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ABSTRACT

Gondaliya, Ravi MSAE, Embry-Riddle Aeronautical University, March 2016. Improving
Damage Tolerance Of Composite Sandwich Structures Subjected To Low Velocity

Impact Loading: Experimental And Numerical Analysis

Sandwich structures with composite facing skins have seen applications in variety
of sectors including aerospace and automobile, owing to their high specific mechanical
properties. However, there is a need to develop better damage tolerant sandwich structures
since conventional composite facing skins exhibit low impact resistance in the transverse
direction. Here, composite skin sandwich structures with three different impact resistant
core materials were fabricated and tested both experimentally and numerically. Neat CFRP
and 2024-T3 aluminum alloy sheets were also investigated. Cores utilizing impact resistant
D30® were found to have very favorable weight specific energy absorbing properties at
higher impact velocities as compared to those made from Nomex® or Sorbothane® cores.
Nonlinear finite element analysis was also performed using Hypermesh/LS-DYNA for
2024-T3 aluminum alloy sheet, neat CFRP and sandwich with Nomex® core with CFRP
faceskins. Numerical vs. Experimental impact results were compared and comments
regarding impact behavior of different candidate materials were made. CAI tests were
performed for CFRP sandwich structures. Sandwiches with cores made out of D30® and
Sorbothane® showed more ductility when compared with Nomex® core sandwich

composite.



1. Introduction

Carbon Fiber Reinforced Polymer (CFRP) structures are used extensively in
aerospace, marine, civil, wind energy and recreational industries. These industries use
composite materials in great quantities to manufacture their respective products like
airplanes, pressure vessels, wind turbine blades, sporting equipment, etc. owing to their
high stiffness and strength to weight ratio, excellent corrosion and fatigue resistance, low
maintenance requirements, and ability to form into complex shaped parts. Aerospace
industries, above all, reap great benefits from CFRP structures because they are relatively
lower in weight compared to conventional aluminum alloy structures. Lower aircraft
weight results in greater fuel efficiency, greater range and increase in profit margins for the
airlines. In today’s world where energy consumption is at an all-time high, CFRP structures
can bring revolutionary solutions to many of these problems.

Recently, a new generation of commercial aircraft like the Boeing (Chicago, IL)
B787 Dreamliner and Airbus (Toulouse, France) A350XWB have started using composite
materials very extensively, Figure 1. CFRP structures have experienced immense usage on
A350XWB, accounting for 53% of its structural weight (Airbus S.A.S., 2016). They are
also widely used to construct primary structures of these new generation aircraft including
the wing, fuselage and empennage (Faivre and Morteau, 2011) as shown in Figure 2. CFRP
composites allow structural designers to design the fiber orientation as per the loading
requirements for the particular structure. Thus, there can be a potential weight savings in
the overall structure as unnecessary material weight is not added for non-load carrying
parts. As aerospace and other industries increase the usage of CFRP, various shortcomings

of CFRP structures will also be inherited. The proposed thesis research topic sheds the light



on mitigating some of the issues with using CFRP and further broadening the advantages

and applications of CFRP based structures (monolithic and sandwich composites).
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Figure 1. Increased usage of composite structures in next generation aircrafts.
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Figure 2. Composite usage in Airbus A350 XWB.
1.1 Problem Statement

Composite materials normally exhibit high stiffness and strength in the fiber
direction while matrix dominated properties in the transverse direction, such as shear and
impact resistance, are generally poor (Reid and Zhou, 2000). Moreover, through-the-

thickness tensile strengths of CFRP laminates are typically lower than their isotropic



counterparts. For example, through-the-thickness tensile strength comparisons of 2024-T3
aluminum alloy sheet, 7075-T6 aluminum alloy sheet and CFRP laminates are shown in

Figure 3 (Horton and McCarty, 1987).
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Figure 3. Through-the-thickness tensile strength comparison.

CFRP structures are often subjected to non-catastrophic impact damage during
fabrication, maintenance or in-service operations (e.g., tool drops, bird strikes, hail, runway
debris, ground support equipment, etc.). Around 80% of in-service aircraft damages are
caused by impact strikes (Cook, Boulic, Harris, Bellamy and Irving, 2012). The areas of
impact typically cover most of the locations of an aircraft’s exterior structure (e.g.,
passengers and cargo doors, nose, fuselage and wings) as shown in Figure 4 (Faivre and
Morteau, 2011). Impacts on composite structures can usually be characterized by one of
two types: 1) High velocity impacts 2) Low velocity impacts. What is considered “high”
as compared to “low” varies depending on agency and researcher. Here, low velocity

impacts will be investigated with the goal of finding innovative solutions to improve



damage tolerance for non-catastrophic types of events. The high velocity impact response

of composites and its damage tolerance will be considered out of scope for the current
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Figure 4. General locations of an impact on an AIRBUS aircraft.

Low-velocity impacts on CFRP composites structures often create Barely Visible
Impact Damage (BVID), which can reduce residual mechanical properties, like
compressive strength, immensely. BVID type damage can be a mixture of internal
delamination driven largely by interlaminar shear and tension and lamina matrix cracking
(Davis, G.A.O and Zhang, 1994). Such damage may be invisible from the exterior because
of the higher permanent deformation resistance of CFRP while the subsurface may be
damaged, Figure 5 (Waite, 2006). Thus, compared to metallic structures, detection of
impact damage in CFRP is difficult as it does not readily show signs of a dent (Faivre and

Morteau, 2011).
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Figure 5. BVID example on Airbus A330 after horizontal stabilizer accident.

It has been shown that the compressive strength of CFRP laminates drops
significantly after impact because of the multiple failure modes. For example, compressive
strengths of graphite fiber based composite structures have shown reduction of as much as
60% after sustaining low velocity impact (Dobyns and Porter, 1981). Because of
unpredictability of compression after impact (CAl) strengths, current design strategy has
lower after impact allowable strains, often as low as 0.3%, while the undamaged composite
can withstand strains of order 1% (Davis et al., 1994). Delamination created in the laminate
during low velocity impact is a critical mode of failure that helps induce reduction in
compressive strength of the laminate. During the compression, delamination often creates
a void between laminate causing local buckling of the sub-laminates (Nettles, 2010). This
problem is not seen in tension after impact as the delamination simply closes-up and not
much change is seen in laminate tensile strength. Figure 6 (Nettles, 2010) shows the sub-

laminates created after impact as well as their buckling during compression.
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Figure 6. Sub-laminates (top) and buckled sub-laminates in compression (bottom).

Delamination is found to be initiated at a certain impact energy threshold with final
delamination size increasing linearly with increasing impact energy (Abrate, 1998).
Damage generated by impact depends on the composite lay-up, as well as velocity, shape,
material and shape of the indenter. In addition, boundary conditions of the impacted
specimen also affect the impact damage (Liu, 1988). The delamination pattern also depends
on the lay-up orientation angle of the plies as shown in Figure 7 (Abrate, 1998). Research
has also suggested that for low velocity impacts of the same energy level, all other
governing impact behavior parameters kept constant, impact cases involving low masses
at high velocities created more delamination damage and lower CAI strengths compared
to impacts involving high mass, low velocity scenarios (Starnes, Dickson and Rouse,
1984). For a specific impact energy, stiffness of the indenter also plays a significant role in
damage induced to composites. A stiffer impactor will generate more damage for a given

impact energy level compared to a more elastic (or pliable) impactor.
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Figure 7. Delamination orientation dependence on ply angles of a laminate.

Simple visual inspection in composites cannot be relied upon as a means of Non-
Destructive Evaluation (NDE), unlike metallic counterparts. If the BVID caused by low-
velocity impact goes undetected but with subsurface delamination’s, the composite
structure may not be able to withstand its design limit load and its ultimate load carrying
capacity maybe reduced (Christoforou and A.P., 2001). Furthermore, late detection of these
subsurface delamination’s can increase the maintenance costs as the entire composite
component may have to be replaced because of expanded damage over use and time.
Therefore, there is a long felt need to develop better damage tolerant composite structures.
A more damage tolerant structure would give maintenance crew a greater window of
opportunity to detect the damage and in turn may also increase flight cycles of an impact

damaged CFRP structure.



1.2 Research Purpose

The purpose of this research is to investigate the effect of low-velocity impacts on
CFRP and isotropic structures. Moreover, new types of CFRP based sandwich structures
with energy absorbing cores will be investigated for their energy absorbing effectiveness.
Overall, this research seeks to develop a lighter and thinner alternative to conventionally
used honeycomb core sandwich structures (e.g., with Nomex® and/or Al alloy cores) for
energy absorbing purposes. The proposed sandwich structures may be proven to be more
damage tolerant compared to Nomex® honeycomb core structures and more easily
deployed in existing CFRP structures to improve its damage tolerance and mitigate the
effects of damage due to low-velocity impact loadings. The material configurations
proposed here will be relatively less expensive and less technologically demanding
compared to conventional impact resisting techniques and approaches. Practicality and fast
adoption of the proposed structures are key motives of this work. The new types of
sandwich structures with energy absorbing cores and CFRP facing skins will be compared
with isotropic and neat CFRP laminate for their weight and energy absorbing
characteristics.

Initially, 2024-T3 aluminum alloy sheet and CFRP laminates will be evaluated
numerically and experimentally under low-velocity impact loading. After confirming the
validity of numerical modelling, experiments will be conducted for different proposed
sandwich coupons. Impact, weight and energy absorption characteristics of the different
proposed sandwich structures will also be compared experimentally and numerically to

Nomex® honeycomb sandwich structure.



Lastly, CAI strength tests will be conducted on impacted and neat samples to
evaluate the drop in compressive strength after impact of the candidate materials. Thus, by
using experimental and numerical methods, the research hopes to uncover new sandwich
structure configurations that increase the damage tolerance of CFRP based sandwich

structures while decreasing their weight and thickness.

1.3 Research Significance

The proposed thesis research is of unique significance to aerospace and other
industries (especially automobile) whose products often experience low velocity impact
loadings, requiring significant impact resistance and damage tolerance for their safe use
and certifications. Thus, it is the multidisciplinary aspect of this research that makes the
proposed problem solution amenable to multidisciplinary methods. Eventually, the
research seeks to enable commercial development of energy absorbing composite

sandwich structures with decreased overall weight and thickness.
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2. Prior Investigations

The field of composite damage tolerance has seen many investigations over the past
few years seeking ways of improving the impact resistance and residual strength of
composite structures. Glass Fiber Reinforced Polymer (GFRP) composite structures have
proved superior to CFRP in terms of sustaining mechanical performance after being
damaged by impacts. This can partly be explained by GFRP’s lower modulus and weaker
interface between the glass fibers and matrix (Davies et al., 1994). The strain to failure of
most glass fibers is also higher than carbon fibers. However, the compressive strength of
GFRP is considered low for many aerospace applications because of their flexibility. Thus
their superior damage tolerance performance is not of significant importance in the
aerospace industry as compared to CFRP. Furthermore, hybrid composite structures
involving stiff carbon, flexible glass and intermediate aramid fibers can offer an acceptable
compromise (Dorey, Sigerty, Stellbrink and Hart, 1987) and (Marom, Drukker, Weinberg
and Banbaji, 1986). Usage of tougher resins, particularly thermo-plastic matrix (e.g.,
polyether ether ketone) with high strain fibers have also been found to improve damage
tolerance of composite structures (Davies and Robinson, 1992).

A variety of methods have been investigated to improve the damage tolerance of
composite structures and to arrest delamination created by impact loading conditions.
There have been reviews of most of the current methods used to improve impact damage
tolerance in stringer-stiffened aerospace composite components (Greenhalgh and Hiley,
2003). The methods include tougher matrix systems, 2D and 3D woven materials, stitching
and z-pinning, selective interlayers, protective surface layers, and hybrid laminates.

However, most of these methods do not allow for refurbishing the damaged structures, they
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are also expensive and sometimes carry weight penalties with them. Hence there is a need
to develop a cost effective and lightweight solution for the problem.

Studies have been performed to improve the damage tolerance of the composite
sandwich structures. For example, foam filled sandwich structures with variety of different
facing skins and analysis of impact damage tolerance with CAI strength have been
performed (Yang et al., 2015). It was found that in the sandwich with carbon fiber
composite facing skins, matrix cracking, fiber breaking, foam cracking and debonding
were the main failure modes during the impact. It was also found that sandwich with glass
fiber composite facing skins showed the lowest rate of decline in compression strength
while sandwich with carbon fiber composite facing skins showed highest rate of decline.
Studies were also made where facing skins were developed from a hybrid of carbon and
glass fiber composite facing skins. Damage tolerance of the sandwich was improved
through this approach as the rate of compressive strength was dropped. However, overall
compressive strength of undamaged hybrid sandwich structure was lower than the
undamaged composite sandwich with carbon fiber facing skins.

Various researchers have investigated the influence of fiber staking sequence,
different foam materials and temperature on impact tolerance properties of composite
sandwich structures. Some have suggested the usage of rubber between layered steel and
composite in order to absorb energy and decrease the interfacial damage in hybrid
composite structure (Sarlin et al., 2015). It was found that the hybrid composite with 1.5
mm of rubber layer between steel and composite showed a reduction of 50% in the damage
area caused by impact damage. Figure 8 shows the impacted hybrid specimen (Sarlin et

al., 2015).
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Figure 8. Steel-Rubber-Composite hybrid material after low velocity impacts.
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3. Experimental Approach

The experimental approach investigated here involves a variety of experiments
designed to obtain the low velocity impact response of the composite candidate facing skins
and energy absorbing sandwich structures. Candidate coupon structures were fabricated
inside the Embry-Riddle Composites Lab using a hot press molding technique. Drop
weight tests were conducted at low velocities in order to obtain Force vs. Time, Energy vs.
Time and Displacement vs. Time impact characteristics. Energy vs. Time results were
normalized by weight and thickness of the impacted coupons in order to compare weight
and thickness effects on energy absorption. Moreover, CAI tests on impacted and neat
samples help determine the increase/decrease in residual compressive strength of the

candidate materials.

3.1 Coupon Fabrication

Coupons tested for low velocity impacts included 2024-T3 aluminum alloy sheets,
14 layer neat CFRP composite laminated and sandwich structures with one of a
Sorbothane®, Nomex® or D30® core each with 7 layers of CFRP acting as top/bottom
facing skins. Besides that, the neat and sandwich structures were tested for CAI

compressive strength. Specific details of the materials are found later.

3.1.1 2024-T3 Aluminum Alloy

2024-T3 aluminum alloy sheet was acquired from Kaiser Aluminum (Spokane,
WA). The thickness of the sheet was 0.4 mm and test coupons weighted 10 g when trimmed
to 101.6 mm x 152.4 mm (4 x 6 in) dimensions. Nine 2024-T3 aluminum alloy coupons

were used to conduct the experiments.
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3.1.2 Neat CFRP Prepreg

The neat CFRP prepreg material was a 2 x 2 twill weave obtained from ACP
Composites (Livermore, CA), see Appendix A for specific details. This is a room
temperature storage item. Even so, a freezer was used to further extend the lifetime of the
prepreg. Two types of CFRP samples were fabricated, one type with 7 layers of composite
and another with 14 layers. The neat CFRP coupons made from them were denoted as
(CF)7 and (CF)14 respectively. Fiber orientations of 0/90 twill were kept the same during
the layup building. This means that fibers with 0° orientation were parallel to all 0° fibers
and fibers with 90° orientation were parallel to all 90° fibers throughout the thickness. The
hot press aluminum mold plate was initially sanded to make sure there was no residual
contaminants and was cleaned with acetone afterwards. Moreover, Fiberglass 1153
FibRelease® release agent (Fiber Glast Development Corporation, Brookville, OH) was
applied before stacking composite layers on the aluminum plate mold. This was the done
for the ease of removal of the cured composite plates at the end of hot press molding
process. Peel ply, breather, vacuum bag (Fiber Glast Development Corporation,
Brookville, OH) and aluminum foil (Reynolds Metals Company, Lincolnshire, IL) were
applied on top of the composite layup for uniform pressure distribution and excess epoxy
absorption purposes.

CFRP coupons were fabricated using a Genesis series Wabash Compression Press
(Wabash, IN), Figure 9. Prepregs were cured at 154°C (310°F) for 70 min as mandated by
the manufacturer and to ensure the quality of fabrication. A uniform pressure resulting from
a load of 13,350 N (1.5 Ton) was applied throughout the hot press molding process.

Fabricated CFRP materials were then trimmed with a Leco (St. Joseph, MI) MSX 255
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Benchtop Sectioning Machine, Figure 9. Neat CFRP coupons were trimmed to get
dimensions of 101.6 mm x 152.4 mm (4 x 6 in) to comply with ASTM D3763 (American

Society For Testing And Materials, West Conshohocken, PA) impact test standards.

Figure 9. Wabash Compression Press (left) and Leco MSX255 Benchtop Sectioning
Machine (right).

3.1.3 Cores With CFRP Faceskins

Standard cell Nomex® honeycomb with cell size of 4.8 mm (3/16 in) and thickness
of 6.4 mm (1/4 in) was acquired from ACP Composites. Sorbothane® (Kent, OH) with
Durometer 30 and thickness of 5 mm (approx. 3/16 in) was also obtained. D30® recoil
pads with thickness of 4.0 mm were obtained from Musto Ocean Engineered® (Essex, UK).
Nomex®, Sorbothane® and D30® were cut to the dimensions of 101.6 mm x 152.4 mm (4
X 6 in) to match with the CFRP facing skin dimensions. Each of the three types of cores

were attached to the 7 layered neat CFRP facing skins using Lord® (Cary, NC) 7542A/B


https://www.google.com/search?espv=2&biw=1745&bih=868&q=West+Conshohocken+Pennsylvania&stick=H4sIAAAAAAAAAOPgE-LUz9U3MM4wL05S4gIxjQzKLI0MtbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFAJiLAYxFAAAA&sa=X&ved=0ahUKEwjntYy0oLLMAhXBMz4KHdYVAY0QmxMImgEoATAT
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Urethane Adhesive (two component). To adhere, an appropriate mixing tip/gun was used
to apply 6 thin standardized strips in one direction and 5 in the other direction (to form a
crossing pattern) on the dry sanded CFRP sides that would eventually face the core. A
wood mixing stick was then used to smooth the adhesive uniformly. Moreover, when
adhering to the cores, masking tape was used on the perimeter of the facing skin and core
assemblies in order to restrict any relative movement between them during vacuum
bagging. Each entire assembly was vacuum bagged at room temperature and allowed to
cure for 24 hr under vacuum. A rotary vane pump capable of 10 Torr range was used to
achieve vacuum. Figure 10 below shows the initial adhesive pattern on the CFRP facing
skins as well as the fabrication sequence for the composite sandwich structures along with

cross-sectional views of each different sandwich structure.



Masking tape

Step 2

Diamond saw

Step 4

Step 3

Nomex®

Sorbothane®

D30®

Figure 10. Composite sandwich fabrication process and final cross-sections of fabricated
coupons.
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3.2 Drop-Weight Impact Testing

Drop-weight impact testing is usually performed to measure the impact strength
and energy absorption characteristics of a material. An Instron (Norwood, MA) 9250 HV
Impact Test Instrument was used following ASTM D7136/D7136M standards. It was
equipped with a 12.7 mm (0.5 in) hemispherical steel indenter, adjustable crosshead and
drop weights, pneumatic clamp and rebound brake, 22.2 kN strain gauge instrumented
impact tup and Impulse DAQ system and Controller - Version: 3.6.76. An impact mass of
6.64 kg was used. Low speed impacts at velocities ranging from 1.0 m/s to 3.5 m/s were
performed on all test specimens; 2024-T3 aluminum alloy sheets, neat CFRP and the three
different types of CFRP skin sandwich structures. Figure 11 below shows the drop-weight
tower used to perform impact tests. Also, the hemispherical indenter and clamp fixture are
shown in detail for clearer understanding. The clamp fixture created a nearly fixed
boundary condition at the edges of the test specimen(s). These boundary conditions are
created by pneumatic clamping device. The fixture is clamped utilizing 551 - 620 kPa (80
- 90 psi) shop air for the impact experiments. Rebound brakes were also activated to avoid
unwanted dual impacts (“the bounce”) on the specimen(s). All experimental results
reported in this research involved a single impact event as no second rebound strike was
allowed. Various calibration tests were performed on simple cardboard sacrificial samples
to make sure all systems and data acquisition were working properly. The impact mass was
measured independently using a small digital mass scale for weight confirmation. Impact
data was set to be recorded over an event duration range of 15 ms. The maximum impact

force was set at about the mid-range of the 22.2 kN tup.
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a

Hemispherical
Indenter

Figure 11. Instron 9250 HV Impact Test Instrument.

3.3 Experimental Results
3.3.1 2024-T3 Aluminum Alloy Sheet

Impact tests were performed on 2024-T3 aluminum alloy coupons with dimensions
of 101.6 mm x 152.4 mm (4 x 6 in) at impact velocities of 1.0 m/s, 1.25 m/s, 1.5 m/s, 3.0
m/s and 3.5 m/s in order to observe the strain rate effect (if any) and to notice changes of
Displacement, Force and Energy absorbed vs. time curves with changes in impact velocity.
Two tests were performed at each velocity (except 3.5 m/s which was just one test). Figure

12 below depicts the impacted coupons with velocity increasing from left to right.
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Figure 12. Post impacted 2024-T3 aluminum alloy sheet coupons.

Figure 13, 14 and 15 below show the Displacement (mm), Energy (J) and Force
(KN) curves vs. Time (ms) respectively for the prescribed impact velocities. As seen below
in the Force vs. Time curve(s), Figure 15, a sudden drop in Force was observed at 1.5, 3.0

and 3.5 m/s suggesting total penetration of the impactor through the specimen.
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Figure 13. Displacement (mm) vs. Time (ms) curves for 2024-T3 aluminum alloy sheet at
varying impact velocities.
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Figure 14. Energy (J) vs. Time (ms) curves for 2024-T3 aluminum alloy sheet at varying

impact velocities.
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3.3.2 Neat CFRP

Impact tests were performed on two (CF)14 coupons with dimensions of 101.6 mm
x 152.4 mm (4 x 6 in) for impact velocities of 1.0 m/s and 1.25 m/s in order to observe the
strain rate effect (if any) and to notice the change of Displacement, Force and Energy
absorbed curves with the change in impact velocities. Note that total penetration occurred
at velocities of 1.5 m/s and greater but these results were neglected since this is well beyond
BVID. Figure 16, 17 and 18 below show the comparison of Displacement (mm), Energy
(J) and Force (kN) curves vs. Time (ms) respectively for the prescribed impact velocities
for 2024-T3 aluminum alloy and (CF)14 coupons. As seen in the Force vs. Time curve for
(CF)14, spikes for Force curves changing with respect of time are seen. This indicates the
complex nature of failure modes occurring within the neat CFRP sample during the impact
loading. An initial drop in force is suggesting onset of delamination in (CF)14 while the
upper (and final) force drop suggests the beginning of fiber failures. In general, failure
modes due to impact loading may include fiber breakage, fiber/matrix debonding, fiber
kinking and delamination between adjacent plies. Also, the peak force (acceleration pulse)
for the (CF)w4 is higher compared to its isotropic counterpart 2024-T3 owing to the higher
stiffness property of the composite laminate. As observed from the below Displacement
vs. Time curve, we see that 2024-T3 deflected more then (CF)14 confirming with the more
ductile behavior of isotropic materials compared to carbon fiber composite laminates. As
seen in Energy vs. Time curve, even though the energy peek by (CF)14 was obtained earlier
in time (stiff response) and was similar in magnitude with energy peak from 2024-T3, the

rebounded energy (absorbed energy) of (CF)14 was lower than that of 2024-T3. Rebounded
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energy (absorbed energy) of the 2024-T3 coupon is showed in Figure 17. Similarly,

absorbed energy can be evaluated for composite laminates from the Figure 17 plot.
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Figure 17. Energy (J) v/s Time (ms) curves for (CF)14 and 2024-T3 at varying impact

velocities.
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Figure 18. Force (kN) vs. Time (ms) curves for (CF)14 and 2024-T3 at varying impact

velocities.

3.3.3 Sandwich Structure With CFRP Faceskins

Impact tests were also performed on CFRP sandwich structure containing D30,

Sorbothane® and Nomex® honeycomb as their cores respectively with dimensions of 101.6

mm X 152.4 mm (4 x 6 in). The impact velocities were 1.0 m/s and 1.25 m/s in order to

observe the strain rate effect and to notice the change of Displacement, Force and Energy

absorbed curves with the change in impact velocities. Fig. 19, 20 and 21 below show the

comparison of Displacement (mm), Specific Energy (J/g) and Force (kN) curves vs. Time

(ms) respectively for the prescribed impact velocities between (CF)14 coupons and CFRP

sandwich structures containing D30®, Sorbothane® and Nomex® honeycomb cores

respectively. It can be observed from the Force vs. Time curve response that the force peak

(acceleration pulse) for the neat (CF)14 coupon is higher than the CFRP sandwich structure

owing to its stiffer response to impact loading. Moreover, from the Displacement vs. Time
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curve, we can conclude that the CFRP sandwich structure deformed more than neat CFRP
thereby proving its more ductile nature. Furthermore, specific energy with respect to time
was computed with the plan of obtaining the most favorable lightweight energy absorbing
sandwich material configuration. From the Specific Energy vs. Time curve, it can be
concluded that CFRP facing skins with Nomex honeycomb core had higher specific energy
absorbed then CFRP sandwich coupons with D30® or Sorbothane® cores. Thus, at the
lowest velocities tested (1.0 m/s and 1.25 m/s), validity and feasibility of using D30® and
Sorbothane® as a core material was not proven as compared to conventionally used
Nomex® honeycomb cores for energy absorbing reasons. However, at higher velocities the

D30® core results are much more encouraging.
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Figure 19. Displacement (mm) vs. Time (ms) curves for (CF)14 and CFRP sandwich
structures at different impact velocities.
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Figure 20. Specific Energy (J/g) vs. Time (ms) curves for (CF)14 and CFRP sandwich
structures at different impact velocities.
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Figure 21. Force (kN) vs. Time (ms) curves for (CF)14 and CFRP sandwich structures at

different impact velocities.

Impact tests were also performed on all the three samples with CFRP faceskins and

Nomex®, Sorbothane® and D30® cores respectively at the relatively higher impact speed
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of 3.0 m/s. It was believed that the strain rate sensitivity of the D30® cores could be
influential in energy absorbing capacity of the sandwich structure. Figures 22 and 23 show
the specific energy (J/g) and energy absorbed per thickness (J/mm) for the three sandwich
cores with CFRP faceskins impacted at 3.0 m/s. As seen in Figure 22, the sandwich with
D30® core absorbed almost same amount of specific energy as the sandwich with the
Nomex® core. Sandwiches with the Sorbothane® core absorbed less amount of specific
energy because of their apparent lack of strain rate sensitivity at higher impact speeds as
well as their heavier weight. Thus, the hypothesis made for sandwiches with D30® cores
seems to be working at relatively higher impact speeds. This can result in the development
of relatively lightweight structures subjected to relatively higher impact speeds (> 3.0 m/s).
Moreover, as seen in Figure 23, D30® cores also allowed for a thinner structure as evident
in Energy Per Thickness (J/mm) vs. Time (ms) curves for all the sandwich configurations.
This characteristics can help engineers design thinner and more compact sandwich

structures.
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The sudden improved performance of sandwiches with D30® cores is believed to
be because of its superior strain rate sensitivity property. D30® contains free molecules in
its steady state (D30® Impact Solutions, 2016). When this material experiences an impact,
its molecules interlock to dissipate and absorb the impact energy. The material then quickly
returns to its original flexible state. It is believed that D30® sandwiched between CFRP
plates will be more flexible and accommodating than a CFRP only composite plate. As a
result, more energy is expected to be absorbed by a D30® core sandwich structure than the
CFRP plates with Nomex® and Sorbothane® cores. Figure 24 below shows a picture of the

D30® mesh and a schematic of the interlocking mechanisms (D30® Impact Solutions,

2016).
¢ 9 ¢ 9 How D30® molecules work:
R S
RETURNSTO
Mem SOFT AND | LOCKS ON : A FLEXIBLE
A M - FLEXIBLE SHOCK STATE

Figure 24. D30® mesh with interlocking mechanism schematic. The thickness of the
mesh is 0.40 cm.

A single circular unit with cross hatch from the D30® foam pad was sliced and then
gold sputter coated using a Cressington 108 Sputter Coater (Cressington Scientific
Instruments, Watford, England). The coater picture is shown in below Figure 26. The
sputter coated D30® sample was then analyzed using a scanning electron microscope
(SEM) to measure and characterize its interior foam structure. A FEI Quanta 650 with a

Bruker EDX system (Hillsboro, Oregon), Figure 25, at ERAU was used. This SEM can
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magnify up to 1,000,000x at a resolution of 3 nm, and also has a low-vacuum setting in
order to image non-conductive samples. The D30® sample was analyzed at 50x and 400x
magnifications as seen in Figure 27 and Figure 28. It was found the foam indeed contains
many tiny closed cells which are believed to collapse under impact loading to absorb

energy.

Figure 25. FEI Quanta 650 with a Bruker EDX system at ERAU SEM Laboratory.



Figure 26. Cressington 108 Sputter Coater at ERAU SEM Laboratory.
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Figure 27. 50x SEM magnification image of D30® sample.
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Figure 28. 400X SEM magnification image of D30® sample.

3.4 Compressions After Impact (CAI) Testing

According to ASTM D7137/D7137M, Compression After Impact (CAI) tests are
required to perform damage tolerance analysis of materials subjected to low velocity
impacts. As a result, CAI tests were performed on unimpacted and impacted composite
coupons. The primary goal of CAl tests was to investigate the drop in compressive strength
of coupons after impact. As out-of-plane strength properties of CFRP are lower than their

in-plane properties, analyzing compressive strength after impact is important. CAI tests
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were performed using a Boeing Compression After Impact Compression Test Fixture
obtained from Wyoming Test Fixtures (Salt Lake City, UT) following ASTM
D7137/D7137M standards. The test Fixture is shown below in Figure 29. This fixture
allows edgewise compression while maintaining constrained boundary conditions on four
sides of specimen. Knife edges on the sides allow for axial compression of the specimen
while top and bottom clamps are tied to restrict six degrees of freedom at the edge. The
fixture is an industry standard and accepts standard size (6 in x 4 in) coupons.

With these types of tests, previous researchers have seen undesirable failure modes
(e.g., compressive shear failure at the edge and end crushing brooming) for composite
specimens with thicknesses less than about 3 mm (Sanchez, Barbero, Zaera and Navarro,

2005).

Figure 29. Assembled CAI test fixture (no specimen installed).
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Several compression tests were performed on the neat and impacted CFRP coupons
of thickness 2.5 mm using an Instron (Norwood, MA) 8802 Servohydraulic Materials
Testing Instrument along with the CAI test fixture. The CAl test fixture is seen mounted
on the Instron 8802 in Figure 30 below. However, most compression tests resulted in
undesirable failure modes including compressive shear failure and crushing at the ends.
Since the thickness of the coupons were less than 3 mm, a search was performed, but no
reliable ASTM test method or fixture to prevent the compressive failure modes at the ends
of coupon was found. Similar phenomenon has been observed by previous researchers
(Sanchez et al., 2005). Figure 31 below shows typical failure modes at the ends of
compressed composite coupons. Similar failure modes were observed for the impacted and
neat CFRP coupons of this work. Therefore, low-velocity impacted specimen compression
failure did not diverge from the end failure modes. As a result of these undesirable failure
modes seen with thinner samples, coupons were also made with 35 CFRP plies and of
thickness 6.25 mm. However, these types of undesirable failure modes were also observed

in the thicker coupons.



Figure 31. Compressive failure modes. End crushing brooming (left) and edge
compression shear (middle and right).
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In order to avoid undesirable failure modes, to top knife edge screws in the CAI
fixture were clamped firmly while the middle and bottom screws were left moderately
tightened. This would help force the damage mode to take place within the text fixture area.
This ideology proved to work well and CAl strength of monolithic CFRP panels (neat and
impacted) as well as CAl strength of CFRP sandwich panels (impacted) were obtained
experimentally. Figure 32 below shows 14 layered CFRP pre and post CAIl test coupon
which was impacted at 1.25 m/s prior. As evident from the Figure, delamination created
during impact expanded during the application of compressive load and the sample
eventually cracked through the impacted area as expected. Similar CAl tests were also
performed on neat unimpacted CFRP coupon as well as perforated CFRP coupon impacted
at 3.0 m/s. Figure 33 and 34 shows the top and bottom surfaces of post CAl tested CFRP
coupons. As seen in the Figures, unimpacted neat CFRP specimens failed in the region
slightly offset from the center. This can be due to an absence of any delamination prior to
CA testing. Figure 35 shows the Stress vs. Strain curve of the respective coupons during
CAl testing. From the Figure, a drop is the residual compressive strength of the impacted
CFRP coupons is evident. About 13% drop in compressive strength was observed for the
CFRP coupon impacted at 1.25 m/s. Moreover, the drop increased to around 29% for the
coupons impacted at 3.0 m/s. Thus, the perforated specimen with 3.0 m/s impact suffered
severe damage and the subsequent drop in compressive strength as expected. Since fracture
and failure results often show large variations, more tests are needed help confirm and

quantify these initial findings.
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Figure 32. CAl test of 14 layered CFRP impacted at 1.25 m/s. Before (left) and after
(right) CAI test images shown.

Neat 1.25 m/s

B

o
= I
L]

Offset crack Center crack

Figure 33. CAl tested 14 layered CFRP coupons (top face). Impacted and unimpacted
coupons (left to right).
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Neat 1.25 m/s 3.0 m/s

Offset crack Center crack

Figure 34. CAl tested 14 layered CFRP coupons (bottom face). Impacted and unimpacted
coupons (left to right).

o CFRP CAI TESTS
8
T T T T T

14 Neat CFRP (Unimpacted)
7L 14 CFRP (Impacted) (1.25 mis)
14 CFRP (Impacted) (3.00 m/s) S

Stress (GPa)

Strain ©10°3

Figure 35. Stress vs. Strain curve of the impacted and unimpacted CFRP coupons during
CAlI tests.

CAI tests were also performed on the CFRP sandwich structures with Nomex®,
Sorbothane® and D30® cores. These sandwich structures were impacted at 1.25 m/s and
3.0 m/s velocity and then tested for residual compressive stress. Figures 36 and 37 show

the front and back faces of CAl tested CFRP sandwich structures pre impacted at 1.25 m/s.
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Figures 38 and 39 show the front and back faces of CAIl tested CFRP sandwich structures
pre impacted at 3.0 m/s. Figure 40 shows the specific Stress vs. Strain curve of the various
CFRP sandwich structure configurations. It can be seen that CFRP with a Nomex® core
showed the stiffest response compared to the Sorbothane® and D30® core structures. A
slight decrease in peak specific compressive strength was also seen for the Nomex® core
sample impacted at 3.0 m/s compared to samples impacted at 1.25 m/s. A similar decrease
in strength was also seen in sandwich structures with Sorbothane® and D30® cores.
Furthermore, it was seen that sandwich structures with Sorbothane® and D30O® cores
showed a more ductile response, sustaining lower stress (compared to CFRP with Nomex®
core) but for a longer period of strain. A complete crack was observed on the faceskins of
the CAI tested CFRP sandwich with a Nomex® core accounting for the sudden drop in its
compressive strength. Sandwiches with Sorbothane® and D30® cores showed many small
cracks in the CFRP faceskins. However, none of these cracks were able to propagate
through the CFRP faceskins perpendicular to the loading direction. Thus, cores with
Sorbothane® and D30® were able to sustain lower loads for greater periods of time as they
arrested cracks and forced new cracks to be formed in the faceskins. Additional energy was
required to form and propagate new cracks in the faceskins of CFRP structure with
Sorbothane® and D30® cores. CAI stress value of the structure with a D30® core was
higher than that of the structure with a Sorbothane® core as seen in Figure 40 for lower
(1.25 m/s) and relatively higher (3.0 m/s) speed impacts. Thus, it was proved that CFRP
with D30® cores can be used to sustain significant amount of compressive force with a
more ductile failing mechanism thereby potentially giving the user a significant amount of

time to service the damaged structure.



Sorbothane®

Nomex®

Center (total) crack

Figure 36. CAl tested CFRP sandwich coupons (front face). Impacted at 1.25 m/s.

D30®

No evident cracks

Figure 37. CAl tested CFRP sandwich coupons (bottom face). Impacted at 1.25 m/s.
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Sorbothane® Nomex® D30®

Center (total) crack

Figure 38. CAl tested CFRP sandwich coupons (front face). Impacted at 3.0 m/s.

Sorbothane® | Nomex® D30®

Center (total) crack

Figure 39. CAl tested CFRP sandwich coupons (bottom face). Impacted at 3.0 m/s.
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Figure 40. Specific Stress vs. Strain curve of the impacted CFRP sandwich coupons
during CAI tests.
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4. Numerical Simulation

In order to simulate low-velocity impacts on the 2024-T3 aluminum alloy sheets,
as well as neat CFRP and CFRP sandwich specimens, a dynamic finite element model was
created in Altair’s (Altair Engineering, Troy, MI) Hypermesh pre-processing software.
Geometry, mesh, material, property, boundary and initial conditions were applied in
Hypermesh for the finite element model. The model was then solved using a commercially
available FEA code named LS-DYNA (Livermore Software Technology Corporation
(LSTC), Livermore, CA). LS-DYNA is a general purpose finite element code for analyzing
large deformation static and dynamic responses of structures including structures coupled
with fluids (Zhu, 2016). LS-DYNA was selected because the samples to be analyzed
experienced impact loading and were locally deformed between elastic ranges. Analyzed
models were then imported back to Altair’s Hyperview in order to visualize the damage
pattern through stress and displacement contours. Displacement, Energy and Force vs.
Time graphs were finally plotted using Altair’s Hypergraph post-processing software.
These graphs were further compared to the experimental observations for selected impact

velocities.

4.1 Aluminum 2024-T3 Impact Simulation

The indenter and 2024-T3 sheet were numerically modelled in Hypermesh and
impacted at 1.0 m/s and 1.25 m/s (to simulate the earlier experiments). The 2024-T3 sheet
was modelled using MAT_PLASTIC_KINEMATIC (Type 3) (Appendix D) material in
order to effectively represent isotropic impact behavior. It was modelled having a 76.2 mm
(3 in) diameter (size of the clamping fixture hole in the experimental impact test system)

and a thickness of 0.4 mm. As the thickness is considerably less than the other two
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dimensions, shell elements were used to mesh the 2024-T3 sheet. Table 1 below shows the
input mechanical properties for MAT_PLASTIC_KINEMATIC (Type 3) 2024-T3
material model. Here, p, E, 9, g, and FS represent density, Young’s Modulus, Poisson’s
Ratio, Yield Strength and Factor of Safety respectively. These mechanical properties were
obtained from literature and are shown in Appendix E (ASM Aerospace Specification
Metals Inc., 2016). The geometry, mesh of plate and impactor are shown in Figure 41
below. The sheet was treated as a slave while impactor was defined as a master contact.
The values of coefficients for static and dynamic friction was defined as 0.3 and 0.2
respectively. Only part of hemispherical indenter was modelled and the density was
normalized to adjust weight of the modelled indenter to 6.64 kg, similar to the indenter in
the actual Instron 9250 HV Impact Test Instrument.

As it can be seen below in Figures 42 - 47, finite element (numerical) predictions
of Displacement, Energy and Force vs. Time for the 2024-T3 sheet was very similar to
experimental results with minimal error. Again, numerical simulations were performed a
impact velocities before total penetration (i.e., 1.0 m/s and 1.25 m/s). By observing
Displacement vs. Time graph, it can be inferred that LS-DYNA simulations gave more
ductile response. However, Force peak and Energy peak observed numerically were lower
than the experimental results. Overall, numerical and experimental results matched rather

well giving enough confidence in the mesh sizing and geometry of the simulated model.
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Table 1. Input mechanical properties of 2024-T3 sheet for
MAT_PLASTIC_KINEMTATIC material card (Type 3).

» (k9 L E (GPa) 9 o, (GPa) FS

2.78x 10°® 73.1 0.33 0.345 50

Indenter (Master)

Plate (Slave)

Figure 41. Meshed model of 2024-T3 sheet and indenter in Hypermesh.
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Figure 42. Numerical vs. Experimental comparison of Displacement (mm) vs. Time (ms)
curves for 2024-T3 specimen at 1.0 m/s impact.

Energy v/s Time
(Velocity = 1 m/s)
T T T

4 T T T T T T
Numerical
o — Experimental
35} 7 Experimental| |

o ~ / — |

<= /
B 2 g 1
& /
/
151 / .
1+ / -
05} / .
/ /
/
0 1 5 o) 1 1 1 1 1 1 |
0 2 4 6 8 10 12 14 16 18 20
Time (ms)

Figure 43. Numerical vs. Experimental comparison of Energy (J) vs. Time (ms) curves
for 2024-T3 specimen at 1.0 m/s impact.
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Figure 45. Numerical vs. Experimental comparison of Displacement (mm) vs. Time (ms)

curves for 2024-T3 specimen at 1.25 m/s impact.
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Figure 46. Numerical vs. Experimental comparison of Energy (J) vs. Time (ms) curves
for 2024-T3 specimen at 1.25 m/s impact.
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Figure 47. Numerical vs. Experimental comparison of Force (kN) vs. Time (ms) curves
for 2024-T3 specimen at 1.25 m/s impact.
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4.2 Neat CFRP Plate Impact Simulation

The neat CFRP were also modeled in Hypermesh with the same dimensions as the
2024-T3. Moreover, the same indenter used for modelling impacts on 2024-T3 sheet was
used with its inherent material properties and mesh size. As the indenter’s mass remained
the same along with its properties, importing the proven indenter parameters provided a
convenient option. In order to get the high fidelity modelling for composite damage, a
material card named MAT_ENHANCED_COMPOSITE_ DAMAGE (Type 54-55) was
used. Chang-Chang (Appendix B) failure criteria is used which is a strength based failure
theory. Chang-Chang failure model is only valid for thin composite shell elements. A
variety of failure modes including tensile/compressive fiber failure and
tensile/compressive matrix failure is considered in the model. Once the failure criteria is
detected for any of the elements, load carrying capacity of that element is deleted as well
as the failed element is eroded. Consider different failure mode criteria applicable to
Chang-Chang failure model (equation 1, 2 and 3). For each of the failure modes, if the
respective damage mode failure value (e, e, e, and e;) is greater than or equal to zero,
an element is considered to be failed. If the value is less then zero, then the element is
considered elastic and still has load carrying capabilities. Here the in plane stress values
(0ga,» opp and ay,) are calculated internally by LS-DYNA while the in plane
tensile/compression as well as shear strength of the laminate are inputted by the user in the
material card. Final input material card properties are shown in Table 3. Appendix B

describes the failure modes in detail for Material Type 54-55 card.
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e For the tensile fiber mode:

ef = ("XL:*)Z + ﬁ(‘;—“cb) -1 : where g, >0 (1)
e For the compressive fiber mode:

e = ((’XL:‘)2 -1 : where g, <0 (2)
e For the tensile matrix mode:

e = (GTib)Z + (%”)2 -1 - where g, >0 (3)
e For the compressive matrix mode:

Y a .
ei =G +IG* -1+ (EH*1 ;where 0, <0 @

A cumulative ABD matrix for the entire 14 layer laminate is obtained by using
Femap (Siemens PLM Software, Plano, TX) pre-processing software. The composite lay-
up calculation feature in Femap provided the ABD matrix table. Input mechanical
properties for individual ply were entered in Femap and are shown in Table 2 below. The
units of Young’s modulus and shear modulus are GPa. Individual ply and matrix
mechanical properties were obtained from the material data sheet shown in Appendix A.
Also E; and E, properties of the laminate are the same as the twill weave composite with
0/90 cross ply as were used in the experimental research. As the moduli G, and 9,, were
not available from the material data sheet and the material characterization for shear
modulus was not available in ERAU’s material testing laboratories, general values of G,
, SC and 9, for CFRP prepreg laminates were obtained from the literature (Berg, 1998).

Moreover, volume fraction (V) of fiber and matrix in the composite prepreg was obtained

from data shown in Appendix A. Cumulative composite laminate mechanical properties
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were obtained using “Rule of Mixtures” and reported volume fractions of fibers and matrix
in a laminate, Appendix A. Void fraction was considered zero to get the reference
numerical values of a perfect laminate with no voids. Equation 5 shows the “Rule of
Mixtures” equation applied to find cumulative Young’s modulus (E; and E,).

Ei =E, = EifVr + ExVin (5)

Table 2. Input mechanical properties of the individual ply entered in FEMAP.

- E, (GPa) | E,(GPa) | G, (GPa) 912 v
Fiber 230.974 230.974 - - 0.64
Matrix 3.0337 3.0337 - - 0.36

Composite 148.915 148.915 6 0.07 1

-+ ABD Matrix

Figure 48. ABD matrix calculation in Femap.
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Once the ABD matrix was calculated by Femap for the 14 layered composite
prepreg, tension and compressive length of the laminate was obtained using Classical
Lamination Theory (CLT) , Figure 39. Equation below shows the load-strain and moment-
curvature relationship for the laminate. Here, the unites of N,, N, and N, is force per
length while the units for M,,, M,, and M,,, is in moment per length. The curvatures (i, k,,
and k) is considered zero as the layup is symmetric about the mid surface. Mid plane
failure strains (5 and ;) are calculated for the individual lamina using “Rule of Mixtures”
(Equation 6) and CFRP material data sheet shown in Appendix A. Failure strains, £2 and
ey, are considered same as the laminate has cross-ply lamina orientation. Simplification of
Equation 7 yields equation 8. Here N, is equal to N,, because the values of A;; and 4, are
same. By dividing the value of N, by the thickness of the laminate, axial tensile strength
(XT/YT) is obtained. Furthermore, assumption was made that the failure strains in
midplane (e and &)) would remain same during the compression making the values of
tensile strength (XT/YT) same as compression strength (XC/YC) for the cross ply laminate.

This assumption was made as the compressive failure strain of fiber and matrix were not

indicated in the material data sheet of composite shown in Appendix A.

Ey —Ey — € €
9? 39 Vs + €mVm 6
E | Eﬂ %

(N Anp A A | By B By :

Ny Az Az Axm | Biz B By Ey

Ny } A Aw Ase | Bis B Bes \hi;\

B {7

M| ||Ba Ba Bis | Du Du Die F; 0

M, Biz Bn By | D Dn Dy ,,;)//
\M,, ] UBis Ba Bes | Die D Des) | ]

(7)
\

ABD Matrix (Known)

Ny =N, =(A11 + Aqz) &y (8)
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Material properties required for MAT_ENHANCED_COMPOSITE_DAMAGE
(Type 54-55) card is calculated and is shown in Table 3. Properties are homogenized so
the shell elements can be used. As the thickness of the laminate is significantly lower than
its radius, shell elements can be used to model composites as ‘through-the-thickness’ stress
distribution is not a significant parameter. Rule of mixtures is applied to find cumulative
Ea, Eg, 9aB and p properties of a laminate. Moreover, Static and Dynamic coefficient of
friction applied between indenter and composite plate was 0.3 and 0.2 respectively. The
indenter is treated as a master surface while the composite plate is treated as a slave surface
during numerical simulation. In addition, a total penetration scenario (2.0 m/s) was also
numerically evaluated in order to check the validity of the model during total penetration
impacts. V-shaped diamond looking damage is observed with the simulation, which is very
similar to damage pattern observed experimentally. Thus, validity of the model was proven
even for total penetration events. Figure 49 below shows the modelling of indenter (Master
contact) with CFRP plate (Slave contact). Making elements of indenter as master contact
allows plate element to displacement exactly as much as indenter during the impact event.
As it is evident from the figure, CFRP plate is made of shell elements and the

comprehensive model allows modeling of laminate without thickness.
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Indenter (Master)

Plate (Slave)

Figure 49. CFRP plate modelling with impact indenter.

Table 3. Input mechanical properties of CFRP laminate (Type 54-55).

k
p( g /mm3) Ea (GPa) Es (GPa) a8 Gas (GPa)
1.575 x 10°® 148.92 148.92 0.07 6
XT (GPa) XC (GPa) YT (GPa) YC (GPa) SC (GPa)
0.365 0.365 0.365 0.365 0.055

As it can be seen below in Figures 50-55, finite element (numerical) prediction of
Displacement, Energy and Force vs. Time for CFRP laminate was very similar to
experimental results with minimal error. Numerical simulations were performed at impact
velocities before total penetration (i.e., 1.0 m/s and 1.25 m/s). By observing Displacement
vs. Time graph, it can be inferred that LS-DYNA simulations gave more ductile response.
However, Force peak and Energy peak observed numerically were lower than the

experimental results. Overall, numerical and experimental results matched rather well
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giving enough confidence in the mesh sizing and geometry of the simulated model.
Moreover, as seen in Figure 52 and Figure 55, numerical force prediction shows first drop
in force which is suggestive of matrix failure, way earlier then the experimental initial force
drop. Figure 56 shows the displacement contour observed on composite laminate at 1.25
m/s. The simulation was also studied at 2.0 m/s impact speed to confirm the validity of
Chang-Chang failure criteria. Figure 57 compares the penetrated shapes of the impacted
rear side in the numerical vs. experimental environment. The diamond shaped damage
observed on the rear side of impacted laminate is very similar to the numerical penetration

shape suggesting the high fidelity of numerical modelling used.
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Figure 50. Numerical vs. Experimental comparison of Displacement (mm) vs. Time (ms)
curves for 14 layered neat CFRP specimen at 1.00 m/s impact.
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Figure 51. Numerical vs. Experimental comparison of Energy (J) vs. Time (ms) curves
for 14 layered neat CFRP specimen at 1.00 m/s impact.
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Figure 52. Numerical vs. Experimental comparison of Force (kN) vs. Time (ms) curves
for 14 layered neat CFRP specimen at 1.00 m/s impact.
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Figure 53. Numerical vs. Experimental comparison of Displacement (mm) vs. Time (ms)
curves for 14 layered neat CFRP specimen at 1.25 m/s impact.
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Figure 54. Numerical vs. Experimental comparison of Displacement (mm) vs. Time (ms)
curves for 14 layered neat CFRP specimen at 1.25 m/s impact.
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Figure 55. Numerical vs. Experimental comparison of Force (kN) vs. Time (ms) curves
for 14 layered neat CFRP specimen at 1.25 m/s impact.
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Figure 56. Initial (left) and final (right) displacement contour of 14 layered neat
composite sheet at 1.25 m/s.
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Figure 57. Numerical (top) vs. Experimental (bottom) rear damage at impact velocity of
2.0 m/s.

4.3 Composite Sandwich Structure (Nomex Core) Impact Simulation

Nonlinear Finite Element Analysis code was utilized in LS-DYNA to simulate the
low speed impact on Nomex® core sandwich structures with CFRP faceskins. CFRP
faceskins were kept of the same mechanical properties and mesh size as the neat CFRP
simulation since these results gave close correlation to experimental results. However,
mechanical properties were adjusted for 7 layers of CFRP rather than the 14 layered CFRP
that were used in neat CFRP impact simulations. Table 4 shows the mechanical properties

card input into Hypermesh preprocessing software in order to simulate Nomex®
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honeycomb structure. Material card MAT_CRUSHABLE_FOAM (MATL63) (Appendix
C) was used to simulate the Nomex® honeycomb core structure. Appendix C shows the
detailed Material Type 63 card for LS-DYNA usage. Also the honeycomb modelled was
made to be a unitized structure by extracting the 2D planar mesh. Meshing by this method
eliminated the need to model the exact geometry of the honeycomb structure. Mesh
development time can be saved with reliable results. Strain rate sensitive properties of the
Nomex® honeycomb were ignored during this research as this type of core is likely much

less strain rate sensitive than the other core materials, D30® and Sorbothane®.

Table 4. Input mechanical properties of Nomex® honeycomb in Hypermesh

) (kg ) E (GPa) 9 TSC (GPa)

3.2x10%® 0.018 0.001 0.0045

After modeling the Nomex® honeycomb core by using the MATL63 material card,
a compression (crush) test was performed on a 101.6 x 101.6 mm (4 in x 4 in) by a 6.4 mm
thick Nomex® honeycomb coupon using a Tinius Olsen (Horsham, PA) Locap 290 testing
machine to obtain its experimental stress-strain compressive response. The experimental
stress-strain curve was then inputted in MATL63 material card to effectively simulate

Nomex® honeycomb structure. The entire philosophy is shown in Figure 58 below.
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Stress vis Strain (Meat Nomex Honeycomb)
= ¥ ' v ¥

Model Info: Unti

Figure 58. Crush test (top left), experimental stress-strain curve (top right) and FEA
modelling of compressive test (bottom).

Finite element model of Nomex® honeycomb is then set up for a compressive test
in Hypermesh using LS-DYNA as a processor. This process is done to make sure that the
stress-strain curve obtained by numerical modeling matches with the experimental stress-
strain curve. As shown in Figure 49, the top and bottom plates were modeled around
Nomex® honeycomb to simulate a compression test. The top plate (green) had a small
velocity of 0.5 m/s applied to it to simulate a quasi-static compression test while bottom

plate (magenta) was kept fixed. Moreover, the Nomex® honeycomb was assumed to be
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strain rate insensitive throughout the numerical modeling process. The top and bottom plate
were modeled using shell elements and data from the MATL20 material card. Mechanical
properties of the plates are shown in Table 5. Furthermore, hourglass control was applied
between the plates and honeycomb in order to avoid penetration between their surfaces
during the compression. Figure 59 shows the comparison between the numerical and
experimental compressive crush test results for the Nomex® honeycomb structure. It can
be inferred from the stress-strain curves that the numerical modelling of Nomex®
honeycomb is accurate enough to simulate the experimental response. Thus, confidence in
the validity of numerical simulation of Nomex® honeycomb structure was established. Note
that the slight lag in the numerical stress-strain curve is due to time taken by top plate to
reach the honeycomb plus the time taken by honeycomb to touch bottom plate during the
compression sequence. This concludes the calibration process for the numerical modeling
of Nomex® honeycomb structure. The sandwich component is now ready to be integrated

with the CFRP facing skins and to be impact simulated at certain pre-determined velocities.

Table 5. Input mechanical properties of top and bottom plate.

N N E (GPa) 9 TSC

7.83x10° 20 0.33 -
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qg* Stress vis Strain (Neat Nomex Honeycomb) (Compressive Crush Test)
T T T T T T T T
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Figure 59. Numerical vs. Experimental Stress (GPa) vs. Strain curves for Nomex®
honeycomb structure.

Numerical model for Nomex® honeycomb structure was constructed by basically
using the same material properties for honeycomb core as shown in Table 4. The core
thickness was modelled as 6.4 mm to represent the fabricated sandwich structure. 7 layer
CFRP facing skins were modelled by using material properties as shown in Table 6 below.
MAT_ENHANCED_COMPOSITE_DAMAGE (Type 54-55) with Chang-Chang failure
criteria was used as impact simulation on monolithic CFRP plates gave relatively similar
results to experimental results. Table 6 shows the changed CFRP mechanical properties as
14 layered CFRP was changed to 7 layered composite plate. Numerical simulations were
performed for the velocities of 1.0 m/s, 1.25 m/s and 3.0 m/s respectively to correlate with
experimental velocities. Figure 60, 61 and 62 compare experimental vs. numerical energy
curves of the sandwich panel. Here the energy values represents the energy value of

indenter throughout impact phenomenon.
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Figure 60. Energy (J) vs. Time (ms) curve for CFRP Nomex® sandwich structure
impacted at 1.0 m/s.

CFRP Nomex Honeycomb (Numerical vis Experimental) (v = 1.25 m/s)
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Figure 61. Energy (J) vs. Time (ms) curve for CFRP Nomex® sandwich structure
impacted at 1.25 m/s.
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CFRP Nomex Honeycomb (Numerical v/s Experimental) (v = 3.0 m/s)
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Figure 62. Energy (J) vs. Time (ms) curve for CFRP Nomex® sandwich structure
impacted at 3.0 m/s.

From the plots, it can be inferred that the experimental energy curves for the
indenter are very similar to the numerical energy curves for the indenter, at least for the
elastic deformation event. Numerical impact curves differs from experimental energy curve
for relatively higher impact speed of 3.0 m/s. This can be due to the instabilities caused in
the numerical simulation at higher speeds as well as because of the strain rate sensitivity
of the Nomex® honeycomb which was assumed to be zero for the simulation. Numerical
energy absorbed values are compared with experimental energy absorbed in Table 7.
Percent difference of numerical values when compared with experimental values are also
described in the Table 7. It can be seen that the total energy absorbed approximation by the

numerical modelling had a percentage difference of up to 35% for non-total penetration
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impact events. However, for impact speed of 3.0 m/s, numerical energy absorbed values
differed significantly when compared with experimental values. As the failure criteria for
the numerical Nomex® honeycomb is not inputted, load bearing capacity of the core
elements is not lost for the total penetration impact events. Failure criteria for the Nomex®
honeycomb core was not inputted because of the complexity associated in determining
failure criteria parameters of the Nomex® honeycomb structure. Because of these reasons,
numerical indenter response is predicted stiffer (Figure 62) while the experimental indenter
energy is lower than the numerical approximation.

Figure 63 - 65 show the progression of stress waves on Nomex® honeycomb
structure for the impact speeds of 1.0 m/s, 1.25 m/s and 3.0 m/s respectively. The
propagation of stress wave is evident in Figures 63 and 64 as the change in impact velocity
is not significant. Stress field was more globalized for the impact velocity of 3.0 m/s as
seen in Figure 65. Increase in maximum von misses stress is observed inside the Nomex®
honeycomb structure as impact speed is increased from 1.0 m/s to 1.25 m/s. However,
relatively similar values of maximum von misses was observed with higher Nomex®
deformation for the impact event of 3.0 m/s. This is because of the energy expanded by

deformation of the core at relatively higher speed impact events.
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Table 6. Input mechanical properties of 7 layered CFRP facing skins (Type 54-55).

k E P E P GPa
p( g/mm3) A (GPa) B (GPa) YAB Gas ( )
1.575 x 10-6 148.92 148.92 0.07 6
XT (GPa) XC (GPa) YT (GPa) YC (GPa) SC (GPa)
3.857 3.857 3.857 3.857 0.055

Table 7. Numerical vs. Experimental Energy (J) absorbed for composite sandwich.

Numerical Energy (J) | Percentage
Difference
V =1.00 m/s 1.7594 -
V =125m/s 4.26711 -
V =3.00 m/s 21.397 -
Experimental
V =1.00 m/s 2.493 34.5029
V =1.25m/s 4.78 11.3382
V =3.00 m/s 13.26 46.9573
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Figure 63. Von Misses Stress (GPa) contour on Nomex® honeycomb at 1.0 m/s impact.
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Figure 64. Von Misses Stress (GPa) contour on Nomex® honeycomb at 1.25 m/s impact.
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Figure 65. Von Misses Stress contour (GPa) on Nomex® honeycomb at 3.0 m/s impact.
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5. Conclusions

2024-T3 aluminum sheet, neat CFRP laminates and sandwich structures with CFRP
faceskins of varying cores were studied for their low velocity impact and damage tolerant
behavior.

e |t was observed that neat CFRP showed a stiffer response with higher peak force during
low velocity impact compared to 2024-T3 aluminum sheet and sandwich structures
with varying cores.

e Amongst sandwich structures, Nomex® honeycomb core with CFRP faceskins
absorbed more specific energy compared to sandwich structures with Sorbothane® and
D30® cores at impact speeds of 1.0 m/s and 1.25 m/s.

e At relatively higher impact speeds of 3.0 m/s, the strain rate sensitivity of D30® was
evident as sandwich structure with CFRP faceskins and D30® core showed higher
specific energy absorption and higher energy per thickness values.

e |t was proved that for low velocity impacts greater than or equal to 3.0 m/s, usage of
D30® in composite sandwich structures can yield a lighter and thinner sandwich
structure.

e CAl tests for impacted neat CFRP coupons showed a drop in the compressive residual
strength when compared to the compressive strength of unimpacted samples.

e Impacted CFRP sandwich coupon with D30® and Sorbothane® core showed ductile
compressive response during CAI tests when compared to CFRP sandwich coupon

with Nomex® honeycomb core.
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It was observed that CAI strength of CFRP sandwich structures with a Nomex®
honeycomb core was higher than CFRP sandwich coupon with D30® and Sorbothane®
cores.

Numerical models for 2024-T3 aluminum sheet, neat CFRP laminate and sandwich
structure with CFRP faceskins were developed in Hypermesh/ LS-DYNA and verified
with experimental results for the dynamic impact loading scenario.

Modelling approached explained here can save time and money at the coupon level

testing as expensive experimentation required for impact testing can be avoided in

future.
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6. Recommendations And Future Work

The effect of using strain rate sensitive core with CFRP faceskins is discussed in
this research. However, future research can be done on improving the damage tolerance of
the faceskins by using particulates of strain rate sensitive material into the epoxy of
composite. This type of usage can further save the weight of the composite as well as might
increase damage tolerance. Moreover, more experiments should be conducted for impact
speeds greater than 3.0 m/s to get the broad view on the effect of strain rate sensitivity of
D30® core. Numerical model of CFRP sandwich with D30® and Sorbothane® core can be
developed by performing appropriate material characterization tests on D30® and
Sorbothane® core. Failure criteria parameters for the Nomex® core should be determined
its high fidelity numerical modelling. Moreover, strain rate sensitive property of the
Nomex® core should be applied in the numerical modelling for accurate prediction of
impact behavior at relatively higher impact speed events (e.g. 3.0 m/s). Industry partnership
is also referred for the suggested sandwich structure to be fabricated and tested from

coupon to component level.
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Appendix A: CFRP Prepreg Material Properties (ACP Composites, Livermore, CA)

Carbon Fiber Room Temperature Storage Prepreg

is wanted.

Our Carbon Fiber Room Temperature Prepreg is a 5.90z 2x2 twill weave fabric
woven from 3K carbon fibers and impregnated with a thermosetting epoxy resin
system. It is storable at room temperatures and does not require freezer storage.
With the long out life of the resin matrix, the carbon fiber prepreg can be shipped
and handled at room temperatures. It is ideal for use when a long shelf life is
desired, high-temperature capabilities are not required and controlled resin content

Physical Fabric Properties Cure Cycles

Weight

Thickness
Construction (W x F)
Fiber Type

Resin Matrix

Resin Content

5.9 ozlyd*2

012"

13x13 2x2 Twill Weave
3K Carbon Fiber Standard Modulus PAN, 33MSI 1
Thermosetting Epoxy

36%

Technical Resin Properties

Density

Tg (fromG" DMA curve)
Tensile Strength
Tensile Modulus
Elongation @ Break

Tg after 24hr Water Boil

Water Absorption

1.229 gice 2.

270°F
10.7 ksi
440 ksi
4.0%
169°F
3.9%

There are three optional cure cycles. All
three will produce similar properties.

5°F-per-minute ramp up to 310°F
(154°C)

Hold for 1 hour

<5°F-per-minute ramp down to at
least 150°F (66°C) before
removing from oven

5°F-per-minute ramp up to 290°F
(154°C)

Hold for 2 hours

<5°F-per-minute ramp down to at
least 150°F (66°C) before
removing from oven

5°F-per-minute ramp up to 270°F
(154°C)

Hold for 4 hours

<5°F-per-minute ramp down to at
least 150°F (66°C) before
removing from oven

Shelf Life/Storage

The material should remain sealed when nol is use and be stored indoors, out of the weather

= The shelf life is 6 months from the date of manufacture when the maximum storage temperature shall not exceed 90°F (32°C)

« The shelf life is 12 months from the date of manufacture when the maximum storage temperature shall not exceed 75°F (24°C)

* The shelf life is 30 months from the date of manufacture when the maximum storage temperature shall not exceed 0°F (-18°C), with an
additional 6 months at <75 °F (24°C)
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1-800-811-2009

www.acpsales.com

ACP

omposites

Woven Carbon Fiber Fabric

Carbon Fiber fabrics offer technical properties that are popular in various applications where its high strength-to-weight
ratio is of importance. In addition to its high strength-to-weight ratio, carbon fabrics are thermally and electrically conductive
The term carbon fiber is used interchangeably with graphite. However, carbon fibers and graphite fibers are made and heat
treated at different temperatures and have different carbon contents. ACP’s carbon fiber products are manufactured with
PAN based medium modulus (33-35 MSI) carbon fiber, not graphite. Carbon fiber has the highest specific stiffness of any
commercially available fiber and a very high strength in both tension and compression. The carbon fibers have a surface
treatment applied to improve matrix bonding and a chemical sizing which serves to protect the fibers during handling. To
maximize the fiber properties, we recommend using an epoxy based resin

m-—mz-—mm

33MSI

G s

064 Ib/in3

All Rights R

530 ksi

1SO 90

eservel

5 msi

Inended o o
connection with

f this

1.5%

:2008 Certified | No. 49881

2014 Copyright ACP Composites, Inc.

8.3310"6 in

s only 3 each manufsctured ot wil exhibit varistions. The user should evaluate the suitabilty of each

52510"8 in

-0.33 x 10"-6/°F

product §

oz Plain Weave 2.48 ozlyd2 006" 16 x 16 1K Carbon Standard Modulus PAN 1K Carbon Standard Modulus PAN
290z Plain Weave 3.00 ozlyd2 19.1x 18.8 1K Carbon Standard Modulus PAN 1K Carbon Standard Modulus PAN
350z 130 Plain Weave 3.74 ozlyd2 24 x 24 1K Carbon Standard Modulus PAN 1K Carbon Standard Modulus PAN
56 0z 282 Plain Weave 5.78 ozfyd2 12x 12 3K Carbon Standard Modulus PAN 3K Carbon Standard Modulus PAN
5.6 oz 284 2x2 Twill Weave 5.78 ozlyd2 12x12 3K Carbon Standard Modulus PAN 3K Carbon Standard Modulus PAN
6.2 0z 94933 2x2 Twill Weave  6.20 ozfyd2 009’ 13.1x133 3K Carbon Standard Modulus PAN 3K Carbon Standard Modulus PAN
10.9 oz 5H Satin Weave 10.90 oz/yd2 028" 12x11.33 6K Carbon Standard Modulus PAN 6K Carbon Standard Modulus PAN
11.20z 94910 2x2 Twill Weave  11.14 oz/yd2 016" 11x10.8 6K Carbon Standard Modulus PAN 6K Carbon Standard Modulus PAN
19.750z 94940 2x2 Twill Weave 19.44 ozlyd2  .025" 10.7 x 10.2 12K Intermediate Modulus PAN 12K Intermediate Modulus PAN

neir spplication. We cannct anficipate e variations in s

78 Lindbergh Ave | Livermore, CA 94551

1-800-811-2009 | P.925-443-5900 | F.925-443-5901

Revision: D

| January, 2016 | Page: 1of1



Appendix B: LS-DYNA Material Type 54-55 Card

81

*MAT FNHANCED COMPOSITE_DAMAGE *NAT 054-055

TAMAT_ENHANCED COMPOSITE DAMAGE

These are Material Type: 54-55 which are ephanced verstons of the composite modse] material
fype 12, Arbirary erthothropic materials, e.z., umidirectional layers m composite shell structures
can be defined  Optionally, varows types of failare can be specified fellowing either the
suzgestions of [Chamng and Chang 19870] or [T:al and W 1871). In addition special measures
are taken for failore umder compression  See [Matzenmiller and Schweizerhof 1891] This
maode] i3 only valid for thin shell elements. The parameters in parentheses below apply anly to
solid element: and are thersfore always ignored m this material model They are included for
consistency with matemal types 2I and 32 By uung the vier defined integration rule, see
*INTEGEATION_SHELL, the comstitetive constants cam vary through the shell thickness. For
all zballs, except the DET formulation, laminatsd shell theory can be activated to properly mode]
the transvers2 shear deformation. Lamination theory is applied to carrect for the assumption of 2
uniforn constant shear strain throush the thickness of the shell. For sandwichk shells whers the
outer Layers are mmach stiffer than the mmer layers, the response will tend to be too stff umless
lamsination theory iz used To fum on lamimation theary :ee *CONTROL_SHELL

Corl | I 2 I L] & 7 L]
Varuahls WITTE (LN A A [N I"RHA {FRCAG (PRACH
Typs: AE I F F I F I I
Card

Yirnahke LrA LalH Lol LA AL

Typst I I F F 1

Cpd 1

Variahle 41 W Ad MANLLE

Ivpar I I | |




*MAT 054-055 *MAT ENHANCED COMPOSITE DAMAGE

Coel 4 i 2 i § & T B
Variahlk v VI Wi 1 12 1 DEAILM | DEANLS
Type F I I I i 1 i I
Cranl 5
Variahi TEAll ALPEL 5081 PHIL VOFAL | DPAILT | DFALLE 133
Ivpe I I I ; I | I I
Coml &
Varkahlz XL XT L 1 50 CHRIT HETA
I'vpe I I I I i | I
VARIARLE DESCRIFTION
MID Material idemtification. A umigue mmsber or label not egpceeding B
characters must be specified.
(4] Mazs denzity
EdA E,. Young's modualbas - lopginedinal direction
ER Ey, Young's modulus - ransverse direction
{FC) E., Young's modilus - normal dirsction (not usad)
PRI Wi, Poiszon’s ratio ba
(PR V.., POizson’s ratio c2 (not used)
(PRCH) W,p,, Pioisaon’s ratio ck (ot used)
AR .. shear modalaz 2b
GHC Gy, shear modalas be
1B (AT L5-EY KA Version 471
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*MAT ENHANCED COMPOSITE_DAMAGE *MAT 054-055

VARLAELE
A
LKF}

A |

Al AT A3
Wi WYL
[ 2 o2

SAMGLE

DFEAILR

DFAILS

TEAI

DESCRIFTION

&, shear madulos ca
Eulk moduhes of failed matsrial (not used)

Diaterial axes opfion (see MAT _QPITON TROPIC_ELASTIC for a
more complete dascription):
EQO00  locally arthotropsc with matenial ages determimed by
glement nodes 1, 2, and 4, az with *DEFINE_COOBEDTNATE
MNODES.
EQ2I0  globally orthotropic with material ages determined by
vectors  defined below, as with *DEFINE_COOEDIMATE
VECTOR.
EQ3 0 locally orthotropic material apes determined by rofating
the material axe: abouat the element mormmal by 2n angle (MAMGLE)
from a line in the plans of the elament defined by the cross product
of the vector v with the elensent ormal.
LT40 the absclute value of A0PT 52 a coordimate system ID
mumber {CID on *DEFINE_COOFRDINATE_MODES, *DEFINE_
COORDINATE _SYSTEM or *DEFIME_COORDIMATE_
VECTOR). Awailable in B3 version of 971 and later.

Drefine components of vector a for AOPT =2
Diefine components of vector v for AQPT =3
Drefine components of vector d for ACPT=1

Diaterial amzle in degree: for AOPT = 3, may be overridden on the
plement card, see *ELEMEMT SHELL BETA or *ELEMEMT
SOLID ORTHO

Ddaximnm stram for matnx straiming in tension of compression (active
oaly for MAT 054 and only if DFAILT = 0. The layer in the element
iz completely repoved after the magipnmm smin in the martriz direction
iz reached The imput value iz always positive.

Dlaximnmm shear =tram (active oaly for MAT 034 amd omly if
DFAILT = 0). The lzyer in the element 12 completely remaoved after the
maxipmy shear strain is reached. The mgust value iz always positive

Time step size criteria for element deletion:
= no element dalstion by time step size. The cazkfront 2lzormtkmy
anly works ity s 58t to avalue above zem.
Oty =01 clement i3 deleted when oz time step i3 :maller than
the grven valus,
= 1: element is deleted when the quotiest of the actual time step and
the orignal time step drops below the given valus

LE-DVMA  Version 97)
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*KNAT 054-055 *MAT ENHANCED COMPOSITE_DAMAGE

VARIABIE

ALFH

=OFT

FEET

W CFAL

INFAILT

DHEAILL

XT

Y

T

Al

CRIT

HETA

DESCRIFTION

Shear stress parameter for the nomlinsar term, see Material 12

Sofiening reduction factor for material smensth m crashirent elements
(defanl:= 1.0). TFAIL nmest be greater than zero to activate this option.

Sofiening for fiber tenaile strength:
EQ 00D temzile strength = 3y
GT00; tenzile strength = My, reduced to X * FERT after failure
has poomred in compressive matrix made.

Feduction factor for compressive fiber strength affer matmy compressive
faihure (WAT 054 omly). The compressive strength in the fiber direction
after COMpressive matx fathurs i3 Teduced to:
X =YCFAC* ¥, (defoulr: FOFAO=2.0)

Mmonnm strain for fiber tension (WAT 054 only). Mdaximom | =
100°% strain). The layer in the element is completely removed after the
maginnm tengile stram in the fiber direction is reached  If a monzers
value iz given for DFATLT, a nonzero, negative valoe must al:o be
provided for DFAILC.

Madnmm strain for fiber compreszion ALAT_054 only). (Mamimum -1
= 100% comprezsion). The layer m the element 12 completely removed
after the maginmm compressive siram m the fiber direction iz reached
The mput value shoald be pegative and iz required if DFAILT = 0.
Effective failore stram (AMAT_034 ounly).
Longinudinal compressive strength {positdve vale).
Longinudinal tenzile strength, see balow.
Transverse compressive strength, b-agis (positive valoe), see below
Transverss tensile strensth, b-axis, see balow.
Ehear strength, ab plane, see balow.
Failure criterion {material mmber):
EC 54.0: Chang matriy failore criterion (as Biaterial 17) {defmult),
EQ 55,00 Teai-Whu critarien for marriy failare,

Weighting factor for shear tenm in tensils fiber mode (WAT 054 enly).
[00=BETA=10)

200 (AT
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*\AT_ENHANCED COMPOSITE_DAMAGE *RAT 054-055

Bemarks:
The Chang/Chemz (mar_34) criteria iz given as follows:

c lely ey (=0 e
o =0 rher B;—a_-|..;j'&|_[| "-i?" i
= FLE L5, 1= 0 elastic

'E- ='E:.=G.}= .= ¥, =0,
far the comprezzive fiber mods,

- e
a, =0 then s_"-|5_- {'ﬂﬂ.l's.g.
1 « {1 el

E=w=wv,=0

ey ray l|'EE'_jE:iim'
T | 1= 0 glastic”

X =1F,  for 3004 fiber volume

In the Tzai-Wo (BIAT_033) criteria the tensils mmd compressive fiter modes are wezted
25 in the Chanz-Chang citeria  The fathore criterion for the tensile mmd compressive matrix
made is given 2

4 i b T —-F = T
£ —EH_-+ .[_]'“l 1_l_::_ _.'r,.!r.r,_, l_-ﬂ'ﬁf‘.n&ﬂ'
= ¥F LS-J I¥Y < 0 glastic

Far =1 we get the original criterion of Hazhm [1980] m the tensile fiker mode. For fi=0
we 2et the magipnmm sress criterion which is fourd to compare better 1o epperiments.

In RMAT_ 034, fathre cap ocouwr o2y of four different ways:

1 If OFATLT is zero, failore eoours if the Chemz-Chang failore criterion is satisfisd in the
tensile fiber mode.

LD MA  Versien 971 HHMATY
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*RAT 054-055 *\{AT_ENHANCED COMPOSITE_DAMAGE

1 I DFAILT iz ereater tham zero, failore occurs if the tensile fiber strain iz greater than
DFAILT ar less than DFAILC.

3. IfEF?E iz preater than zero, failure ocours if the effective sain is greater than EFS.

4 If TFAIL 1z greater tham zero, fallure ooowrs aocording to the element fimestep as
dezcribed m the definition of TRAIL above

When failore has occwred in 21l the compozte lavers (throush-thickness infegration points), the
element is deleted Flements which share nodes with the delsted element become “crashifront”
element: and can have their strengths reduced by wams the S0FT parmmeter with TEATL preater
than zero

Informarion aboat the stars in sach layer (imtegration point) and element can be plored
u:ms additonal mizgration polat variables. The mumber of additional mispration paint variables
for shells written to the LS-DYMA databaze iz mput by the *DATABASE _EXTENT EINARY
defimiticn as variahle WEIPS, For Models 54 and 55 these additional varizble: are tabulated
below (1 = abell ntesration point):

) o L5-Prepost
History Description Value history variable
Wariahle
1Leflil TERILE JI0ET MOS8 1
T ecli) comprassive fTher mode I - elastic ]
3emlr) tensile maviy mads 0 - filed E
4.6d(1) | compressive matrts mods 4
EFTan e nan J

I - glemgne fract
Tiré . a2l E - "
I R ol B

These variables can be plotied in L5-Prepost element history vamables 1 fo §. The
following componests, defined by the swn of failure indicators owver all throush-thickme:s
mtegration points, are stored a: element component 7 instead of the effective plastic sirain

Descrpnon Totezration poit
—Far) ’
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Appendix C: LS-DYNA Material Type 63 Card

*MAT 063

*AMAT_CEUSHABLE _FOAM

*MAT_CEUSHABLE _FOAM

This iz Material Type 43 which is dedicated to modeling crushable foam with optional damping
and tension cutoff. Unloading iz fully elastic. Tension is weated as alastic-perfectly-plastic at
the temsion cut-off value A modified version of thizs model, *MAT_MODIFIED
CRUSHAELE FOAM includes stram rate effacts.

Card 1 | 3 4 5 i &
Variahli T i8] E FR LCID T AN
Type AR I I I I I ;
Dtk I B EWINE an I B I [} [ L]
_VARIABLE DESCRIFTION
511} Material idemtification. A umique mumber ar labal not exceeding &
characters must be specified.
Ry hlazs density
E Young's modulus
PR Puoiszzon’s ratio
LI Load curve ID defining vield stress versus vohumetric soain 9, ses
Figure 63.1.
THI Tensile stress cotoff. A4 nongero, positive walie iz swoagly
reconunended for realistic behavior,
DAMP Fate sensitivity via damping coefficient ( 03<recommended value< 50).
Remarks:

The volumetric strain iz defined in terms of the ralative vohume, V, as:

=1

The relative volume is defined a: the ratio of the cwrreat to the mitisl vobume In place of the
effiective plastic stram in the D3PLOT database, the integrated vohmmetric strain is gutmat.
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*MAT_CRUSHABLE _FOAM *MAT 063

Stress increases al
‘:hugher strain rates

NOMINAL YIELD STRESS

VOLUMETRIC STRAIN

Figure 683.1. Behavior of stram rate semsitive crushable foam. Unloading iz elastic to the
tenzion cuteff Subzeguent reloading follows the unloading curve.
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Appendix D: LS-DYNA Material Type 4 Card

*NAT 003 *MAT PLASTIC_KINEMATIC

*MAT_FLASTIC_KINEMATIC

Thiz iz Diaterial Type 3. Thiz modsl iz suited to mode]l sotropic and konematic hardenmz
plasticity with the option of mchuding rate effects. It is a very cost effective model and is
avzilable for beam (Hughe:-Liu and Truss), shell, and salid elemests.

Comd 1 - 4 4 N & - M
Varkhle M o 1 i SIGY ETAN BETA
Type Ad I I F I I I
[EXIBTL o reone none nong N i ni
Cimil 7
Variahlz SR SRP (& Ve
Type I I I [
Tk ok i sl minl e minl wanl i
VARIAELE DESCRIFTION
MID Material identification. A umigue mamber or label not egpceeding B
characters must be specified.
RO Mazs denzity.
I Toung's moduhes.
' Poizson's ratia.
SIGY Tield srezs,
ETAN Tangent madulus, see Figure 3.1
BETA Hardening parameter, 0« # <1 See comments below.
R Strain rate parameter, C, for Cowper Symonds strain rate model, sae

below. If zaro, rate effects are not considarad.
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*MAT FLASTIC KINEMATIC *MAT 003
VARIAETE DESCRIPTION
SRP Btram rate parameter, P, for Cowper Bymond: strain rate model, see
below. If zero, rate effects are not considered
F& Failure strain for evoding clements.
i Formulation for rate effects:

Ei0.0; Scale yield stess (default),
B} 1.0 Viscoplastic formmlation

Bemarks:

Strain rate is accouted for nzing the Cowper and Symonds model which scales the yield
stress with the factor

-"é"'-_.-f:
1 +|\E |

where & i3 the sirain rate A fully viscoplastic formuolation is optional which incorporates the
Cowper and Symonds formulation within the yield surface. An additional cost is incurred but
the improvement allows for dramatic results. To ignors stram rate effects z=t both 5R.C and 5P
to Zero.

Einematic, isotropic, or 2 combination of kirematic and Botropic hardeming may he
specified by varying 4§ between 0 and 1. For # equal to 0 and 1, respectively, kinematic and
izotropic hardening are obtaimed 2s shown in Figae 3.1 For iofropic hardening, =1,
Material Model 12, *MAT_JSOTROPIC ELASTIC PLASTIT, requires les: storage and is
mare efficient  Whenever possible, hMaterial 12 is recommended for solid elements, bat for zhell
elements it is less accurate and thus hiaterial 12 &2 not recommended in this case.

LSDYMA  Version 971 T MAT)
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*MAT 003 *MAT PLASTIC_FINEMATIC
A
E -
wield -
sirss ."I
e
i —— [= 0 I hsrmenamg
- --______———' B=| isomopic hasdeming

Figure 3.1.  Elastic-plastic behavior with kinematic and zofropic bardening where [ and /
are umdsformed and deformed length: of imizgial tension specimen. E is the
slape of the bilinear stress sirain crve.

40 (AT [5-DYNA  Version 971
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Appendix E: Aluminum 2024-T3 Alloy Sheet Mechanical Properties

Physical Properties i English Comments

Density i 0.1 Ibfin® AA; Typical

Mechanical Properties

Hardness, Brinell AA; Typical; 500 g load; 10 mm ball
Hardness, Knoop 150 Converted from Brinell Hardness Value
Hardness, Rockwell A 46.8 L Converted from Brinell Hardness Value
Hardness, Rockwell B 75 Converted from Brinell Hardness Value
Hardness, Vickers 137 Converted from Brinell Hardness Value
Ultimate Tensile Strength 483 MPa AA; Typical
Tensile Yield Strength 345 MPa i AA; Typical
Elongation at Break 18 % AA; Typical; 116 in. (1.6 mm) Thickness

Modulus of Elasticity 731 GPa AA; Typical; Average of tension and compression.
Compression modulus is about 2% greater than tensile
modulus.

Notched Tensile Strength 379 MPa 55000 psi 2.5 cm width x 0.16 cm thick side-notched specimen, K; =
17.

Ultimate Beanng Strength 855 MPa 124000 psi Edge distance/pin diameter = 2.0
Bearing Yield Strength 524 MPa 76000 psi Edge distance/pin diameter = 2.0
Poisson's Ratio L 0.33

Fatigue Strength 20000 psi AA: 500,000,000 cycles completely reversed stress; RR
Moore machine/specimen

Mac hinability 70 % 0-100 Scale of Aluminum Alloys
Shear Modulus 4060 ksi
Shear Strength 41000 psi AA; Typical

Electrical Properties

Electrical Resistivity 5.82e-006 ohm-cm 5.82e-006 ohm-cm AA; Typical at 68°F

Thermal Properties

CTE, linear 68°F 23.2 ym/m-°C 12.9 pinfin-F AA: Typical: Average over 68-212°F range.
CTE, linear 250°C 24.7 ym/m-°C 13.7 pinfin-"F Average over the range 20-300°C
Specific Heat Capacity 0.875 Jig°C  0.209 BTU/Ib-°F

Thermal Conductivity 121 Wim-K 840 BTUHn/hr-ft*°F AA; Typical at 77°F

Melting Point 935- 1180 °F  AA; Typical range based on typical composition for wrought
products 1/4 inch thickness or greater. Eutectic melting is
not eliminated by homogenization.

Solidus 935 °F AA; Typical
Liquidus 1180 °F AA; Typical
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