana, & Sobel, 1997), which set the foundation 

of what is known as simple adaptive control (SAC), Command Generator Tracker (CGT) 

and robust extensions in infinite dimensional systems (Balas & Frost, 2014). 

2.2. Bio-Inspired and Immunity Based Adaptive Control 

One of the major contributions of this dissertation is to introduce the design and 

implementation of novel direct adaptive controller(s) that rely on the biological immune 

system metaphor on generic aerospace systems.  The immune system of living organisms 

is a highly evolved and complex network that protects the body from hazardous external 

intruders such as viruses, bacteria, parasites, etc. (Benjamini, 1992). In order to 

successfully eliminate external agents, the immune system counts on an vast line of 

defense formed by different types of cells specialized in combating and eliminating many 
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different types of external intruders. The immune system can be viewed as a self-

regulated feedback dynamic network capable of automatically producing the correct 

amount of specialized cells required to overcome a specific infection (or anomaly) and 

recover the correct functionally of the organism.  Due to its vast complexity and intricate 

behavior, the immune system is still a matter of study in biological and medical sciences. 

However some characteristics such as robustness, adaptability, memory and fast response 

to repel external agents are highly desirable for application on aerospace system 

operations (Perez A. E., Moncayo, Perhinschi, Al Azzawi, & Togayev, 2015).  

The artificial immune system (AIS) metaphor has been applied successfully to a 

variety of problems ranging from anomaly detection and pattern recognition, to data 

mining and computer security (Castro & Von Zuben, 2001). Krishna Kumar and 

Dasgupta (Kumar, 2003) (Dasgupta, 1999) have pioneered the application of the AIS 

paradigm to fault detection in aerospace systems. In addition, research efforts have been 

extended by WVU and ERAU researchers using the AIS paradigm integrated with a 

Hierarchical Multi-Self (HMS) Strategy to perform failure detection, identification, and 

evaluation of aerospace systems (Moncayo, Perhinschi, & Davis, 2011) (Moncayo & 

Perhinschi, 2011) (Perhinschi, Moncayo, & Al Azzawi, 2013) (Perez A. E., Moncayo, 

Perhinschi, Al Azzawi, & Togayev, 2015).  However, the theory is still in evolution 

regarding the development of direct adaptive compensation techniques inspired by the 

immune system metaphor, and the application of this type of adaptation architectures in 

aerospace systems is in fact a novel contribution of this dissertation.   
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The idea of formulating an adaptive controller that mimics the interaction of T-

cells in a living organism was first introduced by (Takahashi & Yamada, 1998). In this 

study, the AIS feedback mechanism was successfully applied to the velocity tracking 

control of a DC servo motor. Increased robustness is demonstrated through different 

simulations when nonlinear disturbances such as dead-zone and solid friction at the 

bearings are incorporated. In other relevant works, such as (Zhao, Shen, & Zhang, 2013), 

the immune mechanism is used to control the response of a Computer Numerical Control 

machine, showing increased robustness and faster error mitigation when compared to a 

traditional Proportional Integral Derivative (PID) controller. Other significant research 

results are shown in (Jie & Jiong, 2009) in which an immune feedback controller is used 

for the super-heated- steam temperature control in power plants. In this work the stability 

of a novel kind of immune controller is discussed from the point of view of the small gain 

theorem and bounded input bounded output (BIBO) stability. Other applications range 

from the control of an electric ship power system (Mitra & Venayagamoorthy, 2008) to 

car cruise control (Huang Jinying, Ma Bo, & Wang Haojing, 2009), in which promising 

results were observed.  

An extended compendium of published works and literature review regarding the 

development and application of immune controllers is presented in (Mo, 2008). In this 

source different techniques and approaches (i.e. discrete and continuous time) are 

discussed and analyzed after being implemented into different types of dynamic systems. 

Some initial efforts to stablish preliminary mathematical foundations to address the 

stability analysis of immune controllers is also presented.  
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2.2.1. T-B Artificial Immune Controllers 

The biological immune system is composed primarily of lymphocytes and 

antibodies, these can be either T-cells or B-cells (Benjamini, 1992). The T-cells are 

produced in the thymus gland and are primarily composed of assistant Th-cells and 

suppressing Ts-cells; they both are important in controlling the right amount of B-cells in 

the bloodstream, which is directly related to the current balance between antibodies and 

antigens. The B-cells are produced by the bone marrow and are in charge of recognizing 

and eliminating the antigens by increasing the production of antibodies (Moncayo H. , 

Perhinschi, Wilburn, & Wilburn, 2012). In the event of an infection, the number of Th-

cells will be superior to the amount of Ts-cells and hence the B-cells count will increase 

to try to reduce the number of antigens present in the organism to control the infection 

(Perez A. E., Moncayo, Perhinschi, Al Azzawi, & Togayev, 2015).  

On the other hand, if the infection has passed, the number of Ts-cells produced by 

the thymus gland will increase. This will result in a reduction of the number of B-cells 

which is directly related to the amount of antibodies in the bloodstream. After a certain 

period of time, the immune system will self-regulate the production of B-cells, and 

therefore a dynamic balance will be achieved. Additionally, it is known that some of the 

B-cells are differentiated into memory cells that can establish a faster and more 

aggressive secondary response in future encounters with the same pathogens, achieving a 

form of immunity memory (Moncayo & Perhinschi, 2012). These interactions are known 

as the humoral immune feedback mechanism, a conceptual description of these 

interactions is presented in Figure 2.1. In which IL+ represents the interleukin secreted by 

Th-cells, and IL- represents the interleukin secreted by Ts-cells. The interleukin is in 
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charge of modulating the correct amount of Th-cells and Ts-cells depending on the 

required demand of B-cells. 

 

Figure 2.1 Humoral Feedback Mechanism. 

A simple mathematical model to represent the interactions of the immune system 

can be obtained from Figure 2.1. First, the total stimulation of the T-cells received by the 

Bone Marrow (which will represent the total quantity of B-cells) can be expressed as the 

difference between T-helper cells ( )hT k  and the T- suppressing cells ( )sT k  (Takahashi & 

Yamada, 1998): 

 ( ) ( ) ( )h sB k T k T k= −       (2.1) 

The following set of equations can be used to relate the response of the ( )hT k cells 

and ( )sT k cells respectively (Chen & Wei, 2006) (Sun & Xu, 2010) (Yu, Cai, Jiang, & 

Hu, 2007) (Song, Fang, & Wang, 2009).  

 1( ) ( )hT k c kλ=   (2.2) 
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 2( ) ( ( )) ( )sT k c f B k kλ= ∆   (2.3) 

where the total amount of antigens at instant of time k is defined as ( )kλ , 1c  is a 

stimulation constant of the Th-cells and 2c  is a suppression constant of the Ts-cells. The 

instantaneous change of concentration on the B-cells is  defined as ( )kβ∆ . Additionally, 

( ( ))f B k∆ is a function (generally non-linear) that correlates this change with the amount 

of Ts-cells. Substituting Eq.(2.2)  and Eq.(2.3) into Eq.(2.1) yields: 

 [ ]( ) 1 ( ( )) ( )B k K f u k kη λ= − ∆   (2.4) 

where 1K c=  represents the system reaction rate and 2 1c cη =  is a proportionality 

factor that describes the interaction between the Th and Ts-cells. The stability of the 

system will generally depend on the value of η  and the non-linear function that describes 

the change on B-cells. If ( )B k  and ( )B k∆  are replaced by a conventional control law 

( )u k and change in control law ( )u k∆ respectively and ( )kλ  by an error signal ( )e k then 

we will have a feedback mechanism that is analogous to the immune system behavior. 

The control law will take the form (Perez A. E., Moncayo, Perhinschi, Al Azzawi, & 

Togayev, 2015): 

 [ ]( ) 1 ( ( )) ( )u k K f u k e kη= − ∆   (2.5) 

The continuous time analogous control law will be (Mo, 2008): 

 [ ]( ) 1 ( ( )) ( )u t K f u t e tη= − ɺ      (2.6) 

The previous expression is a special case of a more general architecture that relies 

in the T-B cell immune controller (Mo, 2008) and that is represented in Figure 2.2. 
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Figure 2.2: General Architecture for T-B Type Immune Controller. 

In Figure 2.2 (.)hP  is a generic function (controller) that stimulates the production 

of antibodies (control signal) as a function of the error e(t), (.)hf  is a function that 

describes the interaction of helper cells with antigens (error) and (.)sf  is a function that 

describes the interaction of the suppressing cells as a function of the current amount of 

antibodies.  Table 2.1 illustrates different examples of previous published work for 

different types of immune controllers (Mo, 2008): 

Table 2.1 Different Type of Immune Controllers.  

 

2.2.2. Double-Cell Immune Controller 

An alternative way to model the complex interactions of the immune system is 
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considering a macro-approach. This model was proposed by (Gutnikov & Melnikov, 

2003) based on the interaction of recognizers and killers. The model is bilinear in the 

sense it can describe better the interaction between recognizers, killer cells and antigens. 

The model is described by the following set of differential equations (Mo, 2008). 

 2
0

( ) ( ) ( ) ( )

( ) ( ) (0)

( ) ( ) ( ) ( )

e t e t e t u t

R t ke t R R

u t vR t e t u t

α η

λ µ

= −


= =
 = − −

ɺ

ɺ

ɺ

  (2.7) 

where ( )e t  represents the intruder cells (error), ( )u t  the killer cells (control 

input), and ( )R t are the recognizers. After some simplifications the following control law 

mimics the killer cell interaction as dependence of the number of intruder cells (Mo, 

2008) : 

 2
0( ) ( ) ( ) ( ), (0)e eu t e t u t e t u uγ β = + = ɺ   (2.8) 

where eγ  denotes the error recognition coefficient, eβ denotes the immune 

feedback coefficient and eµ denotes the stability coefficient of the immune controller. 

This control law can be used as augmentation of a nominal baseline controller. 
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2.3. Stability of Non-Linear Systems 

The first step in the search for reliable and safe control approaches relies on the 

availability to study the behavior of a non-linear system.  One important question that 

arises when dealing with any non-linear system is the possibility to predict if the system 

will behave in a stable manner or not. Non-linear dynamic systems can behave very 

differently from linear ones; sometimes linearization results can yield approximate 

solutions but great care should be taken since the stability results from the linearized 

approximations do not necessarily apply for the full non-linear plant. Predicting stability 

is indeed a non-trivial task when dealing with the inherit complexity of aerospace 

systems and in some instances it might actually not be possible to answer. Moreover, it is 

important to study how the system will react when subject to external perturbations and 

evaluate how robust it is. It would also be desirable to predict if the system will be able to 

turn back to a steady state condition after a consistent or temporary perturbation or if it 

will behave erratically and enter into a dangerous unstable behavior.  

Fortunately, there exist some powerful mathematical tools that might answer 

these questions. One of the most useful and general approaches for studying the stability 

of nonlinear control systems is the theory introduced in the late 19th Century by the 

Russian mathematician Aleksandr Mikhailovich Lyapunov (Slotine & Li, 1991).  

In Lyapunov’s work, The General Problem of Motion Stability, he includes two 

methods to analyze the stability of non-linear systems, the so called Lyapunov’s Direct 

method and the so called Lyapunov’s Indirect Method. Lyapunov’s direct method is 

actively used in this dissertation to study the stability of non-linear systems since it is a 

more general and vast tool. Lyapunov’s type of analysis is carried out by constructing 
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some “energy like” functions called Lyapunov’s functions with the purpose of 

characterizing the inherit stable behavior of the system. 

 The following notation can be used to describe a continuous time non-linear 

system of differential equations, where n∈ℜx  is the state vector of the system. 

 ( , )t=x f xɺ   (2.9) 

 In closed loop feedback form this system can be written as follows. 

 ( , , ( ))t=x f x u xɺ   (2.10) 

 where ( )u x is a control input that depends on the state. 

Non-Linear systems can be further classified as autonomous and non-autonomous 

systems. The generic system in Eq.(2.9) is said to be autonomous if the system dynamics 

are not explicitly dependent on time. In this case the system will have the form: 

 ( )=x f xɺ   (2.11) 

 On the other hand, the system in Eq.(2.9) is said to be non-autonomous if it 

explicitly depends on time. These basic definitions will be important later in the 

development of the dissertation to specify what stability theorems can be applied to study 

the stability of the proposed adaptive architectures. 

2.3.1. Equilibrium Points and Nominal Trajectories 

 Many of the stability problems are directly related to the so called equilibrium 

points or equilibrium conditions of a non-linear system, therefore is very important to 

state a formal mathematical definition of an equilibrium point. Formally a state * n∈ℜx  

is an equilibrium point or equilibrium state of the system in Eq.(2.9) if and only if after 

* *( )t =x x the state will remain on *x  always *t t∀ ≥ , where *t is the time in which the 
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system reaches the equilibrium point *x .  One might bear in mind that a non-linear 

system might have more than one equilibrium point and most of the analytical tools 

available to analyze the stability of a non-linear system will directly imply the 

equilibrium state of the non-linear system.   

When dealing with these type of problems one might want to investigate the 

stability of a system around a nominal trajectory or motion instead of an equilibrium 

point; such a problem often arises in aerospace systems when studying the stability of an 

aerospace system respect to its nominal motion.  In order to investigate such problems a 

useful transformation can be applied as follows (Slotine & Li, 1991). Let’s assume 

( ) n

s t ∈ℜx  is the solution of the system described by Eq.(2.11), let this system have an 

initial condition 0(0)s =x x , and let the associated solution to this system be a nominal 

aerospace system trajectory.  

Let’s define some perturbed initial condition as 0(0) (0)sδ δ= +x x x  and let’s 

define the solution to this new initial condition to be given by ( )tδx . One simple way to 

study the associated variation error of ( )tδx with respect to the nominal state trajectory 

( )s tx   is to analyze the variation of the disturbed motion with respect to the nominal 

motion. One can define the difference between ( )tδx and ( )s tx  as the motion error or 

error dynamics as follows (see Figure 2.3): 

 ( ) ( ) ( )st t tδ= −e x x   (2.12) 
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Figure 2.3 Perturbed Motion Trajectories. 

 Since ( ), ( )st tδx x are both solutions of  Eq.(2.9), the following is true: 

 
0 0 0

( ) ( )

(0) (0)
s

s

f f δ

δ δ

= = 
→ 

= = + 

x x x x

x x x x x

ɺ ɺ
  (2.13) 

 Therefore ( )te satisfies the following non-autonomous differential equation 

(Slotine & Li, 1991) : 

 ( , ) ( , ) ( , )s sf t f t t= + − =e x e x g eɺ   (2.14) 

System Eq.(2.14) will have the initial condition, 0(0) δ=e x . This transformation 

allows us to study the dynamic behavior of the system with respect to the equilibrium 

point 0  which lies at the origin of the state space rather than studying the deviation of 

( )tδx with respect to ( )s tx . However, it should be noted that the error dynamics of Eq. 

(2.14) will correspond to a non-autonomous system. 

2.3.2. General Definitions of Stability 

 Non-linear systems are by essence more complex than linear systems, and 

therefore it is important to outline some mathematical definitions of stability applicable to 

non-linear systems; these definitions are very important to characterize and describe the 

behavior of the system.  



21 
 

Stability: 

Let rA  be a spherical region in the state space defined by R<x . The 

equilibrium point *x  (usually the origin) is said to be stable if and only if there exists an 

initial state condition (0) r<x  such that ( )t R<x for all 0t ≥ , otherwise the equilibrium 

point is unstable (Narendra & Annaswamy, 2005), (Slotine & Li, 1991).  

Asymptotic Stability:  

In engineering, usually general stability of an equilibrium point might not be 

enough for the intended application. Often it is also required that the system actually goes 

back to the origin as t →∞ . This concept implies that the equilibrium is stable and 

additionally, it is required that the system converge to the equilibrium point after some 

time. Formally, this concept is defined as Asymptotic Stability (AS). An equilibrium 

point is asymptotically stable if it is stable and in addition for an initial condition state 

(0) r<x implies that ( ) 0x t → as t →∞ . 

Global Asymptotic Stability:  

 If asymptotic stability holds for any initial state no matter how far away from the 

origin, then the equilibrium point is said to be asymptotically stable “in the large” or 

Globally Asymptotically Stable (GAS).  The basic definitions of stability can be depicted 

in Figure 2.4, in which (0)Sx , (0)ASx and (0)GASx  are examples of initial state conditions 

of stable, asymptotically stable and globally asymptotically stable trajectories 

respectively. 
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Figure 2.4 Basic Definitions of Stability. 

2.3.3. Lyapunov’s Direct Method 

 Lyapunov developed his direct method to examine the stability of a dynamic 

system without needing to explicitly solve the non-linear differential equation that 

describes the dynamics of the system. To develop his theory, he intuitively thought about 

the global amount of energy that is dissipated or conserved by a system. If the system is 

losing energy it will eventually “damp out” and will remain stable. On the other hand if 

the total energy of the system increases, the system will behave in an unstable manner.  

Lyapunov’s direct method is based on the formal mathematical generalization of these 

concepts for any kind of non-linear system. The method is based on finding an energy 

like function of the state, and then showing that the derivative along trajectories of this 

function is always negative. In this manner conclusions may be drawn on the stability of 

the system without solving the system equations.  

Theorem 2.1: 

 The equilibrium state of Eq.(2.9) will be globally asymptotically stable if there 

exists a scalar function of the state trajectories and time ( , )V tx  with continuous first 
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partial derivatives with respect to x  and t such that ( , ) 0V t =0  and the following 

conditions are satisfied (Narendra & Annaswamy, 2005): 

i. ( , )V tx  is positive-definite; that is, there exists a continuous non-decreasing scalar 

function ( )α x  such that ( ) 0α =0  and ( )( , ) 0V t α≥ >x x  for all t and 0≠x . 

ii. ( , )V tx  is decrescent; that is, there exists a continuous non-decreasing scalar 

function ( )β x such that ( ) 0β =0  and ( ) ( , )V tβ ≥x x for all t. 

iii. ( , )V tx  is radially unbounded, that is, ( )  with α →∞ →∞x x  

iv. The derivative along trajectories of ( , )V tx  is negative-definite; that is: 

 ( )( , ) ( , )
( , ) ( , ) 0

V t V t
V t f t

t

∂ ∂
= + ≤ −ϒ <

∂ ∂
x x

x x x
x

ɺ    (2.15) 

Where ϒ is a continuous non-decreasing scalar function with ( ) 0ϒ =0  . 

2.3.4. La Salle Invariant Principle  

 Asymptotic stability of a control system is usually the most important property to 

be determined prior to implementation of an adaptive controller. However, often 

Lyapunov’s direct methods might be difficult to apply in order to assert this property. 

The reason is that usually ( )V xɺ  is only a negative semi-definite function and hence no 

conclusions can be drawn except for local stability and bounded trajectories. In order to 

overcome this situation La-Salle contributed his well-known invariance principle theorem 

applicable only for autonomous systems (Slotine & Li, 1991) (Krstic, Kanellakopoulos, 

& Kokotovic, 1995), where it is still possible to draw conclusions on the asymptotic 

stability of a system even if ( )V xɺ  is only negative semi-definite.  
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A set Ω  is called a positive invariant set of the system if any solution ( )tx  that 

starts from a point in Ω  will remain in Ω  for all future time after 0t t≥ . Mathematically 

this can be written as: 

 0( ) ( ) , 0x t x t t∈Ω⇒ ∈Ω ∀ ≥      (2.16) 

Using LaSalle’s invariant set theorem, it is possible to guarantee the convergence 

to a desired invariant set in the state space. Let’s consider the autonomous system in Eq. 

(2.11), and let ( )V x be a scalar function with continuous first partial derivatives that has 

the following properties. 

i. ( )V → ∞x  as → ∞x , radially unbounded. 

ii. ( ) 0,V ≤ ∀ ∈Ωx xɺ . 

Let E  be the set of all points where ( ) 0V =xɺ . This set can be defined as follows: 

{ }, ( ) 0E V= ∈Ω =x x xɺ    (2.17) 

Let M be the largest invariant set in E . Then every solution of ( )tx starting in Ω  

will asymptotically converge to M as t →∞ . The convergence properties of the designed 

controller will be stronger if the dimension of M is lower. The most favorable case 

occurs when the largest invariant set M in E  is the origin 0=x . If that is the case, then 

asymptotic stability can be proven for the system (Narendra & Annaswamy, 2005). 

2.3.5. Barbalat’s Lemma 

 An extension of La Salle theorem can be used to generalize these invariant 

principles for non-autonomous systems. Let  * 0=x  be an equilibrium point of Eq.(2.9) 

and suppose f  is locally Lipschitz in x and uniformly in t. Let ( , )V tx  be a continuously 
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differentiable, positive definite and decrescent function (conditions (i) and (ii) in 

Theorem 2.1) and let its derivative along trajectories be such that: 

( , ) ( , ) ( ) 0, 0, nV V
V t f t W t

t

∂ ∂
= + ≤ − ≤ ∀ ≥ ∀ ∈ℜ

∂ ∂
x x x x

x
ɺ   (2.18)  

If  ( )W xɺ  is a bounded function ( )t∀x  then ( )W x  will be uniformly continuous.  

If  ( )W x  is uniformly continuous then all solutions of Eq.(2.9) will be globally 

uniformly bounded and satisfy: 

 lim ( ( )) 0
t

W t
→∞

=x     (2.19) 

 In addition if ( )W x is positive definite, then the equilibrium *
x  will be globally 

uniformly asymptotically stable (Krstic, Kanellakopoulos, & Kokotovic, 1995) (Harvey, 

2008) . 

2.3.6. Absolute Stability and Circle Criterion 

 This section describes a powerful technique to analyze the stability of a special 

type of non-linear dynamic system that possess linear characteristics in the open loop but 

with a non-linear feedback element for stabilization purposes. The problem of analyzing 

this type of system often arises in many electrical and aerospace engineering applications. 

One of the first ones to formally address the stability of  this type of systems was the 

former Soviet Union’s scholar and control expert A.I Lur’e (Liao & Yu, 2008) (Khalil, 

1996) (Passino & Yurkovich, 1998). In 1944 he proposed the following dynamic 

description of the problem: 

 
( ( , ))A B t

y C

= +


=

x x Ψ y

x

ɺ
  (2.20) 
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 where 1 1 1, , ,nx nxn px pxx A y B∈ℜ ∈ℜ ∈ℜ ∈ℜ . This type of dynamic system is 

depicted in Figure 2.5. 

 

Figure 2.5 Feedback Connection of a Linear System and a Non-Linear Feedback 
Element. 

 Most of Lur’e work was known later as the “Isolation Method” (Liao & Yu, 

2008) since it tried to fully isolate the non-linear element and tried to answer the question 

under what conditions the nonlinear feedback element ( , )tΨ y  could be designed such 

that the closed loop system is rendered globally asymptotically stable.  Lur’e work was 

enriched later by other prominent researchers such as V.M. Popov who developed a well-

founded frequency criterion for absolute stability theory. The main results from Lur’e and 

other researchers was to show under what conditions the system in (2.20) is globally 

asymptotically stable and can actually be summarized by means of the “Circle Criterion”. 

To start, it is important to outline some special characteristics of ( , )tΨ y  that are required 

so that the Circle Criterion of Stability can be applied. 
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Sector Condition (SISO Case): 

 In order to apply the Circle Criterion, the non-linearity ( , )tΨ y  needs to hold the 

sector condition. For a SISO system the possibly time invariant, memoryless and 

piecewise continuous scalar non-linearity 1 1( , ) :[0, )y t R RΨ ∞ × →  is said to lie in a 

sector if there exists constants , ,  and baα β with 0a b< <  and β α>  such that (Khalil, 

1996) (Passino & Yurkovich, 1998): 

 2 2( , ) , 0, [ , ]y y t y y t y a bα ψ β≤ ≤ ∀ ≥ ∀ ∈   (2.21) 

 If Eq.(2.21) holds for ( , )y ∈ −∞ ∞ then the sector condition holds globally. For 

illustrative purposes an example of a non-linearity that holds the sector condition is 

depicted in Figure 2.6. 

 

Figure 2.6 Sector Non-Linearity. 

Sector Condition (MIMO Case): 

For the multivariable case ( 1p > ) the form of the sector condition is more 

complicated. Let’s start with the case in which the non-linearity ( , )tΨ y  is decoupled as 

follows. 
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 1 1 2 2( , ) ( , ), ( , ), ( , )
T

p pt y t y t y tψ ψ ψ =  ψ y ⋯    (2.22) 

The first step to establish the sector condition on ( , )tψ y  (for the decoupled case) 

is that each component of the vector in Eq.(2.22) should hold the sector criteria in (2.21) 

individually: 

 

2 2
1 1 1 1 1 1

2 2
2 2 2 2 2 2 2

2 2

( , )

( , )

( , )

i

p p p p p p p

y y y t y

y y y t y

y y y t y

α ψ β

α ψ β

α ψ β

≤ ≤

≤ ≤

≤ ≤

⋮ ⋮
 

The previous expression is equivalent to: 

 [ ] [ ]min max( , ) ( , ) 0 0,
T T

t K t K t− − ≤ ∀ ≥ ∀ ∈Γψ y y ψ y y y   (2.23) 

 where 1, 2,[ ]T

py y y=y ⋯ , min 1 2 max 1 2( , , ), ( , , )p pK diag K diagα α α β β β= =… …  

and { }p

i i iy R a y bΓ = ∈ ≤ ≤ . 

 The inequality in Eq.(2.23) may hold for more general multivariable 

nonlinearities, where minK  and  maxK  are non-diagonal as shown in (Khalil, 1996) , if  

max minK K K= −  is positive definite symmetric and the interior of Γ  is connected and 

contains the origin.  

Circle Criterion, (SISO Case): 

 Considering the system in Eq.(2.20) for the SISO case (p = 1) for which the 

transfer function of the open loop system is defined as 1( ) ( )G s C sI A B−= −  and where 

the non-linear feedback element ( , )y tψ  satisfies the sector condition in Eq.(2.21) 

globally. Let ( , )D α β  be a closed disk in the complex plane (see Figure 2.7) whose 
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diameter is the line segment between the points [ ]1 0 , 1 0j jα β− + − + .  

 

Figure 2.7 Disk in the Complex Plane 

 

The system in Eq.(2.20) will be absolutely stable if one of the following three 

conditions are met (Khalil, 1996) (Passino & Yurkovich, 1998). 

i. If 0 α β< < , the Nyquist plot of ( )G jω  does not enter the disk ( , )D α β  and 

encircles it m times in the counterclockwise direction where m is the number of 

poles of ( )G s  with positive real parts. 

ii. If  0 α β= < , ( )G s  is Hurwitz and the Nyquist plot of ( )G jω  lies to the right of 

the vertical line defined by Re( ) 1jω β= −  

iii. If 0α β< < , ( )G s  is Hurwitz and the Nyquist plot of ( )G jω  lies in the interior 

of the disk ( , )D α β . 

Circle Criterion, (MIMO Case):  

 Considering the system Eq.(2.20) for the multivariable case ( 1p > ), where the 

non-linear vector feedback element ( , )tψ y  satisfies the sector condition in Eq.(2.23) 

globally, the closed loop system will be absolutely stable if the following conditions are 
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satisfied (Khalil, 1996): 

i. The pair ( , )A B  is controllable and the pair ( , )A C is observable. 

ii. [ ] 1

min( ) ( ) ( )TG s G s I K G s
−

= +  is Hurwitz. 

iii. [ ][ ] 1

max min( ) ( ) ( )TZ s I K G s I K G s
−

= + +  is Strictly Positive Real. 

2.4. Feedback Linearization 

Most of the literature and work associated with feedback linearization was 

developed around the mid 1980’s, and a deep treatment of this theory was given by 

Isidori in his seminal book (Krstic, Kanellakopoulos, & Kokotovic, 1995). Feedback 

Linearization has been successfully used to address different type of control problems 

ranging from control of helicopters, high performance aircrafts, serial manipulators and 

parallel robots (Slotine & Li, 1991). The fundamental idea of feedback linearization is to 

transform nonlinear system dynamics into fully or partly linear ones using feedback 

control. By rendering the closed loop system linear, one can use linear or classical control 

techniques (i.e., pole placement, root locus, etc.) to stabilize the new system.  

2.4.1. Non-Linear Dynamic Inversion 

Let’s define a generic affine non-linear system as follows:  

 ( ) ( ) ( )f g t= +x x x uɺ   (2.24) 

 where n∈ℜx is the state vector, ( ) nf ∈ℜx and ( ) nxmg ∈ℜx  are invertible a non-

linear vector functions and ( ) mt ∈ℜu  is the vector of the inputs of the system. Since the 

non-linear functions are invertible it is possible to formulate a direct feedback linearizing 

control law for the system in Eq.(2.24) as follows: 
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 [ ]1( ) ( ) ( ) ( )u g v f−= −x x x x     (2.25)  

where ( ) nv ∈ℜx is a virtual controller designed to guarantee stability of the 

closed loop system.  If the function 1( )g−
x  is invertible t∀  then an exact feedback 

linearizing control law can be found. After inserting Eq. (2.25) into Eq. (2.24) the new 

closed loop dynamics of the system will yield: 

 ( )v=x xɺ      (2.26) 

 The virtual controller ( )v x can be arbitrarily chosen in order to guarantee global 

asymptotic stability of the closed loop system. For convenience and simplicity the virtual 

controllers can be chosen as PID controllers or conventional linear state-feedback 

controllers. A schematic diagram that illustrates the general idea of the dynamic inversion 

system is shown in Figure 2.8. 

 

 

Figure 2.8 Simple Non-Linear Dynamic Inversion. 
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3. General Aerospace System Equations of Motion 

 This chapter outlines the most relevant equations of motion that describe the 

dynamics of any type of aerospace system that can be modeled as a rigid body. In this 

dissertation four main vehicles were studied: an F-15 aircraft, a thrust vectoring concept 

spacecraft (intended for Mars exploration), a cold gas thruster spacecraft (intended for 

asteroid exploration) and a quadrotor.  

The equations that will be derived in this chapter can be applied to each of the 

vehicles under study and each of the subsequent chapters will deepen in the specific 

contribution of forces and moments of the actuators, aerodynamic forces or other 

applicable external forces and moments that apply for each vehicle.  

3.1. Rigid Body Dynamics 

In order to fully understand where the equations of motion come from, it is useful 

to understand the concept of finding the derivative of a vector in two different reference 

frames. This procedure is usually accomplished by means of the Transport Theorem 

(Sidi, 1997). Let’s consider the diagram in Figure 3.1 in which the frame E is fixed. On 

the other hand frame B is attached to the body of a spacecraft and it is in general motion. 

Let’s suppose we need to find the derivative of a vector in the moving frame B with 

respect to the fixed frame E and let’s name this vector 1 2 3
ˆˆ ˆ

b b bB b i b j b k= + +  . Using the 

Transport Theorem or operator equation (Sidi, 1997), the derivative of vector B  with 

respect to frame E will be: 

 
E B

E BdB dB
B

dt dt
ω= + ×   (3.1) 
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Figure 3.1 Representation of a Rigid Body in General Motion. 

  where E Bω  is the relative angular velocity of the rigid body in frame B with 

respect to Frame E.  

3.1.1. Moment Equations 

 Newton’s second law of motion can be applied to describe the rotational 

dynamics that result from applying a set of moments on the rigid body. The total sum of 

moments will be equal to the change of angular momentum over time (Yechout, 2003). 

This relation can be written as: 

 ( )
x E

y

z

M
dH

M t M
dt

M

 
 = = 
  

∑
∑
∑

  (3.2) 

Usually, the reference point for which the external moments and angular 

momentum are calculated is located at the center of mass of the rigid body. The angular 

momentum of a rigid body can be defined as the product of its inertia tensor and the 

angular velocity respect to an inertial frame: 

 

 H J= ω   (3.3) 
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where 
T

x y zω ω ω =  ω is the angular velocity vector of the rigid body with 

respect to the inertial reference frame and 3J ∈ℜ is the inertia tensor (dyadic) of the rigid 

body and is usually defined as follows:  

xx xy xz

xy yy yz

xz yz zz

J J J

J J J J

J J J

 
 

=  
  

    (3.4) 

 By means of the Transport Theorem, it is possible to find an expression for the 

angular momentum with respect to the inertial reference frame as follows: 

 
E BdH dH

H
dt dt

= + ×ω      (3.5) 

 Assuming that the inertia tensor is time invariant and from the definition of 

angular momentum in Eq.(3.3), the first term on right hand side of Eq.(3.5) yields: 

 
xx xy xz xB

xy yy yz y

xz yz zz z

J J J
dH d

J J J J J
dt dt

J J J

ω
ω
ω

   
   = = =   
     

ω
ω

ɺ

ɺ ɺ

ɺ

    (3.6) 

 Also, from Eq.(3.3) the second term on the right hand side of Eq.(3.5) yields: 

 ( )H J× = ×ω ω ω                                     (3.7) 

Finally, the following vector differential equation of motion for the rotational 

dynamics is obtained. 

( ){ }1 ( )J J M t−= − × +ω ω ωɺ     (3.8) 

  

It should be noted that the angular acceleration term is arranged on the left hand side. 
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3.1.2. Force Equations 

Newton’s second law of motion can also be applied to describe the translational 

dynamics of a rigid body. The total sum of forces applied on the CG of the rigid body 

will be equal to its mass times the acceleration with respect to the inertial reference 

frame.  

 ( )
x E B

y

z

F
d V

F t F m
dt

F

 
 = = 
  

∑
∑
∑

     (3.9) 

Although Newton’s second law is only valid with respect to an inertial reference 

frame, the equations can be related to the body axis system by means of the Transport 

Theorem. 

 
E B B

Bd V d V
V

dt dt
= + ×ω   (3.10) 

 where BV is the relative velocity of the center of mass of the rigid body with 

respect to the inertial frame E in components of the body frame B. This vector is defined 

as: 

 ˆˆ ˆB

b b bV ui vj wk= + +   (3.11) 

Expanding terms of Eq.(3.10) yields: 

x y zE B

y z x

z x y

u u u w v
d V

v v v u w
dt

w w w v u

ω ω ω
ω ω ω
ω ω ω

 + −     
      = + × = + −      
       + −       

ɺ ɺ

ɺ ɺ

ɺ ɺ

  (3.12) 

Finally replacing Eq.(3.12) into Eq.(3.9) and leaving the first order derivative 

terms on the left hand side the rigid body, translational dynamics can be written as: 
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1
z y x

x z y

y x z

v wu F

v w u F
m

w u v F

ω ω

ω ω
ω ω

 −  
    = − +    
    −     

∑
∑
∑

ɺ

ɺ

ɺ

    (3.13) 

3.2. Euler Angle Rotation 

 In order to derive the navigation equations which are useful to represent the 

velocities and positions of a rigid body respect to the inertial reference frame, the relative 

orientation of the rigid body must be known. The orientation of a moving object can be 

obtained by a sequence of three successive orthogonal frame rotations. If the convention 

in Figure 3.1 is adopted, in which the body frame consists of three orthogonal axes 

ˆˆ ˆ, ,b b bi j k  and the fixed inertial frame consists of the ˆˆ ˆ, ,E E Ei j k  orthogonal axes, then there 

are multitude possible combinations by which three successive rotations can be 

performed. There are two distinct types of rotations (Sidi, 1997): 

i. Successive rotations about each of the three axes. There are six possible 

combinations for successive rotations namely: 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2 

and 3-2-1. (e.g. 1,2,3 represent successive rotation orders around roll, pitch and 

yaw respectively). 

ii. Non-Successive rotations. First and third rotations about the same axis with the 

second rotation about one of the two remaining axes: 1-2-1, 1-3-1, 2-1-2, 2-3-2, 3-

1-3 and 3-2-3. 

In this dissertation the rotation order of 3-2-1 will be used as it is a very well-known and 

common rotation convention for aircraft and other similar vehicles. 
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Rotation from Earth Frame to Frame 1: 

 The first step is to define a rotation matrix that transforms vectors from the 

inertial (e.g. Earth) frame to an orthogonal rotated frame around ψ ; this frame will be 

called frame one. This is achieved by relating unit vectors of frame 1 with unit vectors of 

the fixed inertial frame E. 

 

Figure 3.2 Rotation from Fixed Frame to Frame 1. 

 The rotation is obtained by means of the matrix ψA  that transforms vectors from 

the fixed frame E to frame 1. 

 
1

1

1

ˆ ˆcos sin 0
ˆ ˆsin cos 0

ˆ ˆ0 0 1

E E

E E

E E

i ix

y k k

z z z

ψ

ψ ψ
ψ ψ

             = − =                       

A   (3.14) 

Rotation from Frame 1 to Frame 2: 

 The next step is to form a rotation matrix that transforms vectors from the frame 1 

to frame 2 around θ  (see Figure 3.3). This can be achieved by means of the matrix θA  

defined as follows: 
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Figure 3.3 Rotation from Frame 1 to Frame 2. 

 
2 1 1

2 1 1

2 11

cos 0 sin

0 1 0

sin 0 cos

x x x

y y y

z z z

θ

θ θ

θ θ

−       
      = =      
            

A   (3.15) 

Rotation from Frame 2 to Body Frame: 

The final step is to develop a rotation matrix that transforms vectors from frame 

two to the body frame around the roll angle φ  (see Figure 3.4). This can be achieved by 

means of the rotation matrix φA  defined as follows: 

 

Figure 3.4 Rotation from Frame 2 to Body Frame. 

  
2 2

2 2

2 2

ˆ 1 0 0
ˆ 0 cos sin

ˆ 0 sin cos

b

b

b

i x x

j y y

z zk

φφ φ
φ φ

       
       = =       
       −      

A     (3.16) 

 If a transformation matrix that rotates any vector in the fixed frame E into the 

body frame B is required, then this can be achieved by post-multiplication of all the 

previous rotation matrices in Eq.(3.14)-Eq.(3.16). 
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ˆˆ

ˆˆ

ˆ ˆ

Eb

b E

Eb

ii

j k

zk

φ θ ψ

  
  

=   
  
    

A A A   (3.17) 

 Moreover, if a full transformation matrix is required to rotate a vector in the body 

frame to a vector in the fixed frame, it can be achieved by pre-multiplication of the 

transpose of the previous rotation matrices. 

 ( ) ( ) ( )
ˆ ˆ

ˆ ˆ

ˆˆ

E b
T TT

E b

E b

i i

k j

z k

ψ θ φ

   
   

=   
   
    

A A A   (3.18) 

Therefore a Direction Cosine Matrix (DCM) that transforms vectors from a body 

reference frame to a inertial reference frame can be defined as: 

 

c c s s c c s c s c s s

c s s s s c c c s s s c

s s c c c

E

bDCM

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

− + 
 = + − 
 − 

  (3.19) 

3.3. Rigid body Attitude Kinematics - Euler 

 With the successive matrices defined in the previous section it is possible to find a 

relationship between the angular rate vector ω  of the rigid body and Euler angle rates as 

follows (Sidi, 1997) : 

 

0 0

0 0

0 0

x

y

z

φ θ ψ φ θ φ

ω φ
ω θ
ω ψ

      
      = + +       
             

A A A A A A

ɺ

ɺ

ɺ

  (3.20) 

 After performing the matrix multiplications, the following result is obtained: 
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1 0 sin

0 cos sin cos

0 sin cos cos

x

y

z

ω θ φ
ω φ φ θ θ
ω φ φ θ ψ

 −   
    =     
    −     

ɺ

ɺ

ɺ

  (3.21) 

 The previous vector equation can be solved for 
T

φ θ ψ  
ɺ ɺ ɺ  as follows: 

 

1 sin tan cos tan

0 cos sin

0 sin sec cos sec

x

y

z

φ φ θ φ θ ω
θ φ φ ω
ψ φ θ φ θ ω

     
     = −     
         

ɺ

ɺ

ɺ

  (3.22) 

 The previous result is usually called in the literature the Euler Angle-Kinematic 

equations. 

3.4. Navigation Equations 

The navigation equations can be obtained multiplying the [ ]Tu v w  (velocities 

in the body frame) by the E

bDCM to obtain the velocities components of the aerospace 

system in the fixed reference frame.  

 

(c c ) (s s c c s ) (c s c s s )

(c c ) (s s s c c ) (c s s s c )

s (s c ) (c c )

x u v w

y u v w

z u v w

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ ψ φ θ ψ φ ψ φ θ ψ φ ψ
θ φ θ φ θ

= + − + +

= + + + −

= − + +

ɺ

ɺ

ɺ

   (3.23) 

Equations (3.8), (3.13), (3.22) and (3.23) form a complete set of twelve solvable 

nonlinear state equations required to simulate the dynamics of any aerospace system or 

vehicle that behaves as a rigid body.  
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4. Development of Adaptive Control Laws Based on Euler Angle NLDI 

This chapter discusses different baseline non-linear control architectures that are 

further augmented by means of direct bio-inspired adaptive controllers. The baseline 

controllers rely primarily on feedback linearization (exact or approximate). The feedback 

linearization is the first layer of the control design. It will allows the closed loop system 

to behave very close to a linear system for which its control gains can be designed to 

achieve specific performance or time response characteristics such as damping ratio or 

natural frequency. Since exact feedback linearization is usually impossible to achieve in 

real implementation, the second layer of the control design includes an adaptive 

augmentation system to try to eradicate uncertainties and unmodeled dynamics of the 

system.  

A successful adaptive augmentation controller should have the ability to mitigate 

uncertainties in the dynamic model by increasing its overall robustness. It is also 

expected that the adaptive augmentation can compensate at some point for the effect of 

external disturbances such as system malfunctions or abrupt changes in inertial or 

aerodynamic characteristics.  

4.1. Angular Rate NLDI Control 

Most aerospace systems require some sort of angular rate control to operate 

correctly, not only because angular rate control is essential for overall system stability but 

also because angular rate sensors (gyroscopes) are one of the most reliable and easy to 

operate sensors to measure angular rates. As discussed in Chapter 3 the rotational 

dynamics of a rigid body can be defined in vector form as follows: 
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 ( ){ }1 ( )J J M t−= − × +ω ω ωɺ      (4.1) 

where 3 3xJ ∈ℜ is the inertia matrix, 3 1( ) xM t ∈ℜ is the sum of external moments that 

act on the rigid body and 3 1x∈ℜω is the vector of angular rates. If the inertia matrix is 

constant in time, the rotational dynamics reduce to: 

1( ) ( )J M tω
−= +ω f ωɺ     (4.2) 

where: 

 ( ){ }1( ) J Jω
−= − ×f ω ω ω   (4.3) 

These equations can be found on any rotating rigid body subject to external 

moments acting over its center of mass. One way to implement an angular rate feedback 

linearizing controller to stabilize the generic system in Eq.(4.2) is to use the following 

control law: 

( )( ) ( ) ( )

                     [ ( ) ( )]
DI v

v

M t t J J t

J t ω

= = × +

= −

u ω ω u

u f ω
    (4.4) 

Inserting control law Eq.(4.4) into the system in Eq.(4.1) will yield the following 

closed loop dynamics: 

( )v=ω u ωɺ     (4.5) 

where ( ) ( ) ( )( )
x y z

T

v v t v t v tt u u uω ω ω
 =  u  is a virtual controller. If the goal is to 

achieve global asymptotic tracking of specified angular rate commands, the following 

control law can be used: 

( ) ( )( )
Iv p ref p ref reft dt

ω
= − + − +∫u K ω ω K ω ω ωɺ    (4.6) 

where pω
K and 

IpK are defined as follows: 
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0 0 0 0

0 0 , 0 0

0 0 0 0

x I x

y I y

z I z

p

p p I

p

k k

k k

k k

ω ω

ω ω ω ω

ω ω

   
   
   = =
   
      

K K    (4.7) 

For convenience this control law can be written in scalar form for each channel: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x x I x

y y I y

z z I z

v p xref x p xref x xref

v p yref y p yref y yref

v p zref z p zref z zref

u t k k dt

u t k k dt

u t k k dt

ω ω ω

ω ω ω

ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

= − + − +

= − + − +

= − + − +

∫
∫
∫

ɺ

ɺ

ɺ

  (4.8) 

Using this control law the closed loop dynamics will yield: 

( ) ( )

( ) ( )

( ) ( )

x I x

y I y

z I z

x p xref x xref x xref

y p yref y yref y yref

z p zref z zref z zref

k k dt

k k dt

k k dt

ω ω

ω ω

ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

 = − + − +

 = − + − +

 = − + − +

∫
∫
∫

ɺ ɺ

ɺ ɺ

ɺ ɺ

  (4.9) 

It can be seen that this NLDI control law decouples the rotational dynamics and 

renders the closed loop system linear. The stability of this new system of differential 

equations can be treated separately as each of the angular rate channels is totally 

decoupled from each other. To analyze the error dynamics let’s choose the following 

error state variables: 

11 1

22 2

( )( ) ( )

( )( ) ( )

yx z

yx z

yref yxref x zref z

yref yxref x zref z

e dte dt e dt

ee e

ωω ω

ωω ω

ω ωω ω ω ω

ω ωω ω ω ω

 = −= − = −  
  

= −= − = −   

∫∫ ∫  (4.10) 

Taking the derivative of the previous error terms will lead to the following 

decoupled state space definition for the tracking errors: 

1 1

2 2

1 1

2 2

1 1

2 2

0 1

0 1

0 1

x x

x xx x

y y

y yy y

z z

z zz z

I p

I p

I p

e e

k ke e

e e

k ke e

e e

k ke e

ω ω

ω ωω ω

ω ω

ω ωω ω

ω ω

ω ωω ω

    
=    − −       

    
   =  − −        

    
=    − −       

ɺ

ɺ

ɺ

ɺ

ɺ

ɺ

         (4.11) 
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 The tracking errors might also be expressed in vector state-space compact form as 

follows: 

3 3 3 31 1

2 2

[0] x x

I p

I

ω ω

    
=     − −    

e e

K Ke e

ɺ

ɺ
   (4.12) 

 where the error vectors are conveniently defined as:  

1 1 1 1( ) [ , , ]
x y z

Tt e e eω ω ω=e , 2 2 2 2( ) [ , , ]
x y z

Tt e e eω ω ω=e   (4.13) 

With a Routh Hurwitz or eigenvalue analysis it is easy to check that the error 

dynamics will be Globally Asymptotically Stable as long as the controller gains are all 

positive. The only two assumptions here are that there is perfect knowledge of the plant 

inertias (including cross terms) and that the control system has access to all angular rate 

measurements. Figure 4.1 shows the resultant Non-Linear Dynamic Inversion controller 

for angular rates in block diagram form. 

 

Figure 4.1: Angular Rate Non-Linear Dynamic Inversion. 

4.2. Angular Rate NLDI augmented with AIS Adaptive Control 

This section describes the implementation of an adaptive control configuration 

based on the immune system mechanism described in Chapter 2 used to augment the 

angular rate NLDI controller presented in Section 4.1. As mentioned before, one 

contribution of this dissertation is to combine the idea of the immune feedback 
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mechanism with the Non-Linear Dynamic Inversion approach; so far there is no formal 

proof of stability or any attempt to incorporate this controller into a complex non-linear 

aerospace system. 

The adaptive laws designed and implemented here aim to incorporate adaptivity 

in the virtual controller proportional and integral gains. The main adaptive functions are 

dependent on ( )
ivu tω∆ , or change in virtual control input for each of the roll, pitch and 

yaw rate channels. The time varying adaptation gains are defined as follows: 

{ }
{ }
{ }

( ) 1 [ ( )]

( ) 1 [ ( )]

( ) 1 [ ( )]

x x x x

y y y y

z z z z

p p v

p p v

p p v

k t k f u t

k t k f u t

k t k f u t

ω ω ω ω

ω ω ω ω

ω ω ω ω

η

η

η

= + ∆

= + ∆

= + ∆

   (4.14) 

{ }
{ }
{ }

( ) 1 [ ( )]

( ) 1 [ ( )]

( ) 1 [ ( )]

x x x x

y y y y

z z z z

I I v

I I v

I I v

k t k f u t

k t k f u t

k t k f u t

ω ω ω ω

ω ω ω ω

ω ω ω ω

η

η

η

= + ∆

= + ∆

= + ∆

   (4.15) 

where , ,
x y zω ω ωη η η  are proportional constants. The non-linear adaptation basis 

function will take the form (Takahashi & Yamada, 1998):  

2 2[ ( )] [ ( )]

2
[ ( )] 1

i
i i i i

v u t u t
f u t

e eω ω
ω γ γ∆ − ∆

 
∆ = − 

+ 
  (4.16) 

where iγ  are scalar proportional constants that might be different for each of the 

roll, pitch and yaw channels ( , ,i x y z= ). The change in input is defined as follows: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x x x

y y y

z z z

v v v

v v v

v v v

u t u t u t

u t u t u t

u t u t u t

ω ω ω

ω ω ω

ω ω ω

τ

τ

τ

∆ = − −

∆ = − −

∆ = − −

    (4.17) 

The closed loop system augmented with the adaptive law will have the following 

closed loop dynamics: 
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( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

x I x

y I y

z I z

x p xref x xref x xref

y p yref y yref y yref

z p zref z zref z zref

k t k t dt

k t k t dt

k t k t dt

ω ω

ω ω

ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

 = − + − +

 = − + − +

 = − + − +

∫
∫
∫

ɺ ɺ

ɺ ɺ

ɺ ɺ

  (4.18) 

Furthermore, the adaptive augmentation control law can be written in vector form: 

{ } { }
{ } { }
3 3 1 3 3 2

3 3 1 3 3 2

( ) ( ( )) ( ( ))

  ( ( )) ( ( ))
I

I

v x v p x v ref

x v p x v ref

t I F t I F t

I t I t

ω ω

ω ωω ω

= + ⋅ + + ⋅ +

= + + + +

u K η Δu e K η Δu e ω

K G Δu e K G Δu e ω

ɺ

ɺ
 (4.19) 

 where: 

 ( ( )) ( ( ))v vt F tω ω= ⋅G Δu η Δu    (4.20) 

The scale factor matrix ωη
3 3x∈ℜ  and adaptive function ( ( ))vF tΔu 3 3x∈ℜ are 

defined respectively as follows: 

 
0 0 ( ( )) 0 0

0 0 , ( ( )) 0 ( ( )) 0

0 0 0 0 ( ( ))

x x

y y

z z

v

v v

v

f u t

F t f u t

f u t

ω ω

ω ω ω

ω ω

η

η

η

   ∆
   
   = = ∆
   

∆      

η Δu  (4.21) 

Figure 4.2 shows the block diagram implementation of the angular rate NLDI 

augmented with AIS adaptation. 

 

Figure 4.2 Angular Rate NLDI Augmented with AIS Control. 

In a similar fashion as in Section 4.1 and keeping the same state space definition 

convention as in Equations (4.10)-(4.13), the closed loop error dynamics with the 

adaptive augmentation yield: 
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[ ]3 3 3 3 3 31 1

3 32 2

[0] [0]
( ) ( )

x x x

I p x

I
t t

I
ω ω

ω ω

      
= + −      − −      

e e
G y

K Ke e

ɺ

ɺ
  (4.22) 

This system can be written in state space compact form as follows: 

[ ]( ) ( )t tω ω ω ω ω ω= + −e A e B G yɺ    (4.23) 

where the output of the system is defined as: 

1

2

0 0 0 0

( ) 0 0 0 0

0 0 0 0

x x

y y

z z

I p

I p

I p

k k

t C k k

k k

ω ω

ω ω ω ω ω

ω ω

 
   
 = =  
   
  

e
y e

e
  (4.24) 

4.3. Boundedness of Angular Rate Tracking Errors 

After defining the equations of the closed loop angular rate error dynamics, it is 

possible to come up with a stability analysis of the adaptive augmentation system 

presented in Section 4.2. To start, it is required that the closed loop system holds the 

Kalman-Yacubovich conditions (Kaufman, Barkana, & Sobel, 1997): 

T

T

ω ω ω ω ω

ω ω ω

 + = −


=

A P P A Q

P B C
    (4.25) 

Let’ start with the second condition defined in Eq.(4.25): 

11 12 13 14 15 16 14 15 16

12 22 23 24 25 26 24 25 26

13 23 33 34 35 36 34 35 36

14 24 34 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1
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p p p p p p p p p
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p p p p p p

p p p p p p
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   
   
   
   

= =   
   
   
   

     

P B
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45 55 56

46 56 66

0 0

0 0
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x

y

z

x

y

z

I

I

IT

p

p

p

k

k

k

p p k

p p p k

p p p
k

ω

ω

ω
ω

ω

ω

ω

 
   
   
   
   

= =   
   
   
   
    

 

C  

 (4.26) 

From the previous relationship it follows that: 
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14 15 16 24 25 26

34 35 36 44 45 46

45 55 56 46 56 66

, 0, 0, 0, , 0,

0, 0, , 0, 0,

0, , 0, 0, 0,

x y

z x

y z

I I

I p

p p

p k p p p p k p

p p p k p k p p

p p k p p p p k

ω ω

ω ω

ω ω

= = = = = =

= = = = = =

= = = = = =

  (4.27) 

Using the terms already solved from Eq.(4.26) and using the first K-Y condition 

yields: 

2
11 12 13

2
12 22 23

2
13 23 33

2
11 12 13

2
12 22 23

13 23 33

2 0 0 2

0 2 0 2

0 0 2 2

2 2 2 0 0

2 0 2 2 0

2

x x x

y y y

z z z

x x x x

y y y y

z z

T

I I p

I I p

I I p

I p p I

I p p I

I p

k p k k p p

k p p k k p

k p p p k k

p k k p p k k

p p k k p k k

p p p k k

ω ω ω ω ω

ω ω ω

ω ω ω

ω ω ω

ω ω ω ω

ω ω ω ω

ω ω

+ = −

− + − −

− − + −

− − − +
= −

− + − − −

− − + − −

− − − +

A P P A Q

20 0 2 2
z zp Ik kω ω

 
 
 
 
 
 
 
 
 
 
 −  

 (4.28) 

One way to make the ωQ  matrix positive definite is to have all the non-diagonal 

elements as zeroes and the diagonal entries to be positive. To achieve this, the following 

should hold: 

11 12 13 22 23 332 , 0, 0, 2 , 0, 2
x x y y z zI p I p I pp k k p p p k k p p k kω ω ω ω ω ω= = = = = =  (4.29) 

 The final result for the ωP  and ωQ matrices is: 

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 0
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x x x

y y y

z z z

x x

y y

z z

I p I

I p I

I p I

I p

I p

I p

k k k

k k k
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 
 
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 

=  
 
 
 
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     (4.30) 

2
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 
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Q   (4.31) 
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 To satisfy the K-Y conditions the ωQ must be positive definite. By simple 

inspection of the diagonal entries the following restrictions are imposed on the baseline 

controller gains: 

x x

y y

z z

p I

p I

p I

k k

k k

k k

ω ω

ω ω

ω ω

>

>

>

     (4.32) 

It is also required that the Pω  matrix be positive definite, which is equivalent to 

requiring that det( ) 0Pω > .  

2 2 2det( ) (2 )(2 )(2 ) 0
x y z x x y y z zI I I p I p I p IP k k k k k k k k kω ω ω ω ω ω ω ω ω ω= − − − >   (4.33) 

This implies the following conditions on the baseline controller gains: 

0

0

0

x

y

z

I

I

I

k

k

k

ω

ω

ω

>

>

>

     (4.34) 
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y y

z z

p I

p I

p I

k k

k k

k k

ω ω

ω ω

ω ω

>

>

>

    (4.35) 

However, it is worth noting that the conditions in Eq.(4.32) are stronger (more 

conservative) than conditions in Eq.(4.35); thus it is enough to satisfy the conditions in 

Eq.(4.34) and Eq.(4.32) only. With these restrictions the following Lyapunov candidate 

function can be postulated: 

2
22 2

1 1 2 1

2 2
2 22

1 2 1 1 2

1
( )

2 2

                 +
2 2

x x

x x x x x x y y y

y y z z

y y y z z z z z z
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I p I I p

p p

I I p I

k e
V P k k e k e e k k e

k e k e
k e e k k e k e e

ω ω
ω ω ω ω ω ω ω ω ω ω ω ω ω

ω ω ω ω
ω ω ω ω ω ω ω ω ω

= = + + + +

+ + + +

e e e …

…

 (4.36) 
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To find a stability argument the derivative along trajectories of the Lyapunov 

candidate function must be calculated: 

{ } { }

1 1
( , )

2 2
1 1

[ ( ) ( )] [ ( ) ( )]
2 2

T T

T T

V t P P

A B t y t P P A B t y t

ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω ω ω ω ω ω ω

= +

= + − + + −

e e e e e

e G e e e G

ɺ ɺ ɺ

  (4.37) 

Cancelling and factorizing terms, the following result is obtained: 

1
( , ) ( ) 0

2
T TV t y t yω ω ω ω ω ω ω= − − ≤e e Q e Gɺ     (4.38) 

The Lyapunov function derivative is negative semi-definite as long as: 

( ) [ ( )] 0vt F tω ω= ⋅ >=G η Δu .  From the definition of the non-linear feedback function it can 

be corroborated that { }sup [ ( )] 1
ivf u tω∆ = and { }min [ ( )] 0

ivf u tω∆ = , which means that it 

is bounded above and below; therefore 0ω >η , which requires: 

0, 0, 0
x y zω ω ωη η η> > >     (4.39) 

By means of Lyapunov’s stability (Theorem 2.1), the trajectories of the system 

are bounded. This result is often called Lagrange stability. 
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4.4. Euler Angle Exact NLDI Based on Lie Derivative 

It is possible to implement a full Non-Linear Dynamic Inversion control 

architecture that can be used to achieve the final goal of controlling the desired attitude of 

a rigid body (Euler angles) and Euler angle rates. For that, a single step procedure called 

the Lie Derivative can be employed to obtain an exact linear system in closed loop form 

(Yuan, Guoliang, Yi, & Yu, 2009). The rotational dynamics and kinematics described in 

Chapter 3 can be conveniently described in vector state space representation as follows: 

1

( )

( ) ( )J tω
−

Θ Θ  
= =   +  

g ω
x

f ω uω

ɺ
ɺ

ɺ
    (4.40) 

where [ ]Tφ θ ψΘ = is a vector containing Euler angles, , ,
T

x y zω ω ω =  ω is a 

vector containing angular rates and ( ) ( )t M t=u  is a control input vector of moments. 

The functions ( )Θg  and ( )ωf ω are defined based on Euler Kinematics and rotational 

dynamics: 

1 sin tan cos tan

( ) 0 cos sin

0 sin sec cos sec

φ θ φ θ
φ φ

φ θ φ θ

 
 Θ = − 
  

g     (4.41) 

1( ) [ ( )]J Jω
−= − − ×f ω ω ω           (4.42) 

The system in Eq.(4.40) can be rewritten as an affine non-linear system: 

3 3

1

[ ]( )
( ) ( ) ( ) ( )

( )
x

t t
Jω

−

Θ   
= + = +   

   

0g ω
x F x G x u u

f ω
ɺ     (4.43) 

 where the state vector is [ ]T

x y zφ θ ψ ω ω ω=x and 6 1( ) x∈ℜF x , 6 3( ) x∈ℜG x . To 

perform an exact feedback linearization using the Lie Derivative technique, a direct 

relationship is required between our desired output and the input of the system ( )tu  

(Sieberling, Mulde, & Chu, 2010) (Snell, 1998) . Let’s assume that the system has 
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sensors that allow direct measurement of the following output vector defined as: 

[ ]( )
T

h φ θ ψ= = Θ =y x    (4.44) 

The Lie Derivative technique is based on finding the time derivative of the output 

y  respect to time n number of times until the input  ( )tu  appears explicitly in the resultant 

equations. Thus a direct inversion of the equations can be established. Taking the 

derivative of the output once yields: 

( ) ( )
( ) [ ) ( ) ( )]

d h h
h t

dt

∂ ∂
= = = +

∂ ∂
x x

y x x F(x G x u
x x

ɺ ɺ    (4.45) 

( )
sin tan cos tan

cos sin

sin sec cos sec

x y z

y z

y z

g

φ ω ω φ θ ω φ θ
θ ω φ ω φ
ψ ω φ θ ω φ θ

   + +
   

= Θ = = Θ = −   
   +  

y ω

ɺ

ɺɺɺ

ɺ

   (4.46) 

Since the input still doesn’t appear explicitly in Eq.(4.46), another differentiation 

with respect to time is required. The second derivative of the output with respect to time 

will yield: 

2

2

( )
[ ( ) ( ) ( )]

d h d
t

dtdt

∂ ∂
= = = = +

∂ ∂

x y y y
y x F x G x u

x x

ɺ ɺ ɺ
ɺɺ ɺ    (4.47) 

( )( , )

tan sec 1 sin tan cos tan

cos 0 cos sin ( , ) ( )

sec tan 0 sin sec cos sec

x

y

z

g

g

φ θφ θ θψ θ φ θ φ θ ω
θ ψφ θ φ φ ω
ψ θφ θ θψ θ φ θ φ θ ω

ΘΛ Θ Θ

   +    
       = = − + − = Λ Θ Θ + Θ       
       +       

y ω

ɺ

ɺɺ ɺ ɺ ɺ ɺ ɺ

ɺɺ ɺ ɺɺ ɺ ɺɺɺ

ɺ ɺ ɺɺɺ ɺ ɺ
������������	��������	

  (4.48) 

Using the angular acceleration expression of Eq.(4.1) into Eq.(4.48) a direct 

expression for the second derivative of the output with respect to time can be obtained. 

Now the input ( )tu  appears explicitly: 

( ){ }1( ) ( ) [ ( )]g J J t−= Λ + − × +y x x ω ω uɺɺ    (4.49) 

A control law that inverts the output dynamics in Eq.(4.49) is: 

( ) { }1( ) ( ) [ ( ) ( )]t J J g −= × + − Λu ω ω x V x x      (4.50) 
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Implementing this control law into the system of Eq.(4.49) will render the closed 

loop linear, and will take the form: 

( , )
T

v v vu u uφ θ ψ = =  y V y yɺɺ ɺ    (4.51) 

where 3 1( ) x∈ℜV y,yɺ is a virtual controller that can be chosen arbitrarily to stabilize 

the closed loop system. In this case the following virtual control law was selected: 

( ) ( )

( ) ( )

( ) ( )

v D ref D

v D ref D

v D ref D

u t k k k

u t k k k

u t k k k

φ φ φ φ

θ θ θ θ

ψ ψ ψ ψ

φ φ φ φ

θ θ θ θ

ψ ψ ψ ψ

= = − −

= = − −

= = − −

ɺɺ ɺ

ɺɺ ɺ

ɺɺ ɺ

   (4.52) 

The feedback linearization approach requires knowledge of Euler angle and Euler 

angles rates. For implementation purposes, gyroscopes can provide angular 

measurements, then Euler rates can be calculated online using Eq.(4.46). This approach is 

recommended instead of differentiation of angle measurements to avoid noise 

amplification. The controller gains can be calculated using Eq.(4.53) in order to achieve 

specific damping ratio and natural frequency requirements, the gains are obtained by 

comparing Eq.(4.52) with a second order system response. Figure 4.3 shows the block 

diagram implementation of the attitude output feedback linearization. 

2 , 2

2 , 2

2 , 2

D n p n

D n p n

D n p n

k k

k k

k k

φ φ φ φ φ φ

θ θ θ θ θ θ

ψ ψ ψ ψ ψ ψ

ξ ω ω ξ

ξ ω ω ξ

ξ ω ω ξ

 = =


= =
 = =

    (4.53) 

 

Figure 4.3 Euler Angle Output Feedback Linearization. 
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4.5. Euler Angle Incremental Non-Linear Dynamic Inversion 

Another approach to implement a feedback linearization control in order to 

achieve desired angular rates and desired orientation (roll, pitch yaw angles) is called 

Incremental Non-Linear Dynamic Inversion (INLDI) (Acquatella, Falkena, Van Kampen, 

& Chu, 2012). This is a two-step approximate approach.  As before, the rotational 

dynamics and kinematics can be conveniently described in vector state space 

representation as follows: 

1

( )

( ) ( )J tω
−

Θ Θ  
= =   +  

g ω
x

f ω uω

ɺ
ɺ

ɺ
   (4.54) 

This time, however the dynamic inversion of the system will be carried out in a 

two-time scale inversion process that consists on a “slow mode” and a “fast mode”. The 

slow mode utilizes Euler angles [ ], ,
T

d d dφ θ ψ  and outputs desired angular rates

, ,
T

xref yref z refω ω ω   . The fast mode implements a similar dynamic inversion approach as in 

Section 4.1 to obtain stable inner rotational dynamics.  

4.5.1. Inner Loop - Fast Mode Dynamic Inversion 

To guarantee asymptotic stability of angular rates, the rotational dynamics shall 

be inverted in a similar fashion as the angular rate controller, as described at the 

beginning of this chapter. A control law that will invert the rotational dynamics of the 

system would be: 

[ ]1( ) ( ) ( )vt J ω= −u u ω f ω     (4.55) 

where 1( )vu ω is a virtual control vector that can be arbitrarily selected to stabilize 

the closed loop system. In this case a simple proportional controller can be selected. The 
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resultant control law that will feedback linearize the inner loop is: 

( )

( ) ( ) ( )

( )

x

y

z

p xref x

p yref y

p zref z

k

t J J k

k

ω

ω

ω

ω ω

ω ω

ω ω

 −
 

= × + − 
 

−  

u ω ω    (4.56) 

The closed loop inner loop fast dynamics are rendered linear and have the 

following closed loop dynamics: 

( )

( )

( )

x

y

z

x p xref x

y p yref y

z p zref z

k

k

k

ω

ω

ω

ω ω ω

ω ω ω

ω ω ω

= −

= −

= −

ɺ

ɺ

ɺ

    (4.57) 

4.5.2. Inner Loop - Slow Mode Dynamic Inversion 

Assuming that the fast mode dynamics (Angular Rates) are much faster than the 

slow mode ones it is reasonable to assume that ( ) ( )
ref

t t t∀ω ω≃ . Moreover, based on Eq. 

(4.46), the desired angular rates should have the following form so that the attitude 

kinematic equations are dynamically inverted:  

2

1( ) ( ) ( )ref vt t−= Θω g u     (4.58) 

where, 2 ( )vu ω  is a vector containing virtual controllers that can be arbitrarily 

selected to stabilize the slow mode dynamics. The resultant angular rate command is: 

1
1 sin tan cos tan ( )

( ) 0 cos sin ( )

0 sin sec cos sec ( )

xref ref

ref y ref ref

z ref ref

k

t k

k

φ

θ

ψ

ω φ θ φ θ φ φ
ω φ φ θ θ
ω φ θ φ θ ψ ψ

−   − 
    = = − −    
     −    

ω   (4.59) 

The slow mode loop will have the following linear dynamics: 

( )

( )

( )

ref

ref

ref

k

k

k

φ

θ

ψ

φ φ φ
θ θ θ
ψ ψ ψ

   −
   

= −   
   −  

ɺ

ɺ

ɺ

    (4.60) 

Again, the virtual controllers were conveniently chosen as proportional 
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controllers.  After performing the fast mode and slow mode dynamic inversions, the 

following system of three second order differential equations will describe the 

approximate closed loop behavior of the rotational dynamics of the system (Perez, 

Moncayo, & Prazenica, 2016) (Wang & Zhang, 2014). A block diagram that summarizes 

the Incremental NLDI approach is shown in Figure 4.4. 

2

2

2

( ) 2 ( )

( ) 2 ( )

( ) 2 ( )

x x

y y

z z

p d p x n n d

p d p y n n d

p d p z n n d

k k k

k k k

k k k

ω φ ω φ φ φ

ω θ ω θ θ θ

ω ψ ω ψ ψ ψ

φ φ φ ω ξ ω φ ω φ φ

θ θ θ ω ξ ω θ ω θ θ

ψ ψ ψ ω ξ ω ψ ω ψ ψ

= − − − − −

= − − − − −

= − − − − −

ɺɺ ɺ≃

ɺɺ ɺ≃

ɺɺ ɺ≃

  (4.61) 

The natural frequency and damping for the system are related to the system fast 

and slow loop gains as follows: 

2 , 2

2 , 2

2 , 2

x

y

z

p n n

p n n

p n n

k k

k k

k k

ω φ φ φ φ φ

ω θ θ θ θ θ

ω ψ ψ ψ ψ ψ

ξ ω ω ξ

ξ ω ω ξ

ξ ω ω ξ

 = =


= =


= =

    (4.62) 

 

 

Figure 4.4 Incremental Non-Linear Dynamic Inversion Block diagram. 
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4.6. Exact NLDI Augmented with Novel Model Reference Adaptive 

AIS 

This section outlines one of the most relevant contributions of this dissertation by 

combining concepts of model following control, direct adaptive bio-inspired control and 

Non-Linear Dynamic Inversion. To start, it is worth mentioning that the Lie Derivative 

exact feedback linearization approach  presented in Section 4.3 shall be used instead of 

the INLDI technique outlined in Section 4.4 for adaptive augmentation purposes. Some 

authors (Acquatella, Falkena, Van Kampen, & Chu, 2012) have claimed that the dynamic 

inversion incremental approach produces a more robust closed loop system; however 

since it involves a time scale separation the closed loop system is approximately linear. 

To prove global stability of the INLDI controller with the adaptive augmentation is a 

much harder task due to this fact. To start it is worth recalling that the Lie Derivative 

feedback linearization approach yields the following system of equations: 

( ) ( )

( ) ( )

( ) ( )

v D ref D

v D ref D

v D ref D

u t k k k

u t k k k

u t k k k

φ φ φ φ

θ θ θ θ

ψ ψ ψ ψ

φ φ φ φ

θ θ θ θ

ψ ψ ψ ψ

= = − −

= = − −

= = − −

ɺɺ ɺ

ɺɺ ɺ

ɺɺ ɺ

     (4.63) 

where the state space vector is conveniently redefined as [ ]Tφ θ ψ φ θ ψ=x ɺ ɺ ɺ . 

This selection of states is convenient since the control architecture uses Euler angle rates 

instead of angular rates. Let’s consider the adaptive control structure shown in Figure 4.5 

for one of the channels, i.e. roll control (since all the channels are decoupled due to 

feedback linearization the same stability result will hold for all of them). Our goal is to 

follow a model reference plant dynamics described by the following equations: 

( ) [ ( ) ] ( )
mm x D ref m m D ref m D mu t k k k k kφ φ φ φ φφ φ φ φ φ φ φ= = − − = − −ɺɺ ɺ ɺ    (4.64) 

The controller will incorporate adaptivity as a function of ( )xu t∆  which is defined 
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as the difference between the closed loop nominal model reference plant control input 

( )xmu t  and the closed loop non-adaptive control input ( )xu t . (Subscript m will be used to 

refer to the model reference plant and no subscript for the actual plant). 

 

Figure 4.5 Model Reference AIS Adaptive Augmentation. 

 Based on the proposed control architecture we can establish the closed loop 

dynamics of the plant as follows: 

{ }
( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( )
x

x AD

v x AD D ref D e m eD m

u t u t

u t u t u t k k k k t k tφ φ φ φ φ φφ φ φ φ φ φ φ φ φ= = + ⇒ = − − + − − − −ɺɺ ɺɺ ɺ ɺ ɺ
��������	 ��������������	

(4.65) 

 The adaptive gains will be defined as: 

( ) [ ( )]

( ) [ ( )]
e D x x

eD D x x

k t k k f u t

k t k f u t

φ φ φ

φ φ

η

η

= ∆

= ∆
    (4.66) 

where ( ( ))xf u t∆ is a non-linear positive definite bounded function that 

incorporates adaptivity. This function can be found in the immune response of some 

organisms when attacked by intruders and is described by (Takahashi & Yamada, 1998) 

(Mo, 2008):  
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2 2[ ( )] [ ( )]

2
( ( )) 1

x x x x
x u t u t

f u t
e e

γ γ∆ − ∆

 
∆ = − 

+ 
   (4.67) 

 The closed loop plant dynamics can be expanded as follows: 

( ) [ ( )] ( ) ( )D ref D x x D m D mk k k f u t k k kφ φ φ φ φ φφ φ φ φ η φ φ φ φ = − − − ∆ − + − 
ɺɺ ɺ ɺ ɺ   (4.68) 

 The difference control will be defined as: 

( ) ( ) ( )
xx m xu t u t u t∆ = −     (4.69) 

{ }( ) ( ) ( )

( ) ( )

x D ref m D m D ref D

D ref D m D m D ref D D

D m D m

u t k k k k k k

k k k k k k k k k k

k k k

φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ

φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ

∆ = − − − − −

= − − − + +

= − + −

ɺ ɺ

ɺ ɺ

ɺ ɺ

   (4.70) 

Let’s define the error as the difference between the actual plant and the nominal 

plant: 

( ) ( ); ( ) ( )m D me t t e t tφ φφ φ φ φ= − = −ɺ ɺ    (4.71) 

Based on this definition the difference control input takes the form: 

( )
x D D D

u t k k e k eφ φ φ φ φ∆ = +     (4.72) 

It is possible to define a state space error dynamics system based on the previous 

definition of the error: 

{ } { }
( ) ( )

( ) ( ) ( ) ( ( )) ( ) ( ) ( )

( ) ( ) ( ( )) ( ) ( )

m D

D m D ref D x x D m D m D ref m D

D D m D m x x D m D m

e t t e

e t t k k k f u t k k k k k k

e k k k f u t k k k

φ φ

φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ

φ φ

φ φ φ φ φ η φ φ φ φ φ φ φ

φ φ φ φ η φ φ φ φ

= − =

 = − = − − − ∆ − + − − − − 

 = − − − − − ∆ − + − 

ɺ ɺɺ

ɺɺ ɺɺ ɺ ɺ ɺ ɺɺ

ɺ ɺ ɺ ɺɺ

 (4.73) 

 which reduces to: 

( ( )) ( ( ))
D

D D D D D x x D x x D

e e

e k k e k e k k f u t e k f u t e

φ φ

φ φ φ φ φ φ φ φ φ φ φη η

=

= − − − ∆ − ∆

ɺ

ɺ
  (4.74) 

 The error dynamics can be written in state space form as follows: 
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0 1 0

( ) ( )D D D D D x x D x x D

e e

e k k k e k k f u e k f u e

φ φ

φ φ φ φ φ φ φ φ φ φη η
       

= +       − − − ∆ − ∆       

ɺ

ɺ
  (4.75) 

4.6.1. Proof of Absolute Stability Based on Circle Criterion 

The non-linear error dynamics can be conveniently cast as a Lur’e type system 

such as the one shown in Figure 4.6 if we let the output to be:  

[ , ] ( )x D D x x D D D x

D

e
y k k k C k k e k e u t

e

φ
φ φ φ φ φ φ φ φ

φ

 
= = = + = ∆ 

 
e   (4.76) 

Let’s define the non-linear feedback element as: 

( ) ( ) [ ( )] [ ( )]
x x x x x D x x D x x D

y y f y k k f u t e k f u t eφ φ φ φ φη η η= = ∆ + ∆ψ   (4.77) 

The closed loop error dynamics can be written in state space form as: 

[ ] [ ]
0 1 0

( ) ( )
1 x x x x x x x x

D D D D

e e
y A B y

e k k k e

φ φ

φ φ φ φ φ

       
= + − ⇒ = + −       − −       

ψ e e ψ
ɺ

ɺ
ɺ

  (4.78) 

 

Figure 4.6 Closed Loop Roll Error Dynamics Seen as a Lur’e Type System. 

To use the absolute stability criteria, the non-linear feedback element should hold 

the following sector condition globally(see Section 2.3.6): 

2 2( ) , [ , ]
x x x x x x x x
y y y y yα β≤ ≤ ∈ −∞ ∞ψ    (4.79) 

Some insight can be obtained if the nature of the non-linear feedback function is 

analyzed: 
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2 2[ ( )] [ ( )]

2
( ) ( ) 1

x x x x
x x x x x x x u t u t

y y f y y
e e

γ γ
η η

∆ − ∆

 
= = − 

+ 
ψ   (4.80) 

where , ,x x xη β α  are real numbers. In this scenario 
x xα β< , represents the 

minimum and maximum linear sectors in which the non-linear function ( )x xyψ  can lie. 

For this analysis, let’s consider the case in which 0xα = . Following the previous 

definition: 

2

2 2

0 ( )

0 ( )
x x x x

x x x x

y y y

y f y y

β

η β

≤ ≤

≤ ≤

ψ
    (4.81) 

Dividing both sides of the inequality by 2
xy  : 

0 ( )x x xf yη β≤ ≤      (4.82) 

 Since { }sup ( ) 1xf y = , the following inequality holds: 

0 ( ) sup[ ( )]

0 ( )
x x x x x

x x x x

f y f y

f y

η η β

η η β

≤ ≤ ≤

≤ ≤ ≤
   (4.83) 

 Therefore, as long as xη  is a real positive scalar, the sector condition will hold 

with x xη β= . Figure 4.7 shows how the nonlinearity behaves for the case in which 1xη = . 

It can be seen that the non-linearity will always hold the sector condition defined in 

Eq.(4.81). 
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Figure 4.7 Sector Non-Linearity. 

In order to proof absolute stability, the Circle Criterion presented in Chapter 2 can 

be used as an extension of the Popov theorem. This theorem states that the system with a 

feedback sector non-linearity (that holds globally) will be rendered absolutely stable if 

(Khalil, 1996) : 

1
Re[1 ( )] 0, Re[ ( )]x x x

x

G s G s Rβ ω
β

+ > → > − ∀ ∈   (4.84) 

This means that the Nyquist plot of ( )xG jω must lie to the right of the vertical line 

defined by Re( ) 1/ xs β=− . To prove this condition a more conservative condition can be 

used: 

Re[ ( )] 0,xG s Rω> ∀ ∈     (4.85) 

First, the transfer function ( )xG s  should be specified in the frequency domain: 

1
2 2

( ) ( )
( ) ( )

( ) ( ) ( )
D D D D

x x x

D D D D

k j k k k j k k
G j C sI A B

j k j k k k j k k

φ φ φ φ φ φ

φ φ φ φ φ φ

ω ω
ω

ω ω ω ω
− + +

= − = =
+ + − + +

  (4.86) 

The real part of the transfer function yields: 
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{ }
( )

( )

2 2 2 2

2 2 2 2 4
Re ( )

2

D D D

x

D D D

k k k k k
G j

k k k k k

φ φ φ φ φ

φ φ φ φ φ

ω
ω

ω ω

+ −
=

+ − +
   (4.87) 

From the previous relationship it is easy to see that in order to have the real part 

of the transfer function positive the following inequalities must hold: 

2
D

k kφ φ>     (4.88) 

D
k kφ φ>     (4.89) 

Since condition in (4.88) is stronger than (4.89) this is the one that should be used. 

The second condition to prove that the system is absolutely stable requires that transfer 

function 1( ) ( )
x x x x

G s C sI A B−= −  must be Hurwitz. To check this, the following Laplace 

domain analysis can be performed:  

1
2

( ) ( ) D D

x x x x

D D

k s k k
G s C sI A B

s k s k k

φ φ φ

φ φ φ

− +
= − =

+ +
    (4.90) 

The gains of the denominator of the transfer function need to be positive, this 

means that the following inequalities should also hold: 

0

0
D

D

k

k k

φ

φ φ

>


>
    (4.91) 

Therefore if the conditions in Eq.(4.88) and Eq.(4.91) are satisfied, the closed 

loop system error dynamics will be absolutely stable. 

4.6.2. Robustness on Presence of Bounded Uncertainties 

As mentioned before, the exact feedback linearization approach requires that the 

plant dynamics and parameters are well known in order to perform an exact inversion of 

the system. In a real implementation scenario this is often not the case since there are 

always parametric modeling errors or unmodeled (unknown) dynamics. Some of these 
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unknowns could be modeled as external bounded disturbances of time variant nature. It is 

important to come up with a robustness result that proves that the adaptation law is still 

able to maintain stable behavior while mitigating the effect of time varying bounded 

uncertainties.  

Let’s assume that the closed loop feedback linearized system is perturbed by 

bounded uncertainties as follows: 
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u t u t t k k k k t k t t

u t u t t k k k k t k t t

u t u t t k k k

φ φ φ φ φ

θ θ θ θ θ

ψ ψ ψ

φ δ φ φ φ φ φ φ φ δ

θ δ θ θ θ θ θ θ θ δ

ψ δ ψ ψ

= + + = − − + − − − − +

= + + = − − + − − − − +

= + + = − −

ɺɺ ɺ ɺ ɺ

ɺɺ ɺ ɺ ɺ

ɺɺ ɺ { }( )( ) ( )( ) ( )e m eD m zk t k t tψ ψψ ψ ψ ψ ψ δ+ − − − − +ɺ ɺ

 (4.92) 

It is convenient to assume that each perturbation term affects each channel 

individually so that there is no coupling between the states of system. As before, the roll 

system can still be analyzed as an individual system and the stability result will hold for 

the other channels. Let’s consider the control diagram in Figure 4.8 that incorporates the 

bounded time varying disturbance ( )x tδ . 

 

Figure 4.8 Model Reference AIS Adaptive Augmentation with Disturbance. 

To consider the additional disturbance term in the closed loop system, it must be 
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incorporated into the error dynamics as follows:  

{ }
{ }

( ) ( )

( ) ( ) ( ) [ ( )] ( ) ( ) ( ) ...

                 ( )

( ) ( ) ( ( )) ( )

m D

D m D ref D x x D m D m x

D ref m D m

D m D m x x D m D

e t t e

e t t k k k f u t k k k t

k k k

k k k f u t k k k

φ φ

φ φ φ φ φ φ φ

φ φ φ

φ φ φ φ φ φ

φ φ

φ φ φ φ φ η φ φ φ φ δ

φ φ φ

φ φ φ φ η φ φ

= − =

 = − = − − − ∆ − + − + + + 

− − −

= − − − − − ∆ − +

ɺ ɺɺ

ɺɺ ɺɺ ɺ ɺ ɺɺ

ɺ

ɺ ɺ ( ) ( )m x tφ φ δ − + 
ɺ ɺ

(4.93) 

which reduces to: 

( ( )) ( ( )) ( )
D

D D D D D x x D x x D x

e e

e k k e k e k k f u t e k f u t e t

φ φ

φ φ φ φ φ φ φ φ φ φ φη η δ

=

= − − − ∆ − ∆ +

ɺ

ɺ
  (4.94) 

In state space form it yields: 

0 1 0 0

( ) ( ) ( )D D D D D x x D x x D x

e e

e k k k e k k f u e k f u e t

φ φ

φ φ φ φ φ φ φ φ φ φη η δ
         

= + +         − − − ∆ − ∆         

ɺ

ɺ
 (4.95) 

Similarly, as in the previous section, let the adaptive gain and the output of the 

system be defined respectively as: 

( ) ( ( ))x x xt f u tη= ∆ψ     (4.96) 

( ) [ , ]x x x D D D D D

D

e
y t C k k k k k e k e

e

φ
φ φ φ φ φ φ φ φ

φ

 
= = = + 

 
e    (4.97) 

The closed loop error dynamics can be written in state space form as follows: 

�
( )

0 1 00
[ ( ) ( )]

( )1

x xx

x x

D D D D x

B tA

e e
t y t

e k k k e t

φ φ

φ φ φ φ φ δ
∆

        
= + − +        − −         

ψ
ɺ

ɺ
��	������	

   (4.98) 

[ ]( ) ( )x x x x x x xA B y t= + − + ∆e e ψɺ     (4.99) 

The absolute stability analysis presented in the previous section fails since there is 

no way to know the behavior of the disturbance ( )x tδ . This means that a Lyapunov type of 

argument should be employed instead. To complete this proof, the first step is to satisfy 

the Kalman-Yacubovich conditions for the closed loop and unperturbed state space 
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system of Eq.(4.78). These conditions require that the two following equations hold 

(Balas & Frost, 2014) (Kaufman, Barkana, & Sobel, 1997). 

T
x x x x xA P P A Q+ = −     (4.100) 

T
x x xP B C=      (4.101) 

where 2 2x
xP ∈ℜ  and 2 2x

xQ ∈ℜ  are respectively symmetric and positive definite 

matrices. It is easier to first satisfy the condition in Eq.(4.101): 

11 12 12 12

12 22 22 22

0

1
D DT

x x x
D D

k k k kp p p p
P B C

k kp p p p

φ φ φ φ

φ φ

         
= = = = → =         

         
  (4.102) 

Using the known values of the xP  matrix, the condition in Eq.(4.100) can be 

solved: 

2 2
11 11 11

2 2
11

0 0 1 2( ) 2( )

1 2( ) 2 2
T x x x xx

D D D D D

D D D D D D D D D D

P P A QA

k k p k k p k k k k k k p

k k k k k k k k k k k k p k k k

φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ

 − −       
 + = −       − − − − −          ������	������	 ������	��������	 ����������������	

(4.103)  

A relatively simple way to make xQ  positive definite is letting all the non-

diagonal entries of xQ  to be equal to zero. With this extra requirement  11p  can be defined 

as follows: 

2
2

11 2

2( ) 0
2( )

0 2 2

D

D x

D D

k k
p k k Q

k k k

φ φ
φ φ

φ φ φ

 
 = ⇔ =

−  
  (4.104) 

Finally, all the diagonal elements of xQ  must be positive as well; therefore the 

following condition must hold:  

22 2D D Dk k k k kφ φ φ φ φ> ⇒ >     (4.105) 

Another requirement is that the xP  matrix be positive definite, this is equivalent to 

( )det 0xP > . Based on the previous restrictions the xP  matrix will be given by: 
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22( )D D

x
D D

k k k k
P

k k k

φ φ φ φ

φ φ φ

 
=  

  
  (4.106) 

The determinant of the xP  matrix is: 

2
3 22( )

det( ) det 2( ) ( ) 0
2

D D
x D D D

D D

kk k k k
P k k k k k

k k k

φφ φ φ φ
φ φ φ φ φ

φ φ φ

  
 = = − > ⇒ >     

 (4.107) 

Condition (4.107) is weaker than condition (4.105) , so condition (4.105) alone is 

sufficient to satisfy the K-Y conditions. The next step is to form a quadratic Lyapunov 

candidate function that uses the resultant xP  matrix that satisfies the K-Y conditions. 

2

2
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= + +

e e e

e

  (4.108) 

To find a stability argument, it is necessary to find the derivative along 

trajectories of the Lyapunov candidate function: 

{ }

{ }

1 1
( , )

2 2
1

[ ( , ) ( )] ( )
2
1

              + [ ( , ) ( )] ( )
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T T
x x x x x x x
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e e e e e
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⋯   (4.109) 

Cancelling and factorizing terms, the following result is obtained: 

1
( , ) ( ) ( )

2
T T

x x x x x x x x xV t Q y t y t yδ= − − +e e e ψɺ    (4.110) 

Now it is possible to use the Sylvester’s inequality (Balas & Frost, 2014) (Khalil, 

1996):  

2
min

1 1
( )

2 2
T

x x x x xQ Qλ− ≤ −e e e     (4.111) 

where min ( )xQλ  is the minimum eigenvalue of xQ .  
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Using Sylvester’s inequality, the following inequality holds: 

2
min

1
( , ) ( ) ( ) ( )

2
T

x x x x x x xV t Q y t y t yλ δ≤ − − +e e ψɺ    (4.112) 

It can be seen that the disturbance term is directly coupled with the output, to 

overcome this difficulty, the non-linear time varying feedback element ( , )x x tψ e needs to 

be conveniently designed to be lower bounded as well. To do so, the first step is to 

incorporate a modification in the original non-linear adaptive function presented in 

Eq.(4.80) as follows: 

2 2[ ( )] [ ( )]
( ) ( ( )) 1

x x x x

x

x x x x x x x u t u t
y y f u t y

e e
γ γ

µ
η η

∆ − ∆

 
= ∆ = − 

+ 
ψ  

where the factor xµ  will be bounded by 0 2xµ< < . This variable modulates the 

bias in the adaptive gain function ( ( ))xf u t∆  as seen in Figure 4.9. Both are related as 

follows: 

   2 1x xµ ε= − +     (4.113) 

The lower bound of the system adaptation gain yields: 

( ) ( , )x x x x x x xf u tγ η ε η= ≤ ∆ = ψ eɶ    (4.114) 

 

Figure 4.9 System Adaptive Function. 
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Using the lower bound, the previous result yields the following Lyapunov 

function derivative inequality: 

2 2
min

1
( , ) ( ) ( )

2x x x x x xV t Q y t yλ γ δ≤ − − +e eɺ ɶ    (4.115) 

Completing the square in Eq.(4.115) yields the following result: 
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  (4.116) 

From the quadratic Lyapunov function candidate definition, the following is also 

true (Balas & Frost, 2014). 

2 2 2
min max

max
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( ) ( ) ( )

2 2 ( )
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x x x x x x
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λ λ

λ
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e
e e e e  (4.117) 

where max ( )xPλ  and min ( )xPλ  are the maximum and minimum eigenvalues of the xP

matrix. The following inequalities will hold:  
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 where min

max

( )

( )
x

x
x

Q
K

P

λ
λ

=ɶ . 

The previous differential inequality can be solved by multiplying the left and right 

hand side by the integrating factor xK t
e
ɶ : 

2
( )( , ) ( )

4
x

x tK t Kt
x x x

x

e V t K V e
δ

γ
 + ≤ e e

ɶ ɶɺ ɶ
ɶ

   (4.119) 

Solving the differential equation yields: 
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The disturbance term 2
( )x tδ can be bounded above by: 

2 2
( ) ( )sup[ ]x t x tδ δ≥      (4.121) 

This term can be factored from the integral, and the inequality in Eq.(4.117) can 

be used again to obtain: 
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Moreover, the following holds for the initial condition of the Lyapunov candidate 

function: 

2
max

1
(0) ( ) (0)

2 x xV Pλ≤ e    (4.123) 

 The expression for the tracking error norm will be: 
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   (4.124) 

The tracking error state is bounded by: 

1/2
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Using the triangle inequality
2 2

a b a b+ ≤ + , the following result is 

obtained: 
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  (4.126) 
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Evaluating the { }limsup ( )x te  and the lim
t→∞

 on each side of Eq.(4.126) the 

following region of convergence is obtained for the tracking error trajectories of the 

system with adaptive augmentation: 

2
( )

min

sup

2 ( )

x t

x
x xP

δ

γ λ

 
 ≤e

ɶ
    (4.127) 

As mentioned previously this result will hold for each attitude channel separately, 

therefore the following also holds: 

 
2 2
( ) ( )

min min

sup sup
,

2 ( ) 2 ( )
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y z
y y z zP P

δ δ

γ λ γ λ

   
   ≤ ≤e e

ɶ ɶ
  (4.128) 

It is worth empathizing that these norms represent a region of attraction for which 

global exponential tracking is achieved in the presence of bounded disturbances. It means 

that the tracking error will exponentially converge to the circle or radius given by the 

Equations (4.127)- (4.128). The radius of convergence can be numerically specified after 

the baseline controller gains are obtained considering the constraints presented in 

Eq.(4.105) and as long the disturbance maximum value is known. In the case in which 

there is no disturbance, this region will collapse to the origin and thus global asymptotic 

tracking is achieved. This result was also corroborated by means of the Circle Criterion 

analysis presented in Section 4.6.1. 
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4.7. Model Reference AIS Simulation on a LTI Plant 

The adaptive control configuration developed in Section 4.6 consists of a Model 

Reference Artificial Immune System (MRAIS). Before implementing it on a six degree 

of freedom (6-DOF) simulation environment, is worth assessing the robustness of the 

controller applied on a simple double integrator plant (which is already linear). Let’s 

consider the following double integrator plant dynamics: 

1 1

2 2

0 1 0
( )

0 0 1

x x
u t

x x

      
= +      

      

ɺ

ɺ
   (4.129) 

In open loop this plant is neutrally stable since both of its eigenvalues are located 

at the origin of the real versus imaginary axis. Let’s suppose it is desired to implement a 

baseline controller that has the following control law: 

2 1 1 1` 2 2 1 1 1 2 2( ) [( ( ) ] ( )
b ref ref

u t k k x x x k k x x k x= − − = − −   (4.130) 

This is in fact a cascade controller, very similar to the ones presented in Sections 

4.5-4.6. Figure 4.10 illustrates the baseline closed loop control architecture: 

 

Figure 4.10 Baseline Closed Loop Control Architecture 

Then the baseline controller is augmented with the adaptive model reference 

structure presented in Section 4.6. The resultant control architecture takes the form: 
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Figure 4.11 Baseline Controller Augmented with MRAIS. 

Table 4.1 illustrates some of the controller parameters. 

Table 4.1 Controller Parameters 

Damping Ratio 0.779ξ =   

Natural Frequency (rad/s) 5.130nω =  

Settling Time (s) 1.0sT =  

Outer Loop Gain 1 3.29k =  

Inner Loop Gain 2 8.0k =  

Adaptive Power Gain 5η =  

Adaptive Function Bias 0.1ε =  
 

4.7.1. Simulation Results for Step Tracking 

Figure 4.12 and Figure 4.13 show the tracking results for a step input with a 

persistent sine disturbance with the following characteristics: 

( ) 2.1sin( )D t tδ π=     (4.131) 

The following figures show the tracking results for both the baseline and the 

adaptive controller. 
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Figure 4.12 Disturbance Rejection for x1(t). 

 

 

Figure 4.13 Disturbance Rejection for x2(t) 

  

 It can clearly be seen that the disturbance is better rejected in terms of amplitude 

of oscillations on both states when the adaptation is engaged. 
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4.7.2. Simulation Results for Cycloid Tracking 

Figure 4.14 and Figure 4.15 show the tracking results for a cycloid type input with 

the same persistent disturbance specified in Eq.(4.131). 

 

Figure 4.14 Disturbance Rejection for x1(t). 

 

Figure 4.15 Disturbance Rejection for x2(t). 

The disturbance is better rejected in terms of amplitude of oscillations on both 

states when the adaptation is engaged while tracking a cycloid input. 
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4.7.3. Estimate of Radius of Convergence 

Using the values in table 4.1 and Eq. (4.127) it is possible to estimate the radius of 

convergence of global tracking for the specific disturbance in this example. The theory 

guarantees that the tracking error will globally exponentially converge and keep within 

the  radius of attraction presented in Section 4.6.2. The first step is to calculate the P

matrix and its minimum eigenvalue using Eq.(4.106): 

min

421.09 26.31
( ) 6.33

26.31 8.0
P Pλ

 
= → = 

 
 

Then the radius of convergence can be estimated calculated using the following 

equation: 

2
( )2 2

1 2
min

sup 2.1
( ) ( ) ( ) 0.5760

2 ( ) 2(5)(0.1)(6.33)

t
t e t e t

P

δ

ηελ

 
 = + ≤ = =e         (4.131) 

The tracking error Euclidean norm will converge to a ball of radius of 0.576 after 

reaching the steady state condition. 

This chapter presented two major adaptive configurations intended for aerospace 

systems that do not require large attitude maneuvers. Important theoretical results were 

obtained for the proposed architectures. A proof of Lagrange stability is presented for the 

angular rate control adaptive configuration presented in Section 4.2 and a proof of 

absolute stability and robustness to bounded uncertainties is presented for the novel 

MRAIS approach (the main results are presented in Section 4.6). Preliminary simulation 

results on a double integrator plant show the MRAIS adaptive augmentation provides 

enhanced robustness and stability in the presence of bounded time-varying uncertainties. 
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5. Application to Aircraft Control 

This chapter presents the implementation results of the angular rate NLDI control 

augmented with AIS adaptation described in Section 4.2 on a Supersonic Fighter Aircraft 

model developed for research purposes at West Virginia University (WVU) as part of a 

collaborative effort with ERAU under a research project sponsored by DARPA (Perez A. 

E., et al., 2014). The capabilities of the proposed adaptive augmentation were examined 

addressing different types of upset conditions that include control surfaces and structural 

failures. The proposed adaptive approach was compared with respect to a baseline 

configuration and the baseline configuration augmented with an Artificial Neural 

Network (ANN). The control configurations were tested on a motion based simulation 

environment with a real pilot in the loop.  

5.1.   WVU Fighter Aircraft Simulation Framework 

 This part of the dissertation was focused on developing and implementing 

adaptive control laws for a Fighter aircraft model developed at WVU. This model 

originated from a high performance military aircraft simulation distributed by NASA to 

academic institutions in 1990 within a student design competition (Antoniewicz, Duke, & 

Patterson, 1988).  This generic model was entirely developed in MATLAB and Simulink 

and was further customized through the addition of the aerodynamic canard surfaces 

(Perhinschi, Napolitano, Campa, & Fravolini, 2003). The aerodynamic and thrust 

characteristics were incorporated through 42 look-up tables that model the individual 

contribution of each control surface, aerodynamic surfaces and engines. In this manner is 

possible to simulate structural damage, control surface failure, and engine malfunctions. 

Figure 5.1 presents the main broad view of the Simulink model, which is composed of 
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several different subsystems; as control laws, data recording, aircraft dynamics, 

aerodynamics and sensor characteristics (Perez A. E., Moncayo, Perhinschi, Al Azzawi, 

& Togayev, 2015). The Simulink model is used as a benchmark either for desktop 

simulation or motion based simulation purposes. 

 

Figure 5.1 Simulink Model of WVU Fighter Aircraft (Perez A. E., Moncayo, Perhinschi, 
Al Azzawi, & Togayev, 2015). 

The experimental data acquisition and implementation of the different control 

laws was performed on a 6 DOF motion based simulator part of the WVU  simulation 

environment. The flight simulator consists of the following components: A motion 

platform driven by electrical motors, external visual displays, instructor station, research 

X-plane flight simulation software, and a server computer (Perhinschi, Napolitano, 

Campa, & Fravolini, 2003) (see Figure 5.2). The WVU Flight Simulator has been 

interfaced with an external computer that runs within MATLAB/Simulink environment to 

drive the motion of the platform (Perez A. E., Moncayo, Perhinschi, Al Azzawi, & 

Togayev, 2015). The entire system mechanism can be described as follows: First the pilot 

input signals are transmitted from the cockpit into MATLAB/Simulink model, at the 

same time the MATLAB/Simulink model is connected to X-Plane software (Meyer & 
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Van Kampen, 2002), the outputs of the model are transferred to X-Plane to control all the 

simulator subsystems to generate the visual cues for the pilot.  

 

Figure 5.2 WVU Motion Based Simulator Interfaced with MATLAB/SIMULINK (Perez 
A. E., Moncayo, Perhinschi, Al Azzawi, & Togayev, 2015). 

In order to assess the overall behavior and handling qualities of the control 

architectures under investigation, the following abnormal conditions were considered 

within this research effort. 

5.1.1. Actuator Failure 

Within this effort, failure on left or right individual stabilator, aileron, or rudder  

have been considered.  This type of failure corresponds to locked control surface due to a 

mechanic failure. The control surface remains fixed in the current position/deflection or 

moves to a pre-defined position and remains fixed there.  It is assumed that a failure 

involving a blockage of the control surface at a fixed deflection does not alter the 

aerodynamic properties of the control surface.  However, each surface in a pair (left and 

right) will have different deflections and the resulting moments and forces are computed 

individually (Perez A. E., Moncayo, Perhinschi, Al Azzawi, & Togayev, 2015). 
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5.1.2. Structural Failure 

For the purpose of this dissertation the damage of the wing is modeled separately.  

Damages to other aerodynamic surfaces may be considered as failures of the respective 

actuators (loss of aerodynamic “efficiency”). A simple model of wing damage was 

developed considering both aerodynamic and gravimetric effects.  The failure type 

corresponds to a total or partial physical destruction and/or deformation of the wing and 

different percent values along the wing can be selected as damage affected area (Perez A. 

E., Moncayo, Perhinschi, Al Azzawi, & Togayev, 2015). 

5.2.  Control Architectures 

In this dissertation, a comparison between three main control configurations is 

performed to assess the capabilities of the proposed AIS-based controller applied to the 

dynamics of the WVU supersonic fighter aircraft. The three control architectures 

considered are: NLDI baseline controller, NLDI augmented with AIS and NLDI 

augmented with ANN. These control architectures are explained in further detail in the 

following sub-sections. 

5.2.1. NLDI Baseline Controller 

The baseline control architecture consists mainly of the NLDI angular rate control 

architecture developed in Section 4.1 (see Figure 4.1).  This control architecture is 

inspired by  previous research done by (Perhinschi M. G., Napollitano, Campa, & 

Fravolini, 2004). Additionally to the control architecture developed in Section 4.1, the 

system includes a model reference that uses pilot stick inputs [ ]Ta e rδ δ δ to generate 
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desired angular rate commands. The general structure of this control architecture is 

presented in  Figure 5.3. 

 

Figure 5.3 Baseline Control Architecture. 

The first step is to use the pilot stick inputs and displacements and convert them 

into angular rate reference commands using Eq.(5.1)-Eq.(5.3). This will ensure a stable 

transition between stick inputs and commanded angular rates (Perhinschi M. G., 

Napollitano, Campa, & Fravolini, 2004) (Perez A. E., et al., 2014) (Perhinschi, et al., 

2014): 

 ( )
stickxcom lat lats kω δ=      (5.1) 

 ( )
stickycom long longs kω δ=      (5.2) 

  ( ) ( sin )
pedalzcom dir dir

g
s k

V
ω δ ψ= +     (5.3) 

After the commanded angular rates are obtained, these are smoothed using first 

and second order model reference transfer functions. The output of the transfer functions 

are reference angular rates (Perhinschi, et al., 2014).  
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  (5.5) 

 

 
2

2 2
( ) ( )

2

n yaw

zref zcom

yaw n yaw n yaw

s s
s s

ω
ω ω

ζ ω ω
=

+ +
  (5.6) 

5.2.2. NLDI Augmented with Artificial Immune System 

 This control architecture is very similar to the one described in Section 4.2. The 

only difference is that a model reference is used to generate the angular rate inputs based 

on pilot commands. The control architecture is depicted in Figure 5.4. 

 

Figure 5.4 NLDI+AIS Angular Rate Control 
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5.2.3. NLDI Augmented with Artificial Neural Networks 

 ANN have been used previously (Perhinschi M. G., Napollitano, Campa, & 

Fravolini, 2004) to augment the baseline controller and improve its adaptability and 

robustness. The ANN are used in conjunction with the output from the virtual PID 

compensation, the states of the aircraft, and the angular rates and accelerations 

references. The general structure of this architecture is shown on Figure 5.5. In this case 

the contribution of the Neural Networks can be expressed as: 

 

Figure 5.5 NLDI+ANN Angular Rate Control. 

( )

( )

( )

x ad

y ad

z

v xxcom

ycom v y

zcom zadv

u t U

u t U

Uu t

ω

ω

ω

ω
ω

ω

    
    
 = −   
    
     

ɺ

ɺ

ɺ

    (5.7) 

where [ , , ]
ad ad ad

T
x y zU U U are augmentation commands generated by the ANN in 

order to compensate for the angular rates tracking errors. These tracking errors are used 

to provide proportional, integral, and derivative compensation. After including the ANN 

augmentation, the new virtual controller will yield: 
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 1 2( ) ( ) ( )
vNN I p

t t tω ω= + + −
2ref NN

u K e K e x υɺ   (5.8) 

 

The closed loop error dynamics will become: 

 3 3 3 3 3 31 1

3 32 2
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K Ke e

ɺ

ɺ
  (5.9) 

The ANN algorithm that was implemented is called the Extended Minimal 

Resource Allocation Network (EMRAN) (Sundararajan, Sartchandran, & Li, 2002). For 

Gaussian basis functions, the output of the ANN is computed with the expression: 

 ( )

2

22

1

ˆ ,

i

i

x

M

i

i

y x w e

µ

σ
θ

 − 
 
 

=

= ∑      (5.10) 

where x is the input vector, θ  is the set of parameters to be tuned by the learning 

algorithm including the weights w, the Gaussian center positions µ , and the variances .σ  

It is worth noticing that the size M of the network is not constant and that the 

inactive neurons are removed, while new neurons are generated in regions of the state 

space where the mapping accuracy is poor. New neurons are inserted if the estimation 

error and the windowed estimation error are large and if the distance from the input to the 

nearest neuron center is larger than a selected threshold. If one of the three criteria is not 

met, the tuning parameters are updated using the relationship (Perez A. E., Moncayo, 

Perhinschi, Al Azzawi, & Togayev, 2015): 

 
( )

ˆ( )
( 1) ( ) ( )

( )
k

y k
k k e k

k
θ θ γ

θ
∂

+ = − ⋅
∂

  (5.11) 

where ( )e k   is the estimation error and γ  is the learning rate. The input to the 

ANN is: 
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T

refx V H Uωα β ω ω =     (5.12) 

where V is the aircraft velocity, H is the altitude, α  is the angle of attack, and β  

is the sideslip angle. These four inputs are the same on all three channels.  For the 

longitudinal channel, yω ω= , while for the lateral and directional channels, [ ]x zω ω ω= . 

Only on-channel variables are considered for refω and Uω .  Finally, Uω is defined as: 

ˆ( )

ˆ( )

1

1

y U

y U

e
U

e

ω

ωω

−

−

−
=

+
     (5.13) 

where ŷ  is the previous output of the ANN. 

5.3.  Performance Metrics Definition 

In order to obtain quantitative measurements of the performance of the different 

control architectures, some performance characteristics were defined in terms of the total 

pilot input activity, tracking error of angular rates and the total amount of work used by 

each of the control surfaces. These performance metrics are also required to tune the 

parameters of the AIS. 

5.3.1. Pilot Activity Metric 

One of the most relevant parameters required to assess the overall performance of 

each control configuration is the total amount of work that the pilot must invest to 

maintain stable behavior of the aircraft. If the control augmentation is effective enough, 

then the pilot would need to produce less stick and pedal displacements. Therefore, one 

direct way to assess the performance of the controller is simply to calculate the 

accumulated history of the absolute value of the stick and pedal input activity as follows 
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(Perez A. E., Moncayo, Perhinschi, Al Azzawi, & Togayev, 2015): 

 
0 0 0

1 1 1 1 1 1
( ) ( ) ( )

T T T

act e a r

e a r

S t dt S t dt S t dt
CS T CS T CS T

= + +∫ ∫ ∫P   (5.14) 

where ( )eS t  is the longitudinal stick, ( )aS t  is the lateral stick and ( )rS t  

directional stick time histories, and eCS , aCS , rCS are the corresponding cutoff to 

normalize each of the pilot activity performance metrics.  

5.3.2. Control Surface Activity Metric 

 Another important factor that determines the quality of the control system is the 

total amount of work performed by the aircraft control surfaces. The total control surface 

activity metric was defined as (Perez A. E., Moncayo, Perhinschi, Al Azzawi, & 

Togayev, 2015): 

 
0 0 0

1 1 1 1 1 1
( ) ( ) ( )

T T T

act e a r

e a r

t dt t dt t dt
T T TC C C

δ δ δ
δ δ δ

= + +∫ ∫ ∫C ɺ ɺ ɺ
ɺ ɺ ɺ   (5.15) 

where ( )e tδɺ , ( )a tδɺ  and ( )r tδɺ  are  the angular velocity of motion time history of 

each control surface and eCδɺ , aCδɺ , rCδɺ  are corresponding cut off values used to 

normalize each of the items within the total control surface activity. 

5.3.3. Angular Rate Tracking Error Metric 

The total angular rate tracking error is a fundamental metric to obtain a direct 

statistical measurement of the overall inner loop stability augmentation system of the 

aircraft. The total tracking error performance metric is defined as follows: 

 2 2 2

0 0 0

1 1 1 1 1 1
( ) ( ) ( )

x y z

T T T

act

x y z

e t dt e t dt e t dt
C T C T C T

ω ω ωω ω ω
= + +∫ ∫ ∫E   (5.16) 
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 where ( ), ( ), ( )
x y z

e t e t e tω ω ω  are the roll, pitch, and yaw angular rates tracking errors, 

respectively, and , ,x y zC C Cω ω ω  are their respective cutoff values.  

5.4. Motion Based Flight Simulator Results 

The purpose of these tests was to assess the performance and resultant handling 

qualities of the aircraft for three different types of controller architectures: NLDI baseline 

controller, NLDI + AIS and NLDI + ANN. All controller configurations were tested on 

five different scenarios: nominal condition, right stabilator failure, left aileron failure, 

right rudder failure, and left wing structural failure. Figure 5.6 shows the experimental 

design and the chronological history of the maneuvers carried on by the pilot per each 

configuration and condition on the WVU simulator. Table 5.1 shows the set of tests that 

were performed. 

 

 Figure 5.6 Test Outline Performed in Motion Based Simulator (Perez A. E., 
Moncayo, Perhinschi, Al Azzawi, & Togayev, 2015). 



88 
 

 Table 5.1  Performed Tests in WVU Motion Based Simulator. 

 
 
 
 
 
 
 
 
 
 

The results of the implementation are shown in the histogram plots of Figure 5.7 

and Figure 5.8 in which a global performance index was calculated from a weighted 

average of the performance metrics described in Section 5.3 as follows: 

 1 [0.7 0.05 0.25 ]PI = − + +P C E   (5.17) 

 It is observed that the NLDI+AIS configuration has better global performance 

than the NLDI+ANN architecture for aileron and stabilator failures. 

 

 

Figure 5.7 Aileron Block Failure. 
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Figure 5.8 Stabilator Block Failure. 

 

A better insight into comparing the different control laws can be achieved by 

analyzing the individual contribution of the pilot activity, control surface activity, and 

tracking error activity as an average of all the different tests performed. Un-weighted 

portions of the global performance index are defined in Eq.(5.18) – Eq.(5.20). These 

results are presented in the histograms in Figure 5.9 - Figure 5.11. 

 1
actP actPI = −P   (5.18) 

 1
act actPI = −C C   (5.19) 

 1
actE actPI = −E   (5.20) 

It can be seen that the AIS has better performance than the other control 

configurations in terms of angular rate tracking error and total pilot activity; however, 

there is an increase in the total control surface activity. This result is expected since this 

adaptive configuration relies on more control surface activity in exchange for robustness. 
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Figure 5.9 Average Angular Rate Tracking Error PI for all Failures. 

 

 

 

Figure 5.10 Average Pilot Activity PI for all Failures. 
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Figure 5.11 Average Control Surface Activity PI for all Failures. 
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6. Application to Vectoring Thrust Spacecraft Concept Vehicle 

Near-Earth Asteroids (NEA) and Near-Earth Objects (NEO) like comets and 

small interplanetary environments as Martian moons Phobos and Deimos have become of 

major scientific importance for future space exploration plans due to the potential of 

extracting consumable resources, such as water, oxygen and Nitrogen (Perez A. , et al., 

2016) (Perez, Moncayo, & Prazenica, 2016). As new technologies allow increased 

capabilities of space vehicles, there has been a renewed interest for exploitation of these 

resources that would not need to be lifted from the surfaces of the Earth in order to be 

utilized or studied in Situ (Brophy, et al., 2014). In 2010 the White House recommended 

that NASA take the lead in conducting research efforts towards the development of 

technologies that allow NEO detection and characterization (Wie B. , 2015). However, 

the extreme nature of these environments would require the development of novel 

advanced unmanned space technologies integrated with sample-capture devices to 

achieve the ultimate goal of prospecting and studying these resources (Perez A. , et al., 

2016). 

 

Figure 6.1 Possible Interior of Martian Lava Tube (Frederick, 1999). 
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Figure 6.2 Mars Moon Phobos (Bell, 2003).  

 

It is known that some NEO of interest such as Martian lava tubes or craters 

present in some Asteroids or Moons (see Figures 6.1 and 6.2) are impossible to reach by 

means of traditional systems such as rovers or other type of vehicles. For such terrains a 

small prospector free flying vehicle that incorporates vision aided navigation for full 

autonomous flight could be an ideal solution to investigate and obtain samples in areas 

that haven’t been accessed before.   

This chapter presents some of the progress carried out in simulation and 

implementation of some of the non-linear and adaptive control techniques discussed in 

Chapter 4 applied into a preliminary autonomous prospector concept prototype designed 

by NASA. The final goal is to show that the novel controllers developed provide robust 

attitude and trajectory control for the unmanned platforms so that they handle 

uncertainties or other system malfunctions while performing autonomous preprogrammed 

missions in extra-terrestrial environments.  

 



94 
 

6.1. Concept Vehicle Description 

In this part of the dissertation, the main goal is to incorporate guidance, 

navigation and control for a concept spacecraft vehicle by means of the nonlinear and 

adaptive controllers developed in Chapter 4. It is desired to implement a guidance system 

so that the vehicle can go through lava tubes and craters in partial gravity environments 

without requiring large attitudes angles. Figure 6.3 depicts a concept prototype called 

Extreme Access Free Flyer (XAFF) built by NASA at Kennedy Space Center. The 

concept vehicle possesses four thrusters in cross configuration (similar to a quadrotor) to 

provide roll and pitch motion by means of cold gas thrusters actuated by solenoid valves 

located on the end of its arms. The main difference between this vehicle with respect to 

quadrotors is that it incorporates thrust vectoring (TV) by means of a swiveling angle γ ; 

the swiveling angle allows yaw motion in environments where no aerodynamic forces are 

present. It is worth recalling that quadrotors require the use of counter propeller rotation 

and aerodynamic forces to produce yaw. Figure 6.3 shows a preliminary version of the 

XAFF that uses Electric Ducted Fans (EDFs) instead of thrusters for preliminary testing 

purposes.  

 

Figure 6.3 Electric Ducted Fan Version of the XAFF (Siceloff, 2015) 
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Figure 6.4 depicts a realistic CAD version of the XAFF. It can be seen it 

incorporates two central cold gas tanks in order to operate the solenoid valves and 

regulate the amount of thrust they can produce. 

 

Figure 6.4  Concept CAD of the XAFF (Perez A. , et al., 2016) 

6.2. Forces and Moments that Act on the VT Spacecraft Prototype 

The diagram of Figure 6.5 illustrates an isometric and upper view of the forces 

and moments that act on the body frame of the XAFF spacecraft due to thrusters. 

 

Figure 6.5 Forces and Moments that Act on the XAFF Spacecraft. 

Based on Figure 6.5, the following set of forces will be generated by each thruster 

with respect to the center of gravity on the Body frame of the XAFF: 
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 The sum of moments produced by the actuator forces with respect to the Center of 

Gravity can be calculated as follows: 

1 2 3 41 2 3 4b b b b bM r F r F r F r F= × + × + × + ×∑
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   (6.5) 
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 For the specific case of the XAFF, the following applies for the distances from the 

actuators to the CG: 1 2 3 4x x x x xL L L L L= = = =  and 1 2 3 4y y y y yL L L L L= = = = . Furthermore, 

since the distance from the CG to the xy plane where the force of each actuator is applied 

is very small, then: 1 2 3 4 0z z z z zL L L L L= = = = = . The resultant sum of moments in the 

Body frame will be given by: 
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 On the other hand, the total sum of forces in the body frame produces the 

following result: 
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 where 
T

xd yd zdM M M    and 
T

xd yd zdF F F    can be viewed as required  forces 

and moments  that need to be produced by the nonlinear dynamic inversion approach.  

6.3. Development of Control Allocation for the VT Prototype 

In order to achieve the required forces and moments commanded from the Euler 

angle based NLDI controllers developed in Chapter 4 (incremental or exact approach). 

Equations (6.7) and (6.8) must be solved in order to find the exact thrust forces and 

swiveling angle inputs [ ]1 2 3 4

T
T T T T γ . It can be noticed that there is a total of six 

equations for five unknowns, therefore the system has one extra redundant equation. In 

order to overcome this issue the following set of equations was proposed instead. 
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 The desired 
dzF  vertical force must be divided in two equations: half of the total 

thrust will be supplied by 1T  and 3T  , while the other half must be supplied by 2T  and 4T . 

The simultaneous solution of the system of nonlinear equations presented in Eq.(6.9) 

yields the following result. 
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It is worth recalling that due to the convention adopted (NED), zdF  (desired force) 

must be a negative value to produce thrust to overcome gravity. An approximate solution 

of Eq.(6.9) can be obtained to reduce computational effort by not solving the system of 

equations in simultaneous manner. The approximation assumes that the swiveling angle γ 

is small, and that the effect of the yawing moment on the total thrust is negligible. 
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   (6.11) 

In Eq.(6.11) k  denotes one instant of time. The solutions for 1 4T T−  are obtained 

first and then a value for γ  can be calculated for the next time step assuming the change 

in total thrust in one time step is negligible. 
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6.4.  Guidance Control Architecture 

As was mentioned before, it is desired that the XAFF prototype has the 

capabilities to navigate autonomously through Martian lava tubes or other extra-terrestrial 

environments. So far Nonlinear adaptive control laws were developed for attitude 

tracking (see Sections 4.4 - 4.6). Additionally, two different control allocation techniques 

applicable for  the XAFF were discussed in Section 6.2. However, in order to track a 

predefined path or trajectory for full autonomous navigation a guidance loop that 

incorporates position and velocity control is required. A cascaded control strategy can be 

used so that the output of the outer loop are the desired attitude commands for the attitude 

controller (inner loop). The main view of the full guidance and control architecture 

designed for the XAFF (with the specific feedback states required per each loop) is 

shown in Figure 6.6. 

 

 

Figure 6.6 XAFF Full Guidance and Control Architecture. 

 

Since the Inner loop and control allocation parts where already discussed, this 

section will focus on the Outer Loop controller.  

Similarly as the Inner Loop, the Outer Loop will rely on a feedback linearization 

approach. The goal is cancel out the non-linearity’s in the dynamics that govern the 
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translational equations of the rigid body so that the resultant dynamics are linear and can  

be conveniently designed using pole placement techniques. To start, it is convenient to 

recall Newton’s second law for the total sum of forces in the z axis: 

 
cos coszF

z g
m

φ θ
= −ɺɺ      (6.12) 

The total force zF  in the z upward direction  will be provided by the thrusters (

1 4T T− ).  From section 6.3 any particular required vertical force zdF  or moments 

, ,xd yd zdM M M can be achieved using Eq.(6.10) or Eq.(6.11) since the thruster and 

swiveling angle commands are specifically allocated to generate the required forces and 

moments coming from the Inner loop. Therefore if the effect or lag of the thruster 

dynamics is neglected the control allocation will be precise and z zdF F= . With this in 

mind it is possible to feedback linearize the vertical vehicle dynamics of Eq.(6.12) if the 

desired force is: 

[ ]ˆ ( )

cos cos
z

zd

m u t g
F

φ θ

−
=      (6.13) 

where ˆ ( )zu t  is a virtual controller that can be conveniently designed to achieve 

stable vertical closed loop dynamics. The virtual control law was selected as second order 

system that requires  velocity and position  in the z direction. After performing the 

feedback linearization the vertical second order dynamics yield (Ireland, Vargas, & 

Anderson, 2015). 

ˆ ( ) ( )z Vz Pz ref Vzz u t k k z z k z= = − −ɺɺ ɺ    (6.14) 

In a similar way, it is possible to feedback linearize the equations of motion that 

govern the x and y dynamics. For that effect it is more convenient to express the force 
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equations in the earth reference frame (Ireland, Vargas, & Anderson, 2015).  

(sin sin cos sin cos )zF
x

m
φ ψ φ θ ψ

−
= +ɺɺ     (6.15) 

(cos sin sin sin cos )zF
y

m
φ θ ψ φ ψ

−
= −ɺɺ     (6.16) 

The inversion of these equations yields the required roll and pitch commands  for 

the inner loop (Ireland, Vargas, & Anderson, 2015). 
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F
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F

ψ ψ
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φ

+ 
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 
    (6.18) 

where ˆ ( )xu t  and ˆ ( )yu t  are linear virtual controllers that were designed to produce 

desirable second order system the closed loop dynamics for the motion in x and y . After 

performing the feedback linearization the following second order dynamics are obtained: 

ˆ ( ) ( )x Vx Px ref Vxx u t k k x x k x= = − −ɺɺ ɺ     (6.19) 

ˆ ( ) ( )y Vy Py ref Vyy u t k k y y k y= = − −ɺɺ ɺ     (6.20) 

The outer loop controller gains can be calculated to obtain specific damping ratio 

and natural frequency. 
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6.5. Definition of Stability and Performance Metrics 

In order to evaluate the performance of different control architectures, a set of 

performance metrics were developed to measure different qualities of interest that include 

the total activity of the actuators, the ability to follow a predefined path and the ability to 

maintain appropriate attitude and angular rate tracking control. 

Angular Rate/Euler Rate Error Performance Metric: 

 This performance metric corresponds to the sum of the root mean square of the 

three angular rates or Euler rates error signals.  

2 2 2

0 0 0

1 T T T

e e dt e dt e dt
C

ψφ θ∆Ω

 
 = + +
 ∆Ω 
∫ ∫ ∫ɺ ɺ ɺɶ      (6.23) 

 where C∆Ω  is a cut-off value used to normalize the resultant index e∆Ωɶ  with 

respect to the worst case (biggest value) from the set of tests. 

Attitude Error Performance Metric: 

 This performance metric corresponds to the sum of the rms of the error signals of 

roll, pitch and yaw angles with respect to the desired attitude from the controller. 

2 2 2

0 0 0

1 T T T

e e dt e dt e dt
C

φ θ ψΘ

 
 = + +
 Θ 

∫ ∫ ∫ɶ     (6.24) 

 

 where CΘ  is a cut-off value used to normalize the resultant index eΘɶ respect to the 

worst case from the set of tests considered. 
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Velocity Error Performance Metric:  

 This performance metric corresponds to the sum of the root mean square of the 

error signals in  , ,
x y z

V V V  with respect to the desired signals from the controller. 

2 2 2

0 0 0

1 1 1 1
x y z

T T T

V V V Ve e dt e dt e dt
CV T T T

 
 = + +
 
 

∫ ∫ ∫ɶ     (6.25) 

where CV is a cut off value used to normalize the resultant index Veɶ  respect to the 

worst case from the set of tests.  

Position Error Performance Metric:  

This performance metric corresponds to the sum of the rms of the error signals of 

x,y,z respect to the commanded position from the controller. 

2 2 2

0 0 0

1 1 1 1T T T

P x y ze e dt e dt e dt
CP T T T

 
 = + +
 
 

∫ ∫ ∫ɶ     (6.26) 

where CP is a cut off value used to normalize the resultant index Peɶ  with respect 

to the worst case from the set of tests.  

Solenoid Activity Performance Metric: 

 This performance metric corresponds to the total actuation activity of the solenoid 

valves. It is calculated as the root mean square of the solenoid PWM commanded signal 

and is basically the root mean square of the total time the solenoid valves remained open 

during the mission. It is computed using the following expression. 

4

1 0

1
( )

T

i

i

s S t dt
C S =

 
 =
 ∆  
∑ ∫ɶ      (6.27) 

 where C S∆ is a cut-off value used to normalize the resultant index sɶ  with respect 

to the worst case from the set of tests. 



104 
 

Global Performance Index: 

A global performance index can be computed from the previous set of metrics 

using different weights for each of the indices in Eq.(6.23) - Eq.(6.27) considering 

relative importance or weight on the study. For that effect, the following expression is 

used to calculate a global performance index. In this case, the same weights are assigned 

to each metric. 

[ ]1 0.2 0.2 0.2 0.2 0.2

/

I V P

I I I

P e e e e s

P P CP

Ω Θ= − + + + +

=

ɶ ɶ ɶ ɶ ɶ

ɶ
   (6.28) 

 

 where ICP  is a cutoff value to normalize the total performance IP  with respect to 

the best of all the set of tests considered. Thus, after the tests are performed, the best 

performance metric will yield a value of 1.0 and the set of performance metrics will have 

values between [0.0-1.0], where 0.0 is the worst possible value and 1.0 corresponds to the 

best performance from the set of tests. 

6.6.  Simulation Results 

This section presents an overall overview of the simulation environment 

developed to test the guidance and control architectures for the autonomous operation of 

the XAFF. As can be seen in Figure 6.7 the simulation contains  a 6 DOF equations of 

motion module, a sensor module (used to simulate the response and noise of the avionics 

sensors) and an estimation and control module in which estimation algorithms are 

implemented to obtain all required states for guidance and control of the system. It also 

contains a performance metric module that incorporate some of the equations presented 

in Eq.(6.23) – Eq.(6.27). 
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Figure 6.7 XAFF Simulation Environment 

Within the Estimation and Control Module there is a switch selector block to 

conveniently change the control architecture for comparison purposes at the user 

discretion. A total of three control architectures were tested in two different conditions, a 

nominal condition that consists of tracking a position trajectory of seven waypoints (see 

Figure 6.11) and a high magnitude abnormal condition.   

Table 6.1 and 6.2 presents the control parameters and gains used within the tests 

for the baseline controller and for the adaptive augmentation. 

Table 6.1 Baseline Control Gains. 

Euler Rate Loop Attitude Loop Velocities Loop Position Loop 

D
k φ   16 kφ   6.58 Vxk   0.4 Pxk   0.16 

Dk θ   16 kθ   6.58 Vy
k   0.4 Py

k   0,16 

D
k ψ   16 kψ   6.58 Vzk   0.4 Pzk   0.16 
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Table 6.2 Attitude Adaptive Augmentation Parameters. 

Model Reference and Adaptive Control Parameters 

xξ  0.78 xη  5.5 xε  0.2 

sxT (s) 0.5 y
η  5.5 yε  0.2 

y
ξ  0.78 zη  3.0 zε  0.2 

sy
T (s) 0.5 

zξ  0.78 

szT (s) 0.5 

Nominal Conditions Results 

Figure 6.8 and Figure 6.9 depict the tracking results of the inner loop controllers 

tested at nominal conditions.  

 

Figure 6.8 Euler Rates Tracking for NLDI and NLDI+MRAIS Nominal Condition. 
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Figure 6.9 Attitude Tracking for NLDI and NLDI+MRAIS Nominal Condition. 

 

Figure 6.8 and Figure 6.9 also depict a direct comparison between the NLDI and 

NLDI+MRAIS control architectures. It can be seen that for nominal conditions the 

tracking performance for Euler angles and Euler rates is very similar. Figure 6.10 shows a 

very similar trend for the tracking performance for velocities (outer loop). 
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Figure 6.10 Velocities Tracking for NLDI and NLDI+MRAIS Nominal Condition. 

 

 

Figure 6.11 and Figure 6.12 depict the 3D trajectory and waypoint navigation 

results for the NLDI and NLDI+MRAIS for nominal conditions. It is very well 

appreciated that both controllers are able to hit the specified waypoints and successfully 

complete the mission. 
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Figure 6.11 Position Tracking for NLDI Nominal Condition. 

 

Figure 6.12 Position Tracking for NLDI+MRAIS Nominal Condition. 

 

Abnormal Conditions Results 

 Figure 6.13 - Figure 6.17 present the tracking performance for all the states of 

interest for the same waypoints defined for the nominal condition case. However, in this 

scenario a high magnitude failure is induced. It consists of a thruster limited to 4.6% of 

its maximum power and the swiveling of the same thruster is blocked to 10 degrees. The 

failure is injected forty five seconds after the vehicle takes off.  
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Figure 6.13 Euler Rates Tracking, NLDI and NLDI+MRAIS, Abnormal Condition. 

 

Figure 6.13 and Figure 6.14 show a direct comparison between the NLDI and 

NLDI+MRAIS for attitude and Euler rates tracking for abnormal conditions. From Figure 

6.13 it can clearly be seen that the adaptive augmentation successfully rejects the failure 

for Euler rates. On the other hand, as shown on Figure 6.14, a significant mitigation of 

the overshoot and amplitude of undesired oscillations is noticed in favor of the MRAIS. 
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Figure 6.14 Attitude Tracking for NLDI and NLDI+MRAIS Abnormal Condition. 

 

Figure 6.15 depicts the velocities tracking performance for both controllers. 

Although the adaptive augmentation is only implemented in the inner loop, it can be 

observed that the adaptation successfully mitigates the effect of the failure.  
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Figure 6.15 Velocities Tracking for NLDI and NLDI+MRAIS Abnormal Condition. 

 

Figure 6.16 and Figure 6.17 present a 3D position trajectory comparison for both 

controllers. It can be observed that the NLDI+MRAIS possess a higher stability margin 

with less oscillatory behavior. It can be noticed that the NLDI without the augmentation 

is not even capable of finalizing the whole maneuver due to the effect of the high 

magnitude failure. 
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Figure 6.16 Position Tracking for NLDI Abnormal Condition. 

 

Figure 6.17 Position Tracking for NLDI+MRAIS Abnormal Condition. 

Figure 6.18 and Figure 6.19 depict the time history of the adaptive gains for the 

roll and pitch axis of the NLDI+MRAIS controller. From the Figures is possible to see 

that as soon the failure is injected (45 seconds after the test starts) the adaptation gains get 

more active to compensate for the effect of the failure. 
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Figure 6.18 MRAIS Adaptive Gains for Roll Dynamics. 

 

Figure 6.19 MRAIS Adaptive Gains for Pitch Dynamics. 

 

The same effect is noticed for the yaw axis adaptive component; a higher activity 

of the adaptive gains is noticeable right after the failure is injected. 
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Figure 6.20 MRAIS Adaptive Gains in Yaw Dynamics. 

 

Table 6.3 presents a direct comparison of each of the resultant performance 

metrics per each case. From the table it is possible to see that the adaptive augmentation 

greatly outperforms the baseline NLDI controller in all aspects.   

Table 6.3 Performance Metrics for Simulation Results. 

 Nominal Failure   

 NLDI NLDI + 

MRAIS 

NLDI NLDI + 

MRAIS 

CV Percentages 

rms rates(deg/s) 1.05 0.24 268.98 2.25 268.98 0.2 
rms attitude(deg/s) 1.90 0.03 41.28 9.61 41.28 0.2 
rms velocities (ft/s) 1.05 1.05 11.76 3.68 11.76 0.2 
rms position (ft) 31.61 31.61 42.84 33.67 42.84 0.2 
P. Index 0.63 0.67 0.004 0.56   
P. Index Norm 0.95 1.00 0.006 0.86   

 

The Histogram depicted in Figure 6.21 presents a global performance index 

comparison obtained from the results of Table 2 using Eq.(6.28). It can clearly be noticed 

that the NLDI+MRAIS control provides better global performance than the NLDI 

controller. 
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Figure 6.21 Global Performance Index for the Tests Performed. 

6.7. HIL Setup and Results 

 Hardware in the Loop (HIL) simulation is one of the most important stages of 

control law testing and validation before the final onboard implementation. It is important 

to test all flight control code functionalities in order to address any relevant issues that 

might appear in a real flight. It is desirable to design a flight control system that can 

operate in real-time and make sure that the flight computer can perform all the 

computations and all data acquisition required to maintain stable flight within the 

designed control laws. For HIL testing purposes three independent computer systems are 

commonly used: a primary flight computer, a computer that simulates the system 

dynamics and a host computer.  

Figure 6.22 depicts the most relevant components for HIL simulation and how the 

different computers interact. The Target PC-2 holds a high fidelity simulation 

environment to model all the vehicle and actuator dynamics, it also incorporates sensor 
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models to account for realistic noise and biases that the real onboard sensors might read. 

The Athena II Flight Computer (Target PC-1) holds all the control laws, guidance 

algorithms and prerecorded trajectories required for real operation. The host computer is 

in charge of uploading the code to both targets and displaying and recording the 

simulation results.  

 

Figure 6.22 Simulation Environment Used for HIL Simulation. 

6.7.1. Real Time Environment 

The real time environment used is the MathWorks® Simulink Real-time toolset. 

Simulink Real time is a real-time operating system that enables the user to load Simulink 

models on to physical systems and execute them in real-time. In the setup shown in 

Figure 6.22 the host computer uses MATLAB/Simulink® to create and deploy 

executable code (.dlm) into the target(s) computer(s) to run real time applications. The 

host computer builds and compiles Simulink Real-Time code using a C++ compiler 

(usually Microsoft SDK or Microsoft Visual 2010 or higher). Then, the host computer 

sends this information to the target computers to execute the code in two separate 
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instances of the Simulink Real-Time operating system (RTOS). The SRT operating 

system will boot on both targets after startup using pre-configured external USB devices.  

The steps used to perform this process are shown in Figure 6.23. 

 

Figure 6.23 The Steps to Compile Simulation using SRT on to Target Hardware. 

 

The real-time environment has the capability of tracking and logging a parameter 

called Task Execution Time (TET). This parameter is important to analyze the time 

required by the onboard computer to perform a computer cycle. 

6.7.2. Data Communication  

The data communication in Figure 6.22 is established as follows: first, the host 

uploads the Simulink Real Time executable code on both target computers via a stable 

LAN or Wi-Fi TCP/IP protocol. Once both targets are turned on and linked to the host 

(using the Simulink real time explorer) the spacecraft simulation computer (Target PC-2) 

will start exchanging data with the primary flight computer (Target PC-1) via a serial link 

(RS-232 protocol). The states of the system required from the guidance and control laws 
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are sent from the simulation computer to the primary flight computer. The required 

control inputs (thrusters) required for autonomous operation are sent from the primary 

flight computer to the simulation computer. Simultaneously, the vehicle computer sends 

selected state data via UDP to the host computer to be visualized in a Java Monkey 

Engine. The visualization results are shown in Figure 6.24. 

 

Figure 6.24 Simulink-Real Time Target and JME Displaying Spacecraft System (Perez 
A. , et al., 2016). 

A real HIL Simulation setup is shown in Figure 6.25, where the fundamental 

sample frequency of the controller target was set to 100 Hz while a 500 Hz sampling 

frequency is selected for the simulation environment target computer.  

 

Figure 6.25 HIL Setup at KSC Swamp Works Laboratories (Perez A. , et al., 2016). 

Mission 1, Nominal condition:  

This test was performed to follow a specific path of nine waypoints [ ]1 9p p− . At 
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waypoint 5p , the spacecraft lands to drill and take a regolith sample. A total mass of 200g 

is sampled and placed at a location [ ]0 0.5 0.5r ft=  from the center of gravity (CG) of 

the vehicle. The added mass will produce the following change in inertia and CG shift on 

the vehicle.  

 [ ]2
1 1

0.0068 0 0

0 0.0034 0 slug ft , 0 0.0057 0.0057

0 0 0.0034

J r ft

 
 ∆ = ⋅ ∆ = 
  

   

 (6.29) 
 The mission sequence is described below. 

• Take off from position 1 [0 0 0]p ft= . 

• Advance to position 2 [0 0 16.4]p ft= . 

• Advance to position 3 [164 98.4 16.4]p ft= . 

• Advance to position 4 [360.8 131.2 16.4]p ft= , 

• Advance to position 5 [360.8 131.2 213.2]p ft= − , and collect a sample. 

• Advance to position 6 [360.8 131.2 32.8]p ft= − . 

• Advance to position 7 [229.6 65.6 16.4]p ft= . 

• Advance to position 8 [0 0 16.4]p ft= . 

• Advance to position 9 [0 0 0]p ft= . 
 

The sequence of commanded waypoints is illustrated in Figure 6.26. 

 

Figure 6.26 Path Designation for HIL Missions. 
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Mission 2: Sampling Extra Weight 

This test is performed to follow the same waypoint path [ ]1 9p p−  of Mission 1, 

but instead, the system is loaded after reaching 5p  with a mass equal to 800 g at a 

location [ ]0 0.5 0.5r ft=  from the CG of the vehicle. The added mass will produce the 

following change in inertia and CG shift on the vehicle: 

 [ ]2
2 2

0.0262 0 0

0 0.0131 0 slug ft , 0 0.022 0.022

0 0 0.0131

J r ft

 
 ∆ = ⋅ ∆ = 
  

  (6.30) 

Mission 3: Reduced Efficiency on Thruster 1 

This test was performed to follow the same waypoint path [ ]1 9p p− of Mission 1. 

At 5p  the system is loaded with a mass equal to 200 g at a location [ ]0 0.5 0.5r ft=  

from the CG. Additionally thruster 1 power is slowly reduced up to 40% of its maximum 

force in a period of 150 seconds; this is intended to simulate the effect of a thruster that is 

slowly losing efficiency. 

6.7.3. HIL XAFF Results.  

The Histogram of Figure 6.27 depicts a global performance index for the three 

missions for each controller under study. The controllers considered for this HIL 

simulation are: a classic PID controller, INLDI, NLDI and NLDI+MRAIS. From the 

histogram it is possible to directly assess the performance of each one; it is clear that the 

NLDI+MRAIS architecture yields improved performance for all the cases. Both versions 

of the NLDI (incremental and exact approach) yield very similar performance while the 

PID controller is the least robust of all of them. 
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Figure 6.27 HIL Global PI Histogram Results. 

 

6.8. Implementation Results on Gimbaled Mini-Free Flyer 

This section presents the real implementation results of NLDI and NLDI+MRAIS 

control architectures into a concept prototype designed by NASA. This vehicle is called 

Mini-Free Flyer (MFF). It is a low cost vectoring thrust prototype built for preliminary 

testing purposes within a 3 DOF gimbaled platform as shown in Figure 6.28. 

 

Figure 6.28 Mini-Free Flyer Mounted in Gimbal Setup. 
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 The MFF is equipped with four EDFs capable of 1.2 kg of thrust each. The 

motors are powered by a Thunder Power 14.8V 3850 mA Lipo battery and vectoring 

thrust is incorporated via four Futaba S3152 high quality Servos that allows axial motion 

of each of the ducted fans. The board used for telemetry and control law development is a 

3DR Pixhawk, compatible with MATLAB-Simulink code deployment. The inertial 

characteristics and distance from each motor to the CG of the vehicle are specified in 

Table 6.4. 

Table 6.4 Inertial and Geometrical Parameters of the MFF. 

Inertial parameters Distance from motors to CG 

Ixx (slug-ft2) 0.0089 Lx (ft) 0.331 
Iyy (slug-ft2) 0.0088 Ly (ft) 0.331 
Izz (slug-ft2) 0.0126 Lz (ft) 0.064 

m (slug) 0.14 
 

The propulsive characteristics of the EDF of the MFF prototype are shown in 

Figure 6.29. 

  

Figure 6.29 Mini-Free Flyer Torque and Thrust vs PWM. 
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6.8.1. Results for Failure in EDF 3. 

This section presents the results of a set of tests in which the EDF 3 (see Figure 

6.5 for convention) is fully blocked 15 seconds after the tests start while the MFF tries to 

track a cycloid type maneuver. The results presented in Figure 6.30 depict an angular rate 

tracking comparison for both the nominal NLDI controller and the NLDI controller 

augmented with MRAIS.  

 

Figure 6.30 Angular Rates Tracking Performance for a Failure in EDF 3. 

 

It is possible to see a noticeable improvement in terms of less oscillatory behavior 

and more precise tracking performance in favor of the adaptive augmentation. The results 

in Figure 6.31 show a similar trend for roll angle tracking. It is noticeable that the 

adaptive augmentation allows the system to perform better tracking control on the roll 

angle during abnormal conditions. 
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Figure 6.31 Roll and Yaw Tracking Performance for a Failure in EDF 3. 

 

Figure 6.32 depicts the time history of the adaptive gains for the roll axis. It is 

possible to see that the gains get more active exactly when the failure is injected into the 

system. This same behavior was observed in the simulations of the XAFF. 

 

 

Figure 6.32 Time History of Adaptive Gains for a Failure in EDF 3. 
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6.8.2. Results for Added Mass in one Arm 

This section presents the results of a set of tests in which a mass of 130g was 

added in one of the arms of the system while the MFF tries to track a cycloid type 

maneuver. 

 

Figure 6.33 Angular Rate Tracking Performance After Adding 130g on Left Arm. 

 

 

Figure 6.34 Roll and Yaw Tracking Performance after Adding 130g on Left Arm. 
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Figure 6.35 Time History of Adaptive Gains after Adding 130g on Left Arm. 

 

Once again, improvement in tracking of angular rate and roll angle is achieved 

when the adaptive augmentation is engaged. However, from the results it is possible to 

see that this failure greatly modifies the inertia and dynamics of the system. As a result, it 

is more difficult for the adaptive augmentation to overcome. 
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7. Quaternion Based Adaptation for Spacecraft Attitude Control 

This chapter presents the theoretical background for the development of an 

adaptive control architecture proposed in this dissertation applicable to spacecraft 

vehicles that can attain large attitude angles. Spacecraft control is different than 

conventional aircraft control; in space or in semi-gravity-less environments where there is 

no drag or friction forces, large attitude angles are easily attainable. It is known that the 

main issue with Euler angles for attitude representation and control are the singularities 

present at 90° and -90° in the pitch angle. To overcome this difficulty, quaternion 

mathematics can be used.  

Quaternions were developed in 1843 by Sir William Hamilton (Yang, 2012) as an 

alternative approach to represent the orientation of a rigid body. Quaternions can 

overcome the singularity problem by defining a hyper-complex number with four 

parameters, a three component vector and an angle rotation around this vector (see Figure 

7.1).  A quaternion can be described mathematically as follows: 

{ } { }1:3 4 1 2 3 4, ,q q q q q= = + +q q i j k      (7.1) 

where  [ ]1:3 1 2 3

T
q q q=q are the complex terms and 4q  is the scalar part of the 

quaternion. Quaternions can be related to a principal rotation angle Φ  using the 

following relationship: 

( )
( )
( )

( )

1

2

3

4

ˆ sin 2

ˆ sin 2

ˆ sin 2

cos 2

x

y

z

q e

q e

q e

q

= Φ

= Φ

= Φ

= Φ

     (7.2) 

where ˆ [ ]T

x y ze e e=e is a unit length vector for the rotational axis angle Φ  (Yang, 

2012). 
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Figure 7.1 Quaternion Attitude Representation. 

One important feature about quaternions relies on the way attitude error is 

described, namely by the product quaternion operator defined in Eq. (7.3) (Wie & Barba, 

1985) . 

4 3 2 11 1

3 4 1 22 21

2 1 4 33 3

1 2 3 44 4

c c c c

c c c c

c

c c c c

c c c c

q q q qq q

q q q qq q

q q q qq q

q q q qq q

δ
δ

δ
δ
δ

−

− −    
    − −    = ⊗ = =
    − −
    

−    

q q q     (7.3) 

 where  q  and cq  are the actual and commanded quaternion vectors respectively. 

Great care should be taken as different notations are used for quaternion operations. 

Some authors include the scalar component of the quaternion as the first element of the 

quaternion vector; in this dissertation that is not the case, since the scalar component is 

taken as the fourth component of the quaternion vector. 

 As described in Chapter 3, the system of equations formed by Eq.(7.4) and 

Eq.(7.5) fully describes the rotational dynamics and quaternion kinematics commonly 

used for spacecraft modeling and control.  

 ( ){ }1 ( )J J M t−= − × +ω ω ωɺ    (7.4) 

 1
( )

2
= Ωq ω qɺ       (7.5) 

where 3 3xJ ∈ℜ is the inertia matrix, 3 1( ) xM t ∈ℜ is a vector with the sum of external 
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moments that act on the rigid body and 3 1x∈ℜω is the vector of angular rates. In this case 

the moments that act on the spacecraft will be the control inputs provided by the 

spacecraft actuators (thrusters, reaction wheels etc.). The skew symmetric matrix ( )Ω ω

will depend on the angular rates and it is defined as follows (Wie B. , 2015): 

 

3 2 1

3 1 2

2 1 3

1 2 3

0

0
( )

0

0

ω ω ω
ω ω ω
ω ω ω
ω ω ω

− 
 − Ω =
 −
 
− − − 

ω   (7.6) 

Using the derivation given in (Crassidis & Markley, 2014) the quaternion error 

kinematics can be defined as follows:  

1
( )

2
δ δ= Ωq ω qɺ       (7.7) 

 If the inertia matrix is assumed to be time invariant the system of equations can be 

described in non-linear affine state space form: 

( )

1

4 3

( )
( , ) ( ) ( ) ( ) ( )

1/ 2 ( ) [ ]
q q

x

J
f t t M t

ω

δδ

−   
= = + = = +     Ω       

f ωω
x x f x G x u

ω qq 0

ɺ
ɺ

ɺ
  (7.8) 

 where the state vector is defined as 7 1[ , ]T xδ= ∈ℜx ω q , the vector function 

7 1( ) x
q ∈ℜf x , the matrix 7 3( ) x

q ∈ℜG x  and ( )ωf ω is defined as: 

 1( ) [ ( )]J Jω
−= − − ×f ω ω ω      (7.9) 

7.1. Quaternion Based Partial Feedback Linearized Control 

Quaternion math simplifies the attitude singularity (“gimbal lock”) problem by 

incorporating the quaternion error operator into the control law. However quaternion 

error kinematics defined in Eq.(7.7) can’t be fully feedback linearized without 

incorporating an additional singularity in the principal rotational axis angle Φ  when it 
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approaches 180 degrees (Bang, ShinLee, & JuEun, 2004). Therefore, only the angular 

rate rotational dynamics of Eq.(7.4) can be fully feedback linearized.  A control law that 

will partially feedback linearize the system (7.8) is: 

 ( )( ) ( ) ( , )NLDI vM t t J J= = × +u ω ω u q ω     (7.10) 

where ( , )vu q ω  is a virtual controller that can be selected arbitrarily.  In this case 

the following time invariant virtual controller can be used to stabilize the system: 

 ( , ) [ , ]Tv qω δ= −u q ω K ω q      (7.11) 

where 3 7x
qω ∈ℜK is a matrix containing control gains defined as follows: 

 3 1q q xω ω =  K K K 0⋮ ⋮      (7.12) 

 The quaternion and angular rate control gains qK and ωK  are defined respectively 

as follows: 

 
1

2

3

0 0 0 0

0 0 , 0 0

0 00 0

x

y

z

q

q q

q

k k

k k

kk

ω

ω ω

ω

   
   

= =   
   

   

K K    (7.13) 

which yields the following control input: 

 ( ) { }( ) ( ) [ , ]TNLDI q qM t t J J ω= = × + −u ω ω K ω δ    (7.14) 

After inserting the control law of Eq.(7.14) into the system in Eq.(7.8) the closed 

loop dynamics will be: 

 
1:3[ , ]

11 ( )( )
22

T
qq ωω ω δδ

δ δδ

  − − −
     = = =     Ω  Ω     

K K qK ω q
ω

x
q ω qω q

ɺ
ɺ

ɺ
  (7.15) 

 It can be seen that the closed loop system is being partially feedback linearized. 

However since the system is still not fully linear due to quaternion kinematics, it is worth 
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linearizing it with respect to an operating point to design qK and ωK via pole placement. 

The first step to linearize the closed loop system is to select an operating point. In this 

case, the operating point is located at the equilibrium condition in which the quaternion 

error and angular rate vectors are both zero.   

 [0 0 0] , [0 0 0 1]T T
e δ= =ω q     (7.16) 

 To linearize the system, the Jacobian operator of the closed loop system in 

Eq.(7.15) must be calculated and evaluated at the operating point. This yields the 

following result: 

 
3 1

3 3 3 3 3 1
[ , ]

1 3 1 3

[ ]

(1/ 2) [ ] [ ]

[ ] [ ] 0e e

q x

cl x x x

x x

I

ω

δ=

− − 
 ∂

= =  ∂  
 

qx ω

K K 0
x

A 0 0
f

0 0

    (7.17) 

If the eigenvalues of clA  are calculated, there will be a pole that is uncontrollable. 

This is due to the limitation of the system to have three inputs and four quaternions to be 

controlled. From (Yang, 2012), it is known that the controller will be able to successfully 

control the first three quaternion error components 1:3δq  and the angular rates ω . It is 

known that the original system can be reduced to a controllable one in which the last 

error quaternion  component 4qδ is omitted. This can be done and any orientation can still 

be achieved due to the following quaternion constraint:  

 2 2 2
4 1 2 31q q q qδ δ δ δ= − − −     (7.18) 

 If 1:3q are actively tracked then they will be constrained and controlled as well. 

The reduced system yields: 

1:3 1:33 3 3 3
1

[ ]
2

q

x x

ω

δ

− − 
    =         

K K
ω ω

q δqI 0

ɺ

ɺ
    (7.19) 
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where the new state space closed loop matrix reduces to : 

3 3 3 3
1

[ ]
2

q

cl

x x

ω− − 
 =  
  

K K

A
I 0

ɶ     (7.20) 

 The characteristic equation of the closed loop system can be obtained as follows: 

( )( )( )2 2 2
6 6 1 2 3( ) det( ) 2 2 2

x y zx cl q q qp k k k k k kω ω ωλ λ λ λ λ λ λ λ= − = + + + + + +I Aɶ   (7.21) 

 Comparing this characteristic equation to a desired one: 

 ( )( )( )2 2 2 2 2 2( ) 2 2 2d x nx nx y ny ny z nz nzp λ λ ζ ω λ ω λ ζ ω λ ω λ ζ ω λ ω= + + + + + +  (7.22) 

 By direct comparison, the following result is obtained for desired damping and 

natural frequency on each  axis: 

1

2

3

2

2

2

2 , 2

2 , 2

2 , 2

x

y

z

x nx q nx

y ny q ny

z nz q nz

k k

k k

k k

ω

ω

ω

ξ ω ω

ξ ω ω

ξ ω ω

= =

= =

= =

    (7.23) 

The nonlinear controller of Eq.(7.14) can be proven to be stable for the full closed 

loop system by means of the Lyapunov candidate function in Eq.(7.24). However, the 

angular rate and quaternion gains need to be positive and all the quaternion gains will 

need to have the same scalar value, this is 
1 2 3q q q qk k k k= = =  : 

1 3

2 2 2 2 2 2 2
2 4

1 1 1
( ) ( )

2 2 2x y z qV q q q q kω ω ω δ δ δ δ= + + + + + + −x    (7.24) 

 This is a positive definite function. The time derivative along trajectories of ( )V x  

will be: 

 
1 2 3 4

2 2 2

( ) ( , ) , , , 2 , 2 , 2 , 2( ) ( , )

( )
x y z

x y z q

T
x y z

V
V V f t q q q q k f t

t

V k k kω ω ω ω

ω ω ω δ δ δ δ

ω ω ω

∂
 = +∇ = − ∂

= − = − − −

x x x

x ω K ω

ɺ

ɺ
  

 The derivative along trajectories of the Lyapunov candidate function in Eq.(7.24) 
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is negative semi-definite, the system trajectories will be bounded. However, to proof 

global asymptotic stability, one can use Lyapunov-Barbalat’s Lemma by taking the 

second derivative of the Lyapunov function candidate: 

 
2

( ) 2 2 ( )

( ) 2 2 ( )

T T
q

T T
q

V k

V k

ω ω ω

ω ω

δ

δ

= − = − − −

= +

1:3

1:3

x ω K ω ω K q K ω

x ω K q ω K ω

ɺɺ ɺ

ɺɺ
   (7.25) 

The previous function will be necessarily bounded since all the states 

(trajectories) are bounded and the gains are fixed. This means Vɺ  is uniformly continuous 

and thus 0V →ɺ . This can only be true if 0ω → and 0δ →1:3q  as time goes to infinity. 

Thus the non-linear control law in Eq.(7.14) reorients the spacecraft to the desired 

attitude from any arbitrary initial orientation. Note that 4qδ  can be 1± , but it is not an 

inconvenience since both signs produce the same attitude. However, this control law 

doesn’t guarantee that the shortest path is provided to the final orientation. To overcome 

this issue a slight modification can be included by the following control law (Crassidis & 

Markley, 2014): 

( ) 4( ) ( ) [ sign( ) ]NLDI qM t t J J k q ωδ δ= = × + − −1:3u ω ω q K ωɶ    (7.26) 

Figure 7.2 shows a schematic of the quaternion partially feedback linearized 

controller described by Eq.(7.26). 

 
 

Figure 7.2 NLDI+Quaternion Attitude Control. 
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7.2. Quaternion Partial NLDI Control Augmented with Time-Varying 

Gains 

Similar as before, let’s define the following control input designed to partially 

feedback linearize the system in Eq.(7.8): 

 ( )( ) ( ) ( , , )NLDI vM t t J J t= = × +u ω ω u q ω     (7.27) 

In this case, ( , )v tu q,ω  will be a time-varying virtual adaptive controller that will 

be specifically designed to meet Lyapunov’s stability criteria.  The closed loop system of 

equations after implementing the control law of Eq.(7.27) into the system in Eq.(7.8) 

yields: 

 
( , )

1
( )

2

v t

δ δ

=



= Ω

ω u q,ω

q ω q

ɺ

ɺ
     (7.28) 

For clarity and further derivation purposes it is useful to write the system in scalar 

form as follows: 

 

1

2

3

1 4 3 2

2 3 4 1

3 2 1 4

4 1 2 3

( , , )

( , , )

( , , )

( ) / 2

( ) / 2

( ) / 2

( ) / 2

x v

y v

z v

x y z

x y z

x y z

x y z

u t

u t

u t

q q q q

q q q q

q q q q

q q q q

ω δ

ω δ

ω δ

δ ω δ ω δ ω δ

δ ω δ ω δ ω δ

δ ω δ ω δ ω δ

δ ω δ ω δ ω δ

=

=

=

= − +

= + −

= − + +

= − − −

q ω

q ω

q ω

ɺ

ɺ

ɺ

ɺ

ɺ

ɺ

ɺ

    (7.29) 

The final goal is to be able to prove stability of the closed loop system by means 

of time varying adaptive virtual controllers 1( , , )vu tδq ω , 2( , , )vu tδq ω and 3( , , )vu tδq ω . For 

convenience let’s define the following state vector: 

 1 2 3 4[ , , , , , , , ]Tx y z q q q qω ω ω δ δ δ δ=x     (7.30) 

which leads to the following non-linear and non-autonomous state space 
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representation: 

 ( )
( )
( )
( )

1

2

3

4 3 2

3 4 1

2 1 4

1 2 3

( , )

( , )

( , )

( , ) / 2

/ 2

/ 2

/ 2

v

v

v

x y z

x y z

x y z

x y z

u t

u t

u t

f t q q q

q q q

q q q

q q q

ω δ ω δ ω δ

ω δ ω δ ω δ

ω δ ω δ ω δ

ω δ ω δ ω δ

 
 
 
 
 
 
 = = − + 
 

+ − 
 

− + + 
 

− − −  

x

x

x

x xɺ     (7.31) 

The first step to prove stability is to establish a positive definite Lyapunov 

function candidate. After some trial and error process the following time invariant 

Lyapunov function was selected: 

 
1 3

2 2 2 2 2 2 2
2 4

1 1 1
( ) ( )

2 2 2x y z qV q q q q kω ω ω δ δ δ δ= + + + + + + −x   (7.32) 

where qk is a positive scalar gain. Taking the time derivative of the Lyapunov 

function yields: 

 ( , ) ( , )
V

V t V f t x
t

∂
= +∇

∂
xɺ      (7.33) 

Since the Lyapunov candidate ( )V x  is time invariant (time doesn’t appear 

explicitly) the following Lyapunov candidate function derivative is obtained: 

( )

1 2 3 4

1 2 3 4

1 2 3 1 4 3 2

( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( , )

, , , 2 , 2 , 2 , 2( ) ( , )

( , ) ( , ) ( , ) 2 / 2

  

x y z

x y z q
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V t V f t

V V V V V V V
f t

q q q q

q q q q k f t

u t u t u t q q q q

ω ω ω δ δ δ δ

ω ω ω δ δ δ δ

ω ω ω δ ω δ ω δ ω δ

= ∇

 ∂ ∂ ∂ ∂ ∂ ∂ ∂
=  

∂ ∂ ∂ ∂ ∂ ∂ ∂  

 = − 
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x x

x x x x x x x
x

x

x x x

ɺ

⋯

( ) ( )
( )

2 3 4 1 3 2 1 4

4 1 2 3

1 2 3 1 4 1 3 1 2

2 3

2 / 2 2 / 2

             +2( ) / 2

( , ) ( , ) ( , )

              +

x y z x y z

q x y z

x v y v z v x y z

x y

q q q q q q q q

q k q q q

u t u t u t q q q q q q

q q q

δ ω δ ω δ ω δ δ ω δ ω δ ω δ

δ ω δ ω δ ω δ

ω ω ω ω δ δ ω δ δ ω δ δ

ω δ δ ω δ

   + + − + − + + +   

 − − − − 

 = + + + − + + 

+

x x x

⋯

⋯

2 4 1 2 2 3 1 3 3 4

1 4 2 4 3 4 1 2 3              +

z x y z

x y z q x q y q z

q q q q q q q q q

q q q q q q k q k q k q

δ ω δ δ ω δ δ ω δ δ ω δ δ

ω δ δ ω δ δ ω δ δ ω δ ω δ ω δ

   − + − + + +   

   − − − + + +   

⋯

  (7.34) 
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 Factoring angular rates terms: 

 

1 1 4 2 3 2 3 1 4 1

2 1 3 2 4 1 3 2 4 2

3 1 2 1 2 3 4 3 4 3

( , ) ( , )

( , )

( , )

x v q

y v q

z v q

V t u t q q q q q q q q k q

u t q q q q q q q q k q

u t q q q q q q q q k q

ω δ δ δ δ δ δ δ δ δ

ω δ δ δ δ δ δ δ δ δ

ω δ δ δ δ δ δ δ δ δ

 = + + − − + 

 + − + + − + 

 + + − + − + 

x x

x

x

ɺ

  (7.35) 

 Cancelling terms: 

 1 1 2 2 3 3( , ) ( , ) ( , ) ( , )x v q y v q z v qV t u t k q u t k q u t k qω δ ω δ ω δ     = + + + + +     x x x xɺ   (7.36) 

By inspection, the following control law can be established into the virtual 

controllers so that the Lyapunov function derivative along trajectories is rendered 

negative semi-definite. 

 
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

( , ) ( ) ( ) sign( )

( , ) ( ) ( ) sign( )

( , ) ( ) ( ) sign( )

v x q x

v y q y

v z q z
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u t c t k q k t q q

ω δ δ ω δ

ω δ δ ω δ

ω δ δ ω δ

= − − −

= − − −

= − − −

x

x

x

   (7.37) 

Applying these control laws and evaluating them in the Lyapunov function: 

2 2 2
1 2 3 1 1 1 2 2 2 3 3 3

2 2 2
1 2 3 1 1 2 2 3 3

( , ) ( ) ( ) ( ) ( ) sign( ) ( ) sign( ) ( ) sign( )

( ) ( ) ( ) ( ) ( ) ( )

x y z x x y y z z

x y z x y z

V t c t c t c t k t q q k t q q k t q q

c t c t c t k t q k t q k t q

ω ω ω δ ω δ ω δ ω δ ω δ ω δ ω

ω ω ω δ ω δ ω δ ω

= − − − − − −

= − − − − − −

xɺ

  (7.38) 

Since sign( ) 0i i i i i iq q qδ ω δ ω δ ω= ≥ and 2 0iω ≥ , all terms in Eq.(7.38) will be sign 

definite if and only if: 

 1 2 3 1 2 3( ), ( ), ( ), ( ), ( ), ( ) 0c t c t c t k t k t k t ≥     (7.39) 

If this is true then: 

 ( , ) 0V t ≤xɺ      (7.40) 

This result proves that the control law renders the closed loop system globally 

bounded along trajectories; this result is also known as Lagrange Stability.  

To prove angular rate global stability it is required to first find a time invariant 

function ( )W x  that holds the following inequality: 
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 ( , ) ( ) 0V t W≤ − ≤x xɺ       (7.41) 

To make this search easier it is possible to  assume the existence of scalar 

functions that lower bound the adaptive gains as follows: 

* * *
1 1 2 2 3 3

* * *
1 1 2 2 3 3

( ), ( ), ( ), 0

( ), ( ), ( )

c c t c c t c c t t

k k t k k t k k t

≤ ≤ ≤ ∀ ≥

≤ ≤ ≤
    (7.42) 

Lyapunov-Barbalat’s Lemma can be used to show that ( ) 0 as W t→ →∞x   

(Slotine & Li, 1991) (Balas & Frost, 2014) . To use this theorem, ( )W x  must be  

uniformly continuous; this is equivalent to show that the time derivative along trajectories 

of ( )W xɺ is bounded. Let the function ( )W x be defined as follows: 

 * 2 * 2 * 2
1 2 3( ) x y zW c c cω ω ω= + +x     (7.43) 

The time derivative along trajectories of ( )W x is: 

* * *
1 2 3

* * *
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c c c
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c u t c u t c u t

c c t k q k t q q

c c t k q k t q q

c

ω ω ω

ω δ δ ω δ

ω δ δ ω δ

= + +

= + +

= − − − +

− − − +

x

x x x

ɺ ɺ ɺ

*
3 3 3 3 3 3[ ( ) ( ) sign( )]z q zc t k q k t q qω δ δ ω δ− − −

         (7.44) 

All the states of this closed loop system will be bounded after proving Lagrange 

Stability in Eq.(7.41). Moreover if the adaptive gains 1 2 3 1 2 3( ), ( ), ( ), ( ), ( ), ( )c t c t c t k t k t k t  are also 

bounded, then by Lyapunov-Barbalat’s Lemma: 

 * 2 * 2 * 2
1 2 3( ) 0x y zW c c c as tω ω ω= + + → → ∞x   (7.45) 

The only way to satisfy this condition is if [ ( ), ( ), ( )] 0 .x y zt t t as tω ω ω → → ∞

Therefore if the adaptive gains are positive, lower and upper bounded then all the state 

trajectories will be bounded and the angular rates will go to zero as time goes to infinity. 
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7.3. Proof of Boundedness of Adaptive Augmentation System 

The following time varying adaptive gains are inspired by the immune response 

of the biological organism (Takahashi & Yamada, 1998). 
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where 
1 2 3x y z q q qω ω ωη η η η η η 

   are scalars and the non-linear adaptive base 
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This is a continuous positive definite function that has the following behavior for 

different values of γ : 

 

Figure 7.3 Adaptive Base Function. 
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Additionally, ( )
ivu t∆ will be defined as a time varying signal that incorporates the 

difference between the actual minus a previous time step virtual control input: 
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The adaptive functions defined in Eq.(7.46) and Eq.(7.47) will hold the 

requirements stablished in Eq.(7.40) and Eq.(7.43) (positive, lower and upper bounded). 

As long as:  

 
1

2

3

0 , 0

0 , 0

0 , 0

x

y

z

q

q

q

ω

ω

ω

η η

η η

η η

< < ∞ < < ∞

< < ∞ < < ∞

< < ∞ < < ∞

    (7.50) 

After defining the adaptive gains, the final virtual control law will have the form: 
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which is equivalent to the following more compact result: 
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where: 
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The final control Law can also be conveniently written in vector form as follows: 

 4( , ) ( ) ( ) sign( )v Qt t t qδ δ= − −u x C ω K q   (7.54) 
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where: 
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It worth noticing that a 4sign( )qδ  factor was incorporated at the end of the control 

law to ensure that the fasted path is chosen by the controller to achieve the final desired 

orientation. Figure 7.4 shows a summarized schematic of the NLDIQ+AIS adaptive  

 

Figure 7.4 Adaptive NLDIQ+AIS Schematic. 
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8. Implementation of Quaternion Based Adaptation on a Cold Gas 

Spacecraft 

This chapter presents relevant and successful implementation results of the 

quaternion based immune adaptive control architecture developed in Chapter 7 

(NLDIQ+AIS). The controller was implemented on a concept spacecraft vehicle testbed 

designed and built at NASA Kennedy Space Center (see Figure 8.1). The concept 

prototype aims to support the development of novel autonomous prospector space 

exploration vehicles for in situ resource utilization in environments such as asteroids 

where gravitational force is minimal.  

 One of the major goals of this chapter is to demonstrate a preliminary proof of 

concept of the adaptive configurations presented in Chapter 7. The results obtained intend 

to evaluate the performance of the developed control laws for missions in which the 

extreme environment might put the whole system at risk.   

 

Figure 8.1 Gimbaled Asteroid Cold Gas Free Flyer (ACGFF) Prototype. 

 

The spacecraft prototype is mounted on a three degree of freedom gimbaled 

platform that allows free motion in roll, pitch and yaw axes. The main purpose of this 
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setup is to demonstrate full attitude control and angular rate regulation in gravity-less 

environments while tracking pre-defined attitude trajectories and recovering from 

tumbles or other kind of abnormal conditions that might occur in space.   

8.1. Vehicle and Experimental Framework Description 

The prototype vehicle is actuated through twelve servo-valve thrusters that 

regulate the expelling of cold gas from two main reservoir tanks that keep Nitrogen at 

high pressure. The pressure is regulated by two pressure regulators, Low Pressure 1 

(LP1) and Low Pressure 2 (LP2), to achieve a final constant pressure of 130 psi to the 

solenoids ready for operation.  The diagram in Figure 8.2 illustrates the main architecture 

for the cold gas distribution.  

 

Figure 8.2: Cold Gas System onboard ACGFF. 

The opening and closing of the solenoids are regulated by means of Pulse Width 

Modulated (PWM) signals from the digital IO pins on the onboard computer.  
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8.1.1. Hardware and Test Setup 

The control architectures described in Chapter 7 were first tested in simulation to 

corroborate proper operation. After confirming that the control laws work properly in 

simulation, they are deployed into the target flight computer through Simulink-Real time 

environment. Simulink-Real time is an efficient code generation and prototyping tool 

from MathWorks. It allows the development of applications directly from Simulink so 

that they can be tested and run on a dedicated target computer or hardware. The code is 

generated automatically from Simulink and is compiled into the target machine using a 

real-time kernel.   

The host computer has the capability of downloading the code through a TCP/IP 

protocol. The flight computer selected for the target is the Athena II from Diamond 

Systems (see Figure 8.3) that includes serial and analog input modules along with a 

digital I/O. The digital control signals are used to actuate each of the solenoid valves that 

regulate the proper amount of gas that each thruster requires for attitude control.  

 

Figure 8.3: Athena II SBC by Diamond Systems®. 

The Inertial Measurement Unit (IMU) used in the vehicle is from Microstrain (see 

Figure 8.4), and is capable of providing accurate measurements of attitude and angular 

rates (signals required for the controllers). The Microstrain outputs can be read by one of 
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the serial ports of the Athena II by means of a RS232 communication protocol. Table 8.1 

describe some of the main characteristics of the sensors within the Microstrain. 

Table 8.1 Characteristics of Microstrain IMU 

  Accelerometers Gyroscopes Magnetometers 

Initial bias ±0.002 g ±0.25°/sec ±0.003 Gauss 
Noise density 80 µg/√Hz 0.03°/sec/√Hz 100 µGauss/√Hz 
Alignment error ±0.05° ±0.05° ±0.05° 
Sampling rate 30 kHz 30 kHz 7.5 kHz max 

 

 

Figure 8.4 GX3-45 IMU by Microstrain 

The sensors, actuators, flight computer and additional hardware were tested 

separately to corroborate full functionality before they were mounted and fully 

incorporated into the spacecraft prototype shown in Figure 8.1.  

The diagram in Figure 8.5 describes the main test framework prepared at 

Kennedy Space Center at Swamp Works Laboratories. The prototype is connected via 

Wi-Fi to the host computer by a high data rate transmission 5.0 GHz connection. This is 

achieved by a Ubiquity Rocket M5 transmission station that is onboard the vehicle. The 

data transmission rate is crucial for online tuning of the controllers and signal monitoring. 
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Figure 8.5 Schematic of Test Bed and Hardware Used on the ACGFF Prototype. 

8.2. Forces and Moments that Act on ACGFF Spacecraft Prototype 

As previously mentioned, there are a total of twelve thrusters in the ACGFF 

prototype, each of them is capable of suppling a maximum of 1.5 N of force. In order to 

implement the NLDIQ and NLDIQ+AIS controllers, the first step is to develop a set of 

equations that describe the total forces and moments that act on the prototype due to its 

specific actuator configuration (see Figure 8.6 - Figure 8.8), the following equation 

describes the forces and moments in the body frame of the prototype.  
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where , ,x y yawL L L  are the corresponding arm distances from the CG of the 

vehicle to the actuator locations. 

8.3. Control Allocation for ACGFF Spacecraft Prototype 

In order to achieve the required moments and forces commanded from the 

Dynamic Inversion controllers, Eq.(8.1) and Eq.(8.2) must be solved to find the exact 

thrust required per each actuator. It can be seen that there are a total of six equations for 

six unknowns, but since there is a total of twelve actuators the system is over actuated. In 

order to guarantee that a global solution for the forces and moments equations is obtained 

for all instants of time, a control logic was employed in which each pair of upper and 

immediately lower thruster is treated as one actuator. If a positive thrust is demanded 

then the lower thruster is activated; on the other hand if a negative thrust is demanded the 

upper one is activated. This means that a maximum of six thrusters will be acting at the 

same time, and therefore there are a total of six equations for six unknowns at every 

instant of time.  The following figures illustrate the actuators that must be turned on for 

different scenarios. 

 

Figure 8.6 Actuators Activated to Produce Roll Motion. 
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Figure 8.7 Actuators Activated to Produce Altitude Change Motion. 

 

Figure 8.8 Actuators Activated to produce Yaw and Forward Motion. 
 

The exact inverse of required moments to thrust per thruster to achieve any roll or 

pitching moment can be described by the following set of equations that result from 

solving Eq. (8.1) and Eq.(8.2): 
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To calculate the thrust required per actuator to produce Yaw or 

Forward/Backward Motion the following equations are obtained: 
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     (8.4) 

8.4. Definition of Stability and Performance Metrics 

In order to have a proper assessment of the different controllers, it is important to 

establish some qualitative performance criteria that measure how good is the controller in 

terms of attitude and angular rate tracking error as well as the total activity of the 

actuators (in this case solenoid valves). This is achieved by recording the time history of 

different sensors from which tracking error and commanded values can be used for 

subsequent analysis. 

8.4.1. Angular Rate Tracking Error Activity 

This performance metric corresponds to the sum of the root mean square of the three 

angular rate signals.  

 2 2 2

0 0 0

1 T T T

x y ze dt dt dt
C

ω ω ωΩ

 
 = + +
 Ω  

∫ ∫ ∫ɶ      (8.5) 

 where CΩ is a cut-off value used to normalize the resultant index eΩɶ  with respect 

to the worst case (biggest value) from the set of tests. 
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8.4.2. Quaternion Tracking Activity 

This performance metric corresponds to the root mean square of the total unit 

quaternion tracking error.  
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[(1 ) ]
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q q q q dt
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δ δ δ δ δ= − + + +
∆ ∫q

Q
ɶ     (8.6) 

 where C∆Q is a cut-off value used to normalize the resultant index δqɶ  with 

respect to the worst case from the set of tests. 

8.4.3. Solenoid Activity 

 This performance metric corresponds to the total actuation activity of the 

solenoids. This is calculated as the root mean square of the solenoid PWM commanded 

signal and is basically the rms of the total time the solenoid valves remained open. 
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where C S∆ is a cut-off value used to normalize the resultant index sɶ  with respect 

to the worst case from the set of tests. 

8.4.4. Global Performance Index 

 A global performance index can be computed from the previous set of metrics 

using different weights for each of the indices in Eq.(8.5) - Eq.(8.7) considering relative 

importance or weight on the study. For that effect, the following expression was used to 

calculate the global performance index. 
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where 
ICP  is a cutoff value to normalize the resultant global performance index with 

respect to the best nominal case of the set of tests considered. It can be seen that each 

metric is weighted equally. 

8.5. Implementation Results on ACGFF Spacecraft Prototype 

This section describes the implementation results of the NLDIQ and NLDIQ+AIS 

on the ACCG prototype (see Figure 8.1). As mentioned before, the controllers are 

deployed on the Athena II flight computer through Simulink Real-Time. Different 

scenarios were tested including induced thruster failures while tracking a predefined 

trajectory. 

8.5.1. Description of Tests Performed 

The following scenarios were considered for the tests performed. 

Nominal Conditions:  

The nominal condition was designed so that the vehicle is able to track the 

sequence of angles described in Table 8.2. No failures are considered in this scenario. 

Table 8.2 Nominal Maneuver 

Nominal Maneuver 

Time 0 5 10 15 20 25 30 
φ(deg) 0 0 0 180 180 180 0 
θ(deg) 90 180 180 180 180 180 0 
ψ(deg) 0 0 180 180 180 180 0 
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Abnormal Condition 1: 

The first abnormal condition considered consists of a total blockage in thruster 1 

five seconds after the test starts. The same maneuver in Table 8.2 was considered for this 

test. 

Abnormal Condition 2: 

The second abnormal condition consists of a total blockage of thruster 2 five 

seconds after the test starts, while the vehicle tracks the same set of angles described in 

Table 8.2. 

8.5.2. Preliminary Implementations of NLDIQ Cascade 

Configuration 

As previously mentioned, Simulink real-time is the primary tool used to execute 

the code in the real-time hardware. In order to facilitate the tuning process, a GUI 

(Guided User Interface) was developed in an extension of Simulink-Real time called 

Simulink real-time explorer (see Figure 8.9).  

 

Figure 8.9 GUI Panel for Real Time Code Operation.  
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This tool enables real-time parameter update within a fast and intuitive interface 

that is directly linked to the code being executed in the target. Thus, parameters such as 

control gains can be tuned in real time without requiring to recompile the code. It also 

supports real-time monitoring of signals (specified by the user) and other capabilities 

such as manual switches, gauges monitors, among others. 

Figure 8.10 and Figure 8.11 show quaternion and angular rate tracking results for 

tracking a nominal maneuver using the NLDIQ in cascade configuration. It is worth 

recalling that this initial implementation was for a maneuver different than the one 

specified in Table 8.2. 

 

Figure 8.10 Implementation Results for NLDIQ Cascade for Quaternion Tracking. 
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From Figure 8.10 it can be seen that the tracking behavior of the four quaternions 

for a nominal maneuver is quite successful, even though in this configuration no 

adaptation was engaged and no abnormal condition was imposed into the system.  

 
 

Figure 8.11 Angular Rate Tracking Performance for NLDIQ Cascade. 

 

Figure 8.11 depicts the angular rate response of the inner loop of the NLDIQ 

cascade control architecture. The tracking performance for xrefω  is better than the 

tracking performance for yrefω . The tracking performance for zrefω is satisfactory 

although it has a noticeable lag with respect to the desired input. 
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8.5.3. Implementation Results for Nominal Conditions 

Figure 8.12 presents a direct comparison between the NLDIQ and the 

NLDIQ+AIS that incorporates adaptive augmentation. No failure was injected during this 

test. 

 

Figure 8.12 Implementation Tracking Performance for Nominal Conditions. 
 

From Figure 8.12 it can be seen that the tracking performance is very similar for 

both controllers. Figure 8.13 - Figure 8.15 present the performance metrics time history 

during the maneuver. The results corroborate what is seen in the quaternion tracking 

behavior since the angular rate, quaternion and solenoid activities are all very similar for 

both control architectures. 
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Figure 8.13 Angular Rate Activity Metric at Nominal Conditions. 

 

Figure 8.14 Quaternion Activity Metric at Nominal Conditions. 

 

Figure 8.15 Total Solenoid Activity Performance Metric at Nominal Conditions. 
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8.5.4. Implementation Results for Abnormal Conditions 

Figure 8.16 presents a direct comparison between the NLDIQ and the 

NLDIQ+AIS that incorporates adaptive augmentation when thruster two is fully blocked 

five seconds after the test starts. 

 

Figure 8.16  Implementation Tracking Performance for Abnormal Conditions. 

 

From Figure 8.16 it is appreciated that the adaptive augmentation helps the 

system to behave much better in terms of tracking error in the presence of abnormal 

condition. This can be confirmed if we check the overall quaternion tracking 
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performance; a noticeable overshoot can be seen for 1qδ  in Figure 8.16 for the controller 

that does not incorporate the adaptive augmentation. Similar results can be appreciated 

after checking Figure 8.17- Figure 8.19, which correspond to the performance metrics of 

both controllers at abnormal conditions. 

 

Figure 8.17 Angular Rate Activity Metric for Thruster 2 Failure. 

 

Figure 8.18 Quaternion Activity Metric for Thruster 2 Failure. 
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Figure 8.19 Solenoid Activity Metric for Thruster 2 Failure. 

 

From the figures is possible to conclude that the adaptive augmentation 

successfully mitigates the failure by reducing the total amount of error while keeping the 

solenoid activity at low values. 

Figure 8.20 and 8.21 present the resultant adaptive gains for this specific test. 

 

Figure 8.20 Quaternion Adaptive Gains for Thruster 2 Failure. 
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Figure 8.21 Angular Rate Adaptive Gains for Thruster 2 Failure. 

8.5.5. Global Performance Controller Assessment 

In order to check for consistency in the results 15 tests were performed with at 

least three tests per condition. Table 8.3 presents the all the cases tested and Table 8.4 

shows the average of the global performance index per each case per controller 

architecture. 

Table 8.3 Tests Performed 

 NLDIQ NLDIQ+AIS 

Nominal Test 1 Test 7 
Test 2 Test 8 
Test 3 Test 9 

T1 Failure Test 4 Test 10 
Test 5 Test 11 
Test 6 Test 12 

T2 Failure Test 7 Test 13 
Test 8 Test 14 
Test 9 Test 15 

 

45 50 55 60 65
2.5

3

3.5
Angular Rates Adaptive Gains

Time(s)
c

1
(t

)

45 50 55 60 65
5

6

7

Time(s)

c
2
(t

)

45 50 55 60 65
2.6

2.8

3

Time(s)

c
3
(t

)



161 
 

Table 8.4 Average Performance Metrics and Performance Index per Case. 

 

The same information in Table 8.4 can is shown in Figure 8.22 in which the 

histogram compares the average global performance index (see Eq.(8.8)) for each case 

considered. 

 

Figure 8.22 Global Performance Index Histogram Comparison. 
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  NLDIQ NLDIQ+AIS  NLDI  NLDIQ+AIS  NLDIQ  NLDIQ+AIS  

Ang. Rates Activity  5.121 4.839 5.615 5.025 5.558 5.125 

Quaternion Activity 2.968 3.034 3.238 2.989 3.022 2.974 

Solenoid Activity 24.552 24.182 26.112 23.028 27.923 23.963 

P. Index 0.818 0.938 0.182 1.000 0.215 0.869 
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9. Conclusions and Recommendations 

This dissertation covers the development of two main novel adaptive control 

architectures designed to mitigate failures and abnormal conditions on aerospace systems. 

Both control laws include adaptive functions that resemble some characteristics present 

in the response of the immune system of living organisms. The first configuration was 

designed for aerospace systems that do not attain large angles (i.e. aircraft), and it relies 

on Euler Angle attitude kinematics. The second adaptive configuration approach relies 

mainly on quaternion kinematics so that it can be incorporated in aerospace systems that 

can attain large attitude angles or maneuvers. This chapter covers some key conclusions 

about these main results and how they could be improved in future work or research. 

9.1. Conclusions on Euler Angle Based Adaptive Controller 

The main structure of the Euler Angle MRAIS control architecture was developed 

in Chapter 4 (Sections 4.6 – 4.8). It relies on an exact feedback linearization approach in 

conjunction with a model reference adaptive controller inspired by a feedback adaptive 

function that is known to be present in the immune system of living organisms. One of 

the most relevant contributions of this approach is the development of a solid theoretical 

framework and proof of absolute stability by means of the Circle Criterion. Based on the 

author’s best knowledge, there has been no prior attempt to link adaptive control theory 

with the Circle Criterion approach. Furthermore, a proof of robust stability based on the 

Lyapunov approach is developed in Section 4.8. The results obtained show that the 

proposed adaptive configuration makes the closed loop system stable even in the 

presence of bounded and persistent disturbances. The adaptive configuration was 

successfully tested in simulation, HIL and a preliminary implementation on the MFF 
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prototype and a quadrotor (see appendix A). From the results presented in Chapter 6 there 

is a marked improvement on stability and robustness after augmenting the baseline NLDI 

controller with the bio-inspired adaptive approach. The adaptive augmentation is able to 

successfully mitigate failures and enhance the overall stability performance of the system 

under different abnormal conditions. However, for the real case implementations on 

board the MFF and quadrotor it was noticeable that the system had some more 

conservative limits in the adaptive power gain before it became unstable. It is important 

to highlight that for real world implementation, some basic assumptions on the proves 

developed in Chapter 4 are not applicable. For example, for the stability analysis, the 

system is assumed to be continuous in time. However, the implementation in hardware 

requires discretization of the control laws which may behave differently than its 

continuous counterpart. This can be perceived whenever the sample and execution times 

are not faster than the fastest dynamic modes of the system. Increasing the adaptive 

power gain can increase the overall response time of the system; this can increase the 

frequency of the dynamic modes of the system and as a result the gap between the fastest 

modes and discretization sample time is reduced. This means that one source of 

instability could be this discretization process of the control laws.  

Another source of instability can be the delay between the control system input 

and the actuator response. Although this is contemplated in the simulations, it is nearly 

impossible to consider the actuator dynamics within the proof of stability without loss of 

generality. A possible future work would be including the effect of actuator time response 

in the stability proves developed in this dissertation. This might provide more realistic 

gain bounds to maintain stable operation of the system. 
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9.2.  Quaternion Based Adaptive Controller 

As mentioned earlier, the second novel adaptive configuration approach relies 

mainly on quaternion kinematics and its main goal is to be incorporated in aerospace 

systems that can attain large attitude angles. A formal proof of boundedness of the 

quaternion error states and stability of angular rates was presented in Sections 7.2 and 7.3 

using the Lyapunov control design technique and Barbalat’s Lemma. This adaptive 

configuration was successfully implemented into the ACGFF (see Chapter 8). The results 

show that the adaptive augmentation yields improved tracking performance in the 

presence of thruster failures. It was noticed that the performance of the adaptive 

controller in failure conditions was actually better than the baseline controller in the 

nominal case. These results were validated more than once for consistency, which means 

that the adaptation really improves the overall performance of the system. One interesting 

thing that was noticed from the results is that the adaptive augmentation reduced the 

response time without compromising the overall overshot of the system, something that a 

linear controller can’t achieve. 

 One possible way to enhance the quaternion based adaptation architecture, that 

could be an interesting topic for future work, is to include a model reference adaptation 

similar to the one developed in Chapter 4 instead of the non-model dependence approach 

adopted for the quaternion configuration. This means that instead of using the change 

between current and past inputs as the adaptive parameter used by the immune adaptive 

function, the difference between the actual control input and the input to an idealized 

model reference plant that runs online could be used. This approach might be a more 

reliable way to incorporate adaptation since it is well known that MRAC control can 
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provide enhanced robustness by always comparing the response of the actual system 

respect to an idealized model response. The main challenge with this new possible 

approach would be to determine if the proof of stability is not affected by using a model 

reference plant. 

9.3.  Additional Remarks 

 Additional to the recommendations outlined in the previous sections, another 

possible way to enhance the performance of the closed loop system, augmented by means 

of bio-inspired adaptive control, would be to include some sort of dynamic feedback 

within the actual configurations developed in this research. So far the adaptation laws are 

dynamic and time varying in the sense that they change and accommodate when 

abnormal conditions occur; this can be clearly seen in most of the results of Chapter 6. 

However it is worth mentioning that the approach developed in this dissertation does not 

rely on integrators or differential equations that govern the dynamics of the adaptive 

gains as opposed to well-known adaptive algorithms. Therefore, incorporating somehow 

a dynamic feedback, perhaps by using an adaptive integral gain, could be an appropriate 

way to improve the system performance and robustness to uncertainties.  

 Another possible way to enhance the MRAIS adaptive controller developed in 

this dissertation is to allow that the adaptive gains increase and decrease in both 

directions. So far the adaptive gains can increase or decrease but can never go down from 

a minimum value, this is due to the original form of the immune system adaptive function 

and stability restrictions given by Lyapunov’s theory.  However, based on the resultant 

adaptive control law for the quaternion case (see Eq.(7.38)) in which two sided 

adaptation was achieved adding a product of sign( )i iqδ ω  with the corresponding baseline 
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immune adaptive gain. This additional modification was required to satisfy Lyapunov 

stability criteria, therefore if this approach was possible for the quaternion architecture 

there is a good chance that it is also possible to incorporate an additional modification to 

the MRAIS controller including a sign(.) function to allow two sided adaptation.  
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A. Implementation Results on 3DR-X8 Quadrotor 

The MRAIS adaptive architecture was also implemented on a quadrotor while 

performing an autonomous tracking maneuver with abnormal conditions. The failure 

consists of a 34% and 37% limited actuation on motors 1 and 4 respectively as shown in 

Figure A.1. 

 

Figure A.1 Failure Injection Profile. 

The adaptation control is then compared with respect to the baseline controller; 

the tracking performance under failure is shown in Figure A.2. 

 

Figure A.2 Euler Angle Tracking Error. 
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Figure A.3 Roll and Pitch Adaptive Gains. 

To analyze the tracking performance of both controllers, the root mean square 

tracking error was calculated for the roll and pitch channels during the duration of the 

trajectory. Table A.1 shows the resultant tracking rms errors per case. 

Table A.1 Tracking Error Activity for X8 Quadrotor Results. 

Failure M1 and M4 

NLDI NLDI+MRAIS 

rms 
x

eω (deg/s) 22.49 8.92 

rms 
y

eω (deg/s) 14.03 6.13 

rms eφ  (deg) 7.20 6.79 

rms eθ  (deg) 4.47 5.68 

Total 48.19 27.51 
 

 From Table A.1 it can be seen that the total tracking error  of the adaptive 

augmentation is considerably less than the total tracking error of the NLDI without the 

augmentation. 
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