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ABSTRACT 

 

Researcher:  Karthik Krishna   

Title:  Jet Impingement Heat Transfer Analysis of a CMC Simulated Surface 

Institution:  Embry-Riddle Aeronautical University  

Degree:  Master of Science in Aerospace Engineering  

Year:   2016 

A Ceramic Matrix Composite is high strength and high temperature capability 

composite, utilized in components like heat shield of space vehicles, flame holders and disc 

brakes.  To be used in both static and dynamic components of a future gas turbine engine 

and even with high temperature capabilities of these CMC components, convection cooling 

will still likely be required. The surface of the CMC varies significantly from 

traditional super-alloy used in a modern engine, with large level of roughness and 

significant three-dimensional waviness. These complex features will impact the behavior 

of the near wall flows, and affect the heat transfer rates both internal and external to the 

blade. Existing design tools should be updated to account for these effects. As a preliminary 

investigation into these effects, an obliquely impinging circular jet on a CMC surface is 

studied. Both experimental and numerical methods are employed to find the effect of 

simulated surface features on heat transfer rates. In this study, oblique angles of 45° and 

90°, jet to plate distance of 6.5 and 7 jet diameters and three Reynolds numbers, 11,000, 

23,000 and 35,000, were selected. The test surface is broken down into segments, and 

individual segment Nusselt numbers are determined and plotted for the various 

impingement cases studied. Both experimental and CFD results showed negligible changes 

in average Nusselt number, while local contours were affected.  The computational results 
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were evaluated against literature and experimental results, using v2f turbulence model. The 

computational result showed that the local and average Nusselt number for the smooth 

surface impingement were estimated very close to experimental values and the error was 

in the range of 14- 17%. In case of impingement over the CMC surface, this model 

predicted the heat transfer rates close to experimental values in the stagnation region and 

produced local Nusselt number trends following the experimental results. The impact of 

the CMC surface feature is negligible compared to the uncertainty in heat transfer 

coefficient, and therefore traditional design tools can be utilized.  
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1. Introduction 

A gas turbine engine is an efficient and widely used method for power production 

from chemical fuel. An ever-growing demand for higher power and efficiency, has led 

researchers to focus their study in this field. A typical gas turbine consists mainly of three 

main components: compressor, combustor and turbine. A gas turbine compressor, 

compresses the atmospheric air to high pressure ratio and propels it to the combustor 

section.  The high velocity air is slowed down and energy is added by chemical fuel 

combustion in this combustor region. The high energy hot gasses are expanded in the 

turbine and energy is extracted to drive the compressor. The breakthrough research and 

development in the field of material science and cooling technology has led to the usage of 

high temperature capable alloys and composites for the hot section of the gas turbine engine 

(GTE). This has led to a higher turbine inlet temperature and this in turn increased the 

efficiency and power of the GTE (Boyce, 2011).  

1.1. Thermodynamics 

A GTE works on an ideal thermodynamic Brayton cycle as shown in Figure 1.1, it 

shows the importance of cooling with respect to material capabilities. The 1-2 straight 

vertical line represents the isentropic process of compressing the atmospheric air to high 

pressure ratio, and increase in temperature from atmospheric inlet temperature (T1) to the 

compressed air temperature (T2). The 2-3 curve represents a constant pressure heat 

addition process (adiabatic process), increasing the compressed air temperature to turbine 

inlet temperature (T3), and this is the maximum temperature attained by the cycle, 

approximately 1500 Celsius (Halbig, 2013). In the 4-1 isobaric process, energy is extracted 

and the temperature is decreased from T4 to T1.  An equation for gas turbine thermal 
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efficiency can be derived as a function of state, 

𝜂
𝐵𝑟𝑎𝑦𝑡𝑜𝑛

= 1 −
𝑇4−𝑇1

𝑇3−𝑇2

.                                                 (1) 

The atmospheric inlet temperature (T1) is fixed by ambient condition; the 

compressed air temperature (T2) and turbine outlet temperature (T4) are dependent on the 

design- pressure ratio. Hence, the only temperature which can be increased is the turbine 

inlet temperature (T3). This would cause an increase in cycle efficiency, but it is bounded 

by the capabilities of materials used.  Additional advancement requires cooling of these 

blades which lead to higher turbine inlet temperature than the safe operating temperature 

of the material used, thereby increasing the efficiency (Auxier, 2001). Representative 

temperature limit of a super alloy and a CMC can be seen in the Figure 1.1 (Sommers, 

2010).  

 

Figure 1.1: Brayton Cycle 
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1.2. Gas Turbine Cooling 

The efficiency and power of a gas turbine engine primarily depends on the turbine 

inlet temperature and pressure ratio. This temperature is limited by the material capability 

of the turbine components. Initially in 1950’s, increase in turbine efficiency and power was 

completely dependent on the advancement of material properties. In 1960’s and onwards, 

benefits of cooling technologies were recognized, which had the capability to remove heat 

from a turbine blade and increase the firing temperature. Various internal and external 

cooling methods like pin fin cooling, impingement cooling, serpentine cooling, rib cooling 

and film cooling were employed (Han et al, 2001). Current generation turbine blades are 

designed in a very complex manner to incorporate both internal and external cooling 

methodologies. The evolution of the increase in turbine inlet temperature corresponding to 

the material and cooling methods utilized is shown in Figure. 1.2.  

 

Figure 1.2: Evolution of turbine inlet temperature (Ricklick, 2015) 
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1.3. Jet Impingement Cooling 

Jet impingement cooling is one of the effective internal cooling method utilized in 

a gas turbine blade. High local and average heat transfer rates associated with jet 

impingement cooling, has led to its implementation in various other fields like food 

industry, textile drying and electronic components cooling (Behina et al, 1997). 

An impingement flow can be divided into three regions: free jet region, stagnation 

region and wall jet region, as shown in Fig 1.3. The free jet region is the air jet developed 

from the nozzle, and the velocity profile of this jet mainly depends on the type of nozzle 

used. As the jet moves away from the orifice, the jet momentum is lost to overcome the 

viscous effect of the surrounding free stream region. This effect also causes the jet to extend 

laterally in length, which can be observed in the Fig 1.3. As the jet approaches the 

impinging plate, it is deflected into the wall jet region. Here, the axial jet velocity is slowed 

down as it approaches the plate and converted to radial velocity in the wall jet region. The 

velocity of the wall jet is higher in the downhill direction than the uphill direction, due to 

the oblique impingement of the jet. The temperature difference between the impinging flow 

and hot surface wall, causes heat transfer from the wall surface to the wall jet cooling the 

surface (Martin, 1977). 

 

Figure 1.3: Jet impingement flow 
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1.4. Ceramic Matrix Composite 

CMC is a light weight composite material woven using high strength fibers like 

C/C, SiC/SiC, C/SiC, Alumina etc (Sommers et al, 2010). High mechanical strength and 

low specific weight of a typical CMC have drawn incredible attention by the gas turbine 

community for implementation into the core of a GTE (Halbig et al, 2013). A CMC coupon 

shown in the Fig 1.4, consists of a main-weave thread crossing over another cross-weave 

thread perpendicularly. The main thread has a lower frequency compared to the cross-

weave thread. A thread of a CMC is made up of large number of small fibers therefore this 

thread is rough in nature. Hence, the surface of this CMC material is an additive of rough 

and weave surface which varies significantly from a normal rough surface as shown in Fig 

1.4 below (Ricklcik, 2015). 

 

Figure 1.4: CMC coupon (Ricklick, 2015) 
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2. Literature Review 

Gas turbine engines have evolved extensively in last 50 years; efficiency and power 

are key factors which are improved in this time line. Advancements in the fields of material 

science, cooling techniques, compressor design and control system have contributed to this 

improvement. Cooling technique played an important role in increasing power and 

efficiency to relatively high percentage, due to the proportional effect of turbine blade 

cooling on the increase in turbine inlet temperature (Koff, 2003). 

Jet impingement cooling is an efficient cooling method employed in the regions 

requiring high local heat transfers rates such as the leading edge of a turbine blade (Downs, 

2009). Due to ease of setup and complicated flow features involved in a jet impingement 

cooling method, this type of cooling is investigated in this study. 

2.1. Jet Impingement Cooling  

Previous literature works on jet impingement cooling have been summarized and 

reviewed by Martin (1973). Correlations and results for different impingement parameters 

like, slot jet, circular jet and row jet impingement have been discussed in detail. 

Correlations of the average Nusselt number, H/D, Re, Dh and r, for a smooth circular 

impingement surface are shown in Eqs. 1 and 2. This equation is valid for a Reynolds 

number of 2,000 to 400,000, r/Dh of 2.5 to 7.5 and H/D of 2 to 12. 

𝑁𝑢𝑎𝑣𝑔

𝑃𝑟0.42
=

𝐷ℎ

r
 

1 − 1.1
𝐷ℎ

r

1 +  0.1(
𝐻

𝐷
−6)

𝐷ℎ
r

 𝐹(𝑅𝑒)                                             (1) 

𝐹(𝑅𝑒) = 2𝑅𝑒0.5 (1 +
𝑅𝑒0.55

200
)

0.5

                                             (2) 
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Livingood and Hrycak (1973) also summarized the literatures on jet impingement 

heat transfer. This literature discussed various analytical and experiment approaches for 

single and row jets. It also summarized and recommended correlations for single and row 

impingement cooling, for designing turbine blades and other related cooling design needs.  

 

Figure 2.1: Reference axis showing the center line 

 

Yan et al., (1997) investigated the heat transfer characteristics of an obliquely 

impinging jet on a flat plate, similar to the study carried out in this paper on rough CMC 

surfaces. They explained that the stagnation point for an obliquely impinging jet moves 

towards the compression side, yet still lying on the axis of symmetry. The experiment was 

carried out for various angles of incidence of the impinging jet and corresponding local 

Nusselt numbers were plotted versus a non-dimensional radial length. The center line along 

which local Nusselt numbers are determined in this current study is shown in Fig. 2.1. The 

local Nusselt number plot along this center line for a Reynolds Number of 23,000, H/D of 
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7 and angle of impingement of 45° is shown in Fig. 2.2. The data plotted is used in this 

current study for validation of computational results. 

 

Figure 2.2 Centre line Nusselt number (Yan, 1997) 

 

Similarly, Donovan et al. (2006) experimented at oblique impingement angles of 

30° to 90°, for a range of Reynolds numbers from 10,000 to 30,000 and nozzle to plate 

distance of 0.5 to 8. This study mainly concentrated on the effect of vortices on local heat 

transfer rates and the region of transition from laminar to turbulent, which is indicated by 

the secondary peak. This literature also explains the different flow characteristics on uphill 

and downhill direction of the wall jet.   

Jet impingement cooling characteristic on rough surface varies significantly from 

that of a smooth surface. A collection of literatures are available showing that the jet 

impingement on the rough surface enhances the heat transfer properties (Chakroun et al. 

1998; Nakod et al. 2008; Hansen and Webb, 1993; Beitelmal et al. 2000; Gabour and 

Lienhard, 1994). In most of these literatures on rough surface, roughness is usually 

modeled using extended surfaces like pins, ribs, slots and cubes. Chakroun et al. (1998) 
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experimented on normal jet impingement on a rough and smooth surface to show the effect 

of roughness. The rough surface used was created by 0.05D cubes distributed uniformly 

on the surface. Results show that, the enhancement in Nusselt number is due to the 

roughness and the Nusselt number increases with the increase in Reynolds number. The 

increase in average Nusselt number was in the range of 8.3 to 28% from that of a smooth 

surface, depending on the Reynolds number and jet to plate distance. Although, the 

increase in surface area of the rough surface was 7.5% from that of the smooth surface. 

Similarly, Nakod et al. (2008) performed experiments on finned surface and vortex 

generators. Experiments were carried out for a Reynolds number range of 7,000 to 30,000 

and Z/D of 0.5 to 7. Similar to other literatures, the author concluded heat transfer 

coefficient was increased for the rough surface. Local results for various fins and vortex 

generators compared to those of smooth surfaces showed that the vortex generators were 

more effective than fins.  

Kito et al. (2012) studied the effect of ribs placed on a smooth surface on heat 

transfer rates at a Reynolds number of 5,000. The jet to plate distance was varied from 5 to 

20 and the placement of ribs was optimized to enhance the heat transfer rates. It was found 

that the ribs enhanced the heat transfer rates and for further improvement, the rib spacing 

should be more than 6 diameters to allow the reattachment of the flow. Gau et al.’s (2000) 

flow visualization of a circular jet impingement on a triangular rib roughened wall showed 

that, for a small nozzle to plate distance the cavities formed in the triangular ribs are easier 

to penetrate than the ones formed in the rectangular ribs. The wide-open cavities allow 

higher momentum transport between the recirculation flow and the wall jet to easily 

penetrate these cavities, there by increasing heat transfer. Further, if the nozzle to plate 
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distance increases, the impinging jet spreads out and transforms into turbulent structures 

before impinging on to the plate. These coherent structures can easily penetrate the cavities 

and increase heat transfer rates.  

Beitelmal et al. (2000) observed an increase of 6% in average Nusselt number for 

a rough surface made up of circular protrusions of 0.073D base and height. For a circular 

jet impinging on a rough surface at a Reynolds number of 9,600 to 38,500 and a nozzle 

exit to plate distance of 1 to 10 jet diameters. Jeevanlal et al. (2014) studied jet impingement 

heat transfer on indented surface and compared their result against a smooth surface 

impingement case. The parameters varied are; the jet to plate distance of 1-12 and a 

Reynolds number range of 10,000- 23,000. Results show that the maximum stagnation 

Nusselt number was achieved for a Z/D of 6, and a maximum increase in stagnation Nusselt 

number of 6.78% was observed for a Reynolds number of 60,000. 

 

Figure 2.3: Artificially modified rough surfaces (Hansen, 1993) 
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Hansen and Webb (1993) investigated normal air jet impingement onto a modified 

surface. The modified surfaces are shown in Fig. 2.3. They classified the modified surfaces 

based on the area exposed to normal, parallel and oblique surfaces to wall jet. Conclusion 

stated that the Nusselt number depended on the level of turbulence, velocity of the wall jet 

and the amount of surface area exposed to parallel, normal or oblique flow. It was also 

found that the heat transfer was mainly augmented in the order of normal, oblique, and 

parallel flow. Gabour and Lienhard (1994) investigated jet impingement cooling on rough 

surfaces with Root Mean Square roughness heights ranging from 0.0005D- 0.0064D, at 

Reynolds numbers ranging from 20,000-84,000. Results from the experiment showed that 

the effect of roughness was prominent at higher Reynolds numbers and lower jet diameters. 

The local Nusselt number at the stagnation point increased with increase in roughness 

height. Comparing the local Nusselt number with that of a smooth wall showed a 50 percent 

increase in Nusselt number.  

Wagner et al. (2010) performed dynamic large eddy simulations for forced 

convection heat transfer analysis over 3-dimensional and 2-dimensional wavy surface. The 

3D wavy surface is similar to the weave surface of the CMC surface. Results show that 

vortices are generated for both 3D and 2D wavy surface in the down slope from crest to 

trough of the wave as shown in Fig. 2.4 and these vortices causes increase in heat transfer 

rates. It was found that for a Reynolds number of 11,200, a 2D wavy surface was 20% 

more efficient than a 3D wavy surface. The author also mentioned for a RANS type 

turbulence model, fine mesh in wall normal direction in the wavy surface is required for 

predicting accurate result.  
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Figure 2.4: Flow over a 2D wave at Re = 11,200 (Wagner, 2010) 

 

Preliminary assessment of jet impingement cooling on CMC surface by Ricklick 

(2015) was carried out on a 3D printed surface, at an oblique angle of 45° and jet to plate 

distance of 7 jet diameters. The local Nusselt number distribution along the surface was 

shown in comparison with a smooth surface result. Two types of arrangements were used 

regarding the CMC simulated surface. Firstly, the air jet aligned parallel to the main weave 

named “CMC - I”. Secondly, the air jet was kept perpendicular to main weave and named 

“CMC - II”. These experimental arrangements are shown in Fig. 2.5 and 2.6 respectively; 

results from these experiments were compared to that of smooth surface impingement 

results. 
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Figure 2.5: CMC- I orientation (Top view) 

 

Figure 2.6: CMC- II orientation (Top view) 
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The average Nusselt number distribution for the CMC surface by comparison with 

smooth and sand rough surface, at Reynolds 11,000 and 23,000 is shown in Fig. 2.7. The 

dark line shows the respective area average Nusselt number for the cases tested, and the 

grey line shows the scaled average Nusselt number compared to the smooth surface 

impingement case. An augmentation of average Heat Transfer Coefficient (HTC) between 

40% and 70% with respect to a smooth surface was observed. The surface profile of the 

CMC used by the 3D printer, was profiled using a stylus type profilometer from a CMC 

coupon shown in Fig. 1.4 above and was scaled 6.25X for easiness of printing the surface. 

The weave feature height varied in the order of 200 to 300µm. Due to low resolution of the 

printer a few features like smoothness of the CMC surface were not recreated from the 

surface profile data provided. Hence, the increase in heat transfer would be restricted by 

this factor. 

 

Figure 2.7: Comparison of average Nusselt number (Ricklick, 2015) 
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The above discussed literatures have shown the augmenting heat transfer effects of 

rough surfaces under jet impingement cooling, and the rough surface is replicated by 

artificially modified or protruding small structures. These structures vary significantly 

from the weave surface. Also, Wagner et al showed the different flow structure for a flow 

over a wavy surface and its effects on forced convection. Ricklick results showed increase 

in heat transfer rates locally and in average for jet impingement on CMC surfaces, but the 

low resolution 3d printed simulated CMC (sCMC) surface also affected this augmentation. 

Hence, this study intends to further investigate the effect of surface profile with the 

elimination of the low resolution restricting factor, by using a more accurate manufacturing 

method to simulate the CMC surface. 

Peng et al. (2016) numerically studied jet impingement cooling on 2D modeled 

wavy rough surface. In this study, the RNG k-ε turbulence model was found to be suitable 

to predict Nusselt number close to the experimental result, and relatively fast when 

compared with other models. Results showed an overall enhancement of heat transfer rate. 

A reduction in local Nusselt number at the impingement zone was also observed due to 

entrapment of fluid in the trough of the wavy wall. Assessment of various turbulence 

models for a 3 row and 15 columns jet impingement was carried out by Upalkar and 

Ricklick (2015). The turbulence models investigated were EB- k-ε, k-ω (SST), v2f, 

realizable k-ε, quadratic and cubic k-ε. The analysis revealed that the v2f model results best 

matched the experimental results followed by EB- k-ε for average Nusselt number. Also, 

the numerical local Nusselt number distribution followed the same trend as that of the 

experimental result. 
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Xie et al. (2013) in their numerical study on jet impingement on a dimpled surface, 

examined various turbulence models like realizable k-ε, SST, SST with γ -Re0 and k-kl- ω 

models. They used SST with γ -Re0 for further analysis as it showed good agreement with 

the experimental results. Numerical analysis was carried out on an obliquely and 

orthogonally impinging jet, by Alenezi et al. (2015). Four turbulence models were used at 

a preliminary stage to find the appropriate model for further investigation. For normal 

impingement, k-ε turbulence model showed good agreement with the experimental data 

out of the other three SST, RSM and SST transport models. In their further analysis using 

k-ε turbulence model, for oblique impingement the model failed to predict the secondary 

peak. The author concluded that the need for higher level models like LES and DES would 

be suitable to capture the secondary peak.  

Zuckerman and Lior (2005) studied various turbulence models and evaluated these 

models to predict local Nusselt number for gas jet impingement heat transfer. The 

turbulence models evaluated were k-ε, k-ω, realizable k-ε, algebraic stress model, Reynolds 

stress model, SST, v2f and DNS/LES unsteady model. The unsteady DNS/LES was found 

to be the best model to predict the stagnation region Nusselt number and the secondary 

peak, provided the computational cost was not a factor to be considered, and these models 

require a very fine mesh and high computational time to solve the Navier-Stokes equation. 

Considering the computational cost to accuracy ratio, v2f turbulence model with relatively 

less computational cost, produced results in the range of 2 to 30% error in Nusselt number 

prediction and predicted the secondary peak very well. Hence, this paper recommends v2f 

model and DNS/LES model for numerical impingement heat transfer studies.  
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Bovo et al. (2013) analyzed the unsteady characteristics of a single pulse jet 

impingement on an inclined surface through computational and experimental method. In 

their computational approach, they have used LES model. Although it was computationally 

expensive, the model was found to be good enough to predict this type of impingement 

problems. Behina et al. (1997) studied numerically jet impingement cooling on a smooth 

surface using v2f turbulence model. A two-dimensional domain of a grid size of 120×120 

was utilized and results showed good agreement with the literature. Additionally, k-epsilon 

model was also used and results were compared with the v2f model results. The conclusion 

stated that the v2f model predicted local and average Nusselt numbers close to the 

experimental results. The k-epsilon model over-predicted local values and some results 

were unrealistic in nature.  

From the above review, it can be concluded that DNS/LES, v2f, EB- k-ε and k-ε 

models are more suitable to predict jet impingement heat transfer problems. DNS/LES are 

the best among the four, but computationally costly. Hence, the second best v2f model is 

used in this study for numerical analysis. 

2.2. Ceramic Matrix Composite 

CMCs have found implementation in various fields like GTE, advanced racing 

vehicles, aircraft structures and rocket nozzles (Renz et al. 2012; Keller et al. 2011; Orlet 

et al. 2005). The outstanding mechanical strength, heat resistivity and low thermal 

conductivity of this composite are the major causes for its exploitation in the specified 

fields. A CMC is a composite material woven as cloth using high strength fibers like carbon 

and alumina.  
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Keller et al. (2011) discussed its implementation as an insulating material for 

covering the hot section of a GTE. This patent aimed at using the wavy CMC as an 

insulating surface at a specific amplitude and frequency, to increase the efficiency of the 

gas turbine engine. This thermal barrier composite in a turbine blade or exhaust duct, is 

exposed to the high velocity hot gasses. Then the convection heat transfer rate is the 

preliminary requirement for the design of this insulating material. Keller et al. (2012) in 

their continuing work, discussed a hybrid structure of wavy CMC surface with internal 

cooling integrated in it. This invention was to place cooling pipes between two wavy CMC 

surfaces and to cool the surface internally. Also, this patent proposed that the whole or 

partial structure should be made up of hybrid CMCs instead of using it as a thermal barrier.  

Morrison et al.’s (2004) invention claimed to implement a CMC airfoil with or 

without an inner core for GTE turbine. Also, it claimed the airfoil could be cooled utilizing 

advanced internal cooling techniques like jet impingement cooling, cooling passages, 

trailing edge, and film cooling to increase the turbine inlet temperature. Steibel et al. (2001) 

proposed the use of ceramic particulate coating on the internal cooling channel surface of 

the CMC turbine blade, to increase roughness and heat transfer effects locally by varying 

the particle size. Patents discussed the complicated implementation of CMCs in the GTE. 

They also urged the need to quantify the effect of CMC surfaces on heat transfer rates. 

Sommers et al. (2010) reviewed literatures that discusses various effects and merits 

of implementing CMC material in a heat exchanger. Additionally, the thermo- mechanical 

properties, physical/chemical properties and other characteristic were tabulated to assess 

the implementation of CMCs for heat transfer purposes. Orlet et al. (2005) studied the 

verification of an effusion cooled CMC rocket thrust chamber, but its performance was not 
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compared with that of a smooth walled chamber. Bischoff et al. (2012) characterized the 

structure of a CMC from various samples, and evaluated the influence of surface roughness 

on non-destructive testing methods. Surface roughness values (Ra) varied along a range of 

2.2µm to 4.9µm depending upon the type of sample.  

Halbig et al. (2013) studied and evaluated the impact of application of CMCs for a 

GTE. A CMC nozzle utilized in this study is shown in Fig. 2.8, the smooth surface finish 

on the nozzle is due to the application of Environmental Barrier Coating (EBC). The 

Conclusion stated that a CMC combustor with an EBC can achieve a temperature of almost 

1500°C with reduced cooling. Also, this reduction in cooling increased the efficiency and 

decreased the NOx emission in the combustion process. They also stressed the lack of 

literature on heat transfer characterization and cooling design of this material. Zong et al. 

(2009) experimentation on multi-hole film cooling for a CMC surface also acknowledged 

the need to study the heat transfer characteristics of a CMC surface.  

 

Figure 2.8: CMC nozzle of GTE (Halbig, 2013) 
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As discussed, Ricklick (2015) performed a preliminary investigation on CMC 

surface air jet impingement cooling.  The literature review showed that there was not 

sufficient data in the field of surface characterization of a CMC surface. Hence, a CMC 

surface was characterized for experimentation and simulation of the surface. The full-scale 

CMC coupon showed in Fig 1.4 was profiled using stylus type profilometer and a manual 

traverse was used to collect data sets in the third axis at multiple spanwise locations. The 

two axis profilometer was used to collect data from bottom to top direction, using traverse 

in the main weave direction, and manual traverse perpendicular to main weave to collect 

data in spanwise direction. This profiling involved 60 traces along the surface at a 

resolution of 0.254µm and spaced at 0.6mm in the spanwise direction. 

 

Figure 2.9: Raw CMC trace (Ricklick, 2015) 
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A typical raw trace of the CMC sample is shown in Fig. 2.9. Here, the X- axis is 

the direction along the main weave and the Y- axis is the surface height. Primarily, the 

superimposed wavy and rough features can be observed. The wavy feature can be identified 

by the large amplitudes and relatively large period. Through analysis of the surface, using 

Taylor Hobson Ultra software, characteristic roughness (Ra) and waviness (Wa) values 

were determined. Also by inspection, the maximum change in surface elevation was also 

determined. The surface roughness (Ra) varied from 5-6µm, utilizing a low pass filter of 

0.25mm. The waviness (Wa) ranged from 35-60µm, utilizing a low pass filter of 0.8mm. 

The maximum change in elevation was in the order of 200-300µm. This data can further 

be utilized to non-dimensionalize, using the jet diameter. 

 

Figure 2.10: Filtered profilometer trace containing only waviness (Ricklick, 2015) 

 

Comparing these values for a super-alloy coated with Thermal Barrier Coating 

(TBC), typical values would be in the range of 10-14µm, with a maximum change in 



22  

elevation of 96-130µm. In this work, Boyle (2005) showed that these roughness values 

affected the heat transfer and laminar to turbulent transition location significantly. 

Comparing waviness and roughness height, the author concluded that waviness is of 

concern with the CMC surface. Therefore, the profilometer software was used to filter out 

the roughness from the trace and project only the waviness, as shown in Fig. 2.10. A 

MATLAB code was written to parse this cloud of data into a matrix form, such that it could 

be converted to a CAD usable file. The high resolution local thickness distribution used in 

this study is shown in the Fig. 2.11.   

 

Figure 2.11: High resolution local thickness distribution (Ricklick, 2015) 
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Available patents and literatures on CMC discuss the implementation of CMC into 

the core of a GTE with some form of thermal management included and briefly describe 

the surface texture (Keller, 2011; Keller, 2012; Zong, 2009). Due to insufficient data 

available in the field of heat transfer rates on CMC- type surfaces, this study aims to 

determine the heat transfer rates experimentally and computationally, extending the work 

of Ricklick (2015). The high resolution local thickness distribution captured by Ricklick 

(2015) is used to investigate experimentally under constant temperature boundary 

conditions and numerically using commercial CFD software. 

2.3. Objective 

Existing heat transfer literatures have artificially modeled the surface to illustrate 

the roughness, whereas the measured CMC surface (Ricklick, 2015) varied from these with 

a combination of wavy, woven and rough surface texture. The heat transfer on a surface 

with CMC type features requires examination under typical cooling technique. These 

impacts should be readily transferable to design tools currently used in industry. The CMC 

literature reviews discussed the implementation and the surface characteristics briefly. 

They have also acknowledged the need to study the heat transfer rates of a CMC surface. 

Ricklick (2015) experimental studies have shown enhancement of local and average heat 

transfer rates for impingement cooling over a CMC surface. The low-resolution 3D printed 

surface and methodology used by Ricklick(2015) produced highly uncertain results. 

Hence, further investigation is required with a reduced uncertainty level. 

The objective of this thesis project is to investigate jet impingement heat transfer 

analysis for a high-resolution CMC simulated surface, experimentally and 

computationally. This is accomplished by several smaller objectives listed below. 
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1. The first objective is to computationally benchmark the local and average 

experimental results of Ricklick (2015) for jet impingement cooling. The tests 

parameters of this study are jet to plate distance of 6.5 and 7 jet diameters, ϕ = 

45° and for a Reynolds number of 11,000 and 23,000. The CMC surface 

simulated is the high-resolution data from the CAD file from Ricklick (2015). 

Similarly, simulations were carried out on a flat plate to validate the 

computational results. 

2. The second objective is to experimentally investigate the effect of high resolution 

CMC surfaces on heat transfer rates for impingement cooling. The high-

resolution CMC surface CAD file (Ricklick, 2015) was used to machine the 

smooth weave surface on an aluminum block, in a CNC horizontal milling 

machine at a spatial resolution greater than was used with the 3D-printed model 

used by Ricklick (2015) in his experiments. A segmented approach was used to 

find streamwise average Nusselt number under constant wall temperature 

boundary conditions. Experiments were carried out for a H/D of 7 jet diameters, 

impingement angles of 45° and 90°, and for Reynolds numbers 11,000, 23,000 

and 35,000. Tests were also carried out on a smooth surface for validation and 

comparison. The effect of Reynolds number, CMC waviness and angle of 

impingement on average Nusselt number were determined. 

3. The third objective is a computational approach to benchmark the experimental 

results for all the test cases studied experimentally. Tests were simulated using 

STAR CCM (version 9.06.009) software and the results were compared against 

available experimental data. 
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3. Jet Impingement Literature Benchmarking Study 

To understand and evaluate the preliminary effect of the simulated CMC surface 

on heat transfer coefficient, a benchmarking study was carried out to compare CFD average 

and local Nusselt numbers against the experimental results of Ricklick (2015). All the 

experimental cases tested by Ricklick (2015) were modeled and simulated in Star CCM 

version 9.06.009 software. The experimental test parameters from the literature utilized in 

this study is shown in the Fig. 3.1.   

 

Figure 3.1: Test parameters matching literature experimental setup (Ricklick, 2015) 
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Figure 3.2: CMC surface dimension matching literature experiments (Ricklick, 2015) 

 

The high-resolution CMC surface data imported from the work of Ricklick (2015), 

simulated in this computational study, is shown in the Fig. 3.2. The dimension of the test 

surface and the point of impingement are also specified. 

3.1. Computational Setup 

The computational domain was setup equivalent to the Ricklick (2015) 

experimental setup shown in Fig. 3.1. Due to the wavy nature of the CMC surface, a three-

dimensional conduction analysis should also be carried out along with the Navier-Stokes 

equation for fluid flow. Hence, a conjugate heat transfer problem was solved. 
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Figure 3.3: Computational domain 

 

The domain was constructed for the whole sCMC surface plate dimension; a 

rectangular block was extruded from the CMC plate and a plenum with an orifice was 

placed into position matching the conditions of the literature setup. Later, the rectangular 

block was cut parallel to the orifice to decrease the mesh size. The conjugate mesh domain 

is shown in Fig. 3.3. The mesh domain simulating the air was given a pressure outlet 

condition and the 2D surface featuring the orifice was given a velocity inlet boundary 

condition. 

The turbulence is modeled by v2f model; this model was selected after a 

comprehensive literature review (Section 2.1) considering the accuracy to computational 

cost ratio as an important factor. This is a near wall turbulence model and it does not use a 

wall function to determine the velocity profile near the wall in the sub-viscous layer (wall 

y+ < 1), instead local velocity is computed up to the solid wall. Hence, large number of 

cells are densely modeled near the wall to maintain a wall y+ < 1, which is one of the basic 

requirements for this type of problem (Wang et al. 2008).  
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The table featuring all the physical properties used in this approach are shown in 

Table.3.1. The 3D solid CMC domain was meshed directly on the imported 3D IGES 

characterized CMC model (Ricklick, 2015). All the faces were set to be an adiabatic wall, 

and the bottom wall was given a constant temperature for all the trails. A volumetric mesh 

refinement was used to finely mesh the stagnation and wall jet region, the max cell size in 

this region was 0.02D. Similarly, the sCMC surface was replaced by a flat plate using the 

same impingement properties and the flat plate was given a thickness of 2.5mm. This 

simulation results were used to validate and compare the CFD results with literature of Yan 

(1997) and Ricklick (2015). 

 

Table 3.1: Physical properties of the mesh domain 

Description Values 

Atmospheric temperature (K) T∞ = 300 

Atmospheric pressure (kgm-1s-2) P∞ = 101325 

Density of air (kgm-3) ρ = 1.18415  

Dynamic viscosity of air (kgm-1s-1) µ = 1.855 X 10-5 

Jet diameter (m)  D = 0.006858 

Non-dimensional nozzle to plate distance H/D = 6.5 & 7 

Temperature of bottom wall (K) Tw = 344.9  

Temperature of impinging jet (K) Tj = 300 

Thermal conductivity of fluid air (Wm-1K-1) kf = 0.0260305 

Thermal conductivity of solid (Wm-1K-1) kABS = 0.14 
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3.1.1. Mesh Independence Study 

Grid independency study was carried out by comparing the change in local 

temperatures for four points picked randomly near the stagnation region. The mesh 

independency was carried out for three mesh counts for the CMC surface simulation and 

two mesh counts for smooth surface simulation, independently for the highest Reynolds 

number of 35,000. For the CMC- I surface simulation the three-mesh cell count was 

approximately 21million, 26 million and 40 million. The maximum percentage change in 

temperature was 0.07%. Hence, the medium mesh count 26million was used for further 

simulations. For the smooth surface simulation, the two-mesh cell count was approximately 

35 million and 46 million. The maximum percentage change in temperature was 0.01%. 

Hence, the lower mesh count was used for further simulations. The local Nusselt number 

distributions for the mesh sizes for CMC- I are showed in the Fig. 3.4. The local Nusselt 

numbers for all the cases are found overlapping each other stating that the results are mesh 

independent. For further numerical investigation, the CMC 26 million mesh and similarly 

for the smooth surface, 35 million mesh size were used. 

 

Figure 3.4: Comparison of local Nusselt number along radial length for Re= 35,000 
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3.1.2. Data Reduction 

In this benchmarking study, Reynolds number was established at the orifice of the 

nozzle with a velocity inlet condition. The Reynolds number tested here are 11,000 and 

23,000. The velocity at the orifice was calculated at these Reynolds number using the 

equation 3, based on the orifice diameter of 6.858mm. The Nusselt number was determined 

using the equation 4, the characteristic length used is the orifice diameter.  

𝑅𝑒 =
𝜌 𝑣 𝐷

µ 
                                                  (3) 

𝑁𝑢 =
ℎ 𝐷

𝑘𝑓
                                                   (4) 

3.2. Results 

Computational local and area average results are compared with the experimental 

results of Ricklick (2015). The local result is plotted along the center line on the 

geometrical point of impingement as shown in Fig. 2.1. These local values are averaged to 

find average Nusselt number. The area along which the local values are averaged is shown 

in Fig. 3.2. 

3.2.1. Validation 

For the validation of computational results, the center line local Nusselt number 

distribution for the flat plate impingement was compared with the literatures experimental 

data. The data plotted in Fig. 3.5 shows a comparison for smooth flat plate impingement at 

a Reynolds number of 23,000 for the Yan (1997) experiment, computational and Ricklick 

(2015) experiment results. The computational results are closely matching the literature on 

the uphill side and the local Nusselt number drops as the radial length increases, on the 
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downhill side. The error in predicting the stagnation Nusselt number by the v2f model is 

3.7% with respect to Ricklick’s (2015) experimental result. Further, the computational 

result for a H/D of 6.5 predict values close to the literature (Yan, 1997) result and the error 

in predicting the stagnation Nusselt number is 2.96%. It can be concluded that, the v2f 

model predicts the stagnation Nusselt number and local Nusselt number on the uphill side 

accurately but this accuracy decreases with the increase in radial length on the downhill 

side. The computational results follow the same trends as that of the literature and the error 

is also acceptable. Therefore, the following computational runs performed are assumed 

acceptable. 

 

Figure 3.5: Comparison of center line Nusselt number plots at Re = 23,000 
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3.2.2. Benchmarking local Nusselt Number 

Computational and experimental (Ricklick, 2015) data representing the local 

distribution of Nusselt number for smooth surface jet impinging obliquely at 45° and at an 

H/D of 6.5, is shown in Fig. 3.6. The numerical model predicts the stagnation Nusselt 

number very close to experimental Nusselt number. The error in predicting the stagnation 

Nusselt number is 2.96% and 4.15% for Reynolds number of 11,000 and 23,000 

respectively. This model tends to produce nearly accurate local results for the lower 

Reynolds number and error increases for the higher Reynolds number, also the secondary 

peak in the numerical result is exaggerated compared to the flat or no peak in literature 

result. 

 

Figure 3.6: local Nu for smooth surface jet impingement at H/D= 6.5 and ϕ = 45° 
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trend as that of the literature experimental result, the error in predicting the local Nusselt 

number are higher for the higher Reynolds number. In case of the lower Reynolds number, 

the local data predicted by the numerical model is very close to the exact value. The 

numerical model also predicts the position of the secondary peak close the exact location 

in both the cases.  

For the CMC surface jet impingement, perpendicular to the main weave (CMC- II), 

computational and Ricklick experimental results are shown in Fig. 3.8. It can be observed 

that, the literature local distribution along the weave surface structure is also replicated by 

the computational result to some extent, but there is an offset of the secondary peak as 

observed above for the parallel weave impingement. The v2f model predicts the stagnation 

Nusselt number for the low Reynolds number close to the exact value, whereas this error 

increases for the higher Reynolds number. Although the computational model predicts the 

secondary peak, it is unable to predict the smaller peaks. 

 

Figure 3.7: local Nu for CMC- I surface jet impingement at H/D= 6.5 and ϕ = 45° 
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Figure 3.8: local Nu for CMC- II surface jet impingement at H/D= 6.5 and ϕ = 45° 
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Figure 3.9: Local effect of surface waviness 
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increases with increase in Reynolds number, for the computational results. This turbulence 

model predicts the average Nusselt number for smooth impingement case better than the 

CMC- I and CMC- II case, with an error of 17.87% and 34.9% for Reynolds number 11,000 

and 23,000 respectively. The error in predicting the average Nusselt number also increases 

with increase in Reynolds Number as expected. As the average Nusselt number for the 

computational results for smooth, CMC- I and CMC- II remains the same, but the 

experimental results show increase in heat transfer rates in case of CMC- I and CMC- II. 

Hence, the error in predicting the area average Nusselt number for CMC- I and CMC- II 

for this computational approach are high and in the range of 30-49%.  

 

Figure 3.10: Area averaged Nusselt number at H/D= 6.5 and ϕ = 45° 
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4. Jet Impingement Experimental Study 

As discussed in the literature, Ricklick (2015) experiments were conducted on a 

low-resolution 3D printed sCMC surface causing high uncertainties in the results. Hence 

in this experimental study, high resolution sCMC surface is investigated for average heat 

transfer rates under air jet impingement cooling with reduced uncertainties discussed 

below. 

4.1.  Methodology 

The aim of this investigation is to obtain accurate heat transfer coefficients and to 

estimate the effect of a simulated CMC surface on heat transfer rates. The most important 

and distinctive feature affecting the heat transfer characteristic is the surface profile of the 

CMC; hence, detailed representation of this profile is important in this study. For accuracy 

and surface finish Computer Numerical Control (CNC) machining was selected. A sample 

of the machined part can be seen in Fig. 4.1, which was machined from the previously 

collected surface profile data (Ricklick, 2015). The sample was machined using a 19mm 

thick aluminum slab, and the accuracy of the CNC machine is approximately 10times more 

than that of the 3D printer used by Ricklick (2015). Comparing the Figs 4.1 and 4.2, the 

difference between the CNC machined surface and 3D printed surface can distinguished. 

The wavy nature of the surface can be seen with smooth curvature on aluminum surface, 

which was not available in the 3D printed part. The low-resolution steps of plastic laid out 

by the printer is visible in 3D printed CMC. 
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Figure 4.1: CNC machined CMC simulated surface 

 

Figure 4.2: 3D printed low resolution CMC surface (Ricklick, 2015) 
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Average heat transfer rate is determined from the temperature difference between 

the air jet and surface temperature of the sCMC surface. A constant surface temperature at 

all local points is assumed and temperature is measured at three distinct points along the 

diagonal of the square sCMC surface. This assumption of equal local temperature on the 

surface can be attained by having a high conductive heat transfer rate compared to the 

convective heat transfer rate at this surface. This assumption can be proven if the ratio of 

conductive resistance to convective resistance also called Biot number, is much less than 

1. The Biot number is given by the equation 5. The Biot number is proportional to the 

conductivity of the material and heat transfer coefficient. Hence, high thermal conductive 

aluminum is used to machine the CMC surface. The cross-sectional area of conduction 

(Acond) is inversely proportional to the Biot number. Hence, the thickness of the sCMC 

surface plate was not able to render a low Biot number, therefore the sCMC plate was 

extended by attaching an aluminum plate of 12.7mm to decrease the Biot number. The Biot 

number was calculated to be less than one, hence a constant temperature on the surface can 

be assumed. 

𝐵𝑖 =
ℎ 𝐿𝑐 𝐴𝑐𝑜𝑛𝑣 

𝑘𝐴𝑙 𝐴𝑐𝑜𝑛𝑑
                                                              (5) 
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Figure 4.3: Schematic of Experimental Set-up 

 

A sketch representing the experimental methodology is shown in Fig. 4.3. A foil 

heater is placed on the back side of the extended sCMC surface to provide a heat flux. The 

effective heat flux flowing through the simulated surface is calculated by measuring the 

current flowing through the heater and it is calibrated by a heat leakage test. The surface 

temperatures of the sCMC is measured using type-T thermocouples, at three distinct points 

and then averaged. Due to low Biot number of the surface the temperature difference 

measured between these points was less than 1°Celcius. To avoid heat loss from the side 

of the surface, guard heaters are placed on each side and maintained at a temperature equal 

to CMC surface temperature. To reduce heat loss from the back of the heater, CPVC 

insulating material is placed. For validation, the sCMC surface is replaced by a flat plate 

and results are compared against the correlation of Martin (1977). 
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The heat transfer coefficient can be calculated using Newton’s law of cooling with 

this known effective heat flux and temperature difference between the surface and the jet. 

The average Nusselt number is calculated from the heat transfer coefficient. Detail method 

of calculating the average Nusselt number is elaborated in the experimental data reduction 

section. 

 

Figure 4.4: Segmented CMC simulated surface 

 

The assumption of uniform surface temperature can further be scrutinized by the 

segmented approach, where the surface is broken down into five segments in the main 

weave direction as shown in Fig. 4.4. These segments are separated by 1mm thick insulator 



42  

(POP, k~0.17 Wm-1K-1) to avoid lateral conduction. These segments are heated using 

induvial foil heaters to maintain a constant equal temperature between them and their 

respective effective heat flux is measured. Induvial temperature of the segmented surfaces 

is measured using thermocouples and average Nusselt numbers are calculated as before for 

each segment. Further, the overall Nusselt number is determined using the mean surface 

temperature of the segments and overall heat flux supplied to the heaters. 

4.2. Experimental Setup 

The main components of the experiment are illustrated in Fig. 4.5. The setup mainly 

constitutes a metered air supply coming from compressed air line through an airflow meter, 

this air is then supplied into a Cylindrical plenum of 25.4mm diameter. The air supply was 

measured using a rotameter, the accuracy of the meter was 0.2 scfm. The length of plenum 

measuring 597mm was used to ensure uniform flow approaching the orifice (Yan, 1997). 

This plenum consists of honey comb and steel wool at the inlet, to baffle and condition the 

flow. The honeycomb used had cell size of 6mm and the length was 12 times the cell size 

(Mehta, 1979). At the exit of this plenum, an orifice measuring 7mm was placed with an 

orifice length much less than 1 diameter to ensure uniform velocity (Shakouchi, 2012). The 

jet orifice was positioned at 7 jet diameters from the surface, at an angle of 45° from the 

horizontal. Initially, these experimental parameters were selected to match Ricklick (2015) 

literature to validate results. Due to the difference in area averaged, Martin (1977) 

correlation was used to validate the experimental results. Error estimation showed an error 

in stagnation Nusselt number of 15.2%, the major error contributed is due to the 

uncalibrated thermocouple, which was in the range of ±1°C. 
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Figure 4.5: Experimental setup 

4.2.1. Experimental Heat Leakage Test 

The accuracy of the result is a function of the measured heat flux, any heat loss 

from the simulated surface should be accounted. Generally, heat leakage test is carried out 

by placing insulating material on the heat transfer surface such that one can assume the 

generated heat leaks through the sides and the back of the experimental rig.   

This insulator is replaced by guard heaters on each side of the surface where there 

is heat loss as shown in Fig. 4.6. The temperature of the guard heaters is measured and 

controlled using potentiometers, at a constant temperature equal to the temperature of the 

specimen. This constant temperature boundary condition on each surface is a better 

approximation than placing an insulator on this surface. 
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Figure 4.6: Heat leakage setup (Cross-sectional view) 

 

The specimen tested was surrounded by heaters in all directions as shown in Fig. 

4.6. As the temperature difference between the guard heaters and the specimen is zero, 

from Fourier law of conduction it can be proved that the heat transfer is also equal to zero.  

Hence, heat loss occurring should be driven in the backward direction from the foil heater. 

A low conductive material (CVPC) was kept at the back of the foil heater, the 

surface temperature on both top and bottom of this plate were measured. Three 

thermocouples were place on each surface and found to be having equal temperature within 

±1 Celsius, which is allowable under the error of the type-T thermocouple of ±1 Celsius. 

The heat lost from the back of the foil heater is flowing through this plastic plate.  

Assuming 1D conduction and knowing the surface temperature, heat flux and 

thickness of the plate; thermal conductivity of this material can be calculated using 
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Fourier’s law of conduction (equation 6). 

𝑞𝑙𝑜𝑠𝑠 = −𝑘𝐶𝑉𝑃𝐶 ∗ 𝐴𝐶𝑉𝑃𝐶 ∗
∆𝑇

𝑡𝐶𝑉𝑃𝐶
                                   (6) 

The heat leakage experiment was carried out for one heat flux and corresponding 

temperature difference of the surface temperature and the room temperature versus the heat 

loss is shown in Fig. 4.7. A straight-line function was also determined to fit this curve 

shown in Eq 7.  

 

Figure 4.7: Heat loss versus change in temperature 

𝑞𝑙𝑜𝑠𝑠 = (0.05869
𝑊

𝐾
)  ∆𝑇                                          (7) 

The heat loss from the foil heater was determined, and as sanity check the thermal 

conductivity of CPVC was measured to be 0.136 Wm-1K-1 and compared to the published 

value. The error between the published value and measured value was found to be 2.82%. 

Hence, this process of calculation can be reversed to find the heat loss using the measured 

thermal conductivity. Hence, in this current study heat lost is found using this conduction 

method and the measured thermal conductivity of the plastic plate.  
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4.2.2. Experimental Data Reduction 

The total heat flux supplied to the heater is calculated using the Eq. 8, by measuring 

the resistance and current flowing in the resistive foil heater. The effective heat flux 

flowing through the test specimen is given by Eq. 9. 

𝑞′′ =
𝐼2𝑅

𝐴𝐶𝑜𝑛𝑣
                                                           (8) 

𝑞′′
𝑒𝑓𝑓

= 𝑞′′ −
𝑞𝑙𝑜𝑠𝑠 

𝐴𝐶𝑉𝑃𝐶
                                                (9) 

Heat transfer coefficient is determined using the calculated effective heat flux and 

measured temperature difference between the air jet and test surface. The heat transfer 

coefficient formula used is shown in Eq. 10. 

ℎ =
𝑞′′

𝑒𝑓𝑓

𝑇𝑤−𝑇𝑗
                                                         (10) 

The Nusselt number is calculated using the Eq. 11. The characteristic diameter (D) 

used in this formula is the diameter of the orifice selected in this study.  

𝑁𝑢 =
ℎ 𝐷

𝑘𝑓
                                                        (11) 

The Reynolds number was calculated using the measured mass flow rate from the 

rotameter. The diameter (D) and area (Ao) used in this equation is the diameter of the orifice 

and the area of the orifice diameter respectively.  

𝑅𝑒 =
𝜌 𝑚̇ 𝐷

µ 𝐴𝑜
                                                        (12) 

In the segmented approach, average Nusselt number for induvial segment is 

calculated using the above equation 10 and 11 in the same method, but the heat flux is 

replaced by induvial heat flux to find the induvial Nusselt number. The formula used to 

calculate the induvial heat flux is given by,  
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𝑞𝑖′′
𝑒𝑓𝑓

= 𝑞𝑖′′ −
𝑞𝑙𝑜𝑠𝑠

5∗ 𝐴𝐶𝑉𝑃𝐶
                                                (13) 

𝑖 = 1 𝑡𝑜 5 

The overall average Nusselt number for segmented approach is calculated from the 

overall summation of induvial heat flux given by Eq. 14. 

𝑞′′
𝑒𝑓𝑓

= 𝑞1′′ + 𝑞2′′ + 𝑞3′′ + 𝑞4′′ + 𝑞5′′ −
𝑞𝑙𝑜𝑠𝑠

𝐴𝐶𝑉𝑃𝐶
                  (14) 

4.3. Experimental Results  

The area of impingement surface averaged is represented with dimensions in the 

Fig. 4.8, by reference to the geometrical point of impingement. 

 

Figure 4.8: Experimental test specimen 
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4.3.1. Experimental Result Validation 

The smooth surface impingement, experimental results were compared to the 

values obtained from the correlation (Eqs 1&2) Martin (1977) provided in his summarized 

literature review. The heater plate used in the literature is circular in shape, but in this 

current study the heater surface is a square. The heater radius as a limit of 2.5 to 7.5D. In 

this study, the length between the edge of the plate and the point of impingement is   9.07 

jet diameters. Hence, the average value from the correlation is calculated for a heater radius 

of 7.5 jet diameter and a Prandtl number of 0.713 at atmospheric temperature of 300`Kelvin 

 

Figure 4.9: Comparison of average Nusselt number against literature 

 

Experimental results for normal jet impingement over smooth surface for an H/D 

of 7 jet diameters, ϕ = 90° and for Reynolds number range of 11,000 to 35,000 is shown in 
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other and a maximum error of 14.4% is present between the experimental and the literature 

value at a Reynolds number of 11,000. It is conjecture that the error is due to the difference 

in heater area. Summarizing these result, it can be concluded that the errors obtained for 

experimental results are acceptable.  

4.3.2. Individual Segment Average Results 

The individual segment average results for the two orientation are plotted for the 

segmented CMC simulated surface shown in Fig. 4.4. As discussed, the whole domain is 

broken down into five segments in the main weave direction. Hence, these segments 

fragmented are in the perpendicular direction towards the streamwise direction, for CMC-

II orientation and in parallel direction towards the streamwise direction, for the CMC-I 

orientation. These two orientation of segmentation are shown in Figs 4.10 and 4.11 below. 

 

Figure 4.10: Segmented CMC- I orientation 
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Figure 4.11: Segmented CMC- II orientation 

 

 Individual segment average results for CMC normal impingement (ϕ =90°) case, at 

H/D of 7 and Reynolds number of 11,000 to 35,000 are shown in Fig. 4.12. The normal 

impingement case (CMC- N) is tested in the segmented CMC-II orientation. As expected, 

segmented average Nusselt number increases with the increase in Reynold number. The 

trend of local values remains the same on either side of point of impingement, and the 

change in Nusselt number with Reynolds number is higher in the stagnation region and 

consecutively decreases in the wall jet region.  
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Figure 4.12: CMC- N (ϕ =90°) impingement case, individual segment average Nusselt 

number 

 

 Similarly, segmented average results for a CMC-I oblique jet impingement at a H/D 

of 7, ϕ =90° and for a Reynolds number range of 11,000 to 35,000 are show in Fig. 4.13 

below. The segmented average results for this CMC-I impingement case is in stream wise 

direction (X/D). CFD results from local plot for a CMC-I in Fig.  3.7, showed the formation 

of secondary peak at R/D of 4.1 jet diameters. This secondary peak causes higher average 

values at a R/D of 3.62, which can be observed in the figure. Average heat transfer rates in 

downstream side is comparatively higher than the value in upstream side, due to the 

secondary peak in the downstream direction. This increase claims that, there are higher 

turbulence level in downstream direction than the upstream direction. 
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Figure 4.13: CMC- I impingement case, individual segment average Nusselt number 

 

Figure 4.14: CMC- II impingement case, individual segment average Nusselt number 

 

Figure. 4.14, represents the average results for a CMC- II oblique impingement case 

at a H/D of 7, ϕ =45° and for a Reynolds number range of 11,000 to 35,000. These results 

are plotted in the spanwise wise direction (Y/D); therefore, distribution of local heat 
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transfer rates is uniform on either side of the jet impingement point. Local values on the 

right is slightly higher than the values on the left, this can be caused by uncertainty or the 

position of geometrical point of impingement or both. 

 To compare the effects of waviness on local average Nusselt number, local values 

for CMC-I, CMC-II and CMC-N for a Reynolds number of 35,000 are shown in Fig. 4.15. 

The experimental parameters are H/D of 7, for CMC-I and CMC-II angle of jet 

impingement of ϕ =45° and CMC-N is normal jet impingement (ϕ =90°). Due to difference 

in segmenting orientation about the streamwise direction for CMC-I and CMC-II, 

segmented average results cannot be compared. Hence, CMC-N is used as a baseline for 

both the orientations. Comparing CMC-I and CMC- N, stagnation region average result 

show 35% higher heat transfer rates for CMC- N. For CMC-II and CMC-N, CMC-N shows 

26.9% higher average result than CMC-I. CMC-N performs better than CMC-I and CMC-

II because local values are distributed equally on downstream and upstream of the flow, 

whereas for CMC-I and CMC-II, it is oblique impingement with the secondary peak in the 

downstream direction. This results in higher heat transfer rates in downstream direction but 

in this study, only a part of this area is considered to average local Nusselt number due to 

dimension constraints.  
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Figure 4.15: Comparison of pseudo average Nusselt number at Re = 35,000 

 

4.3.3. Area-Averaged Nusselt Number 

Comparing the effect of CMC over a smooth surface for a normal impingement 

case (ϕ =90°) at H/D of 7D and Reynolds number range of 11,000 to 35,000. The Fig. 4.16 

shows the average Nusselt number for the range of Reynolds number tested. It can be 

observed that there is an increase in Nusselt number for the CMC surface. This increase in 

Nusselt number is proportional to the increase in Reynolds number. The maximum 

percentage change is 12.5% for Reynolds number of 35,000, but still in the uncertainty 

band of the experiment. The segmented experimental results are very close to non-

segmented experimental results as expected. The maximum error between segmented and 

non-segmented result is equal to 2.9%, which is less than the uncertainty of the experiment. 
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Figure 4.16: Comparison of area averaged Nu for normal (ϕ = 90°) impingement case 

 

Area averaged experimental results for an oblique jet impingement on a CMC 

surface are shown in Fig. 4.17. The average Nusselt number for various impingement cases 

are plotted for their respective Reynolds number. The parameters for these results are H/D 

of 7, ϕ = 45° and a Reynolds number range of 11,000 to 35,000. Comparing CMC-I and 

CMC- II orientation results, CMC-II orientation augments heat transfer rates further than 

the CMC- I orientation. The increase in Nusselt number is in the range of 10.8-14.9%. This 

increase in Nusselt is proportional to the increase in Reynolds number. This contradicts the 

average experimental results of Ricklick (2015) discussed in the literature. This is because 

the CMC surface simulated in this study is high resolution smooth curvature surface as 

compared to the low-resolution 3D printed surface used by Ricklick. Another factor 

contributing to this difference is the area over which the Nusselt number is averaged. The 

literature considers larger area in the downhill side, and in this study, equal areas on the 

uphill and downhill direction are considered to determine average result. As the local 
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Nusselt number in the downhill direction is always higher than the local values in the uphill 

direction, these experimental values are less than the average values of literature (Ricklick).  

Comparing smooth surface and CMC surface results, smooth surface is performing 

better than the CMC-I orientation, and CMC-II orientation is leading the smooth surface 

results marginally in heat transfer rates. Although there is an increase in Nusselt number in 

the range of 15%, this is within the experimental uncertainty.  

 

Figure 4.17: Comparison of area averaged Nusselt number at ϕ = 45° 

 

To determine the effect of segmented and non-segmented CMC surface, area 

averaged Nusselt numbers for these cases are plotted in the Fig. 4.18 at H/D of 7 and ϕ = 

45°. Results show that the segment average values closely match the non-segmented results 

with a maximum error of 8%, and this error lies within the uncertainty band of the 

experiment. 
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Figure 4.18: Comparison of average Nu for segmented and non-segmented CMC surface 

at ϕ = 45° 
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5. Experimental Result Benchmarking Study 

5.1. Computational Setup 

The computational domain was setup matching the current experimental test 

parameters. The domain was setup like the previous approach discussed in the jet 

impingement literature benchmarking study (Section 3) and with the same mesh 

characteristics. Hence the mesh generated, produces meh independent results. The domain 

of the solid sCMC represented in this study is smaller in length as shown in Fig. 4.8. In this 

setup, the bottom wall is given a constant heat source instead of the constant temperature, 

matching the condition of the experimental methodology. The physical properties of this 

domain are listed in the table 5.1. Data reduction was carried out using the same procedure 

discussed in the previous benchmark study 

Table 5.1: Physical Properties of the mesh domain 

Description Values 

Atmospheric temperature (K) T∞ = 300 

Atmospheric pressure (kgm-1s-2) P∞ = 101325 

Density of air (kgm-3) ρ = 1.18415  

Dynamic viscosity of air (kgm-1s-1) µ = 1.855 X 10-5 

Jet diameter (m)  D = 0.007 

Non-dimensional nozzle to plate distance H/D = 7 

Heat flux at bottom wall (W) q = 50 

Temperature of impinging jet (K) Tj = 300 

Thermal conductivity of fluid air (Wm-1K-1) kf = 0.0260305 

Thermal conductivity of solid (Wm-1K-1) kAl = 167 
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5.2. CFD Results 

Segmented average and area averaged numerical results are benchmarked against 

the experimental results. The region used for the area averaged for the area-averaged results 

is shown in Fig. 4.8.  

5.2.1. CFD Results Validation 

The smooth surface impingement, computational results were compared to the 

values obtained from the correlation (equation 1&2) Martin (1977) provided in his 

summarized literature review. The average value from the correlation is calculated for a 

heater radius of 7.5 jet diameter and a Prandtl number of 0.713 at atmospheric temperature 

of 300 Kelvin. Similarly, CFD local Nusselt numbers for the area of heater radius are 

averaged and compared. Computational and literature results for normal jet impingement 

over smooth surface is shown in Fig. 5.1 below, for a H/D of 7 jet diameters, ϕ = 90° and 

for Reynolds number range of 11,000 to 35,000. Comparing computational and literature 

results, the average Nusselt is predicted well by the v2f turbulence model with a maximum 

error of 19.6% at Reynolds number of 35,000. This error is acceptable since it is close to 

the literature result uncertainty of ±18%. Hence the following computational results are 

considered acceptable.  
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Figure 5.1: Average Nusselt number plot for computational result validation, at H/D= 7 

and ϕ = 90° 

 

5.2.2. Benchmarking Area Average Nusselt Number 

A comparison of area averaged Nusselt number for computational and experimental 

results for CMC- I, CMC- II and smooth surface impingement cases are shown in Fig. 5.2. 

The test parameters are H/D of 7, oblique angle of impingement of 45° and Reynolds 

number range of 11,000 to 35,000. CFD results show no considerable change in average 

Nusselt for the three cases tested. The v2f turbulence model is not able differentiate between 

the CMC and smooth surface, as discussed in the local Nusselt number benchmarking study 

(section 3). This turbulence model is not able match the magnitude of Nusselt number but 

captures the trend. Average Nusselt predicted by the CFD for the smooth surface 

impingement case is in good match with the experimental values, and the error is in the 
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range of 14- 17%. 

 

Figure 5.2: Benchmarking area averaged Nusselt number, at H/D= 7 and ϕ = 90° 

5.2.3. Benchmarking Individual Segment Average Results 

Comparing individual segment average results for CMC- I orientation, average 

results from simulation is averaged on each area segment matching the experimental 

method of averaging technique. Experiment and computational segment average results are 

shown in Fig. 5.3 for a H/D of 7, ϕ = 45° and Reynolds number range of 11,000 to 35,000. 

Comparing local average result, CFD simulation tend to under predict the average values, 

the error in predicting average values is higher in wall jet region. The average result of the 

segment containing the secondary peak (R/D = 3.6), CFD result show this average value is 
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error in stagnation region local average value, is in the range of 34.36% to 29.6%. 

 

Figure 5.3: Benchmarking segmented averaged Nusselt number for CMC-I case, at H/D= 

7 and ϕ = 90° 

 

Similarly, comparing individual segment average results for CMC- II orientation, 

for a H/D of 7, ϕ = 45° and Reynolds number range of 11,000 to 35,000, shown in the Fig. 

5.4. CFD results show that the average results for the end segments are in good match with 

experimental values. The error between the experimental and computational results is 

highest at the stagnation region segment. The error increases with the increase in Reynolds 

number, and the maximum percentage error 35% is calculated in this case study.  
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Figure 5.4: Benchmarking segmented averaged Nusselt number for CMC-I case, at H/D= 

7 and ϕ = 90° 
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6. Conclusion 

The effect of CMC roughness on the heat transfer characteristic is studied 

experimentally and computationally, for Reynolds number 11,000, 23,000 and 35,000. 

Two types of jet impingement orientation; CMC- I and CMC- II were tested and were 

found that the heat transfer rates were dependent on the type of orientation. Experimental 

results showed the CMC surface caused a maximum augmentation in average heat transfer 

rates of 13%, however this lies within uncertainty band of the experiment. Hence, the 

effect of CMC waviness on average heat transfer rates can be neglected. The individual 

segment average result showed the presence of secondary peak in the downhill direction. 

A constant wall temperature, segmented approach was carried to find the pseudo-

local heat transfer rates and area average Nusselt number. Individual segment average 

Nusselt number at each segment is plotted for CMC- I and CMC- II cases, for the range of 

Reynolds number tested. The overall area averaged Nusselt numbers for the segmented 

approach matched the non-segmented experimental results with a maximum error of 8%.    

For the literature (Ricklick, 2015) bench marking study, the v2f turbulence model 

used, predicted the stagnation Nusselt number close to the literature values for the flat plate 

impingement case, and the Nusselt number decays at a faster rate than the literature values 

away from the stagnation region. Computational results for the CMC impingement case 

showed that the model produced local Nusselt number data following the same trend as 

that of the literature result. But the error in predicting the stagnation Nusselt number is 

higher than the smooth plate impingement case. The position of the secondary peak is 

estimated to good values. But the error in estimating the Nusselt number increases along 

the wall jet region. In case of CMC- II impingement case, this turbulence model fails to 
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predict smaller peaks.  

The turbulence model predicts the area averaged Nusselt number best for a smooth 

impingement case with an error in range of 17.87- 34.9% and in case of CMC impingement, 

the error is in the range of 30-49%. But, the high uncertainty of the literature experiment 

results should also be considered for this large error. It can be concluded that, the v2f 

turbulence model is good in predicting the impingement heat transfer rates for smooth wall 

air jet impingement. Whereas for a CMC surface case, this model fails to account the small 

rough features in augmentation of Nusselt number.  

 For the current experimental benchmarking study, the v2f turbulence model 

can predict the area average Nusselt number close to the experimental values for smooth 

surface impingement case, and the error is in the range of 14-17%. But this turbulence 

model is not able to distinguish between the CMC and smooth surface. In case of individual 

segment average results, the Nusselt numbers are predicted well by the CFD near the wall 

jet region, and error is maximum in the stagnation region.
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7. Recommendations 

Future work will include investigation of the flow features and visualization of this 

study. Also, the effect of the geometrical point of impingement should be quantified and 

additional CMC parameters should be investigated, such as fiber layout, coating effects, 

and manufacturing effect. Augmentation of heat transfer rate by the CMC surface was 

observed but could not be claimed because the level of enhancement percentage was under 

the uncertainty band of the experiment. The percentage increase in Nusselt number 

increased with the increase in Reynolds number, hence higher Reynolds number ranges 

should be tested. 

In the numerical approach, v2f turbulence model has proved its effectiveness for 

smooth surface impingement cases but failed to capture the level of augmentation for the 

CMC impingement case. Hence, other turbulence models like LES and DNS should be 

evaluated to capture the augmentation over the CMC weave surface. 
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