
Doctoral Dissertations and Master's Theses

Fall 11-2016

Investigation of Communication Constraints in Distributed Multi-Investigation of Communication Constraints in Distributed Multi-

Agent Systems Agent Systems

Zhaoyang Fu
Embry-Riddle Aeronautical University

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Electrical and Computer Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Fu, Zhaoyang, "Investigation of Communication Constraints in Distributed Multi-Agent Systems" (2016).
Doctoral Dissertations and Master's Theses. 299.
https://commons.erau.edu/edt/299

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Doctoral Dissertations and Master's Theses by an authorized administrator of Scholarly Commons.
For more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fedt%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/299?utm_source=commons.erau.edu%2Fedt%2F299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

i

INVESTIGATION OF COMMUNICATION CONSTRAINTS IN

DISTRIBUTED MULTI-AGENT SYSTEMS

A Thesis

 Submitted to the Faculty

 of Embry-Riddle Aeronautical University

by

Zhaoyang Fu

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

November 2016

Embry-Riddle Aeronautical University

Daytona Beach, Florida

ii

Investigation of Communication Constraints in Distributed Multi-agent Systems

by

 Zhaoyang Fu

A Thesis prepared under the direction of the candidate’s committee chairman, Dr.

Tianyu Yang, Department of Electrical, Computer, Software & Systems Engineering, and

has been approved by the members of the thesis committee. It was submitted to the

School of Graduate Studies and Research and was accepted in partial fulfillment of the

requirements for the degree of Master of Science in Electrical and Computer

Engineering.

iii

Acknowledgments

 I would like to express the sincerest appreciation to my committee chair Dr.

Tianyu Yang, for his patience, time, advice, help, mentoring and clarity. His

supervision, wisdom and aid in direction greatly contributed to making this thesis

possible, and for that I am deeply grateful.

I would also like to thank my committee members, Dr. Ilteris Demirkiran and Dr.

Shuo Pang. They have all always been available to help me solve all queries in my

research and writing work. They steered me in the right direction to ensure successful

completion.

In addition, I would like to thank the support from the U.S. Air Force Research

Laboratory/Information Directorate for my research.

Last, but not least, I would like to thank my family for their support, love, and

inspiration throughout my life and academic career.

iv

ABSTRACT

Researcher: Zhaoyang Fu

Title: Investigation of Communication Constraints in Distributed Multi-agent Systems

Institution: Embry-Riddle Aeronautical University

Degree: Master of Science in Electrical and Computer Engineering

Year: 2016

 Based on a simple flocking model with collision avoidance, a set of investigations

of multi-agent system communication constraints have been conducted, including

distributed estimation of global features, the influence of jamming, and communication

performance optimization. In flocking control, it is necessary to achieve a common

velocity among agents and maintain a safe distance between neighboring agents. The

local information among agents is exchanged in a distributed fashion to help achieve

velocity consensus. A distributed estimation algorithm was recently proposed to estimate

the group’s global features based on achieving consensus among agents’ local

estimations of such global features. To reduce the communication load, the exchange of

local estimations among agents occurs at discrete time instants defined by an event-

triggering mechanism. To confirm the effectiveness of the new distributed estimation

algorithm, we simulated the algorithm while adopting a simple flocking control technique

with collision avoidance. In addition, the effect of jamming on flocking control and the

distributed algorithm is studied through computer simulations. Finally, to better exploit

the communication channel among agents, we study a recently proposed formation

control multi-agent algorithm, which optimizes the inter-agent distance in order to

achieve optimum inter-agent communication performance. The study is also conducted

through computer simulations, which confirms the effectiveness of the algorithm.

v

Table of Contents
Acknowlegments.. iii

ABSTRACT ... iv

Table of Figures ... vi

List of Symbols ... vii

Chapter 1: Introduction ... 1

1.1 Background and Literature Search ... 1

1.2 Goals and Summary of the Current Research Work .. 5

1.3 Thesis Outline .. 5

Chapter 2: A Simple Flocking Model with Collision Avoidance 7

2.1 Methodology ... 7

2.2 Simulation Results .. 10

Chapter 3: Event-Triggered Distributed Estimation Algorithm for Global Features in

Multi-agent Systems ... 12

3.1 Methodology ... 12

3.2 Simulation Results .. 14

Chapter 4: Effects of Jamming on the Multi-agent Flocking Model with Distributed

Estimation of Global Features .. 18

4.1 Methodology ... 18

4.2 Simulation Results .. 20

Chapter 5: Communication-aware Formation Control ... 25

5.1 Methodology ... 25

5.2 Simulation Results .. 27

Chapter 6: Conclusions and Future Work ... 31

6.1 Summary and Conclusions ... 31

6.2 Future Work .. 32

References ... 33

Appendix: MATLAB Code .. 36

vi

Table of Figures

Figure 1.1. A school of fish .. 1

Figure 1.2. A swarm of birds .. 1

Figure 1.3. Two types of flocking formation. ... 2

Figure 2.1. Speed with respect to time (𝑑 = 1) .. 11

Figure 2.2. Speed with respect to time (𝑑 = 10) .. 11

Figure 3.1. x components of agents’ estimates of group centroid .. 15

Figure 3.2. y components of agents’ estimates of group centroid .. 15

Figure 3.3. z components of agents’ estimates of group centroid ... 15

Figure 3.4. x components of agents’ estimation errors of group centroid 16

Figure 3.5. y components of agents’ estimation errors of group centroid 16

Figure 3.6. z components of agents’ estimation errors of group centroid 17

Figure 4.1. A jamming model of the multi-agent system ... 19

Figure 4.2. Average time to velocity consensus with respect to jamming range 21

Figure 4.3. Average delay of velocity consensus caused by jamming with respect to

communication range .. 22

Figure 4.4. Average time to agents’ local estimation consensus with respect to jamming

range .. 23

Figure 4.5. Average delay of local estimation consensus caused by jamming with respect

to communication range .. 24

Figure 5.1. The topology of agents at t=0 ... 28

Figure 5.2. The topology of agents at t=3s ... 28

Figure 5.3. The topology of agents at t=6s ... 29

Figure 5.4. The topology of agents at t=9s ... 29

Figure 5.5. The topology of agents at t=12s ... 30

file://///dbfsvs02/HomeDB2/FUZ/collective%20motion/thesis/individual%20part/Investigation%20of%20Communication%20Constraints%20in%20Distributed%20Multi.docx%23_Toc465684217
file://///dbfsvs02/HomeDB2/FUZ/collective%20motion/thesis/individual%20part/Investigation%20of%20Communication%20Constraints%20in%20Distributed%20Multi.docx%23_Toc465684218

vii

List of Key Symbols

𝑎𝑖𝑗: agents 𝑗’s influence on agent 𝑖 in the simple flocking model

𝑑0: minimum distance in repelling force in the simple flocking model

𝑐𝑖𝑗: communication matrix index in the distributed estimation algorithm

𝜇𝑖: agent 𝑖’s contribution to the network moment in the distributed estimation algorithm

�̂�𝑖: agent 𝑖’s estimation of the network moment in the distributed estimation algorithm

𝑐0 and 𝛼: constants used in defining the threshold in event-triggering time sequence in

the distributed estimation algorithm

𝑢𝑖: agent 𝑖’s control input in the communication-aware formation control

𝛼: antenna characteristics parameter used in the communication-aware formation control

𝛿: required application data rate in the communication-aware formation control

𝑣: path loss exponent used in in the communication-aware formation control

𝑟0: a reference distance for the antenna near-field used in the communication-aware

formation control

 𝑟: the distance between transmitter and receiver used in the communication-aware

formation control

𝑃𝑇: the reception probability threshold defined in the communication-aware formation

control

𝜓(𝑟𝑖𝑗): the artificial potential function in the communication-aware formation control

𝜙(𝑟𝑖𝑗) : the communication performance indicator defined in the communication-aware

formation control

1

Chapter 1: Introduction

1.1 Background and Literature Search

In a natural world, a swarm consists of many similar agents, such as: a flock of

birds or a group of fish [1]-[3]. The interactions among the agents can be simple or

more complex, and can occur between neighbors in space or in an underlying

network. The main feature of swarm is that an individual unit’s action is dominated

by the influence of “others”. In recent years, researchers have been attempting to

apply the principle of natural swarms to bio-inspired manmade systems, e.g., a group

of robots, unmanned aerial vehicles (UAVs) and autonomous underwater vehicles

(AUVs), or even mobile sensors [13][23]. A bio-inspired system can be constructed

in such a way that the control of the entire group can be achieved through controlling

a small number of agents.

Figure 1.1. A school of fish (source:

https://pando.com/2012/12/04/users-

swarm-to-summly-one-month-post-

redesign/)

Figure 1.2. A swarm of birds (source:

http://www.martinemaes.nl/geef-

ruimte/)

2

For example, in the Couzin’s model of biological swarms and the Reynold model

of synthetic agents, agents react to neighbors within three different zones: repulsion,

orientation, and attraction [6]. An agent is repelled from neighbors within its

repulsion zone of radius 𝑅𝑟, orients its heading with neighbors in its orientation zone

of radius 𝑅0, and is attracted to neighbors outside of its orientation zone. The angular

velocity 𝜔𝑖 is determined by summing the desired direction vectors resulting from the

repulsion, orientation, and attraction rules.

Figure1. 3. Two types of flocking formation [14].

In nature, flocks can be considered self-organized networks of mobile agents,

which are able to coordinate the group behaviors. Neighbor-based approaches are

widely applied in multi-agent coordination, inspired originally by the aggregations of

groups of individual agents in nature. Multi-agent systems typically need distributed

estimations and control laws due to the constraints on actuation, communication and

measurement.

Consensus problem is a very important part in the multi-agent research history

and it forms the foundation of the field of distributed computing [19]. The study of

multi-agent consensus problems originated from the management science and

statistics in 1960s [10]. The ideas of statistical consensus theory proposed by

3

DeGroot appeared two decades later during investigation of information with

uncertainty obtained from multiple sensors [33] [34].

Distributed computation of networks originated from systems and control theory

starting with the pioneering work of Borkar, Varaiya [12], Tsitsiklis [27], Bertsekas,

and Athans [28] on agreement problem for distributed decision making systems, and

parallel computing [4].

In 1986, Reynolds introduced three rules for the creation of the first computer

animation of flocking [17], which are:

1) Flock Centering: attempt to stay close to nearby neighboring agents.

2) Collision Avoidance: avoid collisions with nearby neighboring agents.

3) Velocity Matching: attempt to match velocity with nearby neighboring agents.

To further consider multi-agent systems with complicated dynamics, the Reynolds’

flocking rules were embedded into several control methods and strategies, which are

behavior-based method, leader-follower method, virtual structure method.

Since then, more and more physicists made much effort on flocking studies.

Among the first groups of physicists who studied the theoretical perspective were

Vicsek et al. (1995) [18], Toner and Tu (1998)[29], Shimoyama et al. (1996) [25],

and Levine. The work of Vicsek was mainly focused on emergency behaviors of

alignment in self-driven particle systems. Toner and Tu used a continuum mechanics

approach. Levine created rotating swarms using a particle-based model with all-to-all

interactions. Also, Mogilner and Eldstein-Keshet (1999) [22] and Topaz and Bertozzi

Helbing (2000) proposed other continuum models of swarms [24].

4

The study of distributed control of multiple agents was perhaps first motivated by

the work in distributed computing [19], management science [10], and statistical

physics [25]. In the control systems research community, the so-called agreement

problem was studied for distributed decision-making applications [27]. Distributed

estimation by observation for multi-agent system is an important topic in the study of

multi-agent networks, with wide variety of applications, especially in sensor

networks and robot systems. So far, there are many results obtained on distributed

observer design and measurement-based dynamic multi-agent control design. Fax and

Murray (2004) reported some results concerning distributed dynamic feedback of

special multi-agent networks, and Hong, Hu, and Gao (2006) also proposed an

algorithm for distributed estimation of the active leader's unmeasurable state

variables.

Besides, communication jamming is an important concern in various military and

commercial applications of multi-agent systems. Jamming can be a malicious attack

whose objective is to disrupt the communication of the victim network intentionally,

causing interference or collision at the receiver side. In some applications, the

jammer may be intentional and aims at disrupting the inter-agent communication [30],

and in other applications the jamming may be unintentional and caused by

communication interferences from other geographically collocated systems. There

are generally four types of intentional jamming strategies: constant jammer,

deceptive jammer, random jammer and reactive jammer [21].

http://www.sciencedirect.com/science/article/pii/S0005109807003603#bib1
http://www.sciencedirect.com/science/article/pii/S0005109807003603#bib1
http://www.sciencedirect.com/science/article/pii/S0005109807003603#bib4

5

1.2 Goals and Summary of the Current Research Work

The goal of this thesis is to investigate the communication constraints in

distributed multi-agent system. We adopt a simple flocking model with collision

avoidance, and apply a recently proposed distributed estimation algorithm to this

flocking model, which estimates certain global features of the multi-agent systems

through consensus of agents’ local estimations. We also study effects of jamming on

a multi-agent flocking model with distributed estimation of global features. In

addition, the optimization of inter-agent communication link is studied through

guiding the multi-agent system to achieve the optimum inter-agent distance for best

communication performance.

1.3 Thesis Outline

Chapter 2 briefly describes the adopted simple flocking model with a

straightforward collision avoidance mechanism, and presents the computer

simulation results to illustrate the effectiveness of the model.

Chapter 3 summarizes the recently proposed algorithm for distributed estimation

of global features, and presents the computer simulation results to validate the

effectiveness of the algorithm.

Chapter 4 introduces a simple communication jamming model, and presents the

computer simulation results to study the impact of jamming.

Chapter 5 studies a communication-aware formation control approach with the

objective of optimizing the inter-agent communication performance, and presents the

computer simulation results to confirm the validity of the method.

6

Chapter 6 concludes the thesis and briefly mentions future works.

7

Chapter 2: A Simple Flocking Model with Collision Avoidance

In this chapter, we study a simple flocking model with a straightforward collision

avoidance mechanism. The collision avoidance is realized through a repelling force

between agents moderated by an alignment measure.

2.1 Methodology

The collective motion of bird flocks, fish schools, or colonies of bacteria [5, 7]

inspired many researchers’ attempts to develop models for mobile autonomous

agents [1,16]. The most fascinating fact about these natural phenomena is that, local

behaviors of individual agents often lead to emergent global behaviors through only

intermittent interactions among neighboring agents. The absence of centralized

control offers significant potential benefits for man-made multi-agent systems

[13][18][26], such as unmanned aerial systems (UAS) and autonomous underwater

vehicles (AUV).

The achievement of consensus in velocity among all agents is the goal of many

multi-agent system models, which are sometimes referred to as flocking models. The

interaction between agents in such models often includes repulsion, attraction, and

orientation [15]. We adopt a simple Laplacian-based flocking model with collision

avoidance, and implement it through computer simulations in three-dimension. The

model guarantees the formation of a cohesive group through a convergence process

that is free of agent collision. The collision avoidance is achieved through a repelling

force moderated by a measure of group alignment [8].

8

We present the agent dynamics and the multi-agent flocking model employed in

our simulations. Assume that in a 3D space, at time 𝑡 = 0, 𝑘 agents are randomly

distributed in their initial positions and have the same absolute velocity. The agent

dynamics are:

𝑥�̇� = 𝑣𝑖𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓

𝑦�̇� = 𝑣𝑖𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 (1)

𝑧�̇� = 𝑣𝑖𝑠𝑖𝑛𝜃

where the driving velocity is 𝑣𝑖. We denote 𝑥�̇�, 𝑦�̇�and 𝑧�̇� as the three axes velocity

components of the 𝑖𝑡ℎ agent. The inclination 𝜃𝑖 ∈ [0, 𝜋], the azimuth 𝜓𝑖 ∈ [0,2𝜋). In

this case, (𝑥�̇� , 𝑦�̇�, 𝑧�̇�) ∈ ℝ3, and 𝑖 ∈ 1, … , 𝑘.

To achieve consensus in velocity of all agents in the group, each agent adjusts its

velocity to match that of its neighbors, i.e., we seek rules for all agents to follow with

the objective to achieve an equilibrium condition, in which all agents have the same

values of velocity and acceleration. The velocities and positions of all agents are

updated at each time step. According to the popular Laplacian-based model [9], every

agent adjusts its velocity by adding to it a weighted average of the differences of its

velocity with those of the other agents. That is, at time 𝑡 for agent 𝑖,

𝑥𝑖(𝑡 + ℎ) = 𝑥𝑖(𝑡) + ℎ𝑣𝑖(𝑡)

𝑣𝑖(𝑡 + ℎ) = ℎ ∑ 𝑎𝑖𝑗(𝑣𝑗(𝑡) − 𝑣𝑖(𝑡))𝑁
𝑗=1 +𝑣𝑖(𝑡) (2)

where ℎ > 0 is the time step. 𝑥𝑖(𝑡) and 𝑣𝑖(𝑡)denote the position and velocity of agent

𝑖 at time t. The weights 𝑎𝑖𝑗 qualify the degree the agents influence each other, which

depends on the distance 𝑑(𝑥𝑖, 𝑥𝑗) between 𝑥𝑖 and 𝑥𝑗. To make this dependence non-

increasing, the celebrated Vicsek’s model chooses

9

𝑎𝑖𝑗 = {
1, 𝑖𝑓 ‖𝑥𝑖 − 𝑥𝑗‖ ≤ 𝑅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (3)

This equation can be rewritten in

𝑎𝑖𝑗(𝑥) =
𝐻

(1 + ||𝑥𝑖 − 𝑥𝑗||2)𝛽

(4)

where 𝐻 > 0 and 𝛽 > 0 are system parameters. The convergence of the Vicsek’s

model has been rigorously proven [31].

In order to achieve collision avoidance, the agents have the additional task of

maintaining the safe distance from others. A common way to do so is to add a

repelling force that is in effect whenever a pair of agents get close to each other, and

the strength of such force should increase as the pair of agents get closer. A repelling

force should satisfy two conditions, which are shown below.

𝑓(1): ∫ 𝑓(𝑟)𝑑𝑟 = ∞
𝑑0+1

𝑑0

𝑓(2): ∫ 𝑓(𝑟)𝑑𝑟 < ∞
∞

𝑑0+1

(5)

The repelling force function should take effect within a certain sensor range 𝑑0. In

our simulations, the function is taken as

𝑓(𝑟) = (𝑟 − 𝑑0)−𝜃 (6)

 To properly incorporate the repelling force function in the model, according to

[9], the alignment measure is defined as:

Λ(𝑣) = (
1

𝑘
∑ ‖𝑣𝑖 − 𝑣𝑗‖

2
𝑖>𝑗)

1

2
 (7)

10

It is obvious that when the agents’ velocities reach a consensus, the alignment

measure becomes zero. We use the alignment measure to moderate the repelling

force.

Now, the model with collision avoidance can be presented as the following

system of differential equations [38]:

𝑥𝑖(𝑡 + ℎ) = 𝑥𝑖(𝑡) + ℎ𝑣𝑖(𝑡)

𝑣𝑖(𝑡 + ℎ) = ℎ ∑ 𝑎𝑖𝑗(𝑣𝑗(𝑡) − 𝑣𝑖(𝑡))

𝑁

𝑗=1

+ ℎΛ(𝑣) ∑ 𝑓(‖𝑥𝑖 − 𝑥𝑗‖
2

)(

𝑗≠𝑖

𝑥𝑖 − 𝑥𝑗)+𝑣𝑖(𝑡)

(8)

2.2 Simulation Results

In our MATLAB simulations, we implemented the flocking model described in

the previous section. The simulation is set up for a flock with 𝑘 = 25 agents, and the

agents start with randomly generated initial positions and velocities. Other

parameters are set as 𝑅 = 40, 𝑑 = 10, h=0.1, and total simulation times t=100. If the

distance between two agents is less than R, according to the weight calculation

equation, we assume the index 𝑎𝑖𝑗(𝑡)=1. The results are shown in Figures 2.1-2.2. It

is obvious that after some time all agents’ velocities achieve consensus, which

resulted in stable group formation.

11

Figure 2.1. Speed with respect to time (𝑑 = 1)

Figure 2.2. Speed with respect to time (𝑑 = 10)

0 50 100 150
-200

-150

-100

-50

0

50

100

150

200

0 50 100 150
-200

-150

-100

-50

0

50

100

150

200

Time

Time

A
b

so
lu

te
 s

p
ee

d
 o

f
ea

ch
 a

g
en

t
A

b
so

lu
te

 s
p
ee

d
 o

f
ea

ch
 a

g
en

t

12

Chapter 3: Event-Triggered Distributed Estimation Algorithm for

Global Features in Multi-agent Systems

In this chapter, we investigate a recently proposed distributed estimation

algorithm, while adopting the previous chapter’s simple flocking model. The purpose

of the estimation algorithm is to estimate global features in a distributed fashion, i.e.,

to obtain the global feature through consensus of individual agents’ local estimations.

3.1 Methodology

To estimate global features of multi-agent systems (such as centroid, polarization,

or momentum) in a distributed fashion, each agent in the system maintains a local

estimation of the global feature, and updates the estimation based on information

exchange with its neighbors [32][35]. When all agents’ estimations converge, the true

value of the global feature is obtained.

The information exchange among the swarm of agents can be expressed by the

communication/sensing matrix

𝐶(𝑡) = [

0 𝑐12(𝑡) ⋯ 𝑐1𝑁(𝑡)
𝑐21(𝑡) 0 ⋯ 𝑐2𝑁(𝑡)

⋮ ⋮ ⋱ ⋮
𝑐𝑁1(𝑡) 𝑐𝑁2(𝑡) ⋯ 0

] (9)

where 𝑐𝑖𝑗(𝑡) > 0 indicates that agent 𝑖 can receive velocity and position information

from agent 𝑗. Otherwise, 𝑐𝑖𝑗(𝑡) = 0, which means there is no communication between

agent 𝑖 and agent 𝑗. We assume that communication network 𝐶 is time-invariant,

bidirectional, and connected. In practical applications, the

13

communication matrix is determined by the agents’ positions, signal interference levels,

etc.

For agent 𝑖, we denote its estimate for network moment:

�̂�𝑖(𝑡) =
1

𝑁
∑ ∫ 𝜇𝑖(𝜏)𝑑𝜏

𝑡

0
𝑁
𝑖=1 (10)

The distributed estimation algorithm is expressed in the form of:

�̂��̇�(𝑡) = ∑ 𝑐𝑖𝑗(𝑡) (�̂�𝑗(𝑡) − �̂�𝑖(𝑡)) + 𝜇𝑖(𝑡)𝑗∈𝒩𝑖
 (11)

where 𝒩𝑖 ≜ {𝑗|𝑐𝑖𝑗 > 0} denotes the group of agents within the communication sensor

range of agent 𝑖. In other words, agent 𝑖 can receive the estimate �̂�𝑗(𝑡) of any agent

𝑗 ∈ 𝒩𝑖 and use this value to update its estimate �̂�𝑖(𝑡). The convergence of all agents’

estimations is rigorously proven in [40].

In order to implement the estimation algorithm, we define the event-triggering

time sequence for agents as 𝑡0, 𝑡1, … For 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), we let

�̂�𝑖(𝑡) = �̂�𝑖(𝑡𝑘) (12)

And the distributed estimation algorithm is given by

�̂��̇�(𝑡) = ∑ 𝑐𝑖𝑗(𝑡) (�̂�𝑗(𝑡𝑘) − �̂�𝑖(𝑡𝑘)) + 𝜇𝑖(𝑡)𝑗∈𝒩𝑖
, 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), (13)

Define the measurement error as 𝜀 = [𝜀1, 𝜀2, … , 𝜀𝑁]𝑇, where

𝜀𝑖(𝑡) = �̂�𝑖(𝑡𝑘)-�̂�𝑖(𝑡) (14)

When the summation of group measure error

ε(𝑡)=√
1

𝑁
∑ 𝜀𝑖(𝑡)𝑁

𝑖=1 fails to meet the condition (for some positive constants 𝑐0

and 𝛼)

‖𝜀(𝑡)‖ ≤ 𝑐0𝑒−𝛼𝑡 , 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (15)

14

the event-triggering time sequence {𝑡𝑘} will be updated. Therefore, this condition is

used to decide when to request the transmission of �̂�𝑗(𝑡𝑘) and �̂�𝑗(𝑡𝑘). After

transmission, the measurement error 𝜀𝑖(𝑡𝑘) is automatically reset to zero.

3.2 Simulation Results

Based on the simulations described in the previous chapter, the distributed

estimation algorithm was incorporated to estimate the location of group centroid,

with k= 22 , 𝑐 = 5, 𝛼 = 1. If the distance between two agents is within the

communication range, we assume the corresponding 𝑐𝑖𝑗(𝑡)=0.1. Figures 3.1-3.3

illustrate the convergence of all agents’ estimations of the group centroid’s position.

Also, all agents’ estimation errors decrease to zero, as shown in Figures 3.4-3.6.

Figure 3.1. Estimates of
1

𝑁
∑ 𝑥𝑖(𝑡)𝑁

𝑖=1 with respect to time

0 50 100 150
0

50

100

150

200

250

300

350

400

450

500

Time

x
 c

o
m

p
o
n
en

ts
 o

f
in

d
iv

id
u
al

 a
g
en

t
ce

n
tr

o
id

 e
st

im
at

es

15

Figure 3.2. Estimates of
1

𝑁
∑ 𝑦𝑖(𝑡)𝑁

𝑖=1 with respect to time

Figure 3.3. Estimates of
1

𝑁
∑ 𝑧𝑖(𝑡)𝑁

𝑖=1 with respect to time

0 50 100 150
0

50

100

150

200

250

300

350

400

450

500

0 50 100 150
0

50

100

150

200

250

300

350

400

450

500

y
 c

o
m

p
o
n

en
ts

 o
f

in
d
iv

id
u
al

 a
g
en

t
ce

n
tr

o
id

 e
st

im
at

es

Time

Time

z
co

m
p
o
n
en

ts
 o

f
in

d
iv

id
u
al

 a
g
en

t
ce

n
tr

o
id

 e
st

im
at

es

16

Figure 3.4. Estimation errors for
1

𝑁
∑ 𝑥𝑖(𝑡)𝑁

𝑖=1 with respect to time

Figure 3.5. Estimation errors for
1

𝑁
∑ 𝑦𝑖(𝑡)𝑁

𝑖=1 with respect to time

0 50 100 150
0

50

100

150

200

250

300

350

400

450

500

0 50 100 150
0

50

100

150

200

250

300

350

400

450

500

x
 c

o
m

p
o
n
en

ts
 o

f
in

d
iv

id
u
al

 a
g
en

t
ce

n
tr

o
id

es
ti

m
at

io
n

 e
rr

o
rs

Time

Time

y
 c

o
m

p
o
n

en
ts

 o
f

in
d
iv

id
u
al

 a
g
en

t
ce

n
tr

o
id

es
ti

m
at

io
n

 e
rr

o
rs

17

Figure 3.6. Estimation errors for
1

𝑁
∑ 𝑧𝑖(𝑡)𝑁

𝑖=1 with respect to time

0 50 100 150
0

50

100

150

200

250

300

350

400

450

500

Time

z
co

m
p
o
n
en

ts
 o

f
in

d
iv

id
u
al

 a
g
en

t

ce
n
tr

o
id

 e
st

im
at

io
n

 e
rr

o
rs

18

Chapter 4: Effects of Jamming on the Multi-agent Flocking

Model with Distributed Estimation of Global Features

In this chapter, we study the effect of communication jamming on the

achievement of multi-agent velocity and estimation consensuses.

4.1 Methodology

In our study of the effects of jamming, the simple flocking model with collision

avoidance (as described in Chap. 2) and the recently proposed algorithm for

distributed estimation of global features (as described in Chap. 3) are adopted. The

objective of our research is to study the effects of jamming on the achievement of

velocity and estimation consensuses.

Jamming normally refers to the transmission of radio signals by an adversary that

disrupts communications through decreasing the signal-to-noise ratio. Unintentional

jamming may also arise if a second radio transmission is initiated (without first

checking the frequency band to be occupied) on a band currently used by a licensed

user.

In military applications, a communication denied environment is often

encountered, where jamming causes agents within certain area not able to

communicate with neighboring agents. For agents in the jamming area, we assume

they keep the same velocity until they flee from the jamming area, at which point

they start to update their velocities again according to (8).

19

As shown in Figure 4.1, assume 𝐽(𝑥𝑗 , 𝑦𝑗, 𝑧𝑗) denotes the location of a jammer, and

the jamming area is defined in the 3D space as a sphere centered at 𝐽(𝑥𝑗 , 𝑦𝑗, 𝑧𝑗) with

radius R.

Figure 4.1. A jamming model of the multi-agent system

Assume the 𝑖𝑡ℎ agent’s position is (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖). The distance from the agent 𝑖 to

jamming center is:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2 (16)

If 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) < 𝑅, agent 𝑖 is being jammed and cannot communicate with its

neighbors. Otherwise, its communication with other agents is not affected [11].

20

In the example shown in Figure 4.1, the initial positions of five agents

𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 are randomly distributed in the 3D space. The agents within the

jamming area (agents a and b) are denied communication, so they keep their starting

velocity until they leave the jamming area. Agents 𝑐, 𝑑 and 𝑒 are out of the jamming

area, so their communication is not jammed initially, and they exchange position and

velocity information with their neighbors based on (4), as long as the neighbors are

within the communication range.

4.2 Simulation Results

In our MATLAB simulations, the consensus behavior of the flocking model and

the distributed estimation algorithm are analyzed. The flocking group is considered to

have reached consensus when the velocities of all agents converge to the same value,

i.e., the alignment measure reaches approximately zero. The jamming center is set at

the origin. Initially, all agents were randomly distributed over the range of [-25, 25]

along all three axes. Simulations were run for both the simple flocking model and the

distributed estimation algorithm. We present four sets of experimental results. In each

set of simulations, the results were averaged over 100 Monte Carlo simulation runs.

In the flocking model, we assume 𝑎𝑖𝑗=1, time step ℎ = 0.5, and the number of agents

is 25.

First, we focus on the velocity convergence time when the jamming range is

varied from 5 to 50, incremented by 5 at a time. The communication range is set to

30. The result is shown in Figure 4.2, where it can be seen that as the jamming radius

increases, the average convergence time increases roughly linearly from 10 to 85

time units.

21

Figure 4.2. Average time to velocity consensus with respect to jamming range

Second, we study the effect of jamming on the delay of velocity convergence time

with varied communication ranges. In our simulations, the communication range was

increased from 5 to 50, with a step size of 5. By obtaining the convergence times

with and without jamming, we calculate the delay of convergence time as a function

of communication range. The result is shown in Figure 4.3, from which it is seen that

the communication range has no significant effect on the delay of consensus, which

remains approximately a constant of 40 time units.

0

10

20

30

40

50

60

70

80

90

5 10 15 20 25 30 35 40 45 50

av
er

ag
e

ti
m

e
to

 v
el

o
ci

ty
 c

o
n
se

n
su

s

jamming range

22

Figure 4.3. Average delay of velocity consensus caused by jamming with respect to

communication range

Next, we simulated the newly proposed distributed estimation algorithm to

estimate the location of group centroid. We assume 𝑐0 = 5, 𝛼 = 1, and 𝑐𝑖𝑗= 0.1 when

the distance between two agents is less than the communication range.

In the third set of simulations, we study the agents’ estimation convergence time

with varied jamming ranges, and the result is shown in Figure 4.4. It is obvious that,

larger jamming ranges result in longer time to reach consensus in agents’ local

estimates, and the relationship is approximately linear.

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

av
er

ag
e

d
el

ay
 o

f
v
el

o
ci

ty
 c

o
n
se

n
su

s
ca

u
se

d

b
y
 j

am
m

in
g

communication range

23

Figure 4.4. Average time to agents’ local estimation consensus with respect to jamming

range

The last set of simulations, we present the average delay of agents’ estimation

consensus as a function of the communication range, which increases from 5 to 50

with a step size of 5. The result is shown in Figure 4.5, which shows the delay in

reaching agents’ estimation consensus is not significantly affected by different

communication ranges. The delay stays at approximately a constant of 42 time units.

0

20

40

60

80

100

120

140

160

5 10 15 20 25 30 35 40 45 50 55 60

av
er

ag
e

ti
m

e
to

 a
g
en

ts
' l

o
ca

l
es

ti
m

at
io

n

co
n
se

n
su

s

jamming range

24

Figure 4.5. Average delay of local estimation consensus caused by jamming with respect

to communication range

In summary, our simulation results indicate that, communication jamming delays

the achievement of both velocity and estimation consensus. The amount of delay

roughly increases linearly with the jamming range. On the other hand, the

communication range has no significant impact on the delay of velocity and

estimation consensus.

0

10

20

30

40

50

60

5 10 15 20 25 30 35 40 45 50

av
er

ag
e

d
el

ay
 o

f
lo

ca
l

es
ti

m
at

io
n
 c

o
n
se

n
su

s

ca
u
se

d
 b

y
 j

am
m

in
g

communication range

25

Chapter 5: Communication-aware Formation Control

In this chapter, we consider the formation control problem with the objective of

optimizing inter-agent communication performance through achieving the optimum

inter-agent distance.

5.1 Methodology

A communication-aware formation control was recently proposed for multi-agent

systems with switching topology [20]. It was rigorously proved that the proposed

algorithm can optimize the inter-agent communication performance in the multi-

agent systems.

In this technique, a communication performance indicator was adopted for

formation systems in a practical communication environment, achieving a tradeoff

between the antenna far-field and near-field communication. Correspondingly, a new

communication-aware formation control law is proposed to maintain the formation

and optimize the communication performance.

Consider a multi-agent system consisting of 𝑛 agents. The dynamics of each agent

is given by:

𝑞�̇� = 𝑢𝑖 (17)

where 𝑞�̇�, 𝑢𝑖 ∈ 𝑅2. 𝑞�̇� and 𝑢𝑖 denote the position and control input of 𝑖𝑡ℎ agent.

We denote 𝑟𝑖𝑗 to be the distance between agent 𝑖 and agent 𝑗:

𝑟𝑖𝑗 = ‖𝑞𝑖 − 𝑞𝑗‖ (18)

 An approximation reception probability of a SISO communication link is:

26

𝑃(𝛼, 𝛿, 𝑣, 𝑟0, 𝑟) = exp (−𝛼(2𝛿 − 1) (
𝑟

𝑟0
)

𝑣

) (19)

where 𝛼 is a system parameter about antenna characteristic, 𝛿 denotes the

required application data rate, 𝑣 is the path loss exponent, 𝑟0 is a reference distance

for antenna near-field, and 𝑟 is the distance between transmitter and receiver.

The reception probability evaluates the probability that the transmitter can

influence the receiver. We model the communication channel quality as:

𝑎𝑖𝑗 = 𝑒𝑥 𝑝 (−𝛼(2𝛿 − 1) (
𝑟

𝑟0
)

𝑣

) (20)

Define a set of neighbors of agent 𝑖 as:

𝑁𝑖 = { 𝑗 ∈ 𝜈|𝑎𝑖𝑗 ≤ 𝑅} (21)

where 𝑅 is defined as communication range as 𝑅 = 𝑎𝑟𝑔𝑟{𝑃(𝑎, 𝛿, 𝑣, 𝑟0, 𝑟) = 𝑃𝑇}. 𝑃𝑇

is a reception probability threshold.

The quality of a SISO reception probability of the receiver decreases when the

propagation distance increases [24]. On the other hand, if the transmitter and the

receiver are close to each other, the communication would suffer from a lot of

interference.

A simple model of antenna near-field communication:

𝑔𝑖𝑗 =
𝑟𝑖𝑗

√𝑟𝑖𝑗
2+𝑟0

2
 (22)

Therefore, we need to find a tradeoff distance, and we define the communication

performance indicator as:

𝜙(𝑟𝑖𝑗) =
𝑟𝑖𝑗

√𝑟𝑖𝑗
2+𝑟0

2
∙ 𝑒𝑥𝑝 (−𝛼(2𝛿 − 1) (

𝑟

𝑟0
)

𝑣

) (23)

27

In order to optimize the communication performance, a communication-aware

formation controller was designed, which evaluates the interaction between

neighboring agents. The artificial potential function 𝜓(𝑟𝑖𝑗) is:

𝜓(𝑟𝑖𝑗) = 𝜙∗ − 𝜙(𝑟𝑖𝑗), ∀(𝑖, 𝑗) ∈ 𝜀. (24)

Then the communication-aware formation controller is designed as:

𝑢𝑖 = −∇𝑞𝑖
[∑ 𝜓(𝑟𝑖𝑗)𝑗∈𝑁𝑖

] = ∇𝑞𝑖
[∑ 𝜙(𝑟𝑖𝑗)𝑗∈𝑁𝑖

] (25)

The formation controller indicates that agents can move in direction of

maximizing the communication performance of neighboring agents. And the gradient

of 𝜙(𝑟𝑖𝑗) is computed as:

∇𝑞𝑖
 𝜙(𝑟𝑖𝑗) = 𝜌(𝑟𝑖𝑗) ∙ 𝑒𝑖𝑗 (26)

where 𝑒𝑖𝑗 = (𝑞𝑖 − 𝑞𝑗)/𝑟𝑖𝑗. Thus, we can re-write the communication-aware

formation controller as:

𝑢𝑖 = ∑ 𝜌(𝑟𝑖𝑗) ∙ 𝑒𝑖𝑗𝑗∈𝑁𝑖
 (27)

5.2 Simulation Results:

In the simulation part, we simulate a group of nine agents to verify the proposed

formation control method. The parameters of communication are set as: 𝛼 = 10−5,

𝛿 = 2, 𝑛 = 3, 𝑟0 = 5, 𝑃𝑇 = 94%. The initial positions of nine agents are given by

𝑥1 = [−5, 16]𝑇 , 𝑥2 = [−5, −21]𝑇 , 𝑥3 = [1, 1]𝑇 , 𝑥4 = [36, −5]𝑇, 𝑥5 = [65, −1]𝑇,

𝑥6 = [70, 10]𝑇, 𝑥7 = [72, −16]𝑇, 𝑥8 = [−5, 0]𝑇, 𝑥9 = [72, 0]𝑇. Figures 5.1-5.5

show the initial topology of nine agents and their positions at four subsequent time

instants in a 2-D plane. It can be seen from these figures that the system is able to

stabilize at a best inter-agent distance among all agents.

28

Figure 5.1. The topology of agents at t=0

Figure 5.2. The topology of agents at t=3s

29

Figure 5.3. The topology of agents at t=6s

Figure 5.4. The topology of agents at t=9s

30

Figure 5.5. The topology of agents at t=12s

31

Chapter 6: Conclusions and Future Work

6.1 Summary and Conclusions

The main purpose of the research was to investigate communication constraints in

distributed multi-agent systems.

First, we implemented a recently proposed distributed global feature estimation

algorithm to estimate the position of the multi-agent group’s centroid, while adopting

a simple flocking model with collision avoidance. The model avoids collision by

applying a repelling force moderated by an alignment measure. The algorithm

estimates the group centroid through achieving consensus of individual agents’ local

estimations. To reduce the communication load for information sharing among agents,

the implementation of the estimation algorithm adopts an event-triggering

mechanism for inter-agent communication. We demonstrated the effectiveness of the

proposed estimation algorithm through computer simulations.

Second, we investigated the effect of jamming for the above computer simulations,

and measured the delay in achieving consensus for both velocity and distributed

estimation. Finally, we studied and verified the effectiveness of a communication-

aware formation control strategy through computer simulations, which optimizes

communication performance by guiding the system to achieve the optimum inter-

agent distance.

32

6.2 Future Work

In our current study of the distributed estimation algorithm, the event-triggering

time sequence is determined by the group error measure, which is not amenable for

implementation in a distributed fashion. Our future work will focus on distributed

determination of the event-triggering time sequence for each individual agent. Also,

the distributed estimation algorithm will be implemented with other popular flocking

models, so guidelines for flocking model selection can be developed.

Also, further investigation is to be conducted to study the effects of more

sophisticated jamming scenarios, including their impact on communication-aware

formation control strategy.

33

References

[1] C. M. Breder, “Equations Descriptive of Fish Schools and Other Animal

Aggregations,” Ecology, vol. 35, pp. 361–370, 1954.

[2] V. Borkar and P. Varaiya, “Asymptotic Agreement in Distributed Estimation,” IEEE

Trans. Automatic Control, vol. AC-27, no. 3, pp. 650–655, Jun. 1982.

[3] J. A. Benediktsson and P. H. Swain, “Consensus Theoretic Classification Methods,”

IEEE Trans. Sys., Man, Cybern., vol. 22, no. 4, pp. 688–704, Apr. 1992.

[4] D. P. Bertsekas and J. Tsitsiklis, “Parallell and Distributed Computation,” Upper

Saddle River, NJ: Prentice-Hall, 1989.

[5] D. P. O’Brien, “Journal of Experimental Marine Biology and Ecology,” 128, (1989)

1.

[6] I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N.R. Franks, “Collective

Memory and Spatial Sorting in Animal Groups,” Journal of Theoretical Biology, 218 (1)

(2002), pp. 1-11.

[7] I.D. Couzin and N.E. Leonard, “Real-Time Feedback-Controlled Robotic Fish for

Behavioral Experiments with Fish Schools,” Proceedings of the IEEE, vol.100, no.1,

pp.150-163, Jan. 2012.

[8] F. Cucker and J. Dong, “Avoiding Collisions in Flocks,” IEEE Trans. Automatic

Control, vol.55, no.5, pp.1238-1243, May 2010.

[9] F. Cucker and S. Smale, “Emergent Behavior in Flocks,” IEEE Trans. Automatic

Control, vol.52, no.5, pp.852-862, May 2007.

[10] M. H. DeGroot, “ Reaching a Consensus,” J. Am. Statist. Assoc., vol. 69, no. 345,

pp. 118–121, 1974.

[11] Z. Fu, T. Yang, J. Wang, “Effects of Jamming on a Multi-agent Flocking Model

with Distributed Estimation of Global Features”, accepted by FTC 2016, San Francisco,

CA, December 2016.

[12] G. Flierl, D. Grünbaum, S. Levin, and D. Olson, “From Individuals to Aggregations:

The Interplay Between Behavior and Physics,” J. Theor. Biol., vol. 196, pp. 397–454,

1999.

[13] J. A. Fax and R. M. Murray, “Information Flow and Cooperative Control of Vehicle

Formation,” IEEE Trans. Automatic Control, vol. 49, no. 9, pp. 1465–1476, Sep. 2004.

34

[14] M. A. Goodrich, K. Sean, P. Brian and P. B. Sujit, “What Types of Interactions do

Bio-Inspired Robot Swarms and Flocks Afford a Human?” Robotics: Science and

Systems (2012).

[15] V. Gazi and K.M. Passino, “Stability Analysis of Swarms,” IEEE Trans. Automatic

Control, vol.48, no.4, pp.692-697, April 2003.

[16] D. Grunbaum and A. Okubo, “Modeling Social Animal Aggregations,” Berlin,

Germany: Springer-Verlag, 1994, vol. 100, Lecture Notes in Biomathematics, pp. 296–

325.

[17] D. Helbing, I. Farkas, and T. Vicsek, “Simulating Dynamical Features of Escape

Panic,” Nature, vol. 407, pp. 487–490, 2000.

[18] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of Groups of Mobile

Autonomous Agents using Nearest Neighbor Rules,” IEEE Trans. Automatic Control,

vol. 48, no. 6, pp. 988–1001, Jun. 2003.

[19] N. A. Lynch, “Distributed Algorithms,” San Francisco, CA: Morgan Kaufmann,

1996.

[20] H. Li, J. Peng, W. Liu, J. Wang, J. Liu and Z. Huang, “Flocking Control for Multi-

agent Systems with Communication Optimization,” 2013 American Control Conference,

Washington, DC, 2013, pp. 2056-2061.

[21] M. Li, I. Koutsopoulos, R. Poovendran, “Optimal Jamming Attack Strategies and

Network Defense Policies in Wireless Sensor Networks,” IEEE Trans. Mob. Comput. 9,

1119–1133, 2010.

[22] A. Mogilner and L. Edelstein-Keshet, “A Nonlocal Model for a Swarm,” J. Math.

Biol., vol. 38, pp. 534–570, 1999.

[23] P. Ogren, E. Fiorelli, and N. E. Leonard, “Cooperative Control of Mobile Sensor

Networks: Adaptive Gradient Climbing in a Distributed Environment,” IEEE Trans.

Automatic Control, vol. 49, no. 8, pp. 1292–1302, Aug. 2004.

[24] C. W. Reynolds, “Flocks, Herds and Schools: A Distributed Behavioral Model,”

Comput. Graph, vol. 21, Jul. 1987, pp. 25–34.

[25] N. Shimoyama, K. Sugawara, T. Mizuguchi, Y. Hayakawa, and M. Sano,

“Collective Motion in a System of Motile Elements,” Phys. Rev. Lett., vol. 76, no. 20,

pp. 3870–3873, 1996.

[26] R. O. Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation in

Networked Multi-agent Systems,” Proceedings of the IEEE, vol. 95, pp. 215–233, 2007.

35

[27] J. N. Tsitsiklis, “Problems in Decentralized Decision Making and Computation,”

Ph.D. dissertation, Dept. Electr. Eng. Comput. Sci., Lab. Inf. Decision Syst.,

Massachusetts Inst. Technol., Cambridge, MA, Nov. 1984.

[28] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed Asynchronous

Deterministic and Stochastic Gradient Optimization Algorithms,” IEEE Trans. Automatic

Control, vol. 31, no. 9, pp. 803–812, Sep. 1986.

[29] J. Toner and Y. Tu, “Flocks Herds and Schools: A Quantitative Theory of Flocking,”

Phys. Rev. E, vol. 58, no. 4, pp. 4828–4858, Oct. 1998.

[30] S. Vadlamani, B. Eksioglu, H. Medal, A. Nandi, “Jamming Attacks on Wireless

Networks: A Taxonomic Survey,” International Journal of Production Economics

Volume 172, February 2016, Pages 76–94.

[31] T. Vicsek, A. Cziroók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel Type of

Phase Transition in a System of Self-driven Particles,” Phys. Rev. Lett., vol. 75, no. 6,

pp. 1226–1229, 1995.

[32] J. Wang, I. Ahn, Y. Lu, T. Yang, “A Distributed Detection Algorithm for Collective

Behaviors in Multiagent Systems with Unicycle Models”, submitted to International

Journal of Control, Automation and Systems, January 2016.

[33] S. C. Weller and N. C. Mann, “Assessing Rater Performance without a Gold

Standard using Consensus Theory,” Med. Decision Making, vol. 17, no. 1, pp. 71–79,

1997.

[34] K. Warburton and J. Lazarus, “Tendency-distance Models of Social Cohesion in

Animal Groups,” J. Theoret. Biol., vol. 150, pp. 473–488, 1991.

[35] T. Yang, Z. Fu, J. Wang, “Application of an Event-Triggered Distributed

Estimation Algorithm in a Simple Multi-agent Flocking Model”, 2016 IEEE

SouthEastCon, Norfolk, VA, April 2016.

https://clemson.pure.elsevier.com/en/persons/burak-eksioglu(9e6ea847-eb44-4692-ac51-d4fab0ccdea7).html
http://www.sciencedirect.com/science/journal/09255273
http://www.sciencedirect.com/science/journal/09255273/172/supp/C

36

Appendix: MATLAB Code

% Swarm Avoid Collision 2D
% Zhaoyang Fu
% Initialize all parameters
clear all;
clc;
close all;
max_times = 100;
h = 1;
swarm_size = 100;
R=50;
v=1;
theta=2*pi;
H=5;
b=1;
lambda=0;
d=20;
theta_d=2;

% Initialize the position
for i = 1:swarm_size
 swarm(i,1,1)=rand(1)*20;
 swarm(i,1,2)=rand(1)*20;

end

% Initialize the velocity
for j = 1:swarm_size
 v_random1=rand(1);
 swarm(j,2,1) = v*cos(v_random1*theta);
 swarm(j,2,2) = v*sin(v_random1*theta);
end

%---

for times = 1 : max_times
% Alignment Measure
for i = 1 : swarm_size
 for j = 1 : swarm_size
 if i>j
 lambda=0;
 lambda=(1/swarm_size)*(lambda+(sqrt((swarm(i, 2, 1)-

swarm(j, 2, 1))^2+(swarm(i, 2, 2)-swarm(j, 2, 2))^2)));
 lambda=sqrt(lambda); % alignment at a common velocity

is equivalent to lambda=0
 end

 end
end

37

for i = 1 : swarm_size
 for j = 1 : swarm_size
 weight_x=0;
 weight_y=0;
 if sqrt((swarm(i, 1, 1)-swarm(j, 1, 1))^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2)<=R
 weight_a=1;
 else
 weight_a=0;
 end

 weight_x1=0;
 weight_y1=0;
 weight_x1=weight_x1+h*weight_a*(swarm(i, 2, 1)-swarm(j, 2,

1));
 weight_y1=weight_y1+h*weight_a*(swarm(i, 2, 2)-swarm(j, 2,

2));

 weight_x2=0;
 weight_y2=0;
 xi_xj=swarm(i, 1, 1)-swarm(j, 1, 1)^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2;
 f_xij=(xi_xj-d)^(-theta_d);
 if i~=j
 weight_x2=weight_x2+h*f_xij*(swarm(i, 2, 1)-swarm(j, 2, 1));
 weight_y2=weight_y2+h*f_xij*(swarm(i, 2, 2)-swarm(j, 2, 2));
 else
 weight_x2=weight_x2+0;
 weight_y2=weight_y2+0;
 end
 weight_x2=lambda*weight_x2;
 weight_y2=lambda*weight_y2;
 end

 swarm(i, 2, 1)=weight_x1+weight_x2+swarm(1, 2, 1);
 swarm(i, 2, 2)=weight_y1+weight_y2+swarm(1, 2, 2);

 swarm(i,1,1) = swarm(i, 1,1) + h*swarm(i, 2, 1);
 swarm(i,1,2) = swarm(i, 1, 2) + h*swarm(i, 2, 2);

end

%---
% plot
 clf
 fig=figure(1);
 plot(swarm(:, 1, 1), swarm(:, 1, 2), '.');
 axis([-200 200 -200 200]);
pause(0.1)
end

% Swarm Avoid Collision 3D

38

% Zhaoyang Fu
% Initialize all parameters
clear;
clc;
close all;
max_times = 50;
h = 1.3;
swarm_size = 100;
R=50;
v=1;
theta=pi;
phi=pi/2;
lambda=0;
d=50;
theta_d=5;

% Initialize the position
index1 = 1;
for i = 1:sqrt(swarm_size)
 for j = 1:sqrt(swarm_size)
 swarm(index1,1,1) = rand(1)*20;
 swarm(index1,1,2) = rand(1)*20;
 swarm(index1,1,3) = rand(1)*20;
 index1 = index1 + 1;

 end
end
% Initialize the velocity
index2= 1;
for i = 1:sqrt(swarm_size)
 for j = 1:sqrt(swarm_size)
 v_random1=rand(1);
 v_random2=rand(1)*(-1)^randi(2);
 swarm(index2,2,1) = v*cos(v_random1*theta)*cos(v_random2*phi);
 swarm(index2,2,2) = v*sin(v_random1*theta)*cos(v_random2*phi);
 swarm(index2,2,3) = v*sin(v_random2*phi);
 index2 = index2 + 1;
 end
end
orig_v(:,2,1)=swarm(:,2,1); % original Vx of swarm
orig_v(:,2,2)=swarm(:,2,2); % original Vy of swarm
orig_v(:,2,3)=swarm(:,2,3); % original Vz of swarm
%---

for times = 1 : max_times
for i = 1 : swarm_size
 for j = 1 : swarm_size
 weight_x=0;
 weight_y=0;
 weight_z=0;
 if sqrt((swarm(i, 1, 1)-swarm(j, 1, 1))^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2+(swarm(i, 1, 3)-swarm(j, 1, 3))^2)<=R
 weight_a=1;
 else
 weight_a=0;
 end

39

 if i>j
 lambda=lambda+1/(swarm_size)*(sqrt((swarm(i, 2, 1)-

swarm(j, 2, 1))^2+(swarm(i, 2, 2)-swarm(j, 2, 2))^2+(swarm(i, 2, 3)-

swarm(j, 2, 3))^2));
 else
 lambda=lambda+0;
 end
 lambda=sqrt(lambda);

 weight_x1=0;
 weight_y1=0;
 weight_z1=0;
 weight_x1=weight_x1+h*weight_a*(swarm(i, 2, 1)-swarm(j, 2,

1));
 weight_y1=weight_y1+h*weight_a*(swarm(i, 2, 2)-swarm(j, 2,

2));
 weight_z1=weight_z1+h*weight_a*(swarm(i, 2, 3)-swarm(j, 2,

3));

 weight_x2=0;
 weight_y2=0;
 weight_z2=0;
 xi_xj=(swarm(i, 1, 1)-swarm(j, 1, 1))^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2+(swarm(i, 1, 3)-swarm(j, 1, 3))^2;
 f_xij=(xi_xj-d)^(-theta_d);
 if i~=j
 weight_x2=weight_x2+h*f_xij*(swarm(i, 2, 1)-swarm(j, 2, 1));
 weight_y2=weight_y2+h*f_xij*(swarm(i, 2, 2)-swarm(j, 2, 2));
 weight_z2=weight_z2+h*f_xij*(swarm(i, 2, 3)-swarm(j, 2, 3));
 else
 weight_x2=weight_x2+0;
 weight_y2=weight_y2+0;
 weight_z2=weight_z2+0;
 end
 weight_x2=lambda*weight_x2;
 weight_y2=lambda*weight_y2;
 weight_z2=lambda*weight_z2;
 end

 swarm(i, 2, 1)=weight_x1+weight_x2+swarm(1, 2, 1);
 swarm(i, 2, 2)=weight_y1+weight_y2+swarm(1, 2, 2);
 swarm(i, 2, 3)=weight_z1+weight_z2+swarm(1, 2, 3);
 swarm(i,1,1) = swarm(i, 1, 1) + h*swarm(i, 2, 1);
 swarm(i,1,2) = swarm(i, 1, 2) + h*swarm(i, 2, 2);
 swarm(i,1,3) = swarm(i, 1, 3) + h*swarm(i, 2, 3);

end

%---
% plot
 clf
 fig=figure(1);
 scatter3(swarm(:, 1, 1), swarm(:, 1, 2),swarm(:, 1, 3) ,'.')
 axis([-200 200 -200 200 -200 200]);
pause(0.1)
end

40

% Distributed Estimation
% Zhaoyang Fu
% Initialize all parameters

clear;
clc;
close all;

max_times = 1000;
h =0.1; %1<=h<=4
swarm_size = 25; %swarm_size>=2
R=30; %d<=R<=swarm_size
v=0.1; %v>0
theta=2*pi; %theta¡Ê[0, 2pi]
phi=pi; %phi¡Ê[0, pi]
d=5; %0<d<R
theta_d=5; %theta_d>1
R_commu=30;
c=5;
alpha=1;
epsilon_sum=0;

% Initialize the position
for i=1:swarm_size
 swarm(i,1,1) = rand(1)*50;
 swarm(i,1,2) = rand(1)*50;
 swarm(i,1,3) = rand(1)*50;

 Mu_hat_tk(i,1) = 7*swarm(i,1,1); % agent Mu_i(t) x cetriod position
 Mu_hat(i,1)= Mu_hat_tk(i,1); % agent Mu_i(tk) x cetriod position
 Mu_hat_tk(i,2) = 7*swarm(i,1,2); % agent Mu_i(t) y cetriod position
 Mu_hat(i,2)= Mu_hat_tk(i,2); % agent Mu_i(tk) y cetriod position
 Mu_hat_tk(i,3) = 7*swarm(i,1,3); % agent Mu_i(t) z cetriod position
 Mu_hat(i,3)= Mu_hat_tk(i,3); % agent Mu_i(tk) z cetriod position
end

% Initialize the velocity
for j = 1:swarm_size
 v_random1=rand(1);
 v_random2=rand(1);
 swarm(j,2,1) = v*cos(v_random1*theta)*cos(v_random2*phi);
 swarm(j,2,2) = v*sin(v_random1*theta)*cos(v_random2*phi);
 swarm(j,2,3) = v*sin(v_random2*phi);
end

orig_v(:,2,1)=swarm(:,2,1); % original Vx of swarm
orig_v(:,2,2)=swarm(:,2,2); % original Vy of swarm
orig_v(:,2,3)=swarm(:,2,3); % original Vz of swarm
%---

for times = 1 : max_times

for i = 1 : swarm_size
 t= times*h;

41

% Alignment Measure

 for k= 1 : swarm_size
 for j = 1 : swarm_size
 if k>j
 lambda=0;
 lambda=(1/swarm_size)*(lambda+(sqrt((swarm(k, 2, 1)-

swarm(j, 2, 1))^2+(swarm(k, 2, 2)-swarm(j, 2, 2))^2+(swarm(k, 2, 3)-

swarm(j, 2, 3))^2)));
 lambda=sqrt(lambda); % alignment at a common velocity

is equivalent to lambda=0
 end

 end
 end

% Aviod Collision
 weight_x1=0;
 weight_y1=0;
 weight_z1=0;

 weight_x2=0;
 weight_y2=0;
 weight_z2=0;

 for j = 1 : swarm_size

 if sqrt((swarm(i, 1, 1)-swarm(j, 1, 1))^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2+(swarm(i, 1, 3)-swarm(j, 1, 3))^2)<=R
 weight_a=1;
 else
 weight_a=0;
 end

 weight_x1=weight_x1+h*weight_a*(swarm(i, 2, 1)-swarm(j, 2,

1));
 weight_y1=weight_y1+h*weight_a*(swarm(i, 2, 2)-swarm(j, 2,

2));
 weight_z1=weight_z1+h*weight_a*(swarm(i, 2, 3)-swarm(j, 2,

3));

 xi_xj=(swarm(i, 1, 1)-swarm(j, 1, 1))^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2+(swarm(i, 1, 3)-swarm(j, 1, 3))^2;
 f_xij=(xi_xj-d)^(-theta_d);
 if i~=j
 weight_x2=weight_x2+h*f_xij*(swarm(i, 2, 1)-swarm(j, 2, 1));
 weight_y2=weight_y2+h*f_xij*(swarm(i, 2, 2)-swarm(j, 2, 2));
 weight_z2=weight_z2+h*f_xij*(swarm(i, 2, 3)-swarm(j, 2, 3));
 end
 weight_x2=lambda*weight_x2;
 weight_y2=lambda*weight_y2;
 weight_z2=lambda*weight_z2;
 end

42

 pre_position(i,1)=swarm(i, 1, 1);
 pre_position(i,2)=swarm(i, 1, 2);
 pre_position(i,3)=swarm(i, 1, 3);

 swarm(i,1,1) = swarm(i, 1, 1) + h*swarm(i, 2, 1); % update

position
 swarm(i,1,2) = swarm(i, 1, 2) + h*swarm(i, 2, 2);
 swarm(i,1,3) = swarm(i, 1, 3) + h*swarm(i, 2, 3);

 swarm(i, 2, 1)=weight_x1+weight_x2+swarm(1, 2, 1); % update

velocity
 swarm(i, 2, 2)=weight_y1+weight_y2+swarm(1, 2, 2);
 swarm(i, 2, 3)=weight_z1+weight_z2+swarm(1, 2, 3);

 Mu_position(i,1)=swarm(i,1,1)-pre_position(i,1); %

Mu_i_x=xi(t+h)-xi(t)
 Mu_position(i,2)=swarm(i,1,2)-pre_position(i,2); %

Mu_i_y=yi(t+h)-yi(t)
 Mu_position(i,3)=swarm(i,1,3)-pre_position(i,3); %

Mu_i_z=zi(t+h)-zi(t)

 weight_x3=0;
 weight_y3=0;
 weight_z3=0;

 for j = 1 : swarm_size
 if sqrt((swarm(i, 1, 1)-swarm(j, 1, 1))^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2+(swarm(i, 1, 3)-swarm(j, 1, 3))^2)<=R_commu
 weight_commu=0.1;
 else
 weight_commu=0;
 end

 if i~=j
 weight_x3=weight_x3+weight_commu*(Mu_hat_tk(j,1)-

Mu_hat_tk(i,1)); % Mu_hat_diff=Mu_hat(j,1)-Mu_hat(i,1);
 weight_y3=weight_y3+weight_commu*(Mu_hat_tk(j,2)-

Mu_hat_tk(i,2));
 weight_z3=weight_z3+weight_commu*(Mu_hat_tk(j,3)-

Mu_hat_tk(i,3));
 end
 end

 Mu_hat(i,1)=weight_x3+Mu_position(i,1)+Mu_hat(i,1); % get

Mu_hat(t) centroid each time
 Mu_hat(i,2)=weight_y3+Mu_position(i,2)+Mu_hat(i,2);
 Mu_hat(i,3)=weight_z3+Mu_position(i,3)+Mu_hat(i,3);

 epsilon_individual(i)=(Mu_hat(i,1)-

Mu_hat_tk(i,1))^2+(Mu_hat(i,2)-Mu_hat_tk(i,2))^2+(Mu_hat(i,3)-

Mu_hat_tk(i,3))^2;

end

43

 epsilon_sum=0;
 for i = 1 : swarm_size
 epsilon_sum=epsilon_individual(i)+epsilon_sum;
 end
 epsilon_swarm=sqrt(epsilon_sum);

 epsilon=c*exp(-alpha*t);
 if epsilon_swarm>epsilon
 for i=1:swarm_size
 Mu_hat_tk(i,1)=Mu_hat(i,1);
 Mu_hat_tk(i,2)=Mu_hat(i,2);
 Mu_hat_tk(i,3)=Mu_hat(i,3);
 end

 end
%---

% clf
% fig=figure(1);
% scatter3(swarm(:, 1, 1), swarm(:, 1, 2),swarm(:, 1, 3) ,'.')
% axis([-500 500 -500 500 -500 500]);
% pause(0.1)

 clf
 fig=figure(1);
 scatter3(Mu_hat(:,1), Mu_hat(:,2),Mu_hat(:,3) ,'.')
 axis([-500 500 -500 500 -500 500]);
 pause(0.1)

end

44

% Jamming Effect
% Zhaoyang Fu
%---
% Initialize all parameters
clear all;
clc;
close all;

max_times = 1000;
h =0.5; %1<=h<=4
swarm_size =25; %swarm_size>=2
R=30; %d<=R<=swarm_size
v=1; %v>0
theta=2*pi; %theta¡Ê[0, 2pi]
phi=pi; %phi¡Ê[0, pi]
d=1; %0<d<R
theta_d=2; %theta_d>1
jam_range=60;
% R_commu=30;
% c=5;
% alpha=1;
% epsilon_sum=0;
%---
% Initialize the position

averagetimes=0;
for k=1:100

for i=1:swarm_size
 swarm(i,1,1) = rand(1)*50-25;
 swarm(i,1,2) = rand(1)*50-25;
 swarm(i,1,3) = rand(1)*50-25;
end
%---
% Initialize the velocity
for j = 1:swarm_size
 v_random1=rand(1);
 v_random2=rand(1);
 swarm(j,2,1) = v*cos(v_random1*theta)*cos(v_random2*phi);
 swarm(j,2,2) = v*sin(v_random1*theta)*cos(v_random2*phi);
 swarm(j,2,3) = v*sin(v_random2*phi);
end

%---
% set the center of jamming center
jamming_centerx=0;
jamming_centery=0;
jamming_centerz=0;
% for i=1:swarm_size
% jamming_centerx=swarm(i,1,1)+jamming_centerx;
% jamming_centery=swarm(i,1,2)+jamming_centery;
% jamming_centerz=swarm(i,1,3)+jamming_centerz;
% end
% jamming_centerx=(1/swarm_size)*jamming_centerx;
% jamming_centery=(1/swarm_size)*jamming_centery;
% jamming_centerz=(1/swarm_size)*jamming_centerz;

45

%---
for times = 1 : max_times

% t= times*h;
% Alignment Measure
lambda=0;
for i = 1 : swarm_size
 for j = 1 : swarm_size
 if i>j
 lambda=lambda+((swarm(i, 2, 1)-swarm(j, 2, 1))^2+(swarm(i,

2, 2)-swarm(j, 2, 2))^2+(swarm(i, 2, 3)-swarm(j, 2, 3))^2);
 end
 lambda=sqrt((1/swarm_size)*lambda); % alignment at a

common velocity is equivalent to lambda=0
 end
end

for i = 1 : swarm_size

%---
% jamming and Aviod Collision

% Aviod Collision

 distance=sqrt((swarm(i, 1, 1)-jamming_centerx)^2+(swarm(i, 1,

2)-jamming_centery)^2+(swarm(i, 1, 3)-jamming_centery)^2);

 if distance>jam_range
 weight_x1=0;
 weight_y1=0;
 weight_z1=0;

 weight_x2=0;
 weight_y2=0;
 weight_z2=0;

 for j = 1 : swarm_size

 if sqrt((swarm(i, 1, 1)-swarm(j, 1, 1))^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2+(swarm(i, 1, 3)-swarm(j, 1, 3))^2)<=R
 weight_a=1;
 else
 weight_a=0;
 end

 weight_x1=weight_x1+h*weight_a*(swarm(i, 2, 1)-swarm(j, 2,

1));
 weight_y1=weight_y1+h*weight_a*(swarm(i, 2, 2)-swarm(j, 2,

2));
 weight_z1=weight_z1+h*weight_a*(swarm(i, 2, 3)-swarm(j, 2,

3));

46

 xi_xj=(swarm(i, 1, 1)-swarm(j, 1, 1))^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2+(swarm(i, 1, 3)-swarm(j, 1, 3))^2;
 f_xij=(xi_xj-d)^(-theta_d);
 if i~=j
 weight_x2=weight_x2+h*f_xij*(swarm(i, 1, 1)-swarm(j, 1, 1));
 weight_y2=weight_y2+h*f_xij*(swarm(i, 1, 2)-swarm(j, 1, 2));
 weight_z2=weight_z2+h*f_xij*(swarm(i, 1, 3)-swarm(j, 1, 3));
 end

 weight_x2=lambda*weight_x2;
 weight_y2=lambda*weight_y2;
 weight_z2=lambda*weight_z2;
 end

 swarm(i, 2, 1)=weight_x1+weight_x2+swarm(1, 2, 1); % update

velocity
 swarm(i, 2, 2)=weight_y1+weight_y2+swarm(1, 2, 2);
 swarm(i, 2, 3)=weight_z1+weight_z2+swarm(1, 2, 3);

 swarm(i,1,1) = swarm(i, 1, 1) + h*swarm(i, 2, 1); % update

position
 swarm(i,1,2) = swarm(i, 1, 2) + h*swarm(i, 2, 2);
 swarm(i,1,3) = swarm(i, 1, 3) + h*swarm(i, 2, 3);

 else
 swarm(i,1,1) = swarm(i, 1, 1) + h*swarm(i, 2, 1); % update

position
 swarm(i,1,2) = swarm(i, 1, 2) + h*swarm(i, 2, 2);
 swarm(i,1,3) = swarm(i, 1, 3) + h*swarm(i, 2, 3);
 end

end

 figure(1);
 scatter3(swarm(:, 1, 1), swarm(:, 1, 2),swarm(:, 1, 3), '.');
% axis([-1000 1000 -1000 1000 -1000 1000]);
 figure(2);
 plot(times,lambda,'.');
 hold on;
 pause(0.1);

 if lambda<=0.041
 lambda
 averagetimes=averagetimes+times;
 break
 end

end

end
averagetimes=1/k*averagetimes;

47

% Jamming effect on centroid estimation
% Zhaoyang Fu
%---
% Initialize all parameters
clear all;
clc;
close all;

max_times = 1000;
h =0.5; %1<=h<=4
swarm_size =25; %swarm_size>=2
R=30; %d<=R<=swarm_size
v=1; %v>0
theta=2*pi; %theta¡Ê[0, 2pi]
phi=pi; %phi¡Ê[0, pi]
d=1; %0<d<R
theta_d=2; %theta_d>1
jam_range=60;
% R_commu=30;
% c=5;
% alpha=1;
% epsilon_sum=0;
%---
% Initialize the position

averagetimes=0;
for k=1:100

for i=1:swarm_size
 swarm(i,1,1) = rand(1)*50-25;
 swarm(i,1,2) = rand(1)*50-25;
 swarm(i,1,3) = rand(1)*50-25;
end
%---
% Initialize the velocity
for j = 1:swarm_size
 v_random1=rand(1);
 v_random2=rand(1);
 swarm(j,2,1) = v*cos(v_random1*theta)*cos(v_random2*phi);
 swarm(j,2,2) = v*sin(v_random1*theta)*cos(v_random2*phi);
 swarm(j,2,3) = v*sin(v_random2*phi);
end

%---
for times = 1 : max_times

% t= times*h;
% Alignment Measure
lambda=0;
for i = 1 : swarm_size
 for j = 1 : swarm_size
 if i>j
 lambda=lambda+((swarm(i, 2, 1)-swarm(j, 2, 1))^2+(swarm(i,

2, 2)-swarm(j, 2, 2))^2+(swarm(i, 2, 3)-swarm(j, 2, 3))^2);
 end

48

 lambda=sqrt((1/swarm_size)*lambda); % alignment at a

common velocity is equivalent to lambda=0
 end
end

for i = 1 : swarm_size

%---
% jamming and Aviod Collision

% Aviod Collision

 distance=sqrt((swarm(i, 1, 1)-jamming_centerx)^2+(swarm(i, 1,

2)-jamming_centery)^2+(swarm(i, 1, 3)-jamming_centery)^2);

 if distance>jam_range
 weight_x1=0;
 weight_y1=0;
 weight_z1=0;

 weight_x2=0;
 weight_y2=0;
 weight_z2=0;

 for j = 1 : swarm_size

 if sqrt((swarm(i, 1, 1)-swarm(j, 1, 1))^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2+(swarm(i, 1, 3)-swarm(j, 1, 3))^2)<=R
 weight_a=1;
 else
 weight_a=0;
 end

 weight_x1=weight_x1+h*weight_a*(swarm(i, 2, 1)-swarm(j, 2,

1));
 weight_y1=weight_y1+h*weight_a*(swarm(i, 2, 2)-swarm(j, 2,

2));
 weight_z1=weight_z1+h*weight_a*(swarm(i, 2, 3)-swarm(j, 2,

3));

 xi_xj=(swarm(i, 1, 1)-swarm(j, 1, 1))^2+(swarm(i, 1, 2)-

swarm(j, 1, 2))^2+(swarm(i, 1, 3)-swarm(j, 1, 3))^2;
 f_xij=(xi_xj-d)^(-theta_d);
 if i~=j
 weight_x2=weight_x2+h*f_xij*(swarm(i, 1, 1)-swarm(j, 1, 1));
 weight_y2=weight_y2+h*f_xij*(swarm(i, 1, 2)-swarm(j, 1, 2));
 weight_z2=weight_z2+h*f_xij*(swarm(i, 1, 3)-swarm(j, 1, 3));
 end

49

 weight_x2=lambda*weight_x2;
 weight_y2=lambda*weight_y2;
 weight_z2=lambda*weight_z2;
 end

 swarm(i, 2, 1)=weight_x1+weight_x2+swarm(1, 2, 1); % update

velocity
 swarm(i, 2, 2)=weight_y1+weight_y2+swarm(1, 2, 2);
 swarm(i, 2, 3)=weight_z1+weight_z2+swarm(1, 2, 3);

 swarm(i,1,1) = swarm(i, 1, 1) + h*swarm(i, 2, 1); % update

position
 swarm(i,1,2) = swarm(i, 1, 2) + h*swarm(i, 2, 2);
 swarm(i,1,3) = swarm(i, 1, 3) + h*swarm(i, 2, 3);

 else
 swarm(i,1,1) = swarm(i, 1, 1) + h*swarm(i, 2, 1); % update

position
 swarm(i,1,2) = swarm(i, 1, 2) + h*swarm(i, 2, 2);
 swarm(i,1,3) = swarm(i, 1, 3) + h*swarm(i, 2, 3);
 end

end

 figure(1);
 scatter3(swarm(:, 1, 1), swarm(:, 1, 2),swarm(:, 1, 3), '.');
 figure(2);
 plot(times,lambda,'.');
 hold on;
 pause(0.1);

 if lambda<=0.041
 lambda
 averagetimes=averagetimes+times;
 break
 end

end

end
averagetimes=1/k*averagetimes;

50

% Communication-aware formation control
% Zhaoyang Fu
clear all;
clc;
close all;

% Initialize all parameters
max_times = 1000;
h =1;
swarm_size=7;
theta=2*pi;
alpha=10^(-5); % system parameter about antenna characteristics
delta=2; % required application data rate
Beta=alpha*(2^delta-1);
v=3; % path loss exponent
r0=5; % reference antenna near-field
PT=0.94; % reception probability threshold
u=1;
rho_ij=0;

%swarm=[-5,14;-5,-19;0,0;35,-4;68,0;72,13;72,-18]

swarm=zeros(swarm_size,2);
 swarm(1,1)=-5;
 swarm(1,2)=16;
 swarm(2,1)=-5;
 swarm(2,2)=-21;
 swarm(3,1)=1;
 swarm(3,2)=1;
 swarm(4,1)=36;
 swarm(4,2)=-5;
 swarm(5,1)=65;
 swarm(5,2)=0;
 swarm(6,1)=70;
 swarm(6,2)=10;
 swarm(7,1)=72;
 swarm(7,2)=-16;
 swarm(8,1)=-5;
 swarm(8,2)=0;
 swarm(9,1)=72;
 swarm(9,2)=0;

% Initialize the velocity
for j = 1:swarm_size
 u_random1=rand(1);
 speed(j,1) = 0;
 speed(j,2) = 0;
 %speed(j,1) = u*cos(u_random1*theta);
 %speed(j,2) = u*sin(u_random1*theta);
 %speed(j,1) = u*cos(theta);
 %speed(j,2) = u*sin(theta);
end

for k=1:max_times

for i=1:swarm_size

51

 rho_ij=0;
 for j=[1:(i-1),(i+1):swarm_size]
 rij=sqrt((swarm(i,1)-swarm(j,1))^2+(swarm(i,2)-swarm(j,2))^2);
 aij=exp(-alpha*(2^delta-1)*(rij/r0)^v);

 if aij>=PT
 rho_ij=(-Beta*v*rij^(v+2)-

Beta*v*(r0^2)*(rij^v)+r0^(v+2))*exp(-

Beta*(rij/r0)^v)/sqrt((rij^2+r0^2)^3);
 else
 rho_ij=0;
 end
 qi=[swarm(i,1),swarm(i,2)];
 qj=[swarm(j,1),swarm(j,2)];
 nd=(qi-qj)/norm(qi-qj)

 speed(i,1)=speed(i,1)+rho_ij*nd(1);
 speed(i,2)=speed(i,2)+rho_ij*nd(2);
 end
 swarm(i,1)=swarm(i,1)+speed(i,1)*h
 swarm(i,2)=swarm(i,2)+speed(i,2)*h
 speed(i,1)=0;
 speed(i,2)=0;
end

 clf
 fig=figure(1);
 plot(swarm(:, 1), swarm(:, 2), '.');
 axis([-100 100 -100 100]);
 pause(0.1)
 end

	Investigation of Communication Constraints in Distributed Multi-Agent Systems
	Scholarly Commons Citation

	tmp.1492519136.pdf.FmNOz

