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ABSTRACT 

 

Derjany, Pierrot MSAE, Embry-Riddle Aeronautical University, August 2015. Actuation 

Pattern Optimization by Genetic Algorithm for Structural Health Monitoring. 

 

The objective of this research is to investigate an optimized two-dimensional 

random pattern of uniformly excited points using the Genetic Algorithm (GA) technique 

for structural health monitoring. The point excitations generate ultrasonic waves in both 

isotropic and anisotropic materials that can be effective in diagnosing structural defects. 

The formed ultrasonic waves can constructively interfere and send out an intense wave 

beam to a predetermined target. The constructed wave beams can be steered to different 

directions with variable target distances. In the GA, the cost function is constructed to 

reduce main lobe beamwidth, eliminate grating lobes and suppress sidelobes’ levels. 

Mathematical modelling, finite element simulations, and optimizations are successively 

performed to achieve the objectives. 

Firstly, a mathematical beamforming model is developed to describe the 

excitation pattern of which each point is excited at the same time delay with a uniform 

weighting factor. The derived methodology accounts for enclosing all excitations within a 

certain aperture. The centroid of the emitting sources is also kept at the origin of the 

Cartesian coordinate within a slight tolerance range. For the near field, in isotropic 

materials, the excitation points lay on equally spaced circular arcs centered at the target 

point. In anisotropic materials, such as composites, the wave amplitude and phase 

velocity are highly dependent on fiber directions. Because of anisotropic nature, the 

excitation geometry becomes quite complicated. 
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Secondly, finite element models for aluminum and composite plates are simulated 

to extract wave characteristics, such as displacement amplitudes, phase velocity profiles 

and slowness curves. These data are implemented later in the optimization algorithm. A 

quarter plate of radius 150mm and 1.125mm thickness is modelled as a three-dimensional 

solid part. A concentrated force with a 2.5 cycle-Hanning window sinusoidal signal is 

applied at the center of the plate and the boundaries are chosen to be symmetrical. Radial 

sensors at 5 degrees increments are positioned at 50mm from the excitation source to 

measure wave properties. The simulation results show that the amplitude and velocity are 

uniform for isotropic materials whereas the waves propagate rapidly with higher 

amplitudes along the fibers in anisotropic materials. 

Thirdly, after collecting all the required information, a GA optimization technique 

is applied to generate the excitation population of x- and y-coordinates. The pre-

determined population is permutated, cross-overed and mutated so that additional 

possibilities are produced. The same process is repeated for many generations until the 

local optimum result is obtained. 

Finally, the near field beamforming is plotted in MATLAB at different actuation 

point numbers for the isotropic and anisotropic materials. The results are then compared 

to other linear, circular and planar patterns found in literature. 
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1. Introduction 

Structural and mechanical components are always exposed to functioning 

damages, thus, continuous inspection and restoration are mandatory. To return the 

equipment to a previous state or keep it operating at its existent condition, significant 

funds are spent for repair and maintenance. For instance, airline operators normally 

maintain their fleet based on prescheduled maintenance. This method is set by the 

manufacturers who analyze historical trends after severe failures of mechanical devices. 

This preventive process increases operating costs as it sometimes requires replacement of 

non-defected parts and additional labor. Industries are trying to minimize these costs 

through a structural health monitoring (SHM) method depending on the actual status and 

lifetime of the component. 

Nowadays, engineers consider SHM a powerful tool to improve the 

maintainability and safety of critical structures. In aerospace industries, SHM was 

developed when different airlines and manufacturers collaborated to establish the 

condition based maintenance (CBM) program. Traditional time-based maintenance 

activities assume that all flight sorties stress the aircraft in the same way. However, some 

maneuvers and harsh operational environments strain certain parts more than others and 

have a direct influence on their life cycle. The SHM system implements transducers 

which allow continuous observation of a system and data collection of critical 

components to obtain real time updates during flight. Thus, defected parts may be 

repaired or replaced upon indications of malfunction. 

The SHM technique continuously observes a system and periodically extracts 

vibration data by spaced time intervals. Therefore, the operators are kept updated about 
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the status of the equipment and noticed about a present damage and its location on the 

assembly. State-of-the-art SHM methods still do not deliver sufficient information about 

the extent and the nature of the occurred damage. It is said that such “global” SHM 

evaluates the overall health of the structure. Therefore, supplementary non-destructive-

examinations (NDE) need to be accomplished on the defected part to assess local 

monitoring (Deng & Liu, 2011). 

1.1.Damage Definition and Classification 

Damage is generally defined as an alteration of an operating system in a way that 

its present or future performance is impacted (Farrar & Worden, 2007 qtd. in Deng & 

Liu, 2011). In this thesis, the damage is investigated on static structures. Accordingly, the 

changes in material and geometric properties leading to modification of boundary 

conditions and system connectivity (Deng & Liu, 2011) are of major concern. 

Damage is assessed on length and time scales (Deng & Liu, 2011). In terms of 

length-scales, any component has typically inherent microscopic manufacturing defects 

known also as flaws. On the other hand, not every damage causes entire functionality 

failure. Failure is the point where the damage overpasses the allowable threshold and 

severely affects the system’s operation. On the time level, a flaw expands progressively 

and the rate of propagation can be either slow or fast. Fatigue or corrosion accumulate 

over a long period of time, whereas scheduled discrete events happen instantaneously. 

For instance, at landing, an aircraft touch-down is a prompt state causing a high dynamic 

loading that severely stresses the undercarriage (Deng & Liu, 2011). 

Referring to Rytter (1993), the damage status is analyzed by responding to the 

following questions (qtd. in Deng & Liu, 2011):  
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 Is the system really damaged or not? (Existence) 

 If present, where is the damage position on the structure? (Location) 

 What kind of damage is it? (Type) 

 How severe is the defect? (Extent) 

 What is the remaining life of the part? (Prognosis) 

The answers of these inquiries are fulfilled by the Structural Health Monitoring technique 

and Non-Destructive-Evaluations. 

1.2.Non Destructive Examination (NDE) 

Non-Destructive Evaluation is the discipline of evaluating the integrity of 

materials and structures without triggering any harm. The terms Non-Destructive 

Evaluation (NDE), Non-Destructive Examination (NDE), Non-Destructive Inspection 

(NDI) and Non-Destructive Testing (NDT) are interchangeable. NDE is critical to 

determine the system safety and reliability. In conventional NDE’s, the part to be 

examined is “carried out off-line” to be inspected. However, current innovative 

techniques enable inspection of “in-situ” structures (Deng & Liu, 2011). 

NDTs are numerous and depend on the material being checked. The selection of 

the appropriate method depends on the type of defect to be explored. Aluminum alloys 

and reinforced composites are often used in most aircraft structures. Aluminum 

experiences various failure modes such as fatigue, corrosion fatigue, creep and fracture. 

Some of the techniques to detect such failures are shown in Table 1.1. Anisotropic 

composites undergo other failure scenarios, shown in Table 1.2 with their appropriate 

examination performances. 
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Table 1.1. A series of NDE techniques for metal alloys (Colangelo & Heiser, 1987) 

 

 

Table 1.2. Non-Destructive Evaluations applicable for composites failure modes (Vaara 

& Leinonen, 2012) 

 

1.3.Structural Health Monitoring (SHM) 

Chang et al. (2003) explain structural health monitoring as “the process of 

determining and tracking structural integrity and assessing the nature of damage in a 

structure (or the process of implementing a damage identification strategy)” (qtd. in Deng 
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& Liu, 2011).  

The statistical pattern recognition paradigm for SHM involves (Farrar & Worden, 

2013): 

 Operational evaluation: Defines the specific type of damage to be identified and 

the technical, operational and environmental restrictions facing the SHM system. 

 Data acquisition: Selects the suitable hardware and the data to be extracted and 

interpreted. 

 Feature extraction: Identifies the damage features and set the standards and 

thresholds for data classification. 

 Statistical model development for feature discrimination: Distinguishes between 

damaged and undamaged states. 

Conventional method for structural assessment relies upon the displacement and 

velocity response to applied loads. These characteristics are obtained by solving the 

differential system of motion equations depending on the mass, damping and stiffness 

matrices when loads are applied on the system (Nagayama & Spencer, 2007). The current 

engineering proposes complicated, huge structures consisting of different members 

making such method time costly and theoretically difficult to manipulate. An innovative 

approach is suggested by monitoring the vibration measurements delivered by “smart 

sensors” attached to the excited structural constituents. The essential aspects of a smart 

sensor are (Nagayama & Spencer, 2007): 

 On-board microprocessor for data analysis 

 High sensing ability  

 Wireless communication between the sensing devices and the microprocessor 
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 Battery-powered for long term use 

 Affordable operational cost  

For their unmanned aerial vehicles, composite crew module, reentry vehicles, 

space vehicles, vehicle pressure systems, space shuttle orbiter and expendable launch 

vehicles, NASA manipulated three types of transducers to fulfill the mission purposes 

(Richards, Madaras, Prosser & Studor, 2013): 

 Piezoelectric sensor-based SHM on the International Space Station (ISS). 

Piezoelectricity is defined as the ability of a certain type of material to accumulate 

electric charges when subjected to a mechanical load. The amount of stress is 

determined by measuring the voltage at the dipoles of the transducer. The Distributed 

Impact Detection System (DIDS) identifies leak sites on space vehicles by means of 

piezoelectric sensors (Richards, Madaras, Prosser & Studor, 2013) bonded to the 

structure as shown in Figure 1.2. 

 

Figure 1.1. ISS Ultrasonic Background Noise Test System Overview (Richards, Madaras, 

Prosser & Studor, 2013)   
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 Piezoelectric accelerometers and acoustic-based SHM on space shuttles.  The 

accelerometers constitute the Wing Leading Edge Impact Detection System 

(WLEIDS). They are mounted on all Shuttles to detected impacts during ascent. A 

cross-sectional view of an accelerometer is shown in Figure 1.3. 

 
Figure 1.2. A typical schema of the internal components of an accelerometer 

(en.wikipedia.org) 

 

 Fiber-optic-based SHM on Aerospace Vehicles. Such system possesses a light source, 

optical fibers, a transducer and a detector as shown in Figure 1.4 (Krohn, MacDougall 

& Mendez, 2015). 

 

Figure 1.3. Components of a Fiber-optic-based SHM system (micronoptics.com) 

 

Fiber Optic Sensing with Fiber Bragg Gratings (FBG) has promising applications 

for space vehicles. Fiber Bragg Grating Optical Frequency Domain Reflectometry 

enables real time measurement of strain, temperature, liquid level, mode shapes, natural 

frequencies, buckling modes, etc. (Richards, Madaras, Prosser & Studor, 2013).   

http://spie.org/profile/David.Krohn-6791
http://spie.org/profile/Trevor.MacDougall-6830
http://spie.org/profile/Alexis.Mendez-5181
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A FBG sensor reflects a portion of the emitted light, propagating at “Bragg” 

wavelength, and allows passage of the remaining beam without affecting its property. 

The Bragg wavelength is determined from the fiber refractive index (Baskar Rao et al., 

2006) and grating pitch. These two factors are affected by the ambient environmental 

fluctuations, such as temperature, strain, vibration, etc. (Guo, Xiao, Mrad & Yao, 2011). 

Strain gauges are common for wide structural health monitoring practices as they 

are low-cost and easy-to-attach devices. They also have a high sensitivity which enables 

early detection of miniature flaws. The gauges are mounted on the object by an 

appropriate adhesive and its electrical conductance is highly dependence on its flexible 

geometry. When elastically deformed, the resistance of the gauge alters, thus the amount 

of enforced strain is determined (Choi et al., 2008). 

These transducers transmute electrical signal into ultrasonic disturbances and 

conversely. In addition, they provide health evaluation in either “transmit” (active) or 

“receive” (passive) modes of wave propagation within the structure. The types of these 

guided waves are discussed in details in the following chapter. 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Electrical_conductance
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2. Elastic Waves 

Elastic waves are disturbances propagating within a medium that has the 

properties of inertia and elasticity. When a solid is distorted by forced vibrations, its 

particles oscillate about their equilibrium positions. The disturbance energy is quickly 

transmitted between neighboring molecules causing mechanical stresses to build up. If 

the particles vibrate in the same direction as the motion of the wave, the interatomic 

forces are tensile and compressive. In addition, lateral displacement also occurs as a 

result of shear loads. Due to the inherent elastic behavior of the material, restoration 

forces react autonomously to resume the initial shape. Pressure, shear, flexural, Rayleigh 

and Lamb are the common types of elastic waves. (Yu, 2006). 

The wave’s category is determined by the propagation medium and wave profile. 

For instance, Lamb waves are ultrasonic disturbances that spread over a surface of a plate 

of thickness comparable to the wavelength. In a one dimensional medium, straight-

crested Lamb waves form, whereas circular-crested Lamb waves are recognized for two 

dimensional propagation. 

2.1. Guided Lamb Waves  

Lamb waves, also referred to as plate waves, are a powerful device to evaluate the 

condition of a material in a thin plate structure. They are also extensively implemented in 

non-destructive evaluation. Lamb waves are a guided wave type; the resulting 

fluctuations, from imposed a mechanical stress on a specimen under test, travel along the 

structures while guided by the boundaries. Accordingly, the loss of energy resulting from 

material interaction is kept at its lowest level. In structural health monitoring, Lamb 

waves are able to detect any damage within a structure using a sparse array of actuation 
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sensing points. 

Like other types of disturbances, Lamb waves are produced in traction free plate’s 

boundaries (the surfaces are free from external stress). However, these waves have only 

displacement along and orthogonal to the wave traveling direction (Jaeger et al., 2009). 

Lamb waves occur when the wavelength is greater than or of the order of the plate 

thickness (Lahiri et al., 2000 & David & Cheeke, 2012). For a high wavelength to 

thickness ratio, lamb waves are highly dispersive; numerous modes are produced. 

Dispersion means that the phase and group velocities are function of frequency.  

Infinite Lamb wave propagation modes exist but the displacement of the material 

layers is mainly classified as symmetric and antisymmetric, as depicted in Figure 2.1. In 

symmetric modes, also referred as longitudinal mode shapes, the resultant displacement 

occurs along a direction parallel to the longitudinal axis of the structure. On the other 

hand, antisymmetric modes, known as flexural modes, are attributed to the dislocations in 

the transverse direction. The infinitely existing modes within the plate are recognized by 

their phase velocities. Dispersion curves of the velocity as a function of the frequency 

describe the propagation aspects of a wave.

 

Figure 2.1. Lamb wave propagation modes; (a) antisymmetric; (b) symmetric 

  

Active excitation approaches use guided lamb waves for the health monitoring of 

structures. For flaw detection, the pitch-catch or pulse-echo methods are used, depicted in 

Figure 2.2. In the pitch-catch technique, the actuation’s source and sensor are located 
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from both sides of the defect, whereas for pulse-echo approach, the transducer on one 

side of the flaw acts as both wave emitter and receiver. 

 

Figure 2.2. Lamb wave propagation for structural health monitoring of composite 

laminate using: (a) pitch-catch; (b) pulse-echo methods (Calomfirescu, 2008) 

 

2.2. Wave Equations 

A wave is the product of periodic disturbances of a vibrating source to a particle 

of the medium. Within a single period, the source displaces the excited particle in a 

sinusoidal, one cycle pattern. It moves upwards from the equilibrium position, back to 

rest, then, downwards from rest, and always ends up at the starting point which is 

considered its origin. The general wave equation is a hyperbolic, second-order, linear 

partial differential equation in terms of time and displacement. Therefore, the 

displacement profile can be determined by solving the equation subjected to the boundary 

conditions of the transmission medium. The material constituting the propagation 

platform has also tremendous influence on the final result. In the following, the solutions 

for isotropic and anisotropic media are sequentially derived. 

2.2.1. Isotropic Circular Wave Equations 

For an isotropic three dimensional body, the circular wave displacement equation, 

at a point P(r, 𝜃) and time t, has the form of (Giurgiutiu, 2014) : 

 𝛻2𝑢(𝑟, 𝜃, 𝑡) =
1

𝑐2
𝜕2𝑢

𝜕𝑡2
  (2.1) 

where: 

u is the displacement function  
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t is time variable  

c is the wave speed  

𝛻 is the gradient  

𝛻2𝑢(𝑟, 𝑡) can be also written as: 

𝛻2𝑢(𝑟, 𝜃, 𝑡) = 𝛻2𝑢 = 
𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝑟2
𝜕2𝑢

𝜕𝜃2
 (2.2) 

For circular symmetry, 𝑢 = 𝑢(𝑟, 𝑡), thus: 

𝛻2𝑢(𝑟, 𝑡) = 𝛻2𝑢 = 
𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
 (2.3) 

Equating Equation (2.1) to (2.3): 

 
𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
 = 

1

𝑐2
𝜕2𝑢

𝜕𝑡2
 (2.4) 

When r >>1, Equation (2.3) can be written as: 

𝛻2𝑢(𝑟, 𝑡) = 𝛻2𝑢 = 
1

√𝑟
 
𝜕2(𝑢√𝑟)

𝜕𝑟2
+

1

4𝑟2
 𝑢 

(2.5) 

Proof: 

𝜕(𝑢√𝑟)

𝜕𝑟
 = 

𝜕𝑢

𝜕𝑟
 √𝑟 + 

1

2√𝑟
 𝑢 

𝜕2(𝑢√𝑟)

𝜕𝑟2
 = 

𝜕

𝜕𝑟
 [
𝜕𝑢

𝜕𝑟
 √𝑟 + 

1

2√𝑟
 𝑢]  

            = 
𝜕2𝑢

𝜕𝑟2
 √𝑟 + 

1

2

1

√𝑟

𝜕𝑢

𝜕𝑟
 + 

1

2

1

√𝑟

𝜕𝑢

𝜕𝑟
 − 

1

4𝑟

𝑢

√𝑟
 

            = 
𝜕2𝑢

𝜕𝑟2
 √𝑟 + 

1

√𝑟

𝜕𝑢

𝜕𝑟
 − 

1

4𝑟

𝑢

√𝑟
 

            = √𝑟 [ 
𝜕2𝑢

𝜕𝑟2
  + 

1

𝑟

𝜕𝑢

𝜕𝑟
 − 

1

4

𝑢

𝑟2
 ] : (*) 

Divide both sides of Equation (*) by √𝑟 : 

1

√𝑟
 
𝜕2(𝑢√𝑟)

𝜕𝑟2
 = 

𝜕2𝑢

𝜕𝑟2
  + 

1

𝑟

𝜕𝑢

𝜕𝑟
 − 

1

4

𝑢

𝑟2
 

or from Equation (2.3): 𝛻2𝑢 = 
𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
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Thus, 
1

√𝑟
 
𝜕2(𝑢√𝑟)

𝜕𝑟2
 = 𝛻2𝑢 − 

1

4

𝑢

𝑟2
 : (**) 

Adding 
1

4

𝑢

𝑟2
 to both sides of Equation (**): 

𝛻2𝑢 =  
1

√𝑟
 
𝜕2(𝑢√𝑟)

𝜕𝑟2
 + 

1

4

𝑢

𝑟2
 

Thus, Equation (2.4) becomes: 

𝛻2𝑢 = 
1

√𝑟
 
𝜕2(𝑢√𝑟)

𝜕𝑟2
+

1

4𝑟2
 𝑢 = 

1

𝑐2
𝜕2𝑢

𝜕𝑡2
 

(2.6) 

 

The d’Alembert solution to Equation (2.5) is given by: 

√𝑟 𝑢(𝑟, 𝑡) = 𝑓(𝑟 − 𝑐𝑡) + 𝑔(𝑟 + 𝑐𝑡) (2.7) 

As the waves propagate in an outward direction from the emission source, 𝑔(𝑟 + 𝑐𝑡) = 0 

and √𝑟 𝑢(𝑟, 𝑡) reduces to: 

√𝑟 𝑢(𝑟, 𝑡) = 𝑓(𝑟 − 𝑐𝑡) (2.8) 

Dividing both sides of Equation (2.8) by √𝑟 : 

𝑢(𝑟, 𝑡) =
1

√𝑟
𝑓(𝑟 − 𝑐𝑡) 

(2.9) 

For a generic wave, the displacement vector is expressed by: 

�⃗� (𝑟, 𝑡) =
𝐴 

√𝑟
𝑓(𝑟 − 𝑐𝑡) 

(2.10) 

Where �⃗�  and 𝐴  have component in r and 𝜃 directions. 

For harmonic circular waves, equation (2.6) is solved by separation of variables method: 

𝑢(𝑟 , 𝑡)√𝑟 = 𝐵𝑒−𝑖(�⃗�
 .𝑟 +𝜔𝑡) +  𝐶𝑒𝑖(�⃗� .𝑟 −𝜔𝑡) (2.11) 

where 

B and C are the displacement amplitudes 



14  

𝜔 is the angular frequency, 𝜔=2𝜋f 

�⃗�  is the wave vector 

𝑟  is the displacement vector 

 

Again, as the waves propagate in an outward direction from the emission 

source, 𝑔𝐵𝑒−𝑖(�⃗� .𝑟 +𝜔𝑡) = 0 and 𝑢(𝑟 , 𝑡)√𝑟 reduces to: 

𝑢(𝑟 , 𝑡)√𝑟 = 𝐶𝑒𝑖(�⃗�
 .𝑟 −𝜔𝑡) (2.12) 

Dividing both sides of Equation (2.12) by √𝑟 : 

𝑢(𝑟 , 𝑡) =
𝐶

√𝑟
𝑒𝑖(�⃗� .𝑟 −𝜔𝑡) 

(2.13) 

Equation (2.13) can be also replaced by: 

𝑢(𝑟 , 𝑡) =
𝐶

√𝑟
𝑒𝑖(𝜔𝑡−�⃗� .𝑟 ) 

(2.14) 

Proof: 

𝑒𝑖(�⃗� .𝑟 −𝜔𝑡) = cos (�⃗� . 𝑟 − 𝜔𝑡) + i sin (�⃗� . 𝑟 − 𝜔𝑡) 

Thus Equation (2.13) can be written as: 

𝑢(𝑟 , 𝑡) =
𝐶

√𝑟
𝑒𝑖(�⃗� .𝑟 −𝜔𝑡) = 

𝐶

√𝑟
 [cos (�⃗� . 𝑟 − 𝜔𝑡) + i sin (�⃗� . 𝑟 − 𝜔𝑡)] 

But the displacement cannot be complex, therefore: 

𝑢(𝑟 , 𝑡) =
𝐶

√𝑟
𝑒𝑖(�⃗�

 .𝑟 −𝜔𝑡) = 
𝐶

√𝑟
 cos (�⃗� . 𝑟 − 𝜔𝑡) 

                                     = 
𝐶

√𝑟
 cos [−(�⃗� . 𝑟 − 𝜔𝑡)] 

                                     = 
𝐶

√𝑟
 cos (𝜔𝑡 − �⃗� . 𝑟 ) 
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Again 𝑢(𝑟 , 𝑡) can be expressed in exponential form by: 

𝑢(𝑟 , 𝑡) =  
𝐶

√𝑟
𝑒𝑖(𝜔𝑡−�⃗� .𝑟 ) 

 

The wave front, plotted in Figure 2.3, is the group of points in the wave having 

the same phase after time t has elapsed. The wave front at distance r from the point 

source is given by: 

�⃗� . 𝑟  = constant (2.15) 

 

Figure 2.3. Circular wave fronts produced by a single point source in a two-

dimensional plane 

 

The magnitude of the wave vector is given in terms of wavelength 𝜆 by: 

𝑘 = |�⃗� | = 
2𝜋

𝜆
 (2.16) 

Proof: 

Let �⃗�  = 𝑘𝑟𝑒𝑟⃗⃗  ⃗ and 𝑟  = 𝑟𝑒𝑟⃗⃗  ⃗  

Thus, �⃗� . 𝑟  = 𝑟. 𝑘 : (*) 

Substituting (*) in (2.13): 
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𝑢(𝑟 , 𝑡) =  
𝐴

√𝑟
 𝑒𝑖(𝜔𝑡−𝑟.𝑘 ) : (**) 

Deriving (**) and replacing in (2.6): 

𝜕(𝑢√𝑟)

𝜕𝑟
 = − k.i.A. 𝑒𝑖(𝜔𝑡−𝑟.𝑘 ) 

𝜕2(𝑢√𝑟)

𝜕𝑟2
 = −𝑘2.𝐴. 𝑒𝑖(𝜔𝑡−𝑟.𝑘 ) 

1

√𝑟
 
𝜕2(𝑢√𝑟)

𝜕𝑟2
 = −

1

√𝑟
 . 𝑘2.𝐴. 𝑒𝑖(𝜔𝑡−𝑟.𝑘 ) 

and 

 
1

4𝑟2
 𝑢 = 

1

4𝑟2
 
𝐴

√𝑟
 𝑒𝑖(𝜔𝑡−𝑟.𝑘 )  

Thus, 

1

√𝑟
 
𝜕2(𝑢√𝑟)

𝜕𝑟2
+

1

4𝑟2
 𝑢 = −

1

√𝑟
 . 𝑘2.𝐴. 𝑒𝑖(𝜔𝑡−𝑟.𝑘 ) + 

1

4𝑟2
 
𝐴

√𝑟
 𝑒𝑖(𝜔𝑡−𝑟.𝑘 )  

                                  = 𝑒𝑖(𝜔𝑡−𝑟.𝑘 ) [−
1

√𝑟
 . 𝑘2.𝐴 + 

1

4𝑟2
 
𝐴

√𝑟
 ] : (#) 

On the other hand, 

1

𝑐2
𝜕2𝑢

𝜕𝑡2
 = 

𝜔2

𝑐2
 
𝐴

√𝑟
 𝑒𝑖(𝜔𝑡−𝑟.𝑘 ): (##) 

Equating Equations (#) to (##) yields: 

𝑒𝑖(𝜔𝑡−𝑟.𝑘 ) [−
1

√𝑟
 . 𝑘2.𝐴 + 

1

4𝑟2
 
𝐴

√𝑟
 ] = 

𝜔2

𝑐2
 
𝐴

√𝑟
 𝑒𝑖(𝜔𝑡−𝑟.𝑘 ) 

−
1

√𝑟
 . 𝑘2.𝐴 + 

1

4𝑟2
 
𝐴

√𝑟
  = 

𝜔2

𝑐2
 
𝐴

√𝑟
 ≈ −

1

√𝑟
 . 𝑘2.𝐴 when r >>1 

Therefore,  

𝑘2 = 
𝜔2

𝑐2
 

Square rooting both sides: 

𝑘 = 
𝜔

𝑐
 

Or 𝜔 = 2𝜋f and 𝑐 = 𝜆𝑓 thus: 
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𝑘 = 
2𝜋f

𝜆𝑓
 = 

2𝜋

𝜆
  

2.2.2. Anisotropic Wave Equations 

The stress-strain relationship for orthotropic material in its local coordinate 

system is given by:  

[
 
 
 
 
𝜎1
𝜎2
𝜎3
𝜏23
𝜏13
𝜏12]
 
 
 
 

 = 

[
 
 
 
 
 
 
𝐶11̅̅ ̅̅ 𝐶12̅̅ ̅̅ 𝐶13̅̅ ̅̅

𝐶12̅̅ ̅̅ 𝐶22̅̅ ̅̅ 𝐶23̅̅ ̅̅

𝐶13̅̅ ̅̅ 𝐶23̅̅ ̅̅ 𝐶33̅̅ ̅̅

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐶44̅̅ ̅̅ 0 0

0 𝐶55̅̅ ̅̅ 0

0 0 𝐶66̅̅ ̅̅ ]
 
 
 
 
 
 

 

[
 
 
 
 
𝜖1
𝜖2
𝜖3
𝜖23
𝜖13
𝜖12]
 
 
 
 

 

 

 

(2.17) 

Direction 1 is along the fibers and [𝐶𝐼𝐽]̅̅ ̅̅ ̅ is the local stiffness matrix. 

Another stress-strain relation exists for a global coordinate system rotated by an 

angle 𝛼 form the local system. Denote by 𝛽𝐼𝐽 the transformation matrix. Thus, the global 

stiffness matrix is obtained from the relation: 

[𝐶𝐼𝐽] = [𝛽𝐼𝐽]
−1[𝐶𝐼𝐽]̅̅ ̅̅ ̅ [𝛽𝐼𝐽]

−𝑇 (2.18) 

 

where  

 

 

 

 

(2.19) 

and  
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[𝐶𝐼𝐽] = 

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

0    0   𝐶16
0     0 𝐶26
0     0 𝐶36

0 0 0
0 0 0
𝐶16 𝐶26 𝐶36

𝐶44 𝐶45 0
𝐶45 𝐶55 0
0 0 𝐶66]

 
 
 
 
 

 

 

 

(2.20) 

 

Referring to Rokhlin et al. (2011), the guided wave equation for a uniaxial laminate is 

portrayed by: 

𝜌𝑠
𝜕2𝑢𝑖

𝜕𝑡2
 =  𝑐𝑖𝑗𝑘𝑙 

𝜕2𝑢𝑘

𝜕𝑥𝑗 𝜕𝑥𝑙 
 ; i=1,2,3 (2.21) 

 

Because of the anisotropic nature of composites, the wave components (longitudinal and 

transversal) cannot be separated. Composite laminates experience two quasi-shear and 

one quasi-longitudinal modes.  The solution to equation (2.21) is given by (Rokhlin et al., 

2011): 

 𝑢𝑘 = 𝑈𝑘𝑒[i(𝜁𝑝𝑥1 + 𝛼
𝑘𝑥3−𝜁𝑝𝑉𝑝𝑡)] (2.22) 

where 

𝑉𝑝 is the phase velocity  

𝜁𝑝 is the wave vector projection into the 𝑥1 axis 

𝛼𝑘 is the 𝑥3 partial component of the partial wave vector  

𝑢𝑘 is the wave displacement 

𝑈𝑘 is the amplitude of wave displacement 

k is the index of the partial wave modes. k=1,2,…,6 

𝜌𝑠 is the volumetric density 

 The amplitude 𝑈𝑘 and the 𝑥3 partial component of the partial wave vector 𝛼𝑘 are 



19  

calculated from solving the system below (Rokhlin et al., 2011): 

[

𝐴 + 𝐶55𝛼𝑘̅̅̅̅
2

𝐶16 + 𝐶45𝛼𝑘̅̅̅̅
2

(𝐶13 + 𝐶55)𝛼𝑘̅̅̅̅

𝐶16 + 𝐶45𝛼𝑘̅̅̅̅
2

(𝐶13 + 𝐶55)𝛼𝑘̅̅̅̅
𝐵 + 𝐶44𝛼𝑘̅̅̅̅

2

(𝐶36 + 𝐶45)𝛼𝑘̅̅̅̅

(𝐶36 + 𝐶45)𝛼𝑘̅̅̅̅

𝐷 + 𝐶33𝛼𝑘̅̅̅̅
2

] [

𝑈1
𝑘

𝑈2
𝑘

𝑈3
𝑘

] = [
0
0
0
] 

 

(2.23) 

where: 

𝛼𝑘̅̅̅̅  = 
𝛼𝑘

𝜁𝑝
 

𝐴 = 𝐶11 − 𝜌𝑠𝑉𝑝
2  

𝐵 = 𝐶66 − 𝜌𝑠𝑉𝑝
2  

𝐶 = 𝐶55 − 𝜌𝑠𝑉𝑝
2  

Equation (2.23) is an eigen value and vector problem. First the determinant of the left 

hand side matrix is set to zero to calculate 𝛼𝑘̅̅̅̅ , then the components of the displacement 

vector 𝑈𝑖
𝑘 are computed. 

2.3. Phase and Group Velocity and Slowness Curve 

The wave velocity expression is controversial because it is defined in many ways 

depending on the aspect of interest. Any given type of physical waves propagating in a 

solid medium is characterized by what is called group and phase velocities and slowness 

curves.  This is due to the existing dispersion relation between the wave number and the 

frequency of waves. 

The phase velocity is defined as the rate of the phase propagation in a given 

space. For instance, determine an emission point and locate two points on a medium at a 

known distance from each other, as depicted in Figure 2.4. The phase velocity is the ratio 

of this distance over the elapsed time required for any point of the disturbance signal in 

Figure 2.5 to travel from the first point to the second denoted respectively A and B.  

https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Wave_propagation
https://en.wikipedia.org/wiki/Wave_propagation
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Figure 2.4. Two dimensional plate 

with single point sources and two 

sensing nodes A and B in space 

domain 

Figure 2.5. Out-of-plane displacement of a 

disturbance signal in time domain 

 

The phase velocity is expressed in function of the wavelength λ and period T by: 

𝑣𝑝 = 
𝜆

𝑇
 (2.24) 

But 

From equation (2.6), 𝑘 = 
2𝜋

𝜆
  𝜆 = 

2𝜋

𝑘
  

The frequency f is the inverse of the period T: 𝑓 = 
1

𝑇
 

Thus, the other forms of phase velocity are given by: 

𝑣𝑝 = 𝜆 f = 
𝜔

𝑘
 (2.25) 

The slowness curve is the inverse plot (1/𝑣𝑝) of the phase velocity profile. 

On the other hand, the group velocity is the velocity of propagation of the 

envelope of a signal.  The group velocity is a first order derivative of angular frequency ω 

with respect to the wave number k: 

https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Wave_period
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𝑣𝑔 ={

𝜕𝜔

𝜕𝑘
 if isotropic

     
𝜕𝜔

𝜕𝑘𝑖
 if anisotropic

  

 

(2.26) 

 

For composites, the wave number 𝑘𝑖 is dependent on the varying wavefront’s outward 

normal vector 𝑛𝑖. The wave number 𝑘𝑖 is written as: 

𝑘𝑖  = 
𝜔

𝑣𝑝
 𝑛𝑖 (2.27) 

Similarly to the phase velocity, for a point on the envelope in Figure 2.5, the group 

velocity is estimated by dividing the distance over the required travel time. 

2.4. Skew Angle 

The skew angle is solely a property of anisotropic solids. It is demarcated as the 

deviation of the propagating signal from the steered angle. To avoid this undesirable 

effect, the emitted wave has to travel in symmetric directions. For instance, in 

unidirectional laminates, the harmless directions are those parallel and perpendicular to 

the fibers (Rose, 2012). 

2.5. Dispersion Curves for a Traction Free Plate 

The dispersion curves are the first step of data processing of surface waves. 

Dispersion equations relate wave number to angular frequency, phase velocity to 

frequency and group velocity to frequency. For comparison, the symmetric and 

antisymmetric modes are schemed on the same chart of Figure 2.6. As the same manner 

as the solution of wave equation, dispersion relations differ between various materials. 
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Figure 2.6. Free boundaries 2 mm aluminum plate dispersion relations; (a) phase 

velocity; (b) group velocity curves (Wan et al., 2014) 

 

2.5.1. Isotropic Medium 

For the free plate problem, the dispersion relations are obtained by solving the equation 

of motion (Rose, 1999): 

𝜇 𝑢𝑖,𝑗𝑗+ (𝜇 + 𝜆) 𝑢𝑗,𝑖𝑖 + 𝜌𝑓𝑖 =  𝜌 �̈�𝑖 (2.28) 

where 

𝜇, 𝜆 are Lamé constants 

𝜌 is the volumetric density 

𝑓𝑖 are the body forces. i=1,2,3 

𝑢𝑗  are the displacements. j=1,2,3 

Equation (2.28) can be solved either by the method of potentials or by the partial 

wave technique (Rose, 1999). However, both approaches will lead to the same findings. 

The potentials method uncouples the longitudinal from the transverse wave partial 

differential. Assuming ∅ and 𝜓 the displacements along and perpendicular to the wave 

direction respectively, the disturbance equations are given by (Rose, 1999, Giurgiutiu, 

2005 & Cardona et al., 2008): 
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{
 
 

 
 
∂2∅

∂x1
2 +

∂2∅

∂x3
2  =

1

CL
2

∂2∅

∂t2
;  for longitudinal waves

∂2𝜓

∂x1
2 +

∂2𝜓

∂x3
2  =

1

CT
2

∂2𝜓

∂t2
;  for shear waves

 

 

(2.29) 

 To start solving the system of equations (2.29), ∅ and 𝜓 are set as: 

∅ = ∅ (𝑥3) 𝑒
𝑖(𝑘𝑥3−𝜔𝑡) (2.30) 

and 

𝜓 = 𝜓 (𝑥3) 𝑒
𝑖(𝑘𝑥3−𝜔𝑡) (2.31) 

 

On the other hand, the partial wave technique (Rose, 1999) offers a direct, general 

solution to Equation (2.28) by assuming the displacement expression of a partial wave as: 

𝑢𝑗= 𝑎𝑖𝑒
𝑖𝑘(x−

𝑘𝑧 

𝑘𝑥
𝑧)

 
(2.32) 

The overall displacement of the whole wave is a combination of the partial waves and is 

given by: 

𝑢𝑗=∑ 𝐶𝑛𝛼𝑗
(𝑛)6

𝑛=1 𝑒
𝑖𝑘[x−( 

𝑘𝑧 

𝑘𝑥
)(𝑛)𝑧]

 
 

(2.33) 

 

The solution of both methods leads to the obtention of what is called Rayleigh-lamb 

frequency equations for the symmetric and anti-symmetric modes, depicted in Equation 

(2.24). 

 

{
 
 

 
 tan (qh)

tan (ph)
=  − 

4k2pq

(q2 − k2)2
 ;  for symmetric modes

tan (qh)

tan (ph)
=  − 

(q2 − k2)2

4k2pq
 ;  for antisymmetric modes

 

 

(2.34) 
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The constants p and q are expressed in terms of wave number k and angular velocity ω: 

𝑝 = (
𝜔

𝐶𝐿
)2 − k2  (2.35) 

and 

𝑞 = (
𝜔

𝐶𝑇
)2 − k2  (2.36) 

 

Each equation of (2.34) is solved separately by means of root finding algorithms such as 

Newton-Raphson, bisection, etc.  

2.5.2. Anisotropic Medium 

For an anisotropic medium, the determination of the dispersion relations is more 

complicated than that of aluminium. Assuming a symmetry plane parallel to the laminate 

surfaces, Yan and Thompson (1990) derived a generalized Lamb-Rayleigh dispersion 

relation for the anisotropic case. Later, various methods have been investigated and tested 

for more general cases; The basic approaches are: Transfer Matrix Method (TMM) 

(Kamal & Giurgiutiu, 2014 & Pant, 2014), Stiffness Matrix Method (SMM) (Kamal & 

Giurgiutiu, 2014), Global Matrix Method (GMM) (Kamal & Giurgiutiu, 2014 & Pant, 

2014), Semi Analytical Finite Element (SAFE) (Ahmad et al., 2013 & Kamal & 

Giurgiutiu, 2014), Local Interaction Simulation Approach (LISA) (Kamal & Giurgiutiu, 

2014), the Equivalent Matrix Method (EMM) (Kamal & Giurgiutiu, 2014) and the 3D 

elasticity theory (Wang & Yuan, 2007).  

Each stated algorithm has drawbacks and strengths. For this reason, Kamal and 

Giurgiutiu (2014) thought about a combination of the transfer and stiffness matrix 

method (STMM) to fill the deficiency gap of both processes.  

For N-layered laminates, Cardona et al. (2008) also developed a numerical 
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solution algorithm with global convergence based on the bisection criteria able to plot the 

dispersion curve point by point.  
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3. Beamforming Presentation 

Beamforming, also known as spatial filtering, is a signal processing employed to 

orient the radiated waves toward a priority track. When two or more point sources 

superpose, resultant waves are produced. The emitted signals interfere with one another 

constructively in some directions and destructively in the others, as shown in Figure 3.1.  

Constructive interference is achieved when the travelling pulses arrive at their destination 

in phase. The difference between two crests, d, is an integer, n, multiple of wave length, 

𝜆, (d=n𝜆).The resultant wave, therefore, has an amplitude equal to the sum of the wave 

amplitudes. On the opposite side, destructive interference occurs when the waves are out 

of phase. Such sinusoidal signals cancel out as every crest is opposed by a trough making 

“nulls.” The phase difference is expressed by d= (n- 
1

2
) λ. 

 

Figure 3.1. Wave interference from two point sources: (a) top view; (b) constructive and 

destructive out-of-plane displacement profile  

 

In the radiation diagram, the field strength is not uniform and three major kinds of 

lobes are formed. These are the main, grating and side lobes separated by minimums 

(nulls) as depicted in Figure 3.2. The main lobe has the maximum power and is in the 
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direction of scanning. The grating lobe, also referred to as the back lobe, is an unintended 

beam opposing the main lobe. Sidelobes are the result of constructive interference, but of 

less amplitude than other lobes. 

 

Figure 3.2. Focused directional radiation pattern of linear array: (a) Left-In polar 

coordinates; (b) Cartesian coordinates (MATLAB R2011a) 

 

The wave propagation profile is highly dependent on the material type and target 

position. Usually, circular or distorted rings moving harmoniously, like when dropping a 

pebble into calm water, are seen to occur. When interacting with a solid medium, the 

spreading signals experience dispersion and loss of energy. For aluminum, analogous 

wave translation is observed in all directions at any time. However, in anisotropic 

materials such as composites, waves have the tendency to migrate more easily along the 

fiber directions.  The emitted waves can also reach points in the near as well as the far 

fields. The main difference between these two approaches is related to the shape of the 

wave front. As shown in Figure 3.3, for a destination far away from the emission source, 

the wave front is approximately flat, whereas for closer targets, the curvature can still be 

noticed. 

It is difficult to determine the exact range of a near or far field, but the direction of 
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propagation can be determined (Lingyu,2006). Referring to the theory of antennas, 

Lingyu (2006) gives a conventional estimation of the field by the inequalities: 

 0.62  √
𝐷3

𝜆
  < 𝑟𝑛𝑒𝑎𝑟 ≤ 2 

𝐷2

𝜆
 

 𝑟𝑓𝑎𝑟 > 2 
𝐷2

𝜆
 

where D and 𝜆 stand for the diameter of the aperture enclosing the actuation points and 

the wave length respectively. 𝑟𝑛𝑒𝑎𝑟 designates the radius for the nearfield starting region 

and 𝑟𝑓𝑎𝑟 that of the far field. The term (
2𝐷2

𝜆
) is the transition radius between the two 

domains.  

 

Figure 3.3. Wave front in the near and far fields respectively 

 

3.1. Formulation of Wave Beamforming from Multiple Excitation Sources in an  

       Anisotropic Medium: 

In order to identify the damage location, a time domain approach using several 

ultrasonic wave emissions is proposed. The excitations positioning, weight and phase 

shift have a great influence of the directivity and shaping of the resultant beam. These 

conditions also vary with target location. Osterc and Kim (2013) developed a model of 

beamforming applicable for quasi-isotropic composites. For simplification, their study 

did not account for the amplitude variation with direction. In the following context, the 
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complete beamforming equations are derived for simultaneous and successive 

excitations. The two scanned fields are also distinguished.  

3.1.1. Simultaneous Excitations (No Delay): 

In this section, it will be assumed that the emitting sources are fired at the same 

time. Accordingly, a definite beam cannot be formed. Instead, the array factor function is 

determined. This presumption does not actually apply for real life practices, although it is 

an appropriate starting point. It enables better understanding of the time-delayed 

excitations later. 

Near Field: 

 

Figure 3.4. Near field schema for single actuation point  

 

The out-of-plane displacement expression of the disturbance emitted from the mth 

actuation, shown in Figure 3.4 is defined by: 

𝑦𝑚(𝑡) =  𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡) =
𝐴(𝜃𝑚) 

√𝑟𝑚
 𝑒𝑖(𝜔𝑡−𝑘𝑚⃗⃗ ⃗⃗ ⃗⃗ .𝑟𝑚)

⃗⃗ ⃗⃗ ⃗⃗  ⃗
 

 
(3.1) 

The expression of the wave number 𝑘𝑚⃗⃗ ⃗⃗  ⃗ can be written as follows: 



30  

𝑘𝑚⃗⃗ ⃗⃗  ⃗ = 𝜁𝑚⃗⃗ ⃗⃗   . 
𝜔

𝑐(𝜃𝑚)
 (3.2) 

Where 𝜁𝑚⃗⃗ ⃗⃗   is the unit vector of  𝑟𝑚⃗⃗⃗⃗ .  

Replacing equation (3.2) in (3.1): 

𝑦𝑚(𝑡) =  𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡) =
𝐴(𝜃𝑚) 

√𝑟𝑚
 𝑒
𝑖(𝜔𝑡−𝜁𝑚 ⃗⃗⃗⃗⃗⃗  ⃗ .  

𝜔
𝑐(𝜃𝑚)

 .  𝑟𝑚)⃗⃗ ⃗⃗ ⃗⃗  ⃗
 

                           = 
𝐴(𝜃𝑚) 

√𝑟𝑚
 𝑒
𝑖𝜔(𝑡−𝜁𝑚 ⃗⃗⃗⃗⃗⃗  ⃗ .  

𝑟𝑚⃗⃗⃗⃗ ⃗⃗  ⃗

𝑐(𝜃𝑚)
 ) 

 

 

 

 

(3.3) 

Referring to Figure 3.4, it can be seen that: 

𝑟𝑚⃗⃗⃗⃗  = 𝑟𝑚. 𝜁𝑚⃗⃗ ⃗⃗    (3.4) 

Thus, 

𝜁𝑚⃗⃗ ⃗⃗   . 𝑟𝑚⃗⃗⃗⃗  = 𝜁𝑚⃗⃗ ⃗⃗   . (𝑟𝑚. 𝜁𝑚⃗⃗ ⃗⃗  ) = 𝑟𝑚 (3.5) 

 

Plugging equation (3.5) in (3.3) yields: 

𝑦𝑚(𝑡) =  𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡) =
𝐴(𝜃𝑚) 

√𝑟𝑚
 𝑒
𝑖𝜔(𝑡−  

𝑟𝑚
𝑐(𝜃𝑚)

 )  
 

 

(3.6) 

Note that the general wavefront equation from the pattern’s centroid is expressed by: 

𝑓(𝑟  , 𝑡) =
 𝐴(𝜃)

√𝑟
 𝑒𝑖(𝜔𝑡−�⃗� .𝑟)

⃗⃗⃗⃗ 
 

 

(3.7) 

where 

�⃗�  = 𝜁  . 
𝜔

𝑐(𝜃)
 (3.8) 

and 

𝑟  = 𝑟. 𝜁   (3.9) 
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Repeating the same precedent process, Equation (3.7) becomes: 

𝑓(𝑟  , 𝑡) =
𝐴(𝜃) 

√𝑟
 𝑒
𝑖(𝜔𝑡−𝜁 ⃗⃗⃗   .  

𝜔
𝑐(𝜃)

 .  𝑟 .�⃗�  )
 

                     = 
𝐴(𝜃) 

√𝑟
 𝑒
𝑖(𝜔𝑡− 

𝜔𝑟

𝑐(𝜃)
 ) 

 

        = 
𝐴(𝜃) 

√𝑟
 𝑒
𝑖𝜔(𝑡− 

𝑟

𝑐(𝜃)
 ) 

 

 

 

 

 

 

(3.10) 

Equations (3.6) and (3.10) can be related by the following: 

𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡) =
𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1 

√
𝑟𝑚
𝑟

  𝑒
𝑖𝜔(

𝑟
𝑐(𝜃)

 −  
𝑟𝑚

𝑐(𝜃𝑚)
 )  
 𝑓(𝑟  , 𝑡) 

 

(3.11) 

Proof: 

𝑓(𝑟𝑚⃗⃗ ⃗⃗  ⃗ ,𝑡)

𝑓(𝑟  ,𝑡)
= 

𝐴(𝜃𝑚) 

√𝑟𝑚
 𝑒
𝑖𝜔(𝑡−  

𝑟𝑚
𝑐(𝜃𝑚)

 ) 

𝐴(𝜃)

√𝑟
 𝑒
𝑖𝜔(𝑡− 

𝑟
𝑐(𝜃)

 )
  = 

𝐴(𝜃𝑚) 

√𝑟𝑚
 
√𝑟 

𝐴(𝜃)
  𝑒

𝑖𝜔(
𝑟

𝑐(𝜃)
 −  

𝑟𝑚
𝑐(𝜃𝑚)

 ) 
 

= 
𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1 

√
𝑟𝑚
𝑟

  𝑒
𝑖𝜔(

𝑟

𝑐(𝜃)
 −  

𝑟𝑚
𝑐(𝜃𝑚)

 )  
 

Thus, by multiplying both sides by 𝑓(𝑟  , 𝑡): 

𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡) =
𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1 

√
𝑟𝑚
𝑟

  𝑒
𝑖𝜔(

𝑟
𝑐(𝜃)

 −  
𝑟𝑚

𝑐(𝜃𝑚)
 )  
 𝑓(𝑟  , 𝑡) 

The synthetic wavefront resulting from a total number M of actuations is determined by: 

𝑧(𝑟  , 𝑡) =  ∑ 𝜔𝑚 𝑦𝑚(𝑡)
𝑀
𝑚=1  = ∑ 𝜔𝑚 𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡)

𝑀
𝑚=1  (3.12) 

Replacing (3.11) in (3.12): 

𝑧(𝑟  , 𝑡) =  ∑ 𝜔𝑚 𝑦𝑚(𝑡)
𝑀
𝑚=1  = ∑ 𝜔𝑚 𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡)

𝑀
𝑚=1  
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                       = ∑ 𝜔𝑚 
𝑀
𝑚=1

𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1 

√
𝑟𝑚
𝑟

  𝑒
𝑖𝜔(

𝑟

𝑐(𝜃)
 −  

𝑟𝑚
𝑐(𝜃𝑚)

 )  
 𝑓(𝑟  , 𝑡) 

(3.13) 

For an array of identical elements, the radiation pattern is calculated from the pattern 

multiplication theorem: 

Array pattern = Array element pattern × Array Factor (AF) 

where the array element pattern is the pattern produced by a single element of the array. 

Taking the constant entities out of the summation in equation (3.13): 

𝑧(𝑟  , 𝑡) =  𝑓(𝑟  , 𝑡) ∑ 𝜔𝑚 

𝑀

𝑚=1

𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1 

√
𝑟𝑚
𝑟

  𝑒
𝑖𝜔(

𝑟
𝑐(𝜃)

 −  
𝑟𝑚

𝑐(𝜃𝑚)
 )  
  

   = 𝑓(𝑟  , 𝑡) . 𝐴𝐹(𝜃)  

 

 

 

 

(3.14) 

Here, the array factor AF assumes that all the point sources are identical. 

 

The generic Array Factor expression is given by: 

𝐴𝐹(𝜃) =  ∑ 𝜔𝑚 

𝑀

𝑚=1

𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1 

√
𝑟𝑚
𝑟

  𝑒
𝑖𝜔(

𝑟
𝑐(𝜃)

 −  
𝑟𝑚

𝑐(𝜃𝑚)
 )  

 

 

(3.15) 

In particular, set the weighting factor 𝜔𝑚 equal to 1 (𝜔𝑚 = 1), Equation (3.15) becomes: 

𝐴𝐹(𝜃) =  ∑  

𝑀

𝑚=1

𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1 

√
𝑟𝑚
𝑟

  𝑒
𝑖𝜔(

𝑟
𝑐(𝜃)

 −  
𝑟𝑚

𝑐(𝜃𝑚)
 )  
  

 

(3.16) 

The expression of angular frequency 𝜔  in terms of frequency f is: 

𝜔 = 2𝜋f (3.17) 

Replacing Equation (3.17) in (3.16) gives: 

𝐴𝐹(𝜃) =  ∑  

𝑀

𝑚=1

𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1 

√
𝑟𝑚
𝑟

  𝑒
𝑖2𝜋f(

𝑟
𝑐(𝜃)

 −  
𝑟𝑚

𝑐(𝜃𝑚)
 )  
  

 

(3.18) 
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Finally, the normalized beamforming is obtained by dividing Equation (3.16) by the total 

number of actuators M. Thus: 

𝐴𝐹(𝜃)𝑛𝑜𝑟𝑚 =
1

𝑀
 ∑  

𝑀

𝑚=1

𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1 

√
𝑟𝑚
𝑟

  𝑒
𝑖2𝜋f(

𝑟
𝑐(𝜃)

 −  
𝑟𝑚

𝑐(𝜃𝑚)
 )  
  

 

(3.19) 

In Equation (3.19), 𝑟𝑚 and 𝜃𝑚 should be expressed in terms of the excitation point’s polar 

coordinates (𝑆𝑚 , 𝜑𝑚) and the angle 𝜃. From the geometry in Figure 3.4, by applying the 

cosine rule 𝑟𝑚 is defined by: 

𝑟𝑚 = √𝑆𝑚2 + 𝑟2 − 2𝑟𝑆𝑚cos ( 𝜃 − 𝜑𝑚)  (3.20) 

 

also 

𝜃𝑚 = 𝑠𝑖𝑛−1(
𝑟 sin(𝜃)−𝑆𝑚sin (𝜑𝑚)

√𝑆𝑚
2 +𝑟2−2𝑟𝑆𝑚cos ( 𝜃−𝜑𝑚) 

 ) (3.21) 

Proof: 

From Figure 3.4,  𝑟 sin(𝜃) = 𝑆𝑚 sin(𝜑𝑚) + 𝑟𝑚 sin(𝜃𝑚)  

   𝜃𝑚 = 𝑠𝑖𝑛−1[
𝑟 sin(𝜃)−𝑆𝑚sin (𝜑𝑚)

𝑟𝑚
] 

But 𝑟𝑚 is given in Equation (3.21), thus: 

𝜃𝑚 = 𝑠𝑖𝑛−1[
𝑟 sin(𝜃)−𝑆𝑚 sin(𝜑𝑚)

√𝑆𝑚
2 +𝑟2−2𝑟𝑆𝑚 cos( 𝜃−𝜑𝑚)

] 

Note that 𝜃𝑚′𝑠 expression depends on the position of the 𝑚𝑡ℎ actuation in the four 

quadrants of the coordinate system. Let (𝑥𝑚, 𝑦𝑚) be the Cartesian coordinates of the 𝑚𝑡ℎ 

focal point. The algorithm below defines 𝜃𝑚 in three conditional cases: 
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 if  𝑥𝑚 ≥ 0 and 𝑦𝑚 ≥ 0 

if  0° ≤ 𝜃 < 𝑠𝑖𝑛−1 [ 
𝑆𝑚 sin(𝜑𝑚) 

𝑟
 ] 

θm = 𝑠𝑖𝑛−1[ 
𝑆𝑚 sin(𝜑𝑚)−𝑟 sin (𝜃)

𝑟𝑚
 ] 

if  𝑠𝑖𝑛−1 [ 
𝑆𝑚 sin(𝜑𝑚) 

𝑟
 ] ≤ 𝜃 < 180° 

θm = 𝑠𝑖𝑛−1 [ 
𝑟 sin(𝜃) − 𝑆𝑚 sin(𝜑𝑚)

𝑟𝑚
 ] 

if  180° ≤ 𝜃 ≤  360° 

θm = 𝑠𝑖𝑛−1 [ 
𝑆𝑚 sin(𝜑𝑚)−𝑟 sin (𝜃)

𝑟𝑚
 ] 

 

 if  𝑥𝑚 < 0 and 𝑦𝑚 > 0 

if  0° ≤ 𝜃 < 𝑠𝑖𝑛−1 [ 
𝑆𝑚 sin(𝜑𝑚) 

𝑟
 ]  

θm = 𝑠𝑖𝑛−1 [ 
𝑆𝑚 sin(𝜑𝑚)−𝑟 sin (𝜃)

𝑟𝑚
 ] 

if  𝑠𝑖𝑛−1 [ 
𝑆𝑚 sin(𝜑𝑚) 

𝑟
 ] ≤ 𝜃 < 180° − 𝑠𝑖𝑛−1 [ 

𝑆𝑚 sin(𝜑𝑚) 

𝑟
 ] 

θm = 𝑠𝑖𝑛−1 [ 
𝑟 sin(𝜃) − 𝑆𝑚 sin(𝜑𝑚)

𝑟𝑚
 ] 

if  180° − 𝑠𝑖𝑛−1 [ 
𝑆𝑚 sin(𝜑𝑚) 

𝑟
 ] ≤ 𝜃 ≤  360° 

θm = 𝑠𝑖𝑛−1 [ 
𝑆𝑚 sin(𝜑𝑚)−𝑟 sin (𝜃)

𝑟𝑚
 ] 

 

 if  (𝑥𝑚 < 0 and 𝑦𝑚 < 0) or (𝑥𝑚 > 0 and 𝑦𝑚 < 0) 

if  0° ≤ 𝜃 < 180° +  𝑠𝑖𝑛−1 [ 
− 𝑆𝑚 sin(𝜑𝑚) 

𝑟
 ]  

θm = 𝑠𝑖𝑛−1 [ 
𝑟 sin(𝜃) − 𝑆𝑚 sin(𝜑𝑚)

𝑟𝑚
 ] 

if  180° +  𝑠𝑖𝑛−1 [ 
− 𝑆𝑚 sin(𝜑𝑚) 

𝑟
 ] ≤ 𝜃 < 360° − 𝑠𝑖𝑛−1 [ 

−𝑆𝑚 sin(𝜑𝑚) 

𝑟
 ] 

θm = 𝑠𝑖𝑛−1 [ 
𝑆𝑚 sin(𝜑𝑚)−𝑟 sin (𝜃)

𝑟𝑚
 ] 

if  360° − 𝑠𝑖𝑛−1 [ 
−𝑆𝑚 sin(𝜑𝑚) 

𝑟
 ] ≤ 𝜃 ≤  360° 

θm = 𝑠𝑖𝑛−1 [ 
𝑟 sin(𝜃) − 𝑆𝑚 sin(𝜑𝑚)

𝑟𝑚
 ] 

 

Therefore, θm can be simply written as: 

 θm = 𝑠𝑖𝑛−1| 
𝑆𝑚 sin(𝜑𝑚)−𝑟 sin (𝜃)

𝑟𝑚
 | 
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The relation between the Cartesian and polar coordinates of the 𝑚𝑡ℎ excitation point is 

stated by: 

𝑥𝑚 = 𝑆𝑚 cos (𝜑𝑚) ;  𝑦𝑚 = 𝑆𝑚 sin (𝜑𝑚) (3.22) 

or 

𝑆𝑚 = √(𝑥𝑚2 + 𝑦𝑚2 )  ;  𝜑𝑚 = 𝑡𝑎𝑛−1( 
𝑦𝑚

𝑥𝑚
 ) (3.23) 

Far Field: 

 

 

Figure 3.5. Far field schema for single actuation point  

Although the target was a point in the near field, it is assumed that the wave front is flat if 

the target distance is far, as shown in Figure 3.5.  

Assumptions: 

𝜁𝑚⃗⃗ ⃗⃗   ≈ 𝜁  and 𝑟𝑚 ≈ r  𝑐(𝜃𝑚) ≈ c(𝜃) and 𝐴(𝜃𝑚) ≈ A(𝜃) 

 

Then, Equation (3.2) gives:  

𝑘𝑚⃗⃗ ⃗⃗  ⃗ = 𝜁𝑚⃗⃗ ⃗⃗   . 
𝜔

𝑐(𝜃𝑚)
 ≈ 𝜁  . 

𝜔

c(𝜃) 
= �⃗�  (3.24) 
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Equation (3.3) becomes: 

𝑦𝑚(𝑡) =  𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡) = 
𝐴(𝜃) 

√𝑟
 𝑒
𝑖𝜔(𝑡−𝜁 ⃗⃗⃗   .  

𝑟𝑚⃗⃗⃗⃗ ⃗⃗  ⃗

𝑐(𝜃)
 ) 

 
 

(3.25) 

Note the vector relation:  

𝑟𝑚⃗⃗⃗⃗ = 𝑟 − 𝑠𝑚⃗⃗ ⃗⃗   (3.26) 

 

Plugging Equation (3.26) in (3.25): 

𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡) = 
𝐴(𝜃) 

√𝑟
 𝑒
𝑖𝜔(𝑡−𝜁 ⃗⃗⃗   .  

�⃗⃗� − 𝑠𝑚⃗⃗ ⃗⃗ ⃗⃗  

𝑐(𝜃)
 ) 

 
(3.27) 

 

As previously, 𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡) and 𝑓(𝑟  , 𝑡) are also interrelated for far field by: 

𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡) =   𝑒
𝑖
𝜔
𝑐(𝜃)

 𝜁.⃗⃗⃗   𝑠𝑚⃗⃗ ⃗⃗  ⃗
 𝑓(𝑟  , 𝑡) 

 

 

(3.28) 

Proof: 

𝑓(𝑟𝑚⃗⃗ ⃗⃗  ⃗ ,𝑡)

𝑓(𝑟  ,𝑡)
= 

𝐴(𝜃) 

√𝑟
 𝑒
𝑖𝜔(𝑡−𝜁 ⃗⃗⃗   .  

�⃗⃗� − 𝑠𝑚⃗⃗ ⃗⃗ ⃗⃗  
𝑐(𝜃)

 ) 

𝐴(𝜃) 

√𝑟
 𝑒
𝑖𝜔(𝑡−𝜁 ⃗⃗⃗   .

�⃗⃗� 
𝑐(𝜃)

 ) 
  =  𝑒

𝑖𝜔(𝑡−𝜁 ⃗⃗⃗   .  
�⃗⃗� − 𝑠𝑚⃗⃗ ⃗⃗ ⃗⃗  

𝑐(𝜃)
 −𝑡+ 𝜁 ⃗⃗⃗   .

�⃗⃗� 

𝑐(𝜃)
 )  

=  𝑒
𝑖
𝜔

𝑐(𝜃)
 𝜁.⃗⃗⃗   𝑠𝑚⃗⃗ ⃗⃗  ⃗

 

Thus, by multiplying both sides by 𝑓(𝑟  , 𝑡): 

𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡) =  𝑒
𝑖
𝜔
𝑐(𝜃)

 𝜁.⃗⃗⃗   𝑠𝑚⃗⃗ ⃗⃗  ⃗
 𝑓(𝑟  , 𝑡) 

 

Replacing 𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡)  of Equation (3.28) in the synthetic wavefront Equation (3.12) yields: 

𝑧(𝑟  , 𝑡) =  ∑ 𝜔𝑚 𝑦𝑚(𝑡)
𝑀
𝑚=1  = ∑ 𝜔𝑚 𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡)

𝑀
𝑚=1  

  = ∑ 𝜔𝑚 
𝑀
𝑚=1  𝑒

𝑖
𝜔

𝑐(𝜃)
 𝜁.⃗⃗⃗   𝑠𝑚⃗⃗ ⃗⃗  ⃗ 𝑓(𝑟  , 𝑡) 

 

(3.29) 
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Taking again the constant entity out of the summation: 

𝑧(𝑟  , 𝑡) = 𝑓(𝑟  , 𝑡) ∑ 𝜔𝑚 

𝑀

𝑚=1

 𝑒
𝑖
𝜔
𝑐(𝜃)

 𝜁.⃗⃗⃗   𝑠𝑚⃗⃗ ⃗⃗  ⃗
  

                 

 

(3.30) 

The generic array factor expression is given by: 

𝐴𝐹(𝜃) =  ∑ 𝜔𝑚 

𝑀

𝑚=1

 𝑒
𝑖
𝜔
𝑐(𝜃)

 𝜁.⃗⃗⃗   𝑠𝑚⃗⃗ ⃗⃗  ⃗
  

 

(3.31) 

In particular, set the weighting factor 𝜔𝑚 equal to 1 (𝜔𝑚 = 1), equation (3.31) becomes: 

 

𝐴𝐹(𝜃) =  ∑  

𝑀

𝑚=1

 𝑒
𝑖
𝜔
𝑐(𝜃)

 𝜁.⃗⃗⃗   𝑠𝑚⃗⃗ ⃗⃗  ⃗
  

 

(3.32) 

From the dot product relation: 

𝜁.⃗⃗  𝑠𝑚⃗⃗ ⃗⃗  =  𝑆𝑚 cos( 𝜃 − 𝜑𝑚) 

          

(3.33) 

Replacing Equation (3.33) in (3.32) yields: 

𝐴𝐹(𝜃) =  ∑  

𝑀

𝑚=1

 𝑒
𝑖
𝜔
𝑐(𝜃)

 𝑆𝑚 cos(𝜃−𝜑𝑚)
  

               

 

(3.34) 

 

Again, for normalization, divide the Array Factor equation by the total number of 

actuators: 

𝐴𝐹(𝜃)𝑛𝑜𝑟𝑚 =
1

𝑀
 ∑  

𝑀

𝑚=1

 𝑒
𝑖
𝜔
𝑐(𝜃)

 𝑆𝑚 cos(𝜃−𝜑𝑚)
  

 

(3.35) 

3.1.2. Successive Excitations (Time Delay Interval): 

The previous concept applies when all the excitations are fired at the same time. The 
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generated waves, therefore, propagate likewise in all directions. But, in order to obtain an 

effective scanning, the wave front should be biased towards a certain angle. Producing 

excitations at varying time intervals controls the steering of the ultrasonic beam. The 

above exhibited method encounters slight changes to account for time suspension. The 

array factor (AF) is replaced by the term “Beamforming (BF)” in this case. 

Let 𝛥𝑚 be the corresponding time delays related to the M actuation points        

(1≤ m ≤ M). The synthetic wave front is redefined by: 

𝑧(𝑟  , 𝑡) =  ∑ 𝜔𝑚 𝑦𝑚(𝑡 − 𝛥𝑚)
𝑀
𝑚=1  = ∑ 𝜔𝑚 𝑓(𝑟𝑚⃗⃗⃗⃗  , 𝑡 − 𝛥𝑚)

𝑀
𝑚=1  

 

(3.36) 

Near Field: 

By repeating the same previous process, the beamforming factor for a steered beam 

becomes: 

𝐵𝐹(𝜃)𝑛𝑜𝑟𝑚 =
1

𝑀
 ∑  

𝑀

𝑚=1

𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1

√
𝑟𝑚
𝑟

 𝑒
𝑖2𝜋f(

𝑟
𝑐(𝜃)

 −  
𝑟𝑚

𝑐(𝜃𝑚)
 −𝛥𝑚)  

  
 

(3.37) 

The time delay 𝛥𝑚 for a near field is given by: 

𝛥𝑚  =
𝑟

𝑐(𝜃0)
 −   

𝑟𝑚0

𝑐(𝜃𝑚0)
   (3.38) 

 

 

Plugging Equation (3.38) into (3.37): 

𝐵𝐹(𝜃)𝑛𝑜𝑟𝑚 =
1

𝑀
 ∑  

𝑀

𝑚=1

𝐴(𝜃𝑚) 

𝐴(𝜃)
 
1

√
𝑟𝑚
𝑟

 𝑒
𝑖2𝜋f[

𝑟
𝑐(𝜃)

 −  
𝑟𝑚

𝑐(𝜃𝑚)
 −(

𝑟
𝑐(𝜃0)

 −  
𝑟𝑚0

𝑐(𝜃𝑚0)
 )] 
  

 

(3.39) 

where 

𝜃0 is the steering angle of the beam. 

𝜃𝑚0 is the angle formed by 𝑟𝑚0 with the horizontal 
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𝑟𝑚0 is the distance from the 𝑚𝑡ℎ actuator to the target point at the defined 

direction 

Similar to 𝑟𝑚 and 𝜃𝑚, 𝑟𝑚0  and 𝜃𝑚0 are annotated in Figure 3.6, and respectively written 

as: 

From cosine rule: 

𝑟𝑚0 = √𝑆𝑚2 + 𝑟2 − 2𝑟𝑆𝑚cos ( 𝜃0 − 𝜑𝑚)  (3.40) 

 

and  

𝜃𝑚0 = 𝑠𝑖𝑛−1(
𝑟 sin(𝜃0)−𝑆𝑚sin (𝜑𝑚)

√𝑆𝑚
2 +𝑟2−2𝑟𝑆𝑚cos ( 𝜃0−𝜑𝑚) 

 ) (3.41) 

 

 

Figure 3.6. Schematic of near field for a single actuation point and a target at 90° 
direction 

 

 

Far Field: 

In a similar manner, the equation of beamforming factor for a far field with time delay is 

written as: 

𝐵𝐹(𝜃)𝑛𝑜𝑟𝑚 =
1

𝑀
 ∑  

𝑀

𝑚=1

 𝑒
𝑖𝜔 [ 

𝑆𝑚 cos(𝜃−𝜑𝑚)
𝑐(𝜃)

− 𝛥𝑚]   
 

(3.42) 
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Let the time delay in this case be: 

𝛥𝑚  =
𝑆𝑚 cos(𝜃0−𝜑𝑚)

𝑐(𝜃0)
   (3.43) 

Therefore,  

𝐵𝐹(𝜃)𝑛𝑜𝑟𝑚 =
1

𝑀
 ∑  

𝑀

𝑚=1

 𝑒
𝑖𝜔 𝑆𝑚[ 

cos(𝜃−𝜑𝑚)
𝑐(𝜃)

 − 
cos(𝜃0−𝜑𝑚)

𝑐(𝜃0)
  ] 
  

 

(3.44) 

 

3.2.Wave Beamforming from Multiple Excitation Sources in an Isotropic Medium: 

The isotropic theory is a particular case of the general anisotropic principle. The 

same approach exhibited in the upper section applies but with some simplifications on the 

level of phase velocity and amplitude. The isotropic beamforming is already discussed by 

Yu and Giurgiutiu (2005), and Yu (2006). 

For isotropic materials, the wave propagation is independent of direction. The 

front wave’s velocity and amplitude reduce only with distance due to dissipative forces 

caused by the frictional molecular interaction of the generated vibrations within the 

material.  

No time Delay: 

Assumptions: 

c(θ) = c(𝜃𝑚) = c and A(θ) = A(𝜃𝑚) = A 

Based on the assumptions, the array factor expressions of Equations (3.19) and (3.35) are 

shown below. 

For the near field: 



41  

𝐴𝐹(𝜃)𝑛𝑜𝑟𝑚 =
1

𝑀
 ∑  

𝑀

𝑚=1

1 

√
𝑟𝑚
𝑟

  𝑒𝑖2𝜋f [ 
𝑟−𝑟𝑚
𝑐

 ]    
 

(3.45) 

For the far field: 

𝐴𝐹(𝜃)𝑛𝑜𝑟𝑚 =
1

𝑀
 ∑  

𝑀

𝑚=1

 𝑒𝑖
2𝜋f 
𝑐
 𝑆𝑚 cos(𝜃−𝜑𝑚)  

 

(3.46) 

With time Delay: 

Assumptions: 

c(θ) = c(𝜃𝑚) = c ; c(𝜃0) = c(𝜃𝑚0) = c  

A(θ) = A(𝜃𝑚) = A 

Equation (3.38) becomes: 

𝛥𝑚  =
𝑟−𝑟𝑚

𝑐
   (3.47) 

 

Based on the assumptions, the transformed beamforming expressions of Equations (3.39) 

and (3.44) are shown below. 

For the near field: 

𝐵𝐹(𝜃)𝑛𝑜𝑟𝑚 =
1

𝑀
 ∑  

𝑀

𝑚=1

 
1

√
𝑟𝑚
𝑟

 𝑒𝑖2𝜋f [
𝑟𝑚0−𝑟𝑚

𝑐
 ]   

 

(3.48) 

Note that Equations (3.20) and (3.40) stay also applicable for 𝑟𝑚 and 𝑟𝑚0 respectively in 

this section. 

For the far field: 

𝐵𝐹(𝜃)𝑛𝑜𝑟𝑚 =
1

𝑀
 ∑  

𝑀

𝑚=1

 𝑒𝑖𝜔 𝑆𝑚[ 
cos(𝜃−𝜑𝑚)−cos(𝜃0−𝜑𝑚)

𝑐
  ]   

 

(3.48) 
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4. Pattern Geometry 

Phased array is a set of multiple sources of propagating waves. Arrays are 

commonly utilized to increase the overall gain (the power transmitted in the direction of 

peak radiation), maximize the signal and steer it in a particular direction. To achieve the 

desired radiation profile, the emitted signals are combined and processed. Several design 

variables can be adjusted to fulfill the purpose; these are the overall array shape and 

elements’ spacing, the excitations’ amplitudes and phase delays. 

Arrays vary in geometry depending on their application. Uniformly spaced arrays 

with constant spacing between elements have been found attractive in ultrasonic 

applications.  Uniform linear, circular, planar and multi-dimensional patterns are depicted 

in Figure 4.1. Such patterns are validated by theoretical analysis, experiments and/or 

simulations. It was concluded that by increasing the array size, the beamwidth reduces 

while grating lobes grow in undesirable directions (antenna-theory.com). Neighboring 

elements should be at maximum a half-wavelength apart to avoid “aliasing.” This term is 

attributed to the phenomenon where two waves emitted from different sources propagate 

accidently in phase creating constructive radiations (antenna-theory.com). 

Lately, improvements were introduced to these arrangements. In order to enhance 

the directivity of the emitted beam, the elements’ spacing, excitation weight and firing 

time are modified. The current investigation seeks a random planar arrangement of point 

sources, excited successively with uniform time delay. Therefore, the geometry is directly 

reliant on the time expression. As seen in Chapter 3, the induced time delay equation is 

also material and field dependent.
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Figure 4.1. Different pattern configuration: (a) linear; (b) rectangular; (c) disk;  

(d) circular arrays (Lingyu, 2006) 

 

4.1. Actuation Time Delay 

Assume 𝛥 the absolute elapsed time between two consecutive excitations. Denote 

by Δ𝑚 the time delay of the 𝑚𝑡ℎ actuation. Δ𝑚 can be positive (delayed excitation) or 

negative (advanced excitation). This classification is determined by the location of the 

focal point with respect to the time origin and location of defect to be detected. Thus, Δ𝑚 

can be written as: 

Δ𝑚 = ∓ 𝑚 𝛥  ; 0 ≤ m ≤ M and m is an integer (4.1) 

where M is the total number of actuations. 

As shown in Figure 4.2 below, in time domain, the origin has a zero-time delay 

value. On the right side, as the excitation comes closer to the target P, it is delayed 

(positive delay). The inverse occurs on the left hand side (negative delay). This is due to 

the fact that for a well-shaped beam, all the wave fronts resulting from the successive 

excitations should reach point P at the same instant. Assuming constant propagation 

velocity, an increase in distance leads to an increase in time. 

 

Figure 4.2. Excitations delays in time domain  
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For the near field, the time delay is expressed in terms of the target position r, the 

distance from the actuation point to the target denoted 𝑟𝑚0 and the phase propagation 

velocity of the front wave.  

4.2. Isotropic Propagation Medium 

In an isotropic medium, the time delay for a near field target is given by equation 

(3.47). Equating Equality (3.47) to (4.1) leads: 

Δ𝑚 = 
𝑟− 𝑟𝑚0

𝑐
= ∓ 𝑚 𝛥  ; 0 ≤ m ≤ M (4.2) 

Rearranging equation (4.2): 

𝑟𝑚0 = 𝑟 ∓  𝑚 𝛥 𝑐 ; 0 ≤ m ≤ M (4.3) 

Equation (4.3) describes a family of equally spaced concentric circles (𝐶𝑚) of center    

P(0 , r) and radii 𝑟𝑚0 offset by a distance d= 𝛥 𝑐 where r, 𝛥, and 𝑐 are constants. 

 

Figure 4.3. Aluminum pattern geometry for a target point in the 90° direction 

In addition, all the actuation points must be enclosed within an aperture of 

diameter D. Let (C’) be the circle of center O (0,0) and diameter A. Therefore, the 

excitations lay on the arcs (𝐶𝑚) within the circle (C’) shown in Figure 4.3. 

 

 



45  

Note that: 

𝑟𝑚0 = {
𝑟 −  𝑚 𝛥 𝑐 , 𝑦 > 0
𝑟 +  𝑚 𝛥 𝑐 , 𝑦 < 0

 
 

(4.3) 

Where y is the ordinate of the excitation point, measured from the circular aperture’s 

center taken as origin. 

To determine the spatial distribution of actuations, the allowable range of 

Cartesian coordinates of each point has to be determined. The equations of (C’)=C[(0,0), 

𝐷

2
] and (𝐶𝑚)=C[(0,r), 𝑟𝑚0] are given by: 

(𝐶′): 𝑥𝑚
2  +  𝑦𝑚

2  =  
𝐷2

4
 

 

(4.4) 

and 

(𝐶𝑚): 𝑥𝑚
2  + (𝑦𝑚 − r)

2  =  𝑟𝑚0
2   

(4.5) 

 

The expression of ymin is given by: 

𝑦𝑚𝑖𝑛 = {
 𝑚 𝛥 𝑐 , 𝑦 > 0

− 𝑚 𝛥 𝑐 , 𝑦 < 0
 

 

(4.6) 

 

Whereas ymax is determined from intersections of (𝐶′) and (𝐶𝑚). Equating Equation (4.4) 

to (4.5) gives: 

𝑦𝑚𝑎𝑥 = 
𝑟2 − 𝑟𝑚0

2 +
𝐷2

4

2𝑟
 

 

(4.7) 

Proof: 

(𝐶′): 𝑥𝑚
2  +  𝑦𝑚

2  =  
𝐷2

4
  𝑥𝑚

2  = 
𝐷2

4
− 𝑦𝑚

2   : (*) 

(𝐶𝑚): 𝑥𝑚
2  + (𝑦𝑚 − r)

2  =  𝑟𝑚0
2  : (4.5) 
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Replacing (*) in (4.5): 

 
𝐷2

4
− 𝑦𝑚

2   + (𝑦𝑚 − r)
2 = 𝑟𝑚0

2   

−𝑦𝑚
2   +𝑦𝑚

2 + 𝑟2 − 2 𝑦𝑚 𝑟 = 𝑟𝑚0
2 −

𝐷2

4
  

2 𝑦𝑚 𝑟= 𝑟2 −𝑟𝑚0
2  + 

𝐷2

4
  

𝑦𝑚=𝑦𝑚,𝑚𝑎𝑥 = 
𝑟2 − 𝑟𝑚0

2 +
𝐷2

4

2𝑟
 

 

The range of 𝑥𝑚 is expressed by: 

  𝑥𝑚,𝑚𝑖𝑛 = − √
𝐷2

4
− 𝑦𝑚,𝑚𝑎𝑥  ≤ 𝑥𝑚  ≤ √

𝐷2

4
− 𝑦𝑚,𝑚𝑎𝑥  = 𝑥𝑚,𝑚𝑎𝑥  

 

(4.8) 

The boundaries of the mth actuation point are shown in Figure 4.4. 

 

Figure 4.4. The 𝑥𝑚 and 𝑦𝑚coordinates range for an isotropic medium 

4.3. Anisotropic Propagation Medium 

For anisotropy, the same process followed in section 4.2 is applied. However, the 

time delay equation of an anisotropic medium is given by Equation (3.38). Again 

equating Equations (3.38) to (4.1) yields:  
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𝛥𝑚  =
𝑟

𝑐(𝜃0)
 −   

𝑟𝑚0

𝑐(𝜃𝑚0)
  =  ∓ 𝑚 𝛥  ; 0 ≤ m ≤ M (4.9) 

Solving for 𝑟𝑚0: 

𝑟𝑚0 = 𝑐(𝜃𝑚0)[ 
𝑟

𝑐(𝜃0)
  ∓  𝑚 𝛥 ] ; 0 ≤ m ≤ M (4.10) 

 

In this case, the problem is split into two parts, 𝑦𝑚 > 0 and 𝑦𝑚 < 0. 

 

 If 𝑦𝑚 > 0 (𝑟𝑚0 < r) 

𝑟𝑚0 = 𝑐(𝜃𝑚0)[ 
𝑟

𝑐(𝜃0)
 −  𝑚 𝛥 ] ; 0 ≤ m ≤ M (4.11) 

 

Assume a unidirectional laminate with 0° fiber angle and a target in the 90°direction: 

𝑟𝑚0 = 𝑟𝑚0,𝑚𝑎𝑥 if 𝑐(𝜃𝑚0) =  𝑐𝑚𝑎𝑥(𝜃𝑚0)  𝑐(𝜃𝑚0) = 0° 

𝑟𝑚0 = 𝑟𝑚0,𝑚𝑖𝑛 if 𝑐(𝜃𝑚0) =  𝑐𝑚𝑖𝑛(𝜃𝑚0)  𝑐(𝜃𝑚0) = 90° 

Thus, 

𝑟𝑚0,𝑚𝑎𝑥 = c (0°) [
𝑟

𝑐(𝜃0)
 −  𝑚 𝛥 ]; 0 ≤ m ≤ M (4.12) 

and 

𝑟𝑚0,𝑚𝑖𝑛 = c (90°) [
𝑟

𝑐(𝜃0)
 −  𝑚 𝛥 ]; 0 ≤ m ≤ M (4.13) 
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Figure 4.5. Pattern arrangement on elliptical arcs for unidirectional fiber 

reinforced composites: (a) for a single actuation; (b) for M actuations 

 

 

The conic of center P and radius 𝑟𝑚0 is a family of ellipses plotted in Figure 4.5, of 

Cartesian equation: 

(𝐸𝑚): 
𝑥𝑚
2

𝑟𝑚0,𝑚𝑎𝑥
2  +

(𝑦𝑚−𝑟)
2

𝑟𝑚0,𝑚𝑖𝑛
2  = 1 (4.14) 

 

Recall that the equation of circle (C’) is given in Equation (4.4). 

𝑦𝑚,𝑚𝑖𝑛 can be determined from the relation: 

𝑦𝑚,𝑚𝑖𝑛  = r − 𝑟𝑚0,𝑚𝑖𝑛 = r −c (90°) [
𝑟

𝑐(𝜃0)
 −  𝑚 𝛥 ]; 0 ≤ m ≤ M (4.13) 

𝑦𝑚,𝑚𝑎𝑥 is calculated from the intersection of (𝐸𝑚) and (C’). 

From Equation (4.14), 

𝑥𝑚
2

𝑟𝑚0,𝑚𝑎𝑥
2  = 1− 

(𝑦𝑚−𝑟)
2

𝑟𝑚0,𝑚𝑖𝑛
2   𝑥𝑚

2  = 𝑟𝑚0,𝑚𝑎𝑥
2  [1− 

(𝑦𝑚−𝑟)
2

𝑟𝑚0,𝑚𝑖𝑛
2   ] : (**) 

 

From Equation (4.4), 

𝑥𝑚
2  +  𝑦𝑚

2  =  
𝐷2

4
 𝑥𝑚

2  = 
𝐷2

4
 − 𝑦𝑚

2  : (***) 
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Equating (**) to (***) gives: 

𝑟𝑚0,𝑚𝑎𝑥
2  [1− 

(𝑦𝑚−𝑟)
2

𝑟𝑚0,𝑚𝑖𝑛
2   ] = 

𝐷2

4
 − 𝑦𝑚

2    

𝑟𝑚0,𝑚𝑎𝑥
2  − ( 

𝑟𝑚0,𝑚𝑎𝑥
2  

𝑟𝑚0,𝑚𝑖𝑛
2  

 ) (𝑦𝑚 − 𝑟)
2 = 

𝐷2

4
 − 𝑦𝑚

2   

𝑟𝑚0,𝑚𝑎𝑥
2  − ( 

𝑟𝑚0,𝑚𝑎𝑥

𝑟𝑚0,𝑚𝑖𝑛
 )2 (𝑦𝑚

2 + 𝑟2 − 2 𝑦𝑚 𝑟) = 
𝐷2

4
 − 𝑦𝑚

2   

𝑟𝑚0,𝑚𝑎𝑥
2  − ( 

𝑟𝑚0,𝑚𝑎𝑥

𝑟𝑚0,𝑚𝑖𝑛
 )2 (𝑦𝑚

2 + 𝑟2 − 2 𝑦𝑚 𝑟) − 
𝐷2

4
 + 𝑦𝑚

2  = 0  

[1 − ( 
𝑟𝑚0,𝑚𝑎𝑥

𝑟𝑚0,𝑚𝑖𝑛
 )2 ] 𝑦𝑚

2 +[2 r ( 
𝑟𝑚0,𝑚𝑎𝑥

𝑟𝑚0,𝑚𝑖𝑛
 )2] 𝑦𝑚 + [𝑟𝑚0,𝑚𝑎𝑥

2  − 
𝐷2

4
 − 𝑟2( 

𝑟𝑚0,𝑚𝑎𝑥

𝑟𝑚0,𝑚𝑖𝑛
 )2] = 0 

 
(4.14) 

 

Parity (4.14) is a quadratic equation of variable 𝑦𝑚 and can be written in general form: 

A 𝑦𝑚
2 + B𝑦𝑚 + C= 0 (4.15) 

 

Where A, B and C are given by: 

A = 1 − ( 
𝑟𝑚0,𝑚𝑎𝑥

𝑟𝑚0,𝑚𝑖𝑛
 )2  

B =2 r ( 
𝑟𝑚0,𝑚𝑎𝑥

𝑟𝑚0,𝑚𝑖𝑛
 )2 

C = 𝑟𝑚0,𝑚𝑎𝑥
2  − 

𝐷2

4
 − 𝑟2( 

𝑟𝑚0,𝑚𝑎𝑥

𝑟𝑚0,𝑚𝑖𝑛
 )2 

The system is solved in MATLAB by the following algorithm: 

>>P = [A B C]; 

>>R=roots (P); 

>>Y_m_max = min (R); 

 

 

 If 𝑦𝑚 < 0 (𝑟𝑚0 > r) 

𝑟𝑚0 = 𝑐(𝜃𝑚0)[ 
𝑟

𝑐(𝜃0)
+  𝑚 𝛥 ] ; 0 ≤ m ≤ M (4.16) 
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Again, 

𝑟𝑚0 = 𝑟𝑚0,𝑚𝑎𝑥 if 𝑐(𝜃𝑚0) =  𝑐𝑚𝑎𝑥(𝜃𝑚0)  𝑐(𝜃𝑚0) = 0° 

𝑟𝑚0 = 𝑟𝑚0,𝑚𝑖𝑛 if 𝑐(𝜃𝑚0) =  𝑐𝑚𝑖𝑛(𝜃𝑚0)  𝑐(𝜃𝑚0) = 90° 

Therefore, 

𝑟𝑚0,𝑚𝑎𝑥 = c (0°) [
𝑟

𝑐(𝜃0)
+  𝑚 𝛥 ]; 0 ≤ m ≤ M (4.17) 

and 

𝑟𝑚0,𝑚𝑖𝑛 = c (90°) [
𝑟

𝑐(𝜃0)
+  𝑚 𝛥 ]; 0 ≤ m ≤ M (4.18) 

also  

𝑦𝑚,𝑚𝑖𝑛  = r − 𝑟𝑚0,𝑚𝑖𝑛 = r −c (90°) [
𝑟

𝑐(𝜃0)
+  𝑚 𝛥 ]; 0 ≤ m ≤ M (4.19) 

 

𝑦𝑚,𝑚𝑎𝑥 is calculated as before by solving Equation (4.15) but 𝑟𝑚0,𝑚𝑎𝑥 and 𝑟𝑚0,𝑚𝑖𝑛 are 

used from Equations (4.17) and (4.18) respectively. 
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5. Finite Element Model and Results 

Finite Element Analysis (FEA) is a powerful computerized tool to simulate the 

actual conduct of a mock-up under subjected loads, boundary conditions and/or 

environmental circumstances. In the last decades, FEA is intensely manipulated in 

engineering projects as it allows the prediction of the mechanical properties of a product. 

The compensation of time, the reduction of costs and the great level of accuracy of the 

results encourage the designers to rely on this technique at the conceptual, preliminary 

and detailed stages of design and construction. Additional experiments on real samples 

are also highly recommended to validate the virtual findings. 

In the current study, a finite element model is made using ABAQUS/CAE 6.14 

finite element (FE) software to monitor the wave propagation contour in a thin circular 

plate. Because the dispersion profile is symmetric in the four quadrants, a quarter portion 

is only modelled. An explicit dynamics analysis is performed on both Aluminum and 

unidirectional Hankuk Carbon CU 150NS composite specimens. For both models, the 

plate is excited at a single node at the center and a set of sensing nodes are selected to 

extract the wave properties. The boundary conditions are symmetrical and the simulation 

time is chosen so that no reflections from edges are detected by the sensors. The plots of 

out-of-plane displacements in various directions are obtained from an explicit dynamics 

analysis. Then, displacement amplitude and phase velocity are calculated, plotted and 

implemented later in the optimization algorithm.  
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5.1.Plate Modelling 

In ABAQUS, the plate modelling consists of five basic steps. These are: 

 Part creation 

 Material selection and section assignment 

 Step formation 

 Loads and boundary conditions attribution 

 Mesh instance creation 

 Field and output request generation 

 Job creation and verification 

5.1.1. Part creation 

The three dimensional (3D) deformable part consists of a quarter disk of radius 

150mm and 1.125 mm thickness. The part is modelled as a solid instead of shell to 

provide a normal to plane propagating medium for the wave. For meshing purposes, an 

arc of radius 50mm was drawn on the top surface of the plate, then, partitioned through 

the thickness, as shown below in Figure 5.1. 

 

 
Figure 5.1. A top view of the quarter plate (ABAQUS/CAE 6.14) 
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5.1.2. Material selection and section assignment 

Two separate simulations are established for aluminum and composite so that the 

isotropic and the anisotropic behaviors are compared. The Young’s modulus (E), the 

shear modulus (G), the Poisson ratio (𝜗) and the density (𝜌) are inputted into the 

software. The mechanical properties of both materials are shown in Table 5.1.  

Note that both models were assigned homogeneous solid sections. Disregarding 

the occurrences at every layer, the unidirectional composite laminate is seen as a stack 

having mechanical properties that are direction reliant.  

Table 5.1. Mechanical properties of the aluminum and composite 

Mechanical Properties Aluminum Composite 

𝐸1 (GPa) 68.9 125 

𝐸2 (GPa) 68.9 8.1 

𝐸3 (GPa) 68.9 8.1 

𝐺12 (GPa) 25.9 4.2 

𝐺13 (GPa) 25.9 4.2 

𝐺23 (GPa) 25.9 3.5 

𝜗12  0.33 0.33 

𝜗13 0.33 0.33 

𝜗23 0.33 0.45 

𝜌 ( Kg / 𝑚3) 2700 1550 
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5.1.3. Step formation 

The simulation time step is chosen so that the excitation signal can be detected at 

the sensors before the waves are dispersed and reflected back from the boundaries. 

Because the wave speed depends on the propagation medium, aluminum and composites 

analyses are run for 0.135 × 10−3s (seconds) and 0.145 × 10−3s respectively. An 

identical time increment of 5× 10−7s is chosen to identify precisely the wave 

propagation profile. Such increment respects a certain criteria stated by Osterc (2015); 

the period of a travelling signal is the inverse of the frequency and 20 increments are 

required at least per oscillation period to ensure accuracy and stability requirements in 

ABAQUS.  

5.1.4. Loads and Boundary Conditions Attribution 

The mode shape of vibrations is influenced by the direction of the subjected load. 

Also, depending on the excitation manner, the upper and lower surfaces oscillate 

harmonically either in a symmetrical or anti-symmetrical mode. In order to isolate the 

symmetric mode, loads in the same direction are applied on the top and bottom surfaces 

of the body. However, a pure antisymmetric mode can be obtained by exerting opposing 

loads on these surfaces. In this case study, a concentrated unit (1N) force, with a 2.5-

cycle-Hanning window sinusoidal signal of 50 KHz plotted in Figure 5.2, is applied 

orthogonally on the upper plane of the plate to monitor the entire wave packet. 
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Figure 5.2. 50 KHz 2.5 Hanning window for 0.1 ms excitation interval 

 

A model obeys to symmetry condition if its geometry, material, load and 

boundary conditions are all symmetric about a certain plane in the three dimensional 

space. Symmetric boundaries constrain all the translations perpendicular to the plane of 

symmetry and the rotational degrees of freedom that generate out of plane motion. A 

portion of the geometry with increment load is studied and the results are generalized for 

the remaining part. The load and boundary condition of the plate are shown in Figure 5.3. 

 

Figure 5.3. Normal load and boundary conditions imposed to the thin plate 

(ABAQUS/CAE 6.14) 

 

5.1.5. Mesh Instance Creation 

The meshing is very important in the numerical simulation. It is commonly 

known that a fine mesh usually gives high accuracy calculation results. However, up to a 
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certain limit, the mesh refinement will not have a great effect on the results. Therefore, an 

optimized mesh element is reasonable for accurate outcomes and reduced time 

consumption.  

The element aspect ratio (AR) should be also taken into consideration. Generally, 

for a solid stress analysis, the aspect ratio of a cubic cell should not exceed 15. In 

ABAQUS, a high aspect ratio (about 100) will cause simulation crash and a warning will 

pop up on the screen. 

After setting the loads and boundaries, the subparts of the model are meshed 

separately. For the enclosed quarter piece, the orthogonal edges are seeded a biased 

partition starting from 0.2mm at the center and expanding to 0.5mm at the vicinity of the 

circular border. A sweep, hexagonal-dominant (element shape) and advancing front mesh 

is selected. 

The advancing front procedure creates quadrilateral elements all around the 

seeded boundaries of the section, respecting precisely the seeding dimensions, and 

continues the generation of the same elements as it moves towards the inside of the 

region.  

Second, the in-plane boundaries of the outer plate are uniformly portioned; each 

section is 0.05mm long. The outer portion is meshed with a sweep, hexagonal-dominant 

(element shape) and medial method. In addition, two elements across the thickness are 

enough for the entire model. 

The medial axis algorithm operates differently than the advancing front algorithm. 

It first sections the region to be meshed into simpler divisions. Then, these partitions are 

filled in by small cells. 
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5.1.6. Field and Output Request Generation 

Finite element analyses generate huge data of outputs. However, through 

ABAQUS, these information can be managed so that only required data are produced. In 

the field output request manager, the database extracted at every iteration from the entire 

model is chosen. This enables the animation of displacements and velocities profiles.  

Specific nodes’ data can be designated from the history output request manager. 

Because the aim of the ABAQUS simulation is to extract the out-of-plane amplitude and 

phase velocity in all the directions, precise sensor nodes marked by yellow dots in Figure 

5.4 are picked. The array of nodes is selected at 50mm from the center, spaced by a 5° 

increment angle and offset by 3mm.  

 

Figure 5.4. Sensors distribution on the150 mm radius quarter plate (ABAQUS/CAE 6.14) 

5.1.7. Job Creation and Verification 

The job creation and confirmation is the last step before running the simulation. 

At this stage, the model is verified for any error or warning in the inputs. For any 

detected error, the term “aborted” is shown in the command window. Otherwise, the 

analysis is “complete” and the output data starts storing in the database. The progress 
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status of the job can be also seen. An explicit dynamics analysis is run once neither 

warnings nor modelling errors were detected. 

5.2. Postprocessing, Results and Plots 

Once the simulation terminates, the pool of data is gathered and ready to be 

interpreted. For a non-defected plate, it is expected that the profile of the emitted signal 

from the source, located at the origin, does not change drastically at any location. In other 

words, the perturbations should preserve the same number of cycles (2.5 cycles). This 

statement is validated by Figure 5.5 for both the anisotropic and isotropic media. 

 

Figure 5.5. Signal response detected by a sensor 50mm from the excitation source 

(ABAQUS/CAE 6.14) 

 

As mentioned in the previous chapters, due to the anisotropic nature of the 

composites, the material is direction dependent. Therefore, waves tend to propagate along 

the fibers more rapidly and at 1higher amplitude compared to the other directions. This is 

not the case for aluminum. For a single excited point, in an isotropic medium, the 

disturbances spread in circular rings. A comparison is made in Figure 5.6. 
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(a) (b) 

Figure 5.6. Out-of-plane displacement amplitude; (a) for aluminum; (b) for composite for  

0° fiber angle (ABAQUS/CAE 6.14) 

 

The phase velocity, amplitude and slowness curves cannot be obtained directly from the 

finite element software. Excel sheets are established to store the tables of coordinates, 

then, the plots are drawn, as shown in Figures 5.7 and 5.8, using MATLAB. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.7. Characteristics of a 50 KHz lamb wave propagation in an aluminum plate of 

thickness 1.125mm: (a) amplitude profile; (b) phase velocity; (c) slowness curve 
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(a) 

 
(b) 

 
(c) 

Figure 5.8. Characteristics of a 50 KHz lamb wave propagation in a unidirectional 

0° composite plate of thickness 1.125mm: (a) amplitude profile; (b) phase velocity; (c) 

slowness curve 

 

5.3. Results Confirmation 

In order to validate the results, the findings of the anisotropic simulation are 

compared to data found in previous works. 

Salas and Cesnik (2010) plotted the phase velocity and amplitude profiles of a 12-

layer unidirectional laminate from data offered by the finite element analysis and laser 

vibrometry. The polar plots are given in Figure 5.8.The overall FEM polar plots of Figure 

5.9 are similar to those in Figure 5.8 (a) and (b). For the antisymmetric mode, the phase 

velocity profile resembles to an ellipse of horizontal major axis. The amplitude plot in 

both cases is also similar; the curve has three local maxima between 0 and 90°. 

Pant (2014) also schemed the slowness curves of unidirectional laminate at 

various frequency-thickness products by isolating the anti-symmetric mode of guided 

lamb wave. In both figures 5.8 (c) and 5.10, the slowness curves have a minimum at 

0°and a maximum at 90°. 

For the phase velocity, slowness and amplitude curves, the slight variation of the 
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shape is due to the evident dissimilarity of the excitation signal’s amplitude, laminate 

thickness, composite mechanical properties and meshing method. For instance, Salas and 

Cesnik (2010) used a 12-ply laminate at 75 KHz frequency, 3.5 Hanning window signal. 

The specimen is meshed with C3D8 and C3D6 0.25 mm element. The mechanical 

properties of the stack are also different than those used in Table 5.1.  

  

 

Figure 5.9. Wave characteristics of 12-layer unidirectional laminate: (a) phase 

velocity; (b) peak-to-peak amplitude profiles (Salas and Cesnik, 2010) 

 

 

 

Figure 5.10. Slowness curves at different frequency-thickness product of 

antisymmetric Lamb wave dispersing in unidirectional laminate (Pant, 2014) 
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6. Optimization Algorithm 

Optimization allows the best end result to be selected among alternative plausible 

solutions. The main limitations when maximizing the efficiency of a combination of 

parameters are the cost function and the boundary conditions. Optimization is useful in 

different research fields dealing with applied mathematics. In phased arrays searches, 

space optimization of the actuation points leads to a well-shaped beam with low Side-

Lobes Levels (SLL) and narrow Beam-Width First Null (BWFN). It also provides 

enhanced beamforming with reduced actuation points for steering toward a desired 

location.  

Particularly for randomly distributed excitation points, the arrangements of 

positions are infinitely numerous; any alteration of one point contributes to a modified re-

organization of the remaining set. Therefore, the problem can be treated by initializing a 

random permutation of conceivable solutions. Then, the suggested coordinates are 

evaluated based on the hypothetical restrictions by means of an optimizing method and 

the best space combination is finally chosen. 

6.1 Proposed Algorithms for Phased Arrays 

A variety of optimization practices concerning geometrical distribution of 

actuators are discussed in previous published works. In major reviews, the Genetic 

Algorithm (GA) in parallel with the Particle Swarm Optimization (PSO) is widely 

employed beside other evolutionary techniques to treat linear and multi-dimensional 

patterns.  

6.1.1 Linear Arrays 

Uniformly spread linear arrays generate a high grating lobe in a different direction 
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than that of the steered main beam but with approximately equal amplitude. This 

occurrence is undesirable since it clues to confusion about the location of the defect to be 

precisely determined. Optimization methods play on eliminating the periodicity of 

excitation by producing sparse arrays. For treating linear arrays, Merad et al. (2006) 

emphasize the use of Controlled Random Search (CRS) Optimization procedure. They 

also encourage for further development of these techniques for upcoming use. Kaur and 

Kumar (2011) suggested five evolutionary optimization approaches to alter the uniform 

spacing between the actuators so that better beam scanning is achieved. But, only one 

technique is highly recommended among the others. The selection falls on Biogeography 

Based Optimization (BBO) in first place in comparison with Genetic Algorithm, 

Simulated Annealing (SA), Bacteria Foraging (BFA) as well as Particle Swarm 

Optimization. PSO also has advantages above its candidates. In terms of optimal findings 

at a low computation period and simple cost function, PSO leads over the rest. PSO also 

tolerates beam steering inaccuracies better than BFA (Kaur & Kumar, 2011) whereas the 

latter has a greater role in side lobe suppression (Datta & Misra, 2008). Later, Ridwan et 

al. (2012) designed a non-uniform linear antenna array using Genetic Algorithm. To 

demonstrate the effectiveness of their algorithm, the final results are compared to the 

uniform, the binomial and Dolph-Chebyshev arrays. The improvements came on the level 

of beam directivity, beamwidth and sidelobes’ amplitudes. For all the arrays, the array 

factor is normalized to compare the sidelobes’ levels for various numbers of actuators. 

The GA was able to produce lower sidelobes than the binomial and Dolph-Chebyshev 

arrays. However, it should be noted that the element spacing to wavelength ratio (d/𝜆) for 

a non-uniform array is smaller (approximately 0.15) compared to a uniformly arranged 
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pattern (about 0.5) (Ridwan et al., 2012). Again, Shreni and Raikwar (2012) confirm the 

ability of the Genetic Algorithm to reduce the sidelobe amplitudes for 8, 20 and 24 

elements. In the same domain of research, Bhattacharya et al. (2012) proposed a family 

of developed models of the traditional Particle Swarm Optimization Technique. Position 

Mutated Hierarchical Particle Swarm Optimization algorithms with Time Varying 

Acceleration Coefficients, denoted HPSO-TVAC, are employed to adjust the main beam 

properties (SLL and BWFN). For HPSO-TVAC, the velocity and displacement equations 

are modified to ameliorate the convergence to the mean global best value (Bhattacharya 

et al., 2012). 

6.1.2 Circular Arrays 

Wave-emitting sources can be arranged in a circular rather than linear manner. 

For such arrays, the problem does not only deal with beamwidth and sidelobe level, but 

extends to minimize the aperture size of the arrangement. Due to its geometry, a circular 

configuration has the tendency to generate comparable wave beams in all directions when 

all excitations are fired at the same time. Thus, the greatly elevated grating lobes appear 

as main beams. A non-uniform rearrangement with firing time adjustment of the 

actuation elements improves beam steering. Real Genetic Algorithm (RGA) and 

Hierarchical Dynamic Local Neighborhood based PSO (HDLPSO) procedures are 

adequate optimization tactics for this situation. Bhattacharya et al. (2012) used the Real 

Genetic Algorithm method to reallocate evenly dispersed actuators on the circumference 

of a circle. Their study proposes minimizing a cost function relating the nulls levels to 

sidelobes’ amplitudes and the main lobe beamwidth. Ghosh et al. (2012) recommended a 

diverse concept, founded on HDLPSO, to deal with circular arrays. After comparison of 
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radiation patterns, it can be noticed that the main beam width is the same at a normalized 

amplitude, but HDLPSO overcomes the conventional PSO and GA by clamping down 

the sidelobes. The circumference, in terms of wave length, is evaluated and reflects a 

great similarity between both methods for an increased number of elements (Ghosh et al., 

2012).  A similar process was applied by Mandal et al. (2009) for an equally distributed 

array. Intensity factor findings from Binary coded Genetic Algorithm (BGA), Particle 

Swarm Optimization with Constriction Factor and Inertia Weight Approach 

(PSOCFIWA) and Craziness-based Particle Swarm Optimization (CRPSO) are compared 

for uniformly and non-uniformly excited cases (Mandal D. et al., 2009). 

6.1.3 Multi-Dimensional Arrays 

Despite the wide investigation of uniform planar arrays, the multi-dimensional 

random arrangement of actuation points is barely examined. Most studies focus on 

varying the number of actuators, adjusting the weighting factor or marginally shifting the 

positions of elements in symmetric patterns. Bevelacqua (2008) advocates a linear 

programming method applicable for both linear and planar arrays to suppress the 

sidelobes’ levels. In his method, the weighting factors are fluctuated between the exciters 

for the known geometry. In an analogous way, given a hexagonal pattern of wave 

emitters, Chen et al. (2005) deduced the excitation amplitude and phase of each unit to 

produce a well-oriented, three-dimensional wave front through PSO. Admitting the 

influence of the geometry on the sidelobes’ levels, Bevelacqua (2008) also processed an 

optimization for estimating the locations of symmetrically-dispersed actuators using PSO 

for spatial coordinates determination. However, the reported elapsed time of the 

simulation versus the number of actuators is enormous. For instance, locating four 
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actuators consumes three hours which goes up to ten hours for only positioning seven 

elements. For two-dimensional, spatially arranged actuating points, a good beamforming 

is sometimes obtained for a higher number of elements. From a different point of view, 

“A Pareto Elite Selection Genetic Algorithm (PESGA) for Random Antenna Array 

Beamforming with Low Sidelobe Level” was lately completed by Jayaprakasam et al. 

(2013). Assuming there is a fixed distribution of elements, PESGA is proven to be more 

effective than other scenarios to decide the weights with the coordinates of all the 

elements previously known. During the simulation, the peak sidelobe level versus the 

flow of generations is monitored until convergence is attained. To validate the method, 

the evolutionary technique is placed face to face with the conventional GA 

(Jayaprakasam et al., 2013). 

6.2 Algorithm Selection 

Because the proposed hypothesis in this investigation is uncommon, it is 

impossible to exactly apply any of the methods exhibited in the previous section. Recall 

that the major assumption is to preserve the same excitation delay at an undeviating 

weighting factor while optimizing the pattern. Accordingly, the expected geometry relies 

upon these assumptions as well as the wave front speed and out-of-plane displacement 

within the material. Once the inputs and the parameters to be adjusted are already 

determined, the optimization method can be selected. Based on the reviews of planar 

arrays, it is evident that the choice is restricted between GA and PSO to compute the 

Cartesian coordinates of every actuation point.  

6.2.1 Genetic Algorithm 

The genetic algorithm optimization technique intends to mimic the phenomenon 
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of reproduction of creatures in nature. In fact, a cell of any living organism encloses a 

nucleus of genes and group of genes constitutes the chromosomes. These chromosomes 

can be compared to a memory card that stores all the information of the body. The genes 

define certain features such as color of hair, skin and eyes, and the height, etc. Every 

organism can be identified by its unique combination of genes. During mating of the 

parent chromosomes, the sets of each partner try to dominate over the others. Strong 

genes are the ones that remain for the upcoming offspring. Likewise, the genetic 

algorithm is manipulated to solve the mathematical hypothesis by treating a series of 

promising solution candidates considered as the chromosomes, and each variable of the 

solution vector is a gene. 

The GA is a suitable utensil to find near feasible local minima or maxima for a 

non-linear system where it is difficult to get to the global optimum resolution in a 

reduced computational time. Unlike gradient methods, depending on the initial guess, the 

genetic algorithm always converges to a sequence of variables that optimizes the fitness 

of the whole population (Carr, 2014 & Herrera, 1998). 

6.2.2 Particle Swarm Optimization 

The concept of PSO is inspired from the social behavior and movement of 

flocking insects, birds and fish. The collection of particles is called population and the 

final result is the convergence of all the members of the group. The fundamental of PSO 

involves the social force theory; pedestrian dynamics interpret a model of moving 

members considered as point mass particles. The principle accounts for social interaction 

and relates the behavioral change of an individual to its surroundings. For instance, a 

member usually has a tendency to reach the desired destination smoothly or involvement 



68  

with its neighbor environment. However, the adjacent individuals provoke repulsive, as 

well as interactive, forces. Social forces are present to adapt the individuals’ motion to 

the overall flow.  

Every individual has a personal tendency to select the path to follow and its 

corresponding velocity, although the overall flow obliges him/her to adjust to a collective 

strategy. Thus, there are two best, global and personal position and velocity (Kennedy, 

1995 & Clerc, 2012). 

6.2.3 Interpretation and Selection 

Most optimization techniques have the same following global structure: 

 A random starting population is generated including promising key solutions for 

the stated matter.  

 Boundary and/or initial conditions are evaluated, if existing. 

 Objective (cost) and fitness functions are verified for each guess. 

 The population is reproduced with certain adjustments. 

 The process is repeated through many generations, enabling convergence of the 

best guess to the desired end result. 

GA and PSO respect the overall scheme, but modifications occur at the level of 

population reproduction. The GA is comprised of two main reforms that are not available 

in PSO: mutation and cross-over. Cross over allows mating of the genes of two parents to 

produce offspring.  Mutation occurs by breeding some chromosomes with new values. 

The GA place high expectations on these steps, depicted in Figures 6.1 and 6.2, as they 

probably bring improvements to the final solution and introduce alterations to the initially 

suggested pool of results that are chosen randomly. 
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Figure 6.1. Chromosome single point cross-

over 

Figure 6.2. Chromosome mutations 

 

On the other hand, the PSO calibrates the particles’ motion and position, based on 

their personal states and the overall situation. Therefore, every single member of the 

population converges at the end toward the optimum result. PSO initiates with a primary 

presumption of a swarm of random particles; it is reported that 10 to 15 possibilities are 

usually sufficient (Clerc, 2012). The initial velocity and location are computed from 

Equations (6.1) and (6.2) respectively. Then, the given objective function is evaluated 

successively for all individuals. At each iteration, the velocities and positions are 

respectively updated from Equations (6.3) and (6.4). The best element coordinates with 

the lowest cost function value are extracted and updated every time.  

𝑥0
𝑖 = 𝑥𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑1 (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) (6.1) 

𝑣0
𝑖 = 

𝑥𝑚𝑖𝑛+𝑟𝑎𝑛𝑑1 (𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

∆𝑡
  (6.2) 

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖  ∆𝑡 (6.3) 

𝑣𝑘+1
𝑖 =  𝑤 𝑣𝑘

𝑖 + 𝑐1 𝑟𝑎𝑛𝑑2 
(𝑝𝑖 − 𝑥𝑘

𝑖 )

∆𝑡
+ 𝑐2 𝑟𝑎𝑛𝑑3 

(𝑝𝑘
𝑔
− 𝑥𝑘

𝑖 )

∆𝑡
 

 

(6.4) 

By introducing the constriction factor, Equation (6.4) can be written as: 

𝑣𝑘+1
𝑖 =  𝑘[ 𝑣𝑘

𝑖 + 𝑐1 𝑟𝑎𝑛𝑑2 
(𝑝𝑖 − 𝑥𝑘

𝑖 )

∆𝑡
+ 𝑐2 𝑟𝑎𝑛𝑑3 

(𝑝𝑘
𝑔
− 𝑥𝑘

𝑖 )

∆𝑡
 ] 

 

(6.5) 
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where: 

w: inertia weight 

k: constriction factor 

𝑥0
𝑖  is the initial position of the ith particle 

𝑥𝑚𝑖𝑛 is the minimum allowable displacement from the origin of the coordinate 

system 

𝑥𝑚𝑎𝑥 is the maximum allowable displacement from the origin of the coordinate    

 system 

𝑣0
𝑖  is the initial velocity of the ith particle 

𝑣𝑘+1
𝑖  is the velocity of particle i at time k+1 

w is the inertia factor range (between 0.4 and 1.4) 

𝑣𝑘
𝑖  is the velocity of particle i at time k 

𝑐1 is the self confidence range (between 1.5 and 2) 

𝑐2 is the swarm confidence range (between 2 and 2.5) 

𝑝𝑖 is the ith particle’s best position  

𝑥𝑘
𝑖  is the position of particle i at time k 

𝑥𝑘+1
𝑖  is the position of particle i at time k+1 

𝑝𝑘
𝑔

 is the  global best position 

∆𝑡 is the time interval per iteration 

w𝑣𝑘
𝑖  is the current motion 

𝑟𝑎𝑛𝑑 
(𝑝𝑖−𝑥𝑘

𝑖 )

∆𝑡
 is the particle memory influence 

𝑟𝑎𝑛𝑑 
(𝑝𝑘
𝑔
−𝑥𝑘

𝑖 )

∆𝑡
 is the swarm influence 
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Equations (6.1) to (6.4) are listed in Hassan et al. (2004) and the position and velocity 

vectors are depicted in Figure 6.3 below. 

 

Figure 6.3. The ith particle’s local and global best displacement and velocity vectors    

(Hassan et al., 2004) 

 

In the current situation, GA works better than PSO for the following reasons: 

First, the variables to be optimized are constraints within definite intervals that are 

determined by the aperture of the whole array pattern. In PSO, the new particle’s position 

is updated based on the migration speed, as shown in Equation (6.3). The developed 

Particle Swarm Optimization techniques for the variables’ constrained spaces rely on 

adjusting some parameters within the same velocity equation. Mezura-Montes and 

Flores-Mendoza (2011) propose to adjust the velocity function through the inertia weight 

(w), constriction factor (k) or the social network structures (𝑐1 and 𝑐2 ). Helwig et al. 

(2009) implement a velocity adaptation mechanism into the conventional PSO algorithm. 

However, some new possibilities still will not verify the imposed boundary conditions 

and will be excluded. Therefore, the effective swarm size will be reduced. From the other 

side, in the GA, the cross-over and mutation allows regeneration of new solution 

candidates that automatically respect the limited range of every variable.  

Second, PSO algorithm allows only convergence of the swarm to the optimum 



72  

result. In this process, the final result will be dependent on the initial guess, whereas, 

through mutation and cross-over, additional possibilities can be implemented and tested 

at every iteration.  

Third, in the current situation, due to the wide probabilistic range of guess and 

technical restrictions, it is impossible to determine a global optimum. If manipulating a 

PSO technique especially at a high order of actuation points and a large population, the 

convergence of all the possibilities will consume excessive time.  

As a result, a recommended GA method, revealed in the section below, will be 

initiated to formulate an optimized spatially perturbed array.  

6.3 The Process of Optimization for The GA 

The aim of this section is to define a tailored, appropriate methodology, which 

describes the suggested hypothesis and accommodates the theoretical requirements of the 

problem exhibited in Chapter 4. In this case study, the pattern of the actuation points is 

investigated. These points are located on arcs within a predefined aperture and spaced in 

such a way that the excitation time delay is kept constant. In addition, it is important to 

preserve the centroid location at the origin of the coordinate system. The formed beam 

should also be able to effectively scan a defect situated either in the near or far field from 

the array. Thus, the plan, thus, proposes the generation of a set of y-ordinates of these 

excitation points from which the x- values are determined. Then, the obtained coordinates 

are evaluated upon the stated constraints. The process is iterated many times until the 

ultimate pattern is reached. The strategic steps of the current problem in Cartesian 

coordinates are stated in Figure 6.4 below. It is possible to use polar coordinates r and θ 

instead of x and y, respectively. The algorithm starts by initiating a value of r and θ 
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instead of y and x. 

 

 

 

Figure 6.4. The flow chart of the proposed Genetic Algorithm for multi-directional sparse 

array 

 

 

 

Part I: y-ordinate determination 
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1- Initiate, for a first guess, a matrix E of dimensions M × N where M represents the 

number of desired actuations and N that of the possible combinations of y-locations. 

Each vector of the matrix represents a promising resolution to the problem.  

E = [

𝑦1,1 ⋯ 𝑦1,𝑁
⋮ ⋱ ⋮

𝑦𝑀,1 ⋯ 𝑦𝑀,𝑁
]  

 

(6.6) 

 

where 

𝑦𝑖,𝑗 = y𝑖,𝑗 𝑚𝑖𝑛+ 𝑟𝑖,𝑗 . cof .  (y𝑖,𝑗 𝑚𝑎𝑥 −  y𝑖,𝑗 𝑚𝑖𝑛) (6.7) 

 

𝑟𝑖,𝑗 is a decimal number between 0 and 1 

0 < 𝑟𝑖,𝑗 < 1 (6.8) 

 

cof is a decimal correction factor which controls the position of the y-values from 

the y-axis. 

0 < 𝑐𝑓 < 1 (6.9) 

 

2- The centroid is calculated from the relation: 

�̅� = 
1

𝑀
∑ 𝑦𝑖
𝑀
𝑖=1   (6.10) 

The centroid should be at the origin of the coordinate system. However, no combination 

can place it exactly at zero. For this reason, an allowable tolerance, 𝜀, is proposed in such 

a way that the final result is not seriously affected. Equation (6.10) becomes: 

|�̅�| = 𝜀 (6.11) 

3- At this stage, it’s important to verify the condition (6.11) for every vector of matrix E. 

If not satisfied, the vector is excluded out of matrix E and matrix E reduces to: 
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G = [

𝑦1,1 ⋯ 𝑦1,𝑅
⋮ ⋱ ⋮

𝑦𝑀,1 ⋯ 𝑦𝑀,𝑅
]  ;  R < N 

 

(6.12) 

 

Where R is the number of vectors verifying equation (6.11)  

 

Part II: x-ordinate determination 

4- The absolute values of xi,j can be found from chapter 4. However, each element 𝑦𝑖,𝑗 

of vector y relates to a negative and a positive value of x, thus: 

x𝑖,𝑗 = S𝑖,𝑗  . | x𝑖,𝑗|  ;   1 <  i <  M ;   1 <  j <  R  (6.13) 

where  

S𝑖,𝑗 = {-1,1} (6.14) 

Note that, for polar coordinates, every value of r corresponds to either a positive or 

negative angle. The angle is measured from the vertical y-axis. 

The value of  S𝑖,𝑗 is selected randomly and the absolute two-dimensional x-matrix 

becomes: 

H = [

|𝑥1,1| ⋯ |𝑥1,𝑅|

⋮ ⋱ ⋮
|𝑥𝑀,1| ⋯ |𝑥𝑀,𝑅|

]   

 

(6.15) 

 

 

Now, for every single vector |x| from matrix H corresponds Z combinations of positive 

and negative terms. Accordingly, the situation urges for a three-dimensional matrix for x- 

coordinates enclosing rows, columns and layers. The rows represent the x-abscissa of the 

actuation points, the columns are different combinations of x values and the layers 

enclose the attributed x- matrice to each vector of matrix H.  
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5- Again, similar to y-ordinates, the x-matrices is generated in two stages. First, a matrix 

labeled 𝐿𝑘 is created by selecting randomly the S𝑖,𝑗 values for a certain range of x𝑖,𝑗 . 

The matrix 𝐿𝑘 is written as:  

𝐿𝑘  =  [

𝑥1,𝑘,1 ⋯ 𝑥1,𝑘,𝑍
⋮ ⋱ ⋮

𝑥𝑀,𝑘,1 ⋯ 𝑥𝑀,𝑘,𝑍
]

𝑙𝑎𝑦𝑒𝑟 𝑘

 ;   1 < k <  R  
 

(6.16) 

 

 

6- In the same way as y, every vector of 𝐿𝑘 is evaluated based on the equation: 

�̅� = 
1

𝑀
∑ 𝑥𝑖
𝑀
𝑖=1  (6.17) 

Then, the x-vector, having the minimum �̅�, is taken and attributed to its corresponding y-

vector in the initial population. 

J = [

𝑥1,1 ⋯ 𝑥1,𝑅
⋮ ⋱ ⋮

𝑥𝑀,1 ⋯ 𝑥𝑀,𝑅
]   

 

(6.18) 

 

 

7-  Finally, the initial population, P, is given by: 

𝑃 = [
E
J
] =

[
 
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑅
⋮  ⋮

𝑥𝑀,1
𝑦1,1
⋮

𝑦𝑀,1

⋯
⋯ 
⋯

𝑥𝑀,𝑅
𝑦1,𝑅
⋮

𝑦𝑀,𝑅]
 
 
 
 
 

 

  

 

 

 (6.19) 

 

 

 

Part III: Cost Function 

The cost function is a trade-off between the design variables. It evaluates the cost 
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and constraints at every iteration. If accurately chosen, a cost function has a great 

influence on the precision of the final results. 

 In this case, it is important to preserve the centroid at the origin, but the oriented 

beam properties are also valuable. An appropriate beam is characterized by a narrow 

Beam Width First Null (BWFN) pointing sharply to the target, and surrounded by a few 

sidelobes dependent on the amount of actuations frequencies and their numbers. These 

sidelobes’ amplitudes should be minimal compared to the main lobe’s amplitude and 

nulls must be reduced. 

A convenient cost function to be used is proposed by Goswami and Mandal 

(2013). Each term represents one of the stated parameters multiplied by a weighting 

coefficient to control its importance. The minimizing equation is slightly modified to fit 

the requirements of this problem: 

CF=𝐶1 ×
| ∏ 𝐴𝐹(𝑛𝑢𝑙𝑙𝑖)|

𝑚
𝑖=1

𝐴𝐹𝑚𝑎𝑥
 + 𝐶2 × ∑ 𝐻(𝑘)𝐾

𝑘=1 ×(𝑄𝑘- 𝛿)  

+ 𝐶3 × |𝐹𝑁𝐵𝑊𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 − 𝐹𝑁𝐵𝑊𝑑𝑒𝑠𝑖𝑟𝑒𝑑 | 

 

 

(6.20) 

 

where 

H(k) = {
1, (𝑄𝑘 −  𝛿) > 0

0, (𝑄𝑘 −  𝛿) < 0
 

 

 

(6.21) 

and 

𝐴𝐹(𝑛𝑢𝑙𝑙𝑖): Array factor at the null of index i in Decibels (dB) 

𝑄𝑘: Sidelobe level in (dB) 

𝛿: Desired sidelobe level in (dB) 
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𝐹𝑁𝐵𝑊𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑: Actual First Null Beam Width in radians (rad) 

𝐹𝑁𝐵𝑊𝑑𝑒𝑠𝑖𝑟𝑒𝑑: Desired First Null Beam Width in (rad) 

𝐶1, 𝐶2 and 𝐶3: Weighting coefficients 

For a normalized Array Factor (𝐴𝐹𝑛𝑜𝑟𝑚), 𝐴𝐹𝑚𝑎𝑥 is always equal to unity. Thus, Equation 

(6.15) reduces to: 

CF=𝐶1 × |∏ 𝐴𝐹(𝑛𝑢𝑙𝑙𝑖)|
𝑚
𝑖=1  + 𝐶2 × ∑ 𝐻(𝑘)𝐾

𝑘=1 ×(𝑄𝑘- 𝛿)  

+ 𝐶3 × |𝐹𝑁𝐵𝑊𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 − 𝐹𝑁𝐵𝑊𝑑𝑒𝑠𝑖𝑟𝑒𝑑 | 

 

 

(6.22) 

 

Another form of cost function was manipulated by Bhattacharya  et Al.(2012) for 

the purpose of optimizing an asymmetric circular antenna array2 .In their study, every 

antenna was given polar spherical coordinates (r,𝜃, 𝜑) which are optimized through the 

analysis. The coordinates r, 𝜃 and 𝜑 stand respectively for the position of the wave 

emitter measured from the origin O, the out-of-plane elevation angle and the in-plane 

azimuth angle as depicted in Figure 6.5. 

The employed cost function enables the determination of the weighting factor 

attributed to every emitting source. However, for this current research, it’s assumed that 

all excitations occur at equal unit weights. The authors also suggest a minimizing cost 

function of a three dimensional (3D) space, but here the investigation is restricted only to 

planar arrangement of the actuated elements.  
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Figure 6.5. A three dimensional array of the wave radiators. Left - In plane 

arrangement; Right - An isometric view (Bhattacharya et al.,2012) 

 

The modified cost function, CF, of antenna array in 2D space and equal weighting factor, 

assumed to be unity, is defined by: 

 

CF =  
𝑆𝐿𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑆𝐿𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡
+∑ |𝐴𝐹 (𝜃𝑖)|

2𝑀
𝑖=1 + |𝐵𝑊𝐹𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐵𝑊𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 | (6.23) 

where 

𝑆𝐿𝐿 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =  20 𝑙𝑜𝑔10 { 
0.5 |𝐴𝐹(𝜃𝑚𝑠𝑙 1 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 )+𝐴𝐹(𝜃𝑚𝑠𝑙 2 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 )|  

|𝐴𝐹 (𝜑0)|
} 

(6.24) 

and 

𝑆𝐿𝐿 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 20 𝑙𝑜𝑔10 { 
0.5 |𝐴𝐹(𝜃𝑚𝑠𝑙 1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 )+𝐴𝐹(𝜃𝑚𝑠𝑙 2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 )|  

|𝐴𝐹 (𝜑0)|
 } 

(6.25) 

 

The cost function (6.23) relates every iteration to the initial findings in a repetitive 

process, and the terms of Equations (6.23), (6.24) and (6.25) are determined as the 

following: 

𝑆𝐿𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙: Initial sidelobe level  

𝑆𝐿𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡: Current sidelobe level  
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𝐴𝐹 (𝜃𝑖): Array factor at the null of index i 

𝐴𝐹 (𝜑0): Array factor at the null of index i 

𝐵𝑊𝐹𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 : Initial Beam Width First Null  

𝐵𝑊𝐹𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡 : Current Beam Width First Null  

𝐴𝐹(𝜃𝑚𝑠𝑙 1 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ): Initial array factor of the upper band highest sidelobe  

𝐴𝐹(𝜃𝑚𝑠𝑙 2 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ): Initial array factor of the lower band highest sidelobe  

𝐴𝐹(𝜃𝑚𝑠𝑙 1 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ): Current array factor of the upper band highest sidelobe 

𝐴𝐹(𝜃𝑚𝑠𝑙 2 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ): Current array factor of the lower band highest sidelobe 

 

Part IV: Extraction of best fitting chromosome, cross-over and mutation  

After the evaluation of the pool of chromosomes consisting of the positional 

coordinates, crossover and mutation are performed. The extraction of the finest 

population can be done in several methods: the roulette wheel, the rank based and the 

tournament selections. 

For the roulette method, the order of the chromosomes inside the matrix is 

permutated based on a procedure starting by computing an objective function, assessing 

its related fitness, estimating the probability and obtaining the cumulative probability of 

each chromosome. The last chromosome should have the cumulative probability equal to 

unity. Furthermore, random numbers between 0 and 1 are generated. The rule of selection 

of the chromosomes for the next generation is given by: Consider the ith chromosome 

(vector) in matrix P (Equation 6.19), R(i) its random number and C(i) its cumulative 

probability. If R(i) is greater than C(i) and less than C(i+1), then, pick the chromosome of 

index i+1 for the next generation. Otherwise, the ith chromosome is taken. Therefore, the 
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new elements of the upcoming generation are reorganized in a new matrix. 

Another useful method is described by Raja and Bhaskaran (2008) to improve the 

performance of Genetic Algorithm by reducing the population size. Known as 

tournament selection, this method tends to divide the population into small groups. Then, 

tournaments are achieved between the individuals of the same group to recognize the 

decent individuals from the hunt space. The winning members, having the minimum cost 

function, constitute the new population.  

Ranked selection is another method to extract eligible candidates from the 

population. From its name, it can be inferred that the elements having the highest 

probability are allowed to proceed. In contrast with other selection techniques, ranked 

selection allows preservation of a constant population through all of the iterations. This 

method will be chosen as a selection criteria because it has the highest profit and the best 

convergence amongst the others.  

Cross-over is operated to bring the population to convergence towards a local 

optimum. It occurs when a pair of chromosomes hybridizes. Crossbreeding can occur at 

single, double or multiple points.  As a result, the offspring chromosomes contain a 

mixture of genes of the two parents. In matrix P, the vectors to be crossed-over are 

selected upon a predetermined cross-over parameter, 𝜌. As stated before, for each single 

chromosome, there corresponds a generated random number R(i). If R(i) is less than 𝜌, 

then the vector of order i is a parent of the offspring generation. In this case, uniform 

(multiple points) cross-over is performed by randomly choosing the breeding locations. 

Mutation is a divergence process; it has the tendency to introduce some new 

members to the population in order to seek for a probable optimum solution in another 
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space. Mutation is done by substituting a gene (y-coordinate) at a random position by a 

new value. Four factors characterize a mutation; these are the mutation rate, number of 

mutations, mutation locations and mutating values. The mutation rate is a numerically 

adjustable value that must be kept as low as possible. The number of mutations is 

determined by multiplying the number of genes by the total number of chromosomes in a 

population and by the mutation rate. Then, the decimal number is rounded to the nearest 

integer. The location of the mutated element is randomly selected and the mutation value 

is given by replacing 𝑟𝑖,𝑗 in Equation (6.7) with a new decimal between 0 and 1. 

After passing through all of the mentioned steps, the cycle is repeated until the 

given number of generations is reached. Finally, among all of the best chromosomes 

extracted from each cycle, the most fitting solution vector is chosen for the final result. 

The following instructions are followed for optimization: 

 Number of Individuals per generation: 100 (for aluminum) / 50 (for composites) 

 Number of generations: 50 

 Selection Mechanism: Ranked selection 

 Crossover Type: Uniform crossover 

 Crossover Rate: 0.90 

 Mutation Rate: 0.15 
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7. Data Analysis and Findings 

In this chapter, the plotted results of the simulated algorithm using MATLAB are 

presented. Two fundamental aims are satisfied from the data collection and the 

subsequent analysis. The first goal is to design and model a random pattern of actuation 

arrays for structural health monitoring of a thin plate. The number of actuation points and 

the material type are the floating parameters, whereas the excitation time delay has to 

remain uniform along the scanning process.  

Second, the challenge is to demonstrate the consistency of the perception and 

validate its effectiveness for future utilization. For this reason, the beamforming is plotted 

in Cartesian and polar coordinate systems and the convergence of the cost function is 

illustrated. The space arrangement of the emission points is also schemed for anisotropic 

and isotropic materials as well as for the increased actuation points. 

The findings are finally compared to previously developed studies on uniformly 

distributed, linear and disk patterns of emission sources fired at varying time delay. This 

alteration of the moment of excitation accounts for the distance of each actuation point 

from the target. Once the tasks are successfully fulfilled, the results have shown 

efficiency for upcoming use. 

 

7.1. Random Array Results for Aluminum 

For aluminum, the simulations are performed for 40, 51 and 66 random actuation 

points to scan a target point at 90° angle from the horizontal.  

 40 Actuations: 

The polar and linear beamforming, the cost function and the space arrangement of the 40 
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actuations pattern are shown in Figures (7.1) to (7.4). 

 

 

 

 

 

Figure 7.1. Polar 

beamforming resulting 

from 40 actuations and 

pointing towards a 90° 
target on an aluminum 

plate 

Figure 7.2. A Cartesian plot 

of the array factor 

illustrating the main beam at 

90° and its adjacent side 

lobes of 40 actuations for an 

isotropic medium 

Figure 7.3. The convergence 

process of the cost function 

to the optimum solution by 

means of a Genetic 

Algorithm processing of 40 

locations for an isotropic 

medium 

 

 

Figure 7.4. A space arrangement of the 40 actuation points enclosed within a circular 

aperture and facing a target point in the near field on an aluminum plate 

 

 51 Actuations: 

The polar and linear beamforming, the cost function and the space arrangement of the 
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51 actuations pattern are shown in Figures (7.5) to (7.8). 

 

 

 

 

 
 

 

 

 

Figure 7.5. Polar 

beamforming resulting from 

51 random actuations and 

pointing towards a 90° 
target on an aluminum plate 

Figure 7.6. A Cartesian plot of the 

array factor illustrating the main 

beam at 90° and its adjacent side 

lobes of 51 actuations for an 

isotropic medium 

Figure 7.7. The convergence 

process of the cost function to 

the optimum solution by means 

of a Genetic Algorithm 

processing of 51 locations for 

an isotropic medium 

 
Figure 7.8. A space arrangement of the 51 actuation points enclosed within a circular 

aperture and facing a target point in the near field on an aluminum plate 

 

 66 Actuations: 

The polar and linear beamforming, the cost function and the space arrangement of the 

66 actuations pattern are shown in Figures (7.9) to (7.12). 
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Figure 7.9. Polar 

beamforming resulting from 

66 random actuations and 

pointing towards a 90° target 

on an aluminum plate 

Figure 7.10. A Cartesian plot of 

the array factor illustrating the 

main beam at 90° and its 

adjacent side lobes of 66 

actuations for an isotropic 

medium 

Figure 7.11. The convergence 

process of the cost function to 

the optimum solution by means 

of a Genetic Algorithm 

processing of 66 locations for an 

isotropic medium 

 
Figure 7.12. A space arrangement of the 66 actuation points enclosed within a circular 

aperture and facing a target point in the near field on an aluminum plate 

 

7.2. Random Array Results for a 0° Unidirectional Laminate 

For composite, the simulations are performed for 20, 51 and 66 actuation points to scan a 

target point at 90° angle from the horizontal.  
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 20 Actuations: 

The polar and linear beamforming, the cost function and the space arrangement of the 

20 actuations pattern for a 0° unidirectional laminate are shown in Figures (7.13) to 

(7.16). 

  
 

Figure 7.13. Polar 

beamforming resulting 

from 20 random actuations 

and pointing towards a 90° 
target on a 0° 

unidirectional fiber plate 

Figure 7.14. A Cartesian plot of 

the array factor illustrating the 

main beam at 90° and its 

adjacent side lobes of 20 

actuations in a 0° fiber medium 

Figure 7.15. The convergence 

process of the cost function to the 

optimum solution by means of a 

Genetic Algorithm processing of 

20 locations in a 0° fiber medium 

 

 
Figure 7.16. A space arrangement of the 20 actuation points enclosed within a circular 

aperture and facing a target point in the near field on a 0° Unidirectional Laminate 
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 51 Actuations: 

The polar and linear beamforming, the cost function and the space arrangement of the 

51 actuations pattern for a 0° unidirectional laminate are shown in Figures (7.17) to 

(7.20). 

 
 

 

Figure 7.17. Polar 

beamforming resulting 

from 51 random actuations 

and pointing towards a 90° 
target on a 0° unidirectional 

fiber plate 

Figure 7.18. A Cartesian plot 

of the array factor illustrating 

the main beam at 90° and its 

adjacent side lobes of 51 

actuations in a 0° fiber medium 

Figure 7.19. The convergence 

process of the cost function to the 

optimum solution by means of a 

Genetic Algorithm processing of 

51 chromosomes in a 0° fiber 

medium 

 
Figure 7.20. A space arrangement of the 51 actuation points enclosed within a circular 

aperture and facing a target point in the near field on a 0° Unidirectional Laminate. 
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 66 Actuations: 

The polar and linear beamforming, the cost function and the space arrangement of the 66 

actuations pattern for a 0° unidirectional laminate are shown in Figures (7.21) to (7.24). 

  
 

Figure 7.21. Polar 

beamforming resulting 

from 66 random 

actuations and pointing 

towards a 90° target on a 

0° unidirectional fiber 

plate 

Figure 7.22. A Cartesian plot of 

the array factor illustrating the 

main beam at 90° and its 

adjacent side lobes of 66 

actuations in a 0° fiber medium 

Figure 7.23. The convergence 

process of the cost function to 

the optimum solution by means 

of a Genetic Algorithm 

processing of 66 locations in a 

0° fiber medium 

 

 
Figure 7.24. A space arrangement of the 66 actuation points enclosed within a circular 

aperture and facing a target point in the near field on a 0° Unidirectional Laminate 
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7.3. Random Array Results for a 90° Unidirectional Laminate 

In the case, the fibers are rotated to the direction of the target point. 

 18 Actuations: 

The polar and linear beamforming, the cost function and the space arrangement of the 51 

actuations pattern for a 90° unidirectional laminate are shown in Figures (7.25) to (7.28). 

 

 

  

Figure 7.25. Polar 

beamforming resulting 

from 18 random 

actuations and pointing 

towards a 90° target on a 

90° unidirectional fiber 

plate 

Figure 7.26. A Cartesian plot 

of the array factor illustrating 

the main beam at 90° and its 

adjacent side lobes of 18 

actuations in a 90° fiber 

medium 

Figure 7.27. The 

convergence process of the 

cost function to the 

optimum solution by 

means of a Genetic 

Algorithm processing of 18 

locations in a 90° fiber 

medium 

 
Figure 7.28. A space arrangement of the 18 actuation points enclosed within a circular 

aperture and facing a target point in the near field on a 90° Unidirectional Laminate 
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 20 Actuations: 

The polar and linear beamforming, the cost function and the space arrangement of the 

51 actuations pattern for a 90° unidirectional laminate are shown in Figures (7.29) to 

(7.32). 

 

 
 

Figure 7.29. Polar 

beamforming resulting 

from 20 random 

actuations and pointing 

towards a 90° target on a 

90° unidirectional fiber 

plate 

Figure 7.30. A Cartesian plot of 

the array factor illustrating the 

main beam at 90° and its 

adjacent side lobes of 20 

actuations in a 90° fiber medium 

Figure 7.31. The 

convergence process of 

the cost function to the 

optimum solution by 

means of a Genetic 

Algorithm processing of 

20 locations in a 90° fiber 

medium 

 

 
Figure 7.32. A space arrangement of the 20 actuation points enclosed within a circular 

aperture and facing a target point in the near field on a 90° Unidirectional Laminate 
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7.4. Results of a Uniformly Distributed Linear Array for an Orthotropic Laminate 

Here, the beamforming of a fixed number of 20 equally spaced actuation points, 

fired at varying time, are plotted in both cases of a 0° and 90° unidirectional fiber plates 

in Figures (7.33) and (7.34) respectively. 

  
Figure 7.33. Polar beamforming resulting 

from 20 linear actuations and pointing 

towards a 90° target on a 0° unidirectional 

fiber plate 

Figure 7.34. Polar beamforming resulting 

from 20 linear actuations and pointing 

towards a 90° target on a 90° unidirectional 

fiber plate 

  

7.5.Results of Uniform Array Geometries for an Isotropic Material 

The beamforming equations of linear and disk planar arrays, derived by Lingyu 

(2006), are used to model the wave maximum displacement in Figures (7.35), (7.36) and 

(7.37). Note that these patterns have fluctuating excitation delay. Later, these findings are 

compared to the investigated random patterns. 
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Figure 7.35. Polar 

beamforming resulting from 

40 linear actuations and 

pointing towards a 90° target 

on an aluminum plate 

Figure 7.36. Polar 

beamforming resulting 

from a disk pattern of 40 

actuations and pointing 

towards a 90° target on an 

aluminum plate 

Figure 7.37. Polar 

beamforming resulting from 

a disk pattern of 66 

actuations and pointing 

towards a 90° target on an 

aluminum plate 

 

7.6. Discussion and Interpretation 

The beamforming plots in the previous section aim to verify the directionality and 

out-of-plane displacement amplitude of the wave front. However, the main characteristics 

of these schemes are summarized in Tables (7.1) to (7.5) below.  

Table 7.1. Beamwidth first null and sidelobes’ levels at different random actuation points 

for an isotropic medium 

Number of actuators Beam Width First Null 

(BWFN) 

Side Lobe Levels 

(SLL) 

40 16.01° 0.3075 

51 16.01° 0.1998 

66 12. 00° 0.1990 

 

 

Table 7.2. Beamwidth first null and sidelobes’ levels at different uniformly spaced 

actuation points for an isotropic medium 

Array type Number of 

actuators 

Beam Width First 

Null (BWFN) 

Side Lobe 

Levels (SLL) 

Linear 40 6° 0.2176 

Disk  40 16° 0.2989 

Disk  66 12° 0.2297 
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Table 7.3. Beamwidth first null and sidelobes’ levels at different random actuation points 

for a 0° unidirectional fiber plate 

Number of actuators Beam Width First Null 

(BWFN) 

Side Lobe 

Levels (SLL) 

20 94° 0.2120 

51 86° 0.1903 

66 86° 0.1904 

 

 

 

Table 7.4. Beamwidth first null and sidelobe levels at different random actuation points 

for a 90° unidirectional fiber plate 

Number of actuators Beam Width First 

Null (BWFN) 

Side Lobe Levels 

(SLL) 

18 6° 0.3784 

20 6° 0.3999 

 

 

Table 7.5. Beamwidth first null and sidelobes’ levels at different random actuation points 

for a linear 20 actuations array over a composite plate 

Composite orientation Beam Width First 

Null (BWFN) 

Side Lobe 

Levels (SLL) 

0° 84° 0.3592 

90° 12° 0.2281 

 

By comparing the beamwidth and the sidelobes’ levels of patterns within the same 

material category, here are some basic deductions: 

 By increasing the number of actuation points, the BWFN and the SLLs decrease; 

the beam is narrowed and the nulls are pushed down to the pattern’s centroid. 

 Independent of the material type, a linear uniformly distributed array generates a 

grating lobe symmetrical to the main lobe in the opposite direction for a 90° 

steering. 
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 Due to the anisotropic nature of composites, the fibers help improving the 

directionality of the beam and a lower number of actuation points is required for a 

beam steering along the fibers. 

 In the direction orthogonal to the fibers, the friction with the orthotropic material 

is at its maximum so the formed beam tends to diverge from the target and the 

beamwidth is about 90°. Increasing the actuation helps to slightly decreasing the 

beamwidth up to a certain limit (≈ 10 %). 

 A random array, excited at the same time delay, proves to have the same wave 

features as a regularly distributed, non-uniformly excited disk array. For the latter, 

the excitation moment is determined by the distance of the excitation point to the 

target. 

 Some tolerant errors in the composite plots (negligible dissymmetry in 

beamforming) happened due to the choice of the beamforming expression used in 

the algorithm. The array factor for isotropic media is transformed to account for 

anisotropy. However, the expression of displacement should be derived from the 

initial partial differential wave equation of a unidirectional laminate stated in 

chapter 2. 
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8. Conclusion and Future Work 

In the current thesis, an optimization algorithm is developed to position in space 

the location of actuation points fired from a source to excite a structural surface. The 

health of the monitored part is evaluated based on the response to the propagating wave 

packet. The wave front of the resultant beam is guided to the target by calibrating the 

time delay between the firing of excitations. Assuming a constant time suspension, the 

geometry of the actuations’ pattern is optimized to shape a steered beam able to reach the 

location being inspected. A mathematical model is developed to describe the stated 

hypothesis. Then, finite element simulations are conducted to obtain the wave physical 

characteristics. Finally, all the findings are implemented in a genetic algorithm to predict 

the profile of the actuation points. After succeeding to accomplish the task, the results are 

compared to conventional patterns manipulated in previous studies. The outcomes are 

promising and this research can be developed further in the future. The coded Genetic 

Algorithm (GA) has a general use; it is not only restricted to unidirectional laminates. 

However, here are some reforms to be achieved to complete the research: 

 Generation of velocity dispersion curves suitable for the anisotropic plate by 

selecting the most accurate method among those stated in chapter 2. 

 Derivation the out-of-plane displacement and beamforming expression from the 

unidirectional laminate wave differential equation. 

 Modification of the GA code to be able to steer the target in all direction instead 

of only the 90° position. 

 Validation of the excitation pattern virtually by means of ABAQUS software or 

experimentally.  
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