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ABSTRACT

We use the new ZZ Ceti stars (hydrogen-atmosphere white dwarf variables; DAVs) discovered within the
Sloan Digital Sky Survey (Mukadam et al. 2004) to redefine the empirical ZZ Ceti instability strip. This is the
first time since the discovery of white dwarf variables in 1968 that we have a homogeneous set of spectra
acquired using the same instrument on the same telescope, and with consistent data reductions, for a statistically
significant sample of ZZ Ceti stars. The homogeneity of the spectra reduces the scatter in the spectroscopic
temperatures, and we find a narrow instability strip of width �950 K, from 10,850 to 11,800 K. We question the
purity of the DAV instability strip, as we find several nonvariables within. We present our best fit for the red edge
and our constraint for the blue edge of the instability strip, determined using a statistical approach.

Subject headinggs: stars: oscillations — stars: variables: other — white dwarfs

1. INTRODUCTION

Global pulsations in white dwarf stars provide the only
current systematic way to study their interiors. Hydrogen-
atmosphere white dwarfs (DAs) exhibit nonradial g-mode
pulsations and are known as DA variables (DAVs) or ZZ Ceti
stars. Bergeron et al. (1995, 2004) and Koester & Allard
(2000) find these pulsators confined to the range 11,000–
12,500 K for log g � 8.

During the course of a 15 month search, Mukadam et al.
(2004, hereafter Paper I ) discovered 35 new ZZ Ceti stars
within the Sloan Digital Sky Survey (SDSS). This is the first
time in the history of white dwarf asteroseismology that we
have a statistically significant homogeneous set of ZZ Ceti
spectra, acquired entirely with the same detection system,
namely, the SDSS spectrograph on the 2.5 m telescope at
Apache Point Observatory. All the spectra have been reduced
and analyzed consistently, using the same set of model
atmospheres and fitting algorithms, including the observed
photometric colors (see Kleinman et al. 2004). This homo-
geneity should reduce the relative scatter of the variables in
the TeA–log g plane and possibly allow us to see emerging
new features. The sample size of known DAVs is now almost
twice as large as it was at the time of the last characterization
of the instability strip by Bergeron et al. (2004). However, we
do not include the previously known DAVs in our analysis
with the exception of G238-53, as these pulsators do not have
SDSS spectra and would only serve to reduce the homoge-
neity of our sample.

We list the TeA and log g values of all the variables and
nonvariables we discovered within the SDSS data in Paper I,
along with their internal uncertainties. Note that we do not
consider WD 2350�0054 in this paper, as it may be a unique
pulsator; it shows pulsation periods and pulse shapes charac-
teristic of the hot DAV stars, while the SDSS temperature
determination places it below the cool edge of the instability
strip. We focus on the general trends of the majority of the

DAVs, and hence a discussion of WD 2350�0054 is postponed
to a future date. We do not include WD 1443�0054 either, as
its temperature and log g determinations are unreliable be-
cause of a missing portion in its SDSS spectrum. We include
G238-53, the only previously known ZZ Ceti star with a pub-
lished SDSS spectrum.

2. EMPIRICAL INSTABILITY STRIP

We show the empirical SDSS instability strip in Figure 1,
as determined by 30 new ZZ Ceti stars and G238-53. We plot
histograms of the observed variables as a function of temper-
ature and log g, as well as weighted histograms (see x 2.2) for
the nonvariables (not observed to vary; NOVs). Figure 1 has
two striking features: a narrow strip of width 950 K and non-
variable DA white dwarfs within the instability strip.
Pulsations are believed to be an evolutionary effect in

otherwise normal white dwarfs (Robinson 1979; Fontaine
et al. 1985, 2003; Bergeron et al. 2004). Nonvariables in the
middle of the strip bring doubt to this semiempirical premise,
even if we use the uncertainties in temperature to justify the
nonvariables close to the edges.
We also note that the DAV distribution appears to be non-

uniform across the strip. The features of this plot are influ-
enced by various factors, such as biases in candidate selection,
nonuniform detection efficiency in the TeA–log g plane, and
uncertainties, as well as systematic effects in spectroscopic
temperature and log g determinations. We address these issues
and their effects on the DAV distribution in the next few
subsections.

2.1. Biases in Candidate Selection

We selected SDSS DAV candidates for high-speed pho-
tometry from those spectroscopically identified DA white
dwarfs that lie in the temperature range 11,000–12,500 K.
These temperature fits are derived by our SDSS collabora-
tors, using the spectral fitting technique outlined in Kleinman
et al. (2004). Paper I gives a discussion of other candidate
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selection methods used in our search for ZZ Ceti stars prior
to the spectral fitting technique.

Our various science goals lead to some biases in selecting
DAV candidates for observation. The hot DAV (hDAV) stars
exhibit extreme amplitude and frequency stability (e.g., Kepler
et al. 2000; Mukadam et al. 2003). We plan to search for
reflex motion caused by orbiting planets around such stable
pulsators (e.g., Kepler et al. 1991; Mukadam et al. 2001;
Winget et al. 2003). These stable clocks drift at their cooling
rate; measuring the drift rate in the absence of orbital
companions allows us to calibrate our evolutionary models.
These models are useful in determining ages of the Galactic
disk and halo using white dwarfs as chronometers (e.g.,
Winget et al. 1987; Hansen et al. 2002). Therefore, we prefer-
entially choose to observe hDAV candidates in the range
11,700–12,300 K to increase the sample of known stable pul-
sators with both the above objectives in mind. This bias is
partially compensated for, as hDAVs are harder to find (see
x 2.2).

We also preferentially observe DAV candidates of ex-
treme masses. Low-mass (log g � 7:6) DAVs could well be

helium-core white dwarfs; pulsating He-core white dwarfs
should allow us to probe their equation of state. High-mass
(log g � 8:5) DAVs are potentially crystallized (Winget et al.
1997; Montgomery & Winget 1999), providing a test of the
theory of crystallization in stellar plasma. Metcalfe et al.
(2004) present strong evidence that the massive DAV BPM
37093 is 90% crystallized.

The distribution of chosen DAV candidates also depends on
the distribution of available DAV candidates. We have an ad-
ditional bias because of the SDSS criteria in choosing candi-
dates for spectroscopy. But a histogram of the available DAV
candidates is consistent with a random distribution and does
not reflect any systematic effects.

The nonuniform nature of the DAV distribution does not
appear to be a candidate selection effect. However, we are in
the domain of small-number statistics, since we observed only
four DAV candidates in the range 11,350–11,500 K. Of these,
two are massive and consequently expected to be low-
amplitude pulsators (see x 2.2), making detection difficult.
Our data are suggestive of a bimodal DAV distribution in
temperature. We hope to investigate this issue further by

Fig. 1.—Distribution of new SDSS DAVs and NOVs (Mukadam et al. 2004) as a function of temperature and log g. We also include G238-53 in this plot. The
narrow width of the instability strip and the presence of nonvariables within form the two prominent features of this figure. We also note the paucity of DAVs in the
middle of the instability strip.
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observing additional DAV candidates in the range 11,350–
11,500 K with our collaborators.

2.2. Nonuniform Detection Efficiency

The hDAVs show relatively few pulsation modes, with low
amplitudes (�0.1%–3%) and periods around 100–300 s. The
cooler DAVs (cDAVs) typically show longer periods (around
600–1000 s), larger amplitudes (up to 30%), and greater
amplitude variability (Kleinman et al. 1998). Massive pulsa-
tors show low amplitudes as a result of their high gravity
(log g � 8:6). These distinct trends of the pulsation periods
and amplitudes with temperature and log g imply that the
detection efficiency must also be a function of TeA and log g.
The detection efficiency not only varies in the TeA–log g
plane, but is also dependent on weather conditions and the
magnitude of the DAV candidate. Furthermore, a ZZ Ceti star
may have closely spaced modes or multiplet structure, both of
which cause beating effects. Some of the nonvariables in the
instability strip could well be pulsators that were in the low-
amplitude phase of their beating cycle during the observing
run. McGraw (1977) claimed BPM 37093 to be nonvariable,
but Kanaan et al. (1992) showed that it is a low-amplitude
variable with evident beating. Dolez et al. (1991) claimed the
nonvariability limit of G30-20 to be a few millimagnitudes,1

but Mukadam et al. (2002) found G30-20 to be a beating
variable with an amplitude of 13.8 mma.2

In order to address these issues systematically, we simulate
light curves of real pulsators for different conditions and
compute the resulting Fourier transform (FT) to see whether
the signal is detectable above noise. We utilize the real periods
and amplitudes, with randomly chosen phases ( to sample the
beat period), to simulate 2 hr long light curves.3 We indepen-
dently shuffle the magnitudes and average seeing conditions
of real data on the DAVs. This ensures a realistic distribu-

tion for both these parameters. We randomly select a mag-
nitude and seeing value from these distributions to simulate
white noise, the amplitude of which is determined using a
noise table based on real data. We compute an FT of the light
curve and check whether the star can be identified as a
pulsator or whether the signal was swamped by noise. We
repeat this procedure 100 times for each DAV for different
phases, magnitudes, and seeing values. Note that our noise
simulation is not completely realistic, as it does not include
effects due to variable seeing, gaps in the data due to clouds,
and low-frequency atmospheric noise. However, it does help
us understand how the detection efficiency changes in the
TeA–log g plane.
We find that we are able to rediscover almost all of the

average and low-mass cDAVs in the hundred simulated at-
tempts. The high-mass (log g � 8:6) DAVs with a substantially
lower amplitude are recovered with a �70% success rate. This
implies that nonvariables in Figure 1 in the region log g � 8:6
have a 30% chance of being low-amplitude variables. At the
hot end of the instability strip, both low pulsation amplitude
and beating can cause us to miss even the average or low-mass
hDAVs 35 out of 100 times.
Table 1 lists the nonvariables in the instability strip along

with their temperature, log g, magnitude, and number of ob-
serving runs. The number after the NOV designation indicates
the best nonvariability limit in millimodulation amplitudes.
Based on the simulations, we assign each nonvariable a weight
based on our estimate of the probability that the observed
candidate is a genuine nonvariable, and not a low-amplitude or
beating pulsator. We use the nonvariability limits to assign the
weights 0.98, 0.95, 0.90, 0.85, 0.80, 0.70, and 0.60, for NOV1,
NOV2, NOV3, NOV4, NOV5, NOV6, and NOV7 or higher,
respectively. If the NOV is massive (log g � 8:6), then we
additionally multiply its weight by a factor of 0.7. If the NOV
is close to the blue edge of the strip, then we multiply by a
factor of 0.65 to account for low-amplitude and/or beating
pulsators. However, if the NOV has been observed multiple
times, then it is unlikely to have been missed as a result of
beating. In such a case, we multiply its weight only by a factor
of 0.8 instead of 0.65, to allow for a possible low-amplitude

1 One millimagnitude (mmag) equals 0.1086% change in intensity.
2 One millimodulation amplitude (mma) corresponds to 0.1% change in

intensity.
3 We generally observe the DAV candidates for 2 hr at a time when

searching for new variables.

TABLE 1

Nonvariables in the ZZ Ceti Instability Strip

Object Limit Obs. Runs

SDSS TeA
(K) SDSS log g g Weight

WD 0037+0031 ......... NOV5 2 10960 � 050 8.41 � 0.03 17.5 0.80

WD 0050�0023 ........ NOV6 2 11490 � 090 8.98 � 0.03 18.8 0.50

WD 0222�0100 ........ NOV3 4 12060 � 120 8.12 � 0.05 18.0 0.60

WD 0303�0808 ........ NOV4 2 11400 � 110 8.49 � 0.06 18.8 0.85

WD 0345�0036 ........ NOV5 3 11430 � 150 7.76 � 0.09 19.0 0.80

WD 0747+2503 ......... NOV3 3 11050 � 110 7.93 � 0.08 18.4 0.90

WD 0853+0005 ......... NOV4 2 11750 � 110 8.11 � 0.06 18.2 0.55

WD 1031+6122 ......... NOV4 2 11480 � 180 7.68 � 0.11 18.7 0.85

WD 1136�0136......... NOV2 1 11710 � 070 7.96 � 0.04 17.8 0.62

WD 1337+0104 ......... NOV4 2 11830 � 210 8.39 � 0.11 18.6 0.60

WD 1338�0023 ........ NOV4 1 11650 � 090 8.08 � 0.05 17.1 0.85

WD 1342�0159 ........ NOV4 2 11320 � 160 8.42 � 0.09 18.8 0.85

WD 1345+0328 ......... NOV6 1 11620 � 140 7.80 � 0.08 18.6 0.70

WD 1432+0146 ......... NOV5 1 11290 � 070 8.23 � 0.06 17.5 0.80

WD 1443�0006 ........ NOV5 1 11960 � 150 7.87 � 0.07 18.7 0.80

WD 1503�0052 ........ NOV4 3 11600 � 130 8.21 � 0.07 18.4 0.85

WD 1658+3638 ......... NOV4 4 11110 � 120 8.36 � 0.09 19.2 0.85

WD 1726+5331 ......... NOV7 1 11000 � 110 8.23 � 0.08 18.8 0.60
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variable. We utilize these weights in x 6 to compute best-fit red
and blue edges.

2.3. Uncertainties in Temperature and log g Determinations

The true external uncertainties in the SDSS TeA determi-
nations are likely to be larger than listed in Paper I. We expect
that the external uncertainties are of the order of 300 K.
However, the uncertainty that is relevant in determining the
width and purity of the instability strip defined by a homo-
geneous ensemble is the internal uncertainty.

The low signal-to-noise ratio (S/N) of the blue end of the
SDSS spectra reduces the reliability of the log g values. The H8
and H9 lines depend mostly on gravity, because neighboring
atoms predominantly affect higher energy levels (Hummer &
Mihalas 1970), and their density depends on log g. The ex-
ternal uncertainties in log g for our ensemble may be as high
as 0.1, twice the estimated uncertainty for the Bergeron et al.
(2004) sample. We find an average log g of ’8.10 for our
sample of 31 objects, while the 36 objects in Bergeron et al.
(2004) average at’8.11. G238-53 is common to both samples;
Bergeron et al. (2004) derive TeA ¼ 11; 890 K and log g ¼
7:91, while the SDSS determination places G238-53 at TeA ¼
11820 � 50 and log g ¼ 8:02 � 0:02. The temperature values
agree within 1 � uncertainties. Temperature is mainly deter-
mined by the continuum and the H� , H�, and H� lines; the low
S/N at the blue end of the SDSS spectra has a reduced effect on
temperature determinations. The well-calibrated continuum,
extending from 3800 to 9200 8 , provides an accurate tem-
perature determination.

The gradual change in mean mass as a function of tem-
perature for the SDSS DA white dwarf fits is addressed in
Kleinman et al. (2004), and Figure 7 of their paper shows a
quantitative measure of this systematic effect. The increase
in log g across the width of the instability strip is only �0.02

and implies that our determinations of cDAV masses are neg-
ligibly higher. These systematic effects are small in the range
of the ZZ Ceti instability strip and cannot produce either the
narrow width or the impurity of the observed strip.

We conduct a simple Monte Carlo simulation to estimate
the internal TeA uncertainties of our ensemble. Using the ob-
served pulsation characteristics, we can separate the DAVs
into two classes, hDAVs and cDAVs (see x 2.2). We show
the observed distribution of the hDAVs and cDAVs in the bot-
tom panel of Figure 2. These distributions are distinct, except
for three objects. On the basis of the empirical picture, we
conceive that the underlying DAV distribution may look sim-
ilar to that shown in the top panel of Figure 2. We perform a
Monte Carlo simulation, drawing hDAVs and cDAVs ran-
domly from the expected DAV distribution and using Gaussian
uncertainties with � ¼ 300 K. We show the resulting distri-
bution in the second panel; the large uncertainties cause sig-
nificant overlap between the cDAVs and hDAVs, swamping
the central gap. We perform a similar simulation with � ¼
200 K (third panel), and it compares well with the observed
distribution, considering the small numbers of the empirical
distribution. This suggests that the internal uncertainties in
effective temperature for our ensemble are � � 200 K per ob-
ject, provided that we believe that the hDAVs and cDAVs
each span a range of at least 300 K. Note that the internal
uncertainties for a few individual objects may be as large as
250–300 K.

3. PROBING THE NONUNIFORM DAV DISTRIBUTION
USING PULSATION PERIODS

The mean or dominant period of a pulsator is an indicator
of its effective temperature (see x 2.2). This asteroseismo-
logical relation is not highly sensitive, but it provides a
technique independent of spectroscopy to study the DAV tem-
perature distribution. We show the distribution of the domi-
nant periods of the SDSS DAVs in Figure 3. The top right

Fig. 2.—We choose hDAVs and cDAVs from the distributions shown in the
top panel and use a Gaussian error function with � ¼ 300 K to compute the
distributions shown in the second panel. We also similarly determine a DAV
distribution with internal uncertainties of order 200 K, shown in the third
panel. Comparing the empirical DAV distribution, shown in the bottom panel,
to the synthetic computations, we conclude that the average internal uncer-
tainty for our ensemble is � � 200 K.

Fig. 3.—Period distribution of the SDSS DAVs as a function of tempera-
ture. The top left panel exhibits two distinct clumps consisting of the short-
period hDAVs and the long-period cDAVs. The dominant period of a DAV is a
seismological temperature indicator, and the histogram shown in the top right
panel suggests a bimodal distribution.
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panel in Figure 3 shows the number of DAVs per period
interval and is suggestive of a bimodal distribution; this
increases the likelihood that the dearth of DAVs near the
center of the strip is real.4

4. QUESTIONING THE IMPURITY OF THE
INSTABILITY STRIP

The presence of nonvariables in the instability strip implies
that not all DA white dwarfs evolve in the same way. This
notion has a severe implication: decoding the inner structure
of a DAV will no longer imply that we can use the results
toward understanding DA white dwarfs in general. Hence,
we question our findings and conduct simulations to verify
our results. Although we estimate the internal TeA uncertain-
ties to be at most 200 K in x 2.3, we conservatively assume
� ¼ 300 K for all subsequent calculations.

The SDSS spectra do not show any evidence of a binary
companion for all the nonvariables within the instability strip.
In addition, we used D. Koester’s model atmospheres to as-
certain that the SDSS algorithm had chosen a solution consis-
tent with the photometric colors (u� g, g� r) in every case.

We now conduct a Monte Carlo simulation, assuming a
pure instability strip enclosed by nonvariables, as shown in the
top panel of Figure 4. Note that we have not included a log g
dependence in our model, as we expect it to be a smaller effect
than what we are about to demonstrate. We choose non-
variables from outside the strip and add uncertainties chosen
randomly from a Gaussian error distribution with � ¼ 300 K

to determine the NOV distribution shown in the middle panel.
We find that although nonvariables leak into the strip, they are
found mostly at the outer edges, and their number tails off
within the strip. The observed NOV distribution (bottom
panel) does not show any signs of tailing off within the in-
stability strip. Rather, it displays the same number of non-
variables at the edges as in the center of the strip. This
suggests that the instability strip is impure and that all the
NOVs within the instability strip did not leak in because of
large TeA uncertainties. We carried out these simulations sev-
eral times to verify these results.
We compute the likelihood that the instability strip is pure

based on the following two criteria. There are two ways in
which a nonvariable can disappear from the instability strip:
subsequent observations show it is a ( low-amplitude) vari-
able or the internal uncertainties in TeA prove to be large
enough to allow the possibility that it may have leaked into
the strip. Table 1 lists our estimates of the probabilities that
the NOVs found within the strip are genuine nonvariables.
The chance that NOVs may have leaked into the strip be-
cause of large internal uncertainties � ¼ 300 K are 0.35 for
WD 0037+0031, 0.18 for WD 0050�0023, 0.13 for WD
0303�0808, 0.04 for WD 0345�0036, 0.25 for WD 0747+
2503, 0.42 for WD 0853+0005, 0.15 for WD 1031+6122,
0.38 for WD 1136�0136, 0.31 for WD 1338�0023, 0.11 for
WD 1342�0159, 0.28 for WD 1345+0328, 0.13 for WD
1432+0146, 0.25 for WD 1503�0052, 0.20 for WD 1658+
3638, and 0.31 for WD 1726+5331. The probability that
each of the above nonvariables disappears from the instability
strip is then 0.48, 0.59, 0.26, 0.23, 0.33, 0.68, 0.28, 0.62, 0.41,
0.24, 0.50, 0.30, 0.36, 0.32, and 0.59, respectively.
Three or four of the above nonvariables may have an in-

clination angle that reduces the observed amplitude below the
detection threshold. Instead of calculating various permuta-
tions, we evaluate the likelihood of the worst-case scenario.
Let four NOVs that have the least chance of disappearing
from the instability strip be the ones that have an unsuitable
inclination angle for observing pulsations. In that case, the
chance that the instability strip is pure is 0.004%. The im-
purity of the instability strip suggests that parameters other
than just the effective temperature and log g play a crucial
role in deciding the fate of a DA white dwarf, i.e., whether it
will pulsate or not.

5. NARROW WIDTH OF THE ZZ CETI STRIP

Computing the width of the instability strip using the ef-
fective temperatures of the hottest and coolest pulsators gives
us a value, independent of our conception of the shape of the
ZZ Ceti strip. Determining whether the blue and red edges
continue to be linear for very high (log g � 8:5) or very low
(log g � 7:7) masses is currently not possible with either our
sample or the Bergeron et al. (2004) sample. The width of the
instability strip calculated from the empirical edges at different
values of log g involves additional uncertainties from our
linear visualization of the edges.
The empirical SDSS DAV instability strip spans from the

hottest objects, G238-53 and WD 0825+4119, both at TeA ¼
11; 820�170 K, to the coolest object, WD 1732+5905, at
10; 860�100 K. This span of 960� 200 K is considerably
smaller than the 1500 K width in the literature (Bergeron et al.
1995; Koester & Allard 2000). The hottest pulsator in the
Bergeron et al. (2004) sample is G226-29, at 12,460 K, and the
coolest pulsators are G30-20 and BPM 24754, at 11,070 K.

4 We made a similar plot using the dominant periods for the 36 previously
known DAVs, but did not find any evidence for a bimodal distribution. De-
termining the dominant period of the 36 ZZ Ceti stars in the literature proved
to be difficult and quite inhomogeneous compared to our own data on the
SDSS DAVs.

Fig. 4.—Assuming a pure instability strip as shown in the top panel, we use
a Monte Carlo simulation, assuming a Gaussian distribution for the internal
uncertainties with � ¼ 300 K, to determine the expected distribution for
nonvariables within the strip. The observed NOV distribution is flat and shows
no signs of tailing off within the strip. The observed distribution shows the
same number of nonvariables at the edges as in the center of the instability
strip.
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The extent of the instability strip for the Bergeron et al. (2004)
sample is then �1400 K.

The drift rates of the stable ZZ Ceti pulsators give us a
means of measuring their cooling rates (e.g., Kepler et al.
2000; Mukadam et al. 2003). Our present evolutionary cool-
ing rates from such pulsators suggest that given a width of
950 K, a 0.6 M� ZZ Ceti star may spend �108 yr traversing
the instability strip. This agrees with theoretical calculations
by Wood (1995) and Bradley et al. (1992). The narrow width
constrains our understanding of the evolution of ZZ Ceti stars.

6. EMPIRICAL BLUE AND RED EDGES

We draw blue and red edges around the DAV distribution
that enclose all of the variables. This is shown in Figure 5 by
the solid line for the blue edge and the dash-dotted line for the
red edge. These edges also include nonvariables within the
instability strip.

We now demonstrate an innovative statistical approach to
find the best-fit blue and red edges that maximize the number of
variables and minimize the number of nonvariables enclosed
within the strip. To the best of our knowledge, no standard

technique can be used to solve this interesting statistical prob-
lem. Our statistical approach has two advantages: we are
accounting for the uncertainties in temperature and log g values
and we are utilizing most of the variables and nonvariables in
our determination, rather than just a handful close to the edge.

This problem has essentially two independent sources of
uncertainties: the uncertainties in temperature and log g that
shift the location of a star in the TeA–log g plane and the
uncertainty concerning the genuine nature of a nonvariable.
Pulsators masquerading as nonvariables can significantly alter
our determination of the blue and red edges. Hence, we assign
different weights to DAVs and NOVs. Since the DAVs are
confirmed variables, we assign them a unit weight. We use the
nonvariability limit to decide the weight of all the NOVs that
lie outside the empirical ZZ Ceti strip, as in x 2.2, while we
assign the weights listed in Table 1 for NOVs within the in-
stability strip.

6.1. Technique

We construct a grid in TeA and log g space in the respective
ranges 9000–14,000 K and 6.0–10.5 with resolutions of 50 K

Fig. 5.—Statistical determination of the blue and red edges from the homogeneous set of 31 SDSS DAVs. The thick solid line shows the global solution, while the
two dotted lines on either side show the estimated 1 � uncertainty in our determination. Note that the red edge is coincident with one of the dotted lines. Although
our blue edge does not exclude any DAVs, our best-fit red edge does. We present the line shown on the extreme right with dots and dashes as a red edge inclusive of
all DAVs. We also show the empirical blue and red edges from Bergeron et al. (2004) as dashed lines, and the theoretical blue edge from Brassard & Fontaine (1997;
ML2=� ¼ 0:6) for comparison. We show our computations of the theoretical blue and red edges assuming ML2=� ¼ 0:8 convection, based on the convective
driving theory of Wu & Goldreich (1999).
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and 0.05. For each point in the grid, we consider possible blue
and red edges that vary in inclination angle relative to the
temperature axis from 15� to 165� by half a degree with each
successive iteration.

For each point of the grid, and for each possible blue edge,
we compute a net count as follows: DAVs on the cooler side
of the edge count as +1 each and on the hotter side as �1
each. NOVs on the hotter side of the edge count as +w and
on the cooler side as �w each, where w is the weight of the
corresponding NOV. To determine the best blue edge, we
consider all DAVs and NOVs that satisfy TeA � 11; 500 K.
This ensures that the NOVs close to and beyond the red edge
do not influence the determination of the blue edge. If the
DAVor NOV is within 3 � of the edge, then we determine the
net chance that it lies on the hot or cool side of the edge,
assuming a Gaussian uncertainty distribution. We multiply
this chance with the count for that object, before adding it
to the total count. An effect of this choice is that the best edge
is determined by the global distribution of DAVs and NOVs,
rather than the few close to the edge.

Similarly, we determine the best red edge at each point of
the grid by counting DAVs on the hotter side of the edge as +1
and NOVs on its cooler side as +w, and vice versa. We con-
sider all DAVs and NOVs within the instability strip and
cooler than 11,820 K to factor into the computation of the best
red edge. If the DAV or NOV is within 3 � of the red edge,
then its contribution is a fraction of the above, depending on
the probability that it lies on one side of the edge or the other.

To test our statistical approach, we input the TeA and log g
determinations of the previously known DAVs from Bergeron
et al. (2004) along with the SDSS NOVs. The resulting red
and blue edges are fairly similar to those of Bergeron et al.
(2004), and we attribute most of the difference to using an
independent set of NOVs.5 Figure 5 shows our best-fit for the
red edge and our constraint on the blue edge using our sta-
tistical approach. For the blue edge, we determine (1) the best-
fit equation to be log g ¼ 0:0043TeA � 43:48, (2) the +1 �
equation to be log g ¼ 0:0016TeA � 10:64, and (3) the �1 �
equation to be log g ¼ 0:0037TeA � 36:35. For the red edge, we
determine (1) the best-fit equation to be log g ¼ 0:0010TeA �
3:01 and (2) the +1 � equation to be log g ¼ 0:0012TeA � 4:73.

6.2. Estimatinggthe Uncertainties

The dominant effect that dictates the uncertainties in the
slope (log g dependence) and location (in temperature) of the
edges arises as a result of the unreliable nature of the NOVs.
Are they genuine NOVs or low-amplitude pulsators? Our
simulations in x 2.2 show that we miss 30% of high-mass
pulsators as a result of their low amplitude. We estimate that
this should introduce an uncertainty of order 0.2 in the total
count for both the red and blue edges. The NOVs close to the
blue edge, but within the instability strip, can introduce ad-
ditional uncertainties in our determination. We add these in-
dependent sources of uncertainty in quadrature to obtain an
estimated 1 � uncertainty of 0.6 for the red edge and 0.4 for
the blue edge. We show these as dotted lines in Figure 5. Our
estimates of the 1 � uncertainties clearly show that the red
edge is well constrained , and the slope of the blue edge is not.

Note that we already account for the uncertainties in TeA and
log g in determining the red and blue edges. The unreliability
of these uncertainties contributes toward an uncertainty in the

slope of the edges; this turns out to be a negligible second-
order effect.

6.3. Comparison with Empirical Edgges

We show the empirical blue and red edges from Bergeron
et al. (2004) in Figure 5 for comparison. The slopes of the
red edges from both samples agree within the uncertainties.
But our constraint on the blue edge differs significantly from
that of Bergeron et al. (2004) and suggests that the depen-
dence on mass is less severe.
The mean temperature of our sample is 11,400 K, while the

mean temperature for the Bergeron et al. (2004) sample is
11,630 K. The observed extent of our instability strip defined
by 31 objects spans 10,850–11,800 K, while that of Bergeron
et al. (2004) spans 11,070–12,460 K.6 We can consider these
values to imply a relative shift of �200 K between our sample
and that of Bergeron et al. (2004).
We would also like to point out that our sample is magnitude-

limited and reaches out to g ¼ 19:3. We are effectively sam-
pling a different population of stars, more distant by a factor of
10, from the Bergeron et al. (2004) sample.

6.4. Comparison with Theoretical Edgges

In Figure 5, we show the theoretical blue edge from
Brassard & Fontaine (1997) due to the traditional radiative
driving mechanism; they use an ML2=� ¼ 0:6 prescription
for convection in their equilibrium models. We also show the
blue and red edges that we derive from the convective driving
theory of Wu & Goldreich (Brickhill 1991; Wu 1998; Wu &
Goldreich 1999), assuming ML2=� ¼ 0:8 for convection.
We see that the blue edges of the two theories are essentially

the same and would nearly coincide if the mixing-length param-
eter were tuned. To obtain the red edge of Wu & Goldreich, we
have made the following assumptions: (1) the relative flux vari-
ation at the base of the convection zone is no larger than 50%,
(2) the period of a representative red edge mode is 1000 s, and
(3) the detection limit for intensity variations is 1 mma. Within
this theory, the convection zone attenuates the flux at its base by
a factor of �!�C, where �C is the thermal response time of the
convection zone, so we have adjusted �C such that the surface
amplitude 0:5=(!�C)�10�3, equal to the detection threshold.
The observed distribution of variables and nonvariables

suggests that the mass dependence of the blue edge is less
severe than predicted by the models. Both the slope and the
location of the red edge we calculate are consistent with the
observed variables and nonvariables within the uncertainties.

7. CONCLUSION

Using a statistically significant and truly homogeneous set
of 31 ZZ Ceti spectra, we find a narrow instability strip be-
tween 10,850 and 11,800 K. We also find nonvariables within
the strip and compute the likelihood that the instability strip is
pure to be �0.004%. Obtaining higher S/N spectra of all the
SDSS and non-SDSS DAVs, as well as nonvariables, in the
ZZ Ceti strip is crucial to improving our determination of
the width and edges of the instability strip, and in investi-
gating the purity of the instability strip. This should help
constrain our understanding of pulsations in ZZ Ceti stars.
The DAV distribution shows a scarcity of DAVs in the range

11,350–11,500 K. After exploring various possible causes
for such a bimodal, nonuniform distribution, we are still not

6 Excluding G226-29, the Bergeron et al. (2004) sample spans a width of
1060 K from 11,070 to 12,130 K.

5 We cannot use the same set of nonvariables as Bergeron et al. (2004), as
they did not publish the nonvariable parameters or identifications.
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entirely confident that it is real. The data at hand suggest that the
nonuniformity of the DAV distribution is real and stayed hidden
from us for decades as a result of the inhomogeneity of the
spectra of the previously known DAVs. However, we are in the
domain of small-number statistics, and unless we investigate
additional targets in the middle of the strip, we cannot be confi-
dent that the bimodal distribution is not an artifact in our data.
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