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ABSTRACT

Law, Wai Leuk, MSAE, Embry-Riddle Aeronautical University, December 2016.

MODEL PREDICTIVE CONTROL OF A NONLINEAR AEROELASTIC SYSTEM

USING VOLTERRA SERIES REPRESENTATIONS.

The purpose of this study is to investigate the potential effectiveness of using a
Volterra-based Model Predictive Control strategy to control a nonlinear aeroelastic
system. Model Predictive Control (MPC), also known as Receding Horizon Control
(RHC), entails computing optimal control inputs over a finite time horizon, applying
a portion of the computed optimal control sequence, and then repeating the process
over the next time horizon. The Volterra series provides input-output models of a
dynamical system in terms of a series of integral operators of increasing order, where
the first-order Volterra operator models the linear dynamics and the higher-order
operators model the nonlinear dynamics. In this thesis, Volterra-based Model Pre-
dictive Control is applied to simulated linear and nonlinear pitch-plunge aeroelastic
systems. A linear MPC controller based on a first-order Volterra model is used to
control the linear aeroelastic system, and the results are compared to those obtained
using a standard LQR controller and a LQR-based MPC strategy. The controller is
implemented for regulator and tracking cases for a free-stream velocity of 6 m/s, a
condition for which the open-loop linear system is stable, and a free-stream velocity
of 12.5 m/s, which corresponds to an unstable flutter condition. Nonlinear MPC
controllers, using second- and third-order Volterra models, are then used to control
the nonlinear aeroelastic system for regulator and tracking cases at the stable flight
condition. The stability and performance of the linear and nonlinear Volterra-based
MPC strategies are discussed, and a detailed analysis of the effect of different pa-
rameters such as the optimization horizon, control horizon and control discretization,
is provided. The results show that the linear MPC controller is able to successfully
track a reference input for the stable condition and stabilizes the system at the un-
stable flutter condition. It is also shown that the incorporation of the second- and
third-order Volterra kernels in the nonlinear MPC controller provides superior per-
formance on the nonlinear aeroelastic system compared to the results obtained using
only a linear model.
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1. Introduction

1.1 Model Predictive Control

Anticipation is the process of visualizing a future event or state (Anticipation,

2016). In other words, anticipation is the same as prediction. Humans make use

of their anticipation ability in their daily life, examples of which include driving a

vehicle, pouring a cup of coffee, playing a tennis match, etc (Rossiter, 2014). While

we are pouring a cup of coffee into an empty cup, we anticipate how fast the cup is

filling up and adjust the flow rate to ensure the coffee does not overflow.

Based on humans’ ability to anticipate, engineers in the 1970s created a class of

control algorithms known as Model Predictive Control (MPC). MPC, also known as

Receding Horizon Control (RHC) (Mayne, Rawlings, Rao, & Scokaert, 2000) or Mov-

ing Horizon Optimal Control (Bemporad & Morari, 1999), uses an explicit dynamic

model to predict the future reaction of the plant to an optimal control sequence over

a given control horizon (Holkar & Waghmare, 2010a). MPC technology was originally

developed for slow process plants, such as plug and papers, petroleum refineries, and

power plants. In recent years, MPC technology can be found in a wide variety of

industries like automotive, food processing, aerospace and more (Qin & Badgwell,

2003).
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1.2 The Evolution of MPC

The history of MPC dates back to the 1960s. Figure 1.1 presents the development

of MPC algorithms in an evolutionary tree representation, which clearly shows the

relationship and evolution between each generation of MPC algorithms.

Figure 1.1. Evolutionary tree for MPC technology development (Qin
& Badgwell, 2003).

Two papers, Contribution to the Theory of Optimal Control (Kalman, 1960a)

and A New Approach to Linear Filtering and Prediction Problems (Kalman, 1960b),

both written in 1960, represent the origins of MPC algorithms. The first paper

is related to linear quadratic feedback control, which sets the stage for the well-

known Linear Quadratic Regulator (LQR) control. The second paper discussed the

importance of controllability and observability as key tools in analyzing least-squares

control problems over an infinite horizon. These two papers form the basis of Linear

Quadratic Gaussian (LQG) control. LQG control with infinite prediction horizon has
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powerful stabilizing properties. LQG control will stabilize a linear plant, provided

that it is stabilizable, as long as the Q and R matrices in the objective function

are positive semidefinite and positive definite respectively (Qin & Badgwell, 2003).

A survey estimated that there are thousands of real-world applications of LQG in

a wide variety of industries (Goodwin, Graebe, & Salgado, 2001). However, LQR

control theory is limited in that it does not handle constraints, nonlinearities and

uncertainties in the process model (Garcia, Prett, & Morari, 1989; Richalet, Rault,

Testud, & Papon, 1976).

The first generation of MPC technology is represented by Model Predictive Heuris-

tic Control (MPHC) and Dynamic Matrix Control (DMC), which were established

in the 1970s. The software used to solve the MPHC control problem was named

Identification and Command (IDCOM). IDCOM allows verification of input and out-

put constraints and uses a trial and error approach to solve the control problem. As

the algorithm has the ability to utilize self-educating techniques such as feedback to

improve performance (Heuristic, 2016), Richalet et al. (1976) referred to this control

algorithm as heuristic. Figure 1.2 represents a comparison between conventional con-

trol structure and MPC structure of a hierarchy control system in a typical processing

plant. The objective of IDCOM is to drive the predicted future output trajectory as

closely as possible to the reference trajectory. The desired closed-loop response speed

and aggressiveness of the algorithm can be set by tuning the time constant term in

the reference trajectory. As the value of the time constant increases, it yields a slower

and more robust controller.
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Figure 1.2. Conventional vs. MPC structure on hierarchy control
system in processing plants (Deshmukh & Sawarkar, 2015).

DMC is an unconstrained multivariable control algorithm developed by Shell Oil�s

engineers in the early 1970s with its initial application in 1973. The objective of

DMC is to drive the control variables (CVs) as close to the set point as possible in

a least-squares sense with penalty on the manipulated variables (MVs). The control

inputs yield a less aggressive output response as the value of the MVs gets smaller

(C. R. Cutler & Ramaker, 1980). Using a set point instead of a reference trajectory

in MPHC allowed DMC to have an extra degree of robustness to modeling error.

DMC provided excellent control of unconstrained multivariable process models

only. To address this weakness, engineers at Shell Oil treated the DMC algorithm

as a Quadratic Program (QP) by rewriting the DMC objective function into a stan-

dard QP (C. Cutler, Morshedi, & Haydel, 1983), which Cutler et al. referred to as
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Quadratic Dynamic Matrix Control (QDMC). QP has the ability to include multivari-

able constraints and it results in a relatively simple optimization problem. Quadratic

programming is defined as follows:

min
x

1

2
xTPx+ fTx (1.1)

subject to Ax ≤ b, x ∈ R
n

A global minimum solution exists if the P matrix is positive semidefinite because a

positive semidefinite P will lead to a convex optimization problem (Bemporad, 2015).

MPC controllers gained wide acceptance in the industry at the same time control

problems became more complex. Although the QDMC algorithm provides a system-

atic way to include hard input and output constraints, it does not provide a method to

handle infeasible solutions. In practice, process input and output signals can be lost

due to hardware failures resulting in dynamic changes on the structure and degrees

of freedom of the controller (Qin & Badgwell, 2003).

The relationship between the problem structure and degrees of freedom is illus-

trated in Figure 1.3. There are three general cases for the process transfer function

matrix. The square plant case is the ideal situation and it will lead to a unique solu-

tion. The fat plant case is commonly seen in practice, where there are more MVs than

CVs. This case results in extra degrees of freedom in the objective function, causing

the plant to move closer to an optimal operating point. When there are more CVs

than MVs, the thin plant case, it is not possible to meet all the control objectives

(J. B. Froisy, 1994).
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Figure 1.3. Relationship between process transfer function matrix and
degrees of freedom (J. B. Froisy, 1994).

Furthermore, it is hard to convert control requirements into relative weights, such

as values for output set point violations, output soft constraint violations and optimal

input target violations, for a single objective function. For larger control problems,

the processes will be more complex and sometimes it is impossible to express all

requirements in a single objective function.

With these problems, engineers were motivated to develop more advanced MPC

algorithms. The IDCOM-M algorithm by Setpoint first appeared in 1988 (Grosdidier,

Froisy, & Hammann, 1988) and a summary of its application on the Shell Fundamental

Control Problem was provided in 1990 (J. Froisy & Matsko, 1990). It uses two

separate objective functions, one for outputs and another one for inputs if there is an

extra degree of freedom. A quadratic output objective function is optimized subject

to hard input constraints. The output value is driven closely to the desired value at

a single point in time, which is known as the coincidence point. The basic tuning
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parameters are used to define the reference trajectory, namely the coincidence point

and the closed-loop response time.

During the late 1980s, engineers at Shell Research in France developed the Shell

Multivariable Optimizing Control (SMOC) algorithm, which they described as the

bridge between MPC algorithms and state-space systems (Marquis & Broustail, 1988;

Yousfi & Tournier, 1991). The SMOC algorithm basically solves the LQR control

problem with constraints on a finite horizon; however, it does not inherit the strong

stabilizing properties of the LQR algorithm (Rawlings & Muske, 1993; Scokaert &

Rawlings, 1998).

1.3 Concept, Procedures and Objectives of MPC

In MPC application, process outputs are referred to as controlled variables (CVs),

while the process inputs are called manipulated variables (MVs). If disturbances are

modeled, the measured disturbance variables are called DVs or feed-forward variables

(Seborg et al., 2010). The ideas behind MPC are discussed in a journal article and

are as follows (Holkar & Waghmare, 2010b):

- Explicit use of a model to predict the CVs along a future time horizon;

- Calculation of an optimal control sequence by solving an objective function

(Linear or Quadratic) to optimize a desired performance index;
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- Use of a receding horizon strategy: At each instant of time the horizon is moved

towards the future and the first control signal of the optimal control sequence

is implemented on the system.

Figure 1.4. MPC controller block diagram (Seborg et al., 2010).

A block diagram of the MPC controller system is shown in Figure 1.4. The process

block is used to predict the current values of the output variables, which are called

process outputs. The residuals are calculated by taking the difference between the

predicted outputs (model outputs) and actual outputs (process outputs), which are

then passed into the prediction block as feedback signals. The predicted outputs

are used in two calculations that are performed at each time instant, namely control

calculation and set point calculation. Inequality constraints for input and output

variables can be included in either calculation. Set points for control calculation are

also called targets; they are calculated from an economic optimization perspective

based on the steady-state model of the process. The types of optimization include:

minimizing a cost function, maximizing a profit function or maximizing a production
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function. The optimal value for set points changes frequently due to different process

conditions and changes in inequality constraints. Thus, set point values need to be

recalculated every time control calculations are performed (Seborg et al., 2010).

MPC controllers are designed to drive the process from one constrained steady

state to another. The objectives for MPC controllers are listed as follows, in order of

importance (Qin & Badgwell, 2003):

- Prevent violation of input and output constraints;

- Drive the CVs to their steady-state optimal values (Dynamic output optimiza-

tion);

- Drive the MVs to their steady-state optimal values using remaining degrees of

freedom (Dynamic input optimization);

- Prevent aggressive control inputs (MVs) in the optimal control sequence;

- Control as many process variables as possible when a sensor or actuator is not

available.
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Figure 1.5. Basic concept of MPC and receding horizon strategy (Dai et al., 2012).

The receding horizon strategy used in MPC controllers was first proposed in the

1960s by a Russian engineer (Propoi, 1963). The idea is the end points of the pre-

diction and control horizon move to the future time. The basic concept of MPC and

receding horizon strategy are shown in Figure 1.5. The MPC procedure is summarized

as follows (Holkar & Waghmare, 2010b):

Step 1

The process model is used to predict the state for the entire prediction horizon

(m) at each time instant (k). The prediction state depends on the previous

measured closed-loop state and the closed-loop inputs up until the current time

instant (k).
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Step 2

The optimal input trajectory (uk) is calculated for the entire control horizon

(p) at time k by minimizing a cost function.

Step 3

Only the current control signal (uk|k) is applied to the process. At the next time

step (k+1 ), the closed-loop state is measured and Step 1 of the procedure is then

repeated, all sequences are updated and the current optimal input trajectory

(uk+1|k+1) is calculated.

MPC is an important advanced control algorithm to the industry. The objectives

and methods used by the controller to solve difficult multivariable control problems

offer several important advantages compared to other control algorithms (Seborg et

al., 2010):

- The process model captures the dynamic and static interaction between input,

output and disturbance variables;

- Constraints on inputs and outputs are considered in a systematic manner in

both SISO and MIMO control problems;

- Control calculations can be coordinated with the calculation of optimum set

points;

- Accurate model predictions can provide early warnings of potential problems.
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1.4 MPC Applications

Qin and Badgwell (2003) gave an overview of commercially available MPC tech-

nology with data provided by the vendors. A survey of MPC applications in various

industries was conducted in the mid-1900�s, and the results are tabulated in Table 1.6.

Oil refining is clearly one of the major industries that utilizes MPC technology, while

the aerospace/ defense industry had only 0.2% of MPC applications at that time. The

percentage increased to 0.7% for the aerospace industry in a survey performed in 2005

by the ARC Advisory Group, which is shown in Figure 1.7. The oil refining industry

is still the leading industry in MPC technology application (Bemporad, 2015).

Figure 1.6. MPC technology in different industrial areas (Qin & Badgwell, 2003).
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Figure 1.7. The use of MPC techniques in US industries (Bemporad, 2015).

Table 1.1. MPC academic research with industry, MPC type and years.

Industry Type MPC Type Years

Process Control Linear/ Nonlinear 1980-2000

Automotive Control Explicit & Hybrid 2001-2010

Aerospace System and UAVs Linear Time-Varying (LTV) >2005

Information and Communication Technologies (ICT) Distributed/ Decentralized >2005

Energy, Finance & Automotive Stochastic >2010

Academic research on MPC technology is driven by industry needs. As hardware

and software have advanced in the past decade, the amount of research and applica-

tions of MPC technology have increased, which can be seen in industries that utilize

fast response models. Dr. Alberto Bemporad, a professor from the Institute for Ad-

vance Studies Lucca, has summarized academic research for different types of MPC
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with their corresponding application industry and year (Bemporad, 2015), which is

presented in Table 1.1.

In recent years, more applications of MPC can be seen in the aerospace field due

to advancement in the computational power of modern computers. The increase in

computational power allowed MPC to be implemented on fast dynamic processes, such

as aeroelastic systems and Unmanned Aerial Vehicles (UAVs), for online optimization.

Campbell et al. applied a MPC algorithm on a highly flexible micro air vehicle

(MAV) with baseline geometry provide by the U.S. Air Force Research Laboratory

(AFRL) to counteract disturbances and drive the plant to the target states. Two

different MAV designs were investigated. The first design utilized passive wing mor-

phing, where the position of the morphing wing depends solely on aerodynamic and

connection constraint forces and moments. The second design utilized active wing

morphing, where the MPC algorithm controls certain wing properties to improve the

MAV�s maneuverability (Campbell & Maciejowski, 2009).

Development of a high altitude long endurance aircraft often features a high aspect

ratio, flexible wing to improve aerodynamic efficiency. This type of aircraft wing poses

challenges in design and control due to large deformations during flight operation.

Wang et al. designed a MPC controller that suppresses wing oscillations in response

to atmospheric gusts and other disturbances that the flexible wing might encounter

during flight (Wang, Wynn, & Palacios, 2016).

Flutter analysis and control is another important research area, as wing flutter

can lead to catastrophic failure due to wing structural fatigue. Prazenica investi-
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gated the feasibility of using Volterra-based MPC strategies to control a simulated

nonlinear aeroelastic system corresponding to the Texas A&M Nonlinear Aeroelastic

Testbed. The controller is used to compute trailing edge flap deflection commands for

controlling the pitch response of the system at different free-stream velocities, which

included a flight condition where the underlying linear aeroelastic system is in an

unstable flutter condition (Prazenica, 2014).

Figure 1.8. McDonnell Douglas AV-8B Harrier II performing VTOL
on an aircraft carrier (Abyss, 2016).

Thrust vectoring, also known as Thrust Vector Control (TVC) is an ability that

some aircraft, rockets and missiles have to maneuver by manipulating the direction

of the thrust produced from the engine. Benefits of TVC are Vertical/ Short Take-off

and Landing (V/STOL) and high maneuverability. The McDonnell Douglas AV-8B

Harrier II, shown in Figure 1.8, is a well-known operational fighter jet with V/STOL
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capabilities. Dunbar et al. applied a MPC controller to the Caltech ducted fan, a

thrust-vectored flight experimental testbed designed for research and development

of nonlinear flight guidance and control techniques for Uninhabited Combat Aerial

Vehicles (UCAVs), where actuation and spatial constraints are present. The ducted

fan is a scale model of the longitudinal axis of the flight vehicle. One of their papers

showed that the MPC controller is able to stabilize a step disturbance (Dunbar,

Milam, Franz, & Murray, 2002), for example.

In recent years, UAVs have been widely used by the military, academic researchers

and Radio Control hobbiests. UAVs are aerial vehicles that operate without a human

pilot on board (Newcome, 2004). Their flight path is either controlled autonomously

by on-board or ground computers, or remotely controlled by a human operator at a

ground station (Luukkonen, 2011).

In order to achieve a high degree of operational flexibility, it is often required for

UAVs to be deployed and recovered anywhere in the world without the support of

proper infrastructure such as a runway. To help meet these operational requirements,

Mathisen et al. suggested the use of deep stall landings. The UAV approaches deep

stall when the angle of attack of the vehicle is beyond the stall angle, after which

the vehicle will lose altitude rapidly. The NMPC controller is used to determine the

optimal control sequence that guides a model of a fixed wing UAV into a deep stall

and then lands the UAV at a given location and path angle with minimum speed.

Results from a simulation on a 3-DOF model (Mathisen, Fossen, & Johansen, 2015)

and a 6-DOF model (Mathisen, Gryte, Fossen, & Johansen, 2016) were presented.
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Du et al. proposed using a MPC method for controlling a small scale unmanned

helicopter, where limitations of the actuators and rotors were taken into consideration

during the controller design for position hold (Du et al., 2008). Slegers et al. applied

nonlinear model predictive control (NMPC) to a parafoil and glider. The controller

computes a closed form solution for the optimal control input that is able to expand

both the output and control in a truncated Taylor series, where the expansion term

can be used to indirectly penalize control action (Slegers, Kyle, & Costello, 2006).

A linear controller applied to a nonlinear system is most effective when the system

operates close to the linearized operating conditions. Chen et al. proposed using a

MPC controller with cascaded structure, which has the ability to maintain the state

variables within the vicinity of a given operating condition by imposing operational

constraints. They verify their findings by implementing the controller on a quadrotor

UAV (X. Chen & Wang, 2013).

In UAV navigation and trajectory tracking applications, Kang and Hedrick de-

signed and implemented a NMPC controller with cost function that minimizes the

tracking error of a fixed wing UAV from a desired line or trajectory, while Subbarao et

al. implemented NMPC controllers on a quadcopter platform (Subbarao, Tule, & Ru,

2015). The single line tracking cost function is also extended to allow the tracking of

multiple line segments with obstacle avoidance capabilities (Kang & Hedrick, 2006).

Shekhar et al. introduced a new formulation of MPC for robust trajectory guidance

of UAVs, which they named Robust Model Predictive Control (RMPC). The con-

troller generalized the concept of waypoints to waysets in order to provide robustness
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to bounded state disturbances in the presence of obstacles. The results showed how

wayset guidance combined with constrained tightening guaranteed robust recursive

feasibility and finite time completion of a control maneuver (Shekhar, Kearney, &

Shames, 2015).

The military uses UAVs for missions such as target tracking and orbiting a target.

Hafez et al. implemented a decentralized Learning Based Model Predictive Control

(LBMPC) on a group of multiple cooperative UAVs in a desired geometrical for-

mation pattern while tracking an aerial target. LBMPC is a new control technique

that combines statistical learning along with control engineering providing guaran-

tees on safety, robustness and convergence (Hafez, Givigi, Ghamry, & Yousefi, 2015).

Encirclement is a military strategic tactic that is performed by a team of UAVs to

neutralize a target by restricting its movement and maintaining awareness in close

proximity at all times. Iskandarani et al. implemented a Linear Model Predictive

Control (LMPC) strategy on a Qball-X4 quadrotor aircraft to perform this tactic

(Iskandarani, Givigi, Rabbath, & Beaulieu, 2013). On the other hand, Marasco et al.

proposed using a Decentralized Model Predictive Control (DMPC) method (Marasco,

Givigi, & Rabbath, 2012). Eklund et al. applied a NMPC algorithm on a fixed wing

UAV for the purpose of pursuit evasion games (PEGs) against a piloted F-15 aircraft

(Eklund, Sprinkle, & Sastry, 2005).

Cooperative behavior for multiple UAVs is used to enhance capabilities to share

information and complete different operations, such as intelligence surveillance, re-

connaissance and wide area search or destroy. These operations are usually performed
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by a group of UAVs in formation flight (H. Chao, Cao, & Chen, 2010). Line abreast,

triangular and cross formation are common formations for a group of UAVs and

Iskandarani et al. accomplishes these formations using a high-level LMPC algorithm

on the Qball-X4 quadrotors (Iskandarani, Givigi, Fusina, & Beaulieu, 2014). NMPC

provides a framework to solve optimal control sequences for a nonlinear system un-

der state constraints and input saturation. Shim et al. implemented the controller

on multiple autonomous helicopters in a complex environment, which combined sta-

bilization of vehicle dynamics and trajectory generation. The cost function of the

controller also included information about other moving obstacles or vehicles (Shim,

Kim, & Sastry, 2003). Chao et al. designed a collision free formation flight control

in the framework of NMPC, where obstacle and anti-vehicle collision avoidance is

guaranteed by the cost function (Z. Chao, Zhou, Ming, & Zhang, 2012). Singh and

Fuller described a NMPC control scheme for autonomous trajectory generation and

flight control of an UAV in urban terrain (Singh & Fuller, 2001).

1.5 Introduction on Volterra Series

The Volterra series was developed by Vito Volterra, an Italian mathematician, in

the late 1800s (Volterra, 1887) and it provided a convenient method to represent a

large class of nonlinear dynamical systems. Volterra series representations are widely

used to model nonlinear dynamical systems in different fields, for instance, biological

(Chon, Chen, Holstein-Rathlou, & Marmarelis, 1998; French, Sekizawa, Höger, &

Torkkeli, 2001) and aeroelastic (Marzocca, Librescu, & Silva, 2002; W. A. Silva,
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1993; Prazenica, 2014) systems. In the electrical engineering field, Volterra filters

are used to compensate for signal distortion from nonlinear disturbances (Cherry &

Snelgrove, 1998; Borys, 2001).

The Volterra series is equivalent to the Taylor series with memory. A Taylor series

represents a system that instantaneously maps the input signals to the output signals,

while the output signals in a Volterra series depend on past input signals (Mathews

& Sicuranza, 2000). Furthermore, the Volterra theory applies to a wide range of

dynamical systems with system output(s) expressed in terms of a set of analytic

ordinary differential equations (ODEs) and systems with fading memory. The fading

memory requirement states that the influence of present inputs must diminish to zero

in a finite period of time. For example, impacting a cantilever beam with a hammer

exhibits fading memory, as the impulse response cause by the hammer will disappear

after the beam stops vibrating (Prazenica, 2014).

1.6 Motivation and Objective

The main objective of this study is to investigate the effectiveness of using a

Volterra-based model predictive control strategy to control a nonlinear aeroelastic

system. The advantages of such an approach include the potential ability to perform

online nonlinear system identification from input-output data, providing the ability

to update the model as the flight condition changes throughout the operational flight

envelope. The use of Volterra series representations provides the opportunity to model

unknown weak nonlinearities that may exist in the system, such as structural nonlin-
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earities or control surface freeplay, without requiring explicit knowledge of the form

or nature of the nonlinearities. Because MPC is performed over a finite time horizon,

it is straightforward to incorporate updated Volterra models, based on evolving flight

conditions, into the control algorithm.

In this thesis, Volterra-based model predictive control is applied to simulated

linear and nonlinear pitch-plunge aeroelastic systems. A linear MPC controller based

on a first-order Volterra model is used to control the linear aeroelastic system, and the

results are compared to those obtained using a standard LQR controller and a LQR-

based MPC strategy. The controller is implemented for regulator and tracking cases

for a free stream velocity of 6 m/s, a condition for which the open-loop linear system

is stable, and a free stream velocity of 12.5 m/s, which corresponds to an unstable

flutter condition. Nonlinear MPC controllers, using second- and third-order Volterra

models, are then used to control the nonlinear aeroelastic system for regulator and

tracking cases at the stable flight condition. The stability and performance of the

linear and nonlinear Volterra-based MPC strategies are discussed, and a detailed

analysis of the effect of different parameters such as the optimization horizon, control

horizon, and control discretization, is provided. This work represents an extension of

results presented in a related conference paper (Prazenica, 2014).

The thesis is organized into six chapters. Chapter 1 presents a literature review

of MPC along with the motivation and objectives of this thesis. Chapter 2 defines

the linear and nonlinear aeroelastic systems, presents the open-loop response of the

system at different free-stream velocities and discusses the setup of a classical LQR
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controller, which serves as a baseline for evaluating the performance of the Volterra-

based MPC strategies. Chapter 3 discusses the Volterra models used in the MPC

controllers and the Volterra-based MPC algorithms used in this study. Chapters 4

and 5 present simulation results and analysis using the linear and nonlinear MPC

controllers implemented on the linear and nonlinear aeroelastic systems respectively.

Finally, Chapter 6 provides conclusions and suggestions for future work.
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2. Prototypical Aeroelastic Systems and Simulation Setup

2.1 Texas A&M Nonlinear Aeroelastic Testbed

Figure 2.1. Schematic of the Texas A&M Nonlinear Aeroelastic
Testbed Apparatus (NATA) with airfoil and control surface (W. Silva
et al., 2005).

The simulated nonlinear aeroelastic system used in this case study corresponds to a

model of the Texas A&M Nonlinear Aeroelastic Testbed (Strganac, Ko, & Thompson,

2000). The testbed consists of an airfoil section with plunge and pitch degrees of

freedom and a trailing edge flap for control actuation.

The equations of motion for the NATA can be modeled as a pair of coupled

second-order differential equations as follows:
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⎡
⎢⎢⎣ m mbxα

mbxα Iα

⎤
⎥⎥⎦
⎡
⎢⎢⎣ḧ
α̈

⎤
⎥⎥⎦+

⎡
⎢⎢⎣ch 0

0 cα

⎤
⎥⎥⎦
⎡
⎢⎢⎣ḣ
α̇

⎤
⎥⎥⎦+

⎡
⎢⎢⎣kh 0

0 kα(α)

⎤
⎥⎥⎦
⎡
⎢⎢⎣h
α

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣−L
M

⎤
⎥⎥⎦ (2.1)

where the following variables are defined:

m Mass

b Semi-chord

h Plunge displacement

α Pitch angle

xα Static unbalance

Iα Moment of inertia about the elastic axis

ch Plunge damping coefficient

cα Pitch damping coefficient

kh Plunge stiffness coefficient

kα Pitch stiffness coefficient

L Lift

M Pitch moment

The terms on the left-hand side of the equation represent the structural dynamics

of the system, while the right-hand side defines quasi-steady aerodynamic forces and
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moments. The quasi-steady lift (L) and pitch moment (M) of the system are modeled

by the following equations:

L = ρU2bClα

[
α +

ḣ

U
+
bα̇

U

(
1

2
− a

)]
+ ρU2bClββ (2.2)

M = ρU2b2Cmα

[
α +

ḣ

U
+
bα̇

U

(
1

2
− a

)]
+ ρU2b2Cmβ

β (2.3)

where

ρ Air density

U Free stream velocity

β Control surface deflection

Clα Coefficient of lift due to angle of attack

Clβ Coefficient of lift due to control surface deflection

Cmα Coefficient of pitch moment due to angle of attack

Cmβ
Coefficient of pitch moment due to control surface deflection

Defining z = [h α]T , Eq.(2.1) can be written in the form

M̄z̈ + C̄ż + K̄z = F̄1ż + F̄2z + B̄β (2.4)

where

M̄ =

⎡
⎢⎢⎣ m mbxα

mbxα Iα

⎤
⎥⎥⎦ C̄ =

⎡
⎢⎢⎣ch 0

0 cα

⎤
⎥⎥⎦ K̄ =

⎡
⎢⎢⎣kh 0

0 kα(α)

⎤
⎥⎥⎦

F̄1 =

⎡
⎢⎢⎣ ρUbClα ρUb2Clα(

1

2
− a)

ρUb2Cmα ρUb3Cmα(
1

2
− a)

⎤
⎥⎥⎦ F̄2 =

⎡
⎢⎢⎣0 ρU2bClα

0 ρU2b2Cmα

⎤
⎥⎥⎦ B̄ =

⎡
⎢⎢⎣ ρU2bClβ

ρU2b2Cmβ

⎤
⎥⎥⎦
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The system has a single input, the trailing edge flap deflection (β), and two outputs

corresponding to the pitch angle (α) and plunge displacement (h). The pitch-plunge

system is nonlinear due to the kα(α) term, the polynomial torsional spring stiffness,

which generates a nonlinear restoring moment as a function of pitch angle. The

polynomial torsional spring stiffness can be described using the following equation:

kα(α) = kα1 + kα2α (2.5)

The spring stiffness function in Eq.(2.5) was chosen to emphasize the contribution

of the second and third-order Volterra kernels in the nonlinear response. An underly-

ing linear system can be obtained by setting kα2 = 0, which result in a linear spring

stiffness. MATLAB/Simulink is used to simulate the pitch-plunge system with the

parameters show in Table 2.1.

Table 2.1. Parameters values for the pitch-plunge aeroelastic system.

m = 12.387 kg xα = 0.2466 Cmα = -0.628

Iα = 0.065 m2kg ch = 27.43 kg/s Cmβ
= -0.635

ρ = 1.225 kg/m3 cα = 0.180 m2kg/s kh = 2844.4 N/m

a = -0.6 Clα = 6.28 kα1 = 2.82 N ·m

b = 0.135 m Clβ = 3.358 kα2 = 14.1 N ·m

It is important to note that the behavior of the aeroelastic system varies sig-

nificantly with the free-stream velocity (U) experienced by the airfoil. The studies

provided in this thesis consider the case where U = 6 m/s and U = 12.5 m/s. At U
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= 6 m/s, the nonlinear system and the underlying linear system are stable. At U =

12.5 m/s, the nonlinear system enters a limit cycle oscillation while the linear system

is in an unstable flutter condition.

In order to develop a simulation environment the linear aeroelastic system can be

expressed in the following state-space form, where x = {h, α, ḣ, α̇}T :

ẋ = Ax+Bu

y = Cx+Du

(2.6)

The A, B, C, and D matrices are constructed from Eq.2.6 as follows:

Ā =

⎡
⎢⎢⎣ [0]2×2 [I]2×2

−M̄−1(K̄ − F̄1) −M̄−1(C̄ − F̄2)

⎤
⎥⎥⎦ (2.7)

B =

⎡
⎢⎢⎣ [0]2×1

M̄−1B̄

⎤
⎥⎥⎦ (2.8)

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.9)

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.10)
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The numerical values of the A and B matrices are provided in Appendix A for the U

= 6 m/s and U = 12.5 m/s cases.

In order to model the nonlinear aeroelastic system, a fictitious control input is

created to incorporate the effect of the nonlinear spring stiffness. This requires aug-

menting the B, C, and D matrices in the state-space model to accommodate the

second input.

The simulation environment presented in Figure 2.2 was developed to run open-

loop simulations of the nonlinear aeroelastic system. In the MPC implementation,

optimal control inputs are computed using the MATLAB fmincon function. These

control commands are then used to simulate the close-loop system response.

Figure 2.2. Aeroelastic system simulation setup in Simulink.
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2.2 Open-Loop Response of the Aeroelastic System

Open-loop plunge and pitch responses for both the linear and nonlinear aeroelastic

systems were simulated at free-stream velocities of U = 6 m/s and U = 12.5 m/s. The

results provided a qualitative assessment of the stability of the linear and nonlinear

aeroelastic systems at different flight conditions. In addition, they provide a baseline

pitch response for comparison with the pitch responses obtained using the linear and

nonlinear MPC controllers, which are designed in later chapters.

The stability of the linear systems is quantified in terms of the eigenvalues of the

A matrix. The eigenvalues for the linear system at U = 6 m/s and U = 12.5 m/s are

given in Table 2.2.

Table 2.2. Eigenvalues for the linear aeroelastic system.

Poles (λ) Frequency (ω) Damping Ratio (ζ) Time to Settle (ts)

U = 6 m/s

−2.063± 16.368ı̂ 16.5 rad/s 0.125 1.45 s

−2.965± 6.777ı̂ 7.40 rad/s 0.401 1.01 s

U = 12.5 m/s

0.0876± 13.898ı̂ 13.9 rad/s -6.30×10−3 34.2 s (Time to Double)

−5.238± 9.421ı̂ 10.8 rad/s 0.486 0.573 s
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A quantitative analysis of the closed-loop control results is provided by calculating

the Root-Mean-Square Error (RMSE) of the pitch response and the Control Effort

(CE) using the following equations:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.11)

CE =

√√√√ 1

n

n∑
i=1

(βi)2 (2.12)

The RMSE defines how much the response deviates from the reference value (ŷi).

The concept is similar to standard deviation in statistics with the only exception that

RMSE uses data from an estimator or model, while standard deviation uses data from

a population.

Figures 2.3 and 2.4 shown the open-loop responses for plunge and pitch respec-

tively with initial pitch angle set at 5 degrees for the case where U = 6 m/s. The

oscillation in the open-loop plunge response is minimal as the magnitude is 10−4. The

open-loop responses for both plunge and pitch converge to zero with a short settling

time of 2.5 seconds. Hence, the aeroelastic system is stable at a free-stream velocity

of 6 m/s for both the linear and nonlinear cases.
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Figure 2.3. Open-loop plunge response for both linear and nonlinear
aeroelastic systems at 6 m/s.

Figure 2.4. Open-loop pitch response for both linear and nonlinear
aeroelastic systems at 6 m/s.
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Figure 2.5. Open-loop plunge response for both linear and nonlinear
aeroelastic systems at 12.5 m/s.

Figure 2.6. Open-loop pitch response for both linear and nonlinear
aeroelastic systems at 12.5 m/s.
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The free-stream velocity U = 12.5 m/s corresponds to the flutter speed of the

linear aeroelastic system. Thus, it is important to investigate the limitation of the

MPC controller and whether or not it will successfully stable the aeroelastic system

at this flight condition. The plunge and pitch open-loop responses at this flight condi-

tion are unstable as both responses exhibit oscillations with increasing amplitude, as

shown in Figures 2.5 and 2.6 respectively. The response of the nonlinear aeroelastic

system converges to oscillations with constant amplitude, corresponding to a limit

cycle oscillation.

2.3 Classical Linear Quadratic Regulator (LQR) Control

A classical Linear Quadratic Regulator (LQR) was developed as a baseline con-

troller for comparison with the Volterra-based MPC results. The LQR is a linear

controller that regulates the states of a linear system to zero while minimizing a

quadratic cost function.

For an infinite horizon continuous time LQR, the cost function is defined as follows:

J =
1

2

∫ ∞

0

(xTQx+ uTRu)dt (2.13)

where Q ∈ R
n×n and R ∈ R

m×m are symmetric positive-semidefinite and positive-

definite matrices representing the weighting of the states and control effort respec-

tively. The state x ∈ R
n, with initial condition x(0) = x0 evolves according to the

linear dynamic model:

ẋ = Ax+Bu
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where u ∈ R
m is the control input. The Q and R matrices are tuning parameters in

the controller and ultimately determine the closed-loop response of the system. For

the aeroelastic system presented in this thesis, the R matrix is a scalar constant as the

trailing edge flap is the only control input. The matrix Q is chosen to be diagonal with

each element representing a direct weighting of the corresponding state. A common

method to select the diagonal entries in Q is to set a maximum allowable value for

each of the states (i.e. Qh
max, Q

α
max, Q

ḣ
max & Qα̇

max), and define the Q matrix as

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(Qh

max)
2 0 0 0

0 1
(Qα

max)
2 0 0

0 0 1

(Qḣ
max)

2
0

0 0 0 1
(Qα̇

max)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.14)

A second choice of Q is designed to reproduce the weighting in the MPC cost

function to be developed later. In the Volterra-based MPC algorithm, the plunge and

pitch outputs are treated separately with their own cost functions that correspond

to quadratic weighting of the pitch and plunge states respectively. To employ an

equivalent strategy to control pitch on the 4-states linear system, the maximum value

of pitch, Qα
max, is selected and Q is then defined as a positive semi-definite matrix

instead of a positive-definite matrix:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 1
(Qα

max)
2 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.15)
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A similar approach can be taken to control the plunge state. To determine the

control input that minimizes the quadratic cost function given in Eq.(2.13), the fol-

lowing feedback control law is used:

u = −Kx (2.16)

where K is given as

K = R−1BTP (2.17)

and P is computed by solving the following continuous time Riccati differential equa-

tion (Ogata & Yang, 1970):

ATP + PA− PBR−1BTP +Q = 0 (2.18)

For specific choices of Q and R, the LQR optimal feedback gain (KLQR) can

be found using the LQR function within MATLAB. The LQR controller was imple-

mented on the simulated aeroelastic system in Simulink, which is shown in Figures

2.7 and 2.8 for the linear and nonlinear aeroelastic system respectively.
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Figure 2.7. Linear aeroelastic system with LQR controller in Simulink.

Figure 2.8. Nonlinear aeroelastic system with LQR controller in Simulink.
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3. Volterra Modeling & MPC Algorithm

3.1 Volterra Series Representations

Mathematically, a system can be defined as a mapping of an output signal y(t) to

an input signal u(t). A system operator H is used to map the input to the output

function space (Franz & Schölkopf, 2006).

y(t) = Hu(t) (3.1)

Under general conditions, the Volterra theory states that the output y(t) of a

single output nonlinear dynamical system can be expressed in terms of an infinite

series of integral operators (Schetzen, 1980).

y(t) = y1(t) + y2(t) + · · ·+ y∞(t) =
∞∑
n=1

yn(t) (3.2)

where yn(t) denotes the n-th order Volterra operator of the system output. The

Volterra series must be truncated in practice. This work will consider Volterra models

that are truncated to include terms no higher then the third-order operators, which

is suitable for modeling weakly nonlinear systems. For casual, time-invariant SISO

systems, the first-, second- and third-order Volterra operators take the following form:

y1(t) =

∫ t

0

V1(α)u(t− α)dα (3.3)

y2(t) =

∫ t

0

∫ t

0

V2(α, β)u(t− α)u(t− β)dαdβ (3.4)
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y3(t) =

∫ t

0

∫ t

0

∫ t

0

V3(α, β, γ)u(t− α)u(t− β)u(t− γ)dαdβdγ (3.5)

where u is the system input and V1, V2 and V3 represent the first-, second- and

third-order Volterra kernels. Once the kernels are identified, the response to any

input can be determined. The first-order kernel represents the linear dynamics of the

system, while the second- and third-order kernels represent the nonlinear dynamics.

For a linear system, the first-order kernel is equivalent to the impulse response of the

system (Schetzen, 1980).

The kernels defined in these representations are defined on domains of increasing

dimension (i.e., the third-order kernel is supported on a three-dimensional domain);

therefore, it is desired to obtain reduced-order kernel representations. The Volterra

series is used to model systems with fading memory. The memory length of the first-,

second- and third-order kernels are defined as T1, T2 and T3, respectively. Kernels

expressed in symmetric form are unique for a given system, thus the second-order

kernel can be assumed to be symmetric on the [0, T2] × [0, T2] square domain, while

the third-order kernel is symmetric over a [0, T3] × [0, T3] × [0, T3] cubic domain

(Schetzen, 1980).

3.2 Volterra Kernel Identification

A critical challenge in using the Volterra series is identifying the Volterra kernels

that characterize the system. Kernel identification is an ill-posed problem as the

objective is to determine the structure of the system using only input and output
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measurements. In practice, input and output measurements are frequently corrupted

by sensor noise. Furthermore, the Volterra series is not orthogonal; thus the Volterra

kernels must be identified simultaneously (Schetzen, 1980). To address this problem,

Norbert Wiener, an American mathematician, developed a variation of the Volterra

series that is orthogonal provided that the input signal is Gaussian white noise, which

is known as the Wiener series (Wiener, 1966).

There are many approaches used to determine the Volterra kernels in both the time

and frequency domain. Statistical methods such as the cross-correlation technique

were developed to determine the Wiener kernels (Lee & Schetzen, 1965). Neural

networks have also been used to estimate Volterra kernels (Wray & Green, 1994).

Another common approach is to express the kernels in terms of a set of basis functions.

For instance, discrete Laguerre functions have been used to estimate the kernels of

a biological system (Marmarelis, 1993), while first- and second-order kernels of an

aeroelastic system have been expressed in terms of decaying exponential functions

(Reisenthel, 1999).

Volterra kernels have also been represented in terms of wavelet bases with the

objective of obtaining reduced-order representations. Beylkin et al. have shown that

wavelets are effective for compressing various integral operators (Beylkin, Coifman,

& Rokhlin, 1991). With this advantage in mind, bi-orthogonal wavelets were used

to compress first- and second-order Volterra kernels (Nikolaou & Mantha, 1998).

Prazenica et al. have constructed wavelets over the domain of support of the trian-

gular form of the second-order kernel (Prazenica & Kurdila, 2004). These piecewise-
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constant triangular wavelets fit the domain of the second-order kernel and exist in

closed form. The drawbacks include the fact that these wavelets do not yield smooth

kernel estimates and it is not a straightforward process to extend the approach for

higher order kernels.

Prazenica and Kurdila constructed piecewise-polynomial multiwavelets, which are

generated using the technique of intertwining (Donovan, Geronimo, & Hardin, 1996),

to represent Volterra kernels. These multiwavelets are orthonormal, compactly-

supported, and symmetric or antisymmetric. This class of piecewise-polynomial

multiwavelets combines many desirable properties of the bi-orthogonal and trian-

gular wavelets without many of the disadvantages. The multiwavelet-based kernel

identification algorithm shows a significant improvement over other wavelet-based

approaches from the perspective of speed, accuracy, generality and implementation

(Prazenica & Kurdila, 2006).

Multiwavelets are composed of a set of wavelet functions {ψ1, · · · , ψn} that are

formed or generated by a set of n scaling functions {φ1, · · · , φn}. The multiwavelet

basis is composed of the scaled translates and dilates of the original set {ψ1, · · · , ψn},

resulting in basis functions with localized time and varying frequency. The kernels

are expressed in terms of the orthonormal multiwavelet basis functions as follows:

V1(ξ) =

N1∑
j=1

c1,jf1,j(ξ) (3.6)

V2(ξ, η) =

N2∑
j=1

c2,jf2,j(ξ, η) (3.7)
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V3(ξ, η, γ) =

N3∑
j=1

c3,jf3,j(ξ, η, γ) (3.8)

There are many other possible choices of the basis functions, {f1,j}N1
j=1, {f2,j}N2

j=1

and {f3,j}N3
j=1. In the multiwavelet case, two and three-dimensional wavelet functions

are constructed from the tensor products of the one-dimensional wavelet basis func-

tions. Once the kernels are expressed in terms of a set of basis functions, the kernel

identification problem reduces to a linear least-squares problem, which can be solved

to obtain the wavelet basis coefficients. Frequently, many wavelet coefficients are

close to zero and can be neglected, which can lead to reduced-order representations

of the kernels (Prazenica, Reisenthel, Kurdila, & Brenner, 2004).

A drawback of representing aeroelastic systems with Volterra series is that the

kernels are parametrically dependent on flight condition. In order to represent the

dynamics of an aeroelastic system, a different set of Volterra kernels must be identified

at each flight condition. In the following example, Volterra kernels were identified

using the multiwavelet-based kernel identification algorithm with simulation data for

the case of free-stream velocity of 6 m/s. The aeroelastic system has two outputs,

the pitch angle and plunge displacement, and a single input corresponding to the

trailing edge flap deflection. Thus, there will be two sets of Volterra kernels, each

corresponding to the respective output. The first-order kernels shown in Figure 3.1

are represented in terms of 257 basis functions, while the second-order kernels are

generated in terms of 153 unique basis functions (Prazenica, 2014). Figure 3.1 only
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Figure 3.1. Identified first- and second-order pitch and plunge
Volterra kernels at U = 6 m/s (Prazenica, 2014).

shows the first- and second-order kernels as the third-order kernel is difficult to display

as it is supported over a three-dimensional domain.

In order to consider modeling the system output for nonzero initial conditions,

it is necessary to add an extra term to the Volterra series, which is referred to as

the zero-order Volterra kernel (V0). The zero-order kernel accounts for the portion of

the system response in which the output is dependent on the initial condition. On

the other hand, first-order and higher-order kernels account for the effects of external
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inputs to the system. The zero-order kernel for a given system is generally represented

as a function of the initial condition of all states.

V h
0 (t) = α0h(t)|α0=1 + α̇0h(t)|α̇0=1 + h0h(t)|h0=1 + ḣ0h(t)|ḣ0=1 (3.9)

V α
0 (t) = α0α(t)|α0=1 + α̇0α(t)|α̇0=1 + h0α(t)|h0=1 + ḣ0α(t)|ḣ0=1 (3.10)

The above equations express the zero-order kernel for plunge displacement and

pitch angle as functions of the initial conditions for the pitch, pitch rate, plunge

displacement and plunge displacement rate {α0, α̇0, h0, ḣ0} and the measured plunge

and pitch response to a unit initial condition for each state. The inclusion of the zero-

order Volterra kernel is important while implementing MPC because the algorithm

solves optimization problems over a relative short time horizon with nonzero initial

conditions.

3.3 Volterra-Based Model Predictive Control Algorithm

The objective of MPC is to minimize a given cost function J(x, u) over a finite

time cost horizon, TH . An optimal control sequence is computed by minimizing the

cost function by solving a typical nonlinear optimization problem. Then, the control

sequence is applied to the system over a control time horizon, TC , where TC ≤ TH .

With the same procedure, the optimal control input is re-calculated and applied over

a receding horizon.

The choice of cost function and constraints varies with different systems. Gener-

ally, they are expressed in terms of the state x(t) and the input u(t). For the aeroe-
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lastic system in this case study, quadratic cost functions are specified as function of

the pitch angle, plunge displacement, and control input, resulting in the following

expressions:

J(α, β) =

∫ TH

0

{wα[α(t)− αref (t)]
2 + wββ

2(t)}dt (3.11)

J(h, β) =

∫ TH

0

{wh[h(t)− href (t)]
2 + wββ

2(t)}dt (3.12)

where wα, wh, and wβ represents weighting factors and the specified reference/ com-

mand pitch angle and plunge displacement are denoted as αref (t) and href (t) respec-

tively. The weighting factors in the cost function allow adjustment on the priority of

minimizing the pitch angle or plunge displacement error relative to minimizing the

control effort from the trailing edge flap.

A dynamic model is required in the MPC algorithm to predict system response

from a given control input history. A Volterra-based model of the aeroelastic system

is used, which consists of the zero-order kernel that handles nonzero initial conditions

and the identified first-, second- and third-order Volterra kernels. The predicted

pitch angle and plunge displacement responses to a given trailing edge control input

sequence β(t), 0 ≤ t < TH , are given by:

α(t) = V α
0 (t) +

∫ t

0

V α
1 (ξ)u(t− ξ)dξ +

∫ t

0

∫ t

0

V α
2 (ξ, η)u(t− ξ)u(t− η)dξdη

+

∫ t

0

∫ t

0

∫ t

0

V α
3 (ξ, η, γ)u(t− ξ)u(t− η)u(t− γ)dξdηdγ (3.13)

h(t) = V h
0 (t) +

∫ t

0

V h
1 (ξ)u(t− ξ)dξ +

∫ t

0

∫ t

0

V h
2 (ξ, η)u(t− ξ)u(t− η)dξdη

+

∫ t

0

∫ t

0

∫ t

0

V h
3 (ξ, η, γ)u(t− ξ)u(t− η)u(t− γ)dξdηdγ (3.14)
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where {V α
0 , V

α
1 , V

α
2 , V

α
3 } and {V h

0 , V
h
1 , V

h
2 , V

h
3 } define the pitch and plunge Volterra

kernels respectively. Constraints are imposed on the trailing edge flap deflection that

bound the deflection angle and rate of change over the cost horizon. These constraints

are specified as follow:

|β(t)| ≤ βmax |β̇(t)| ≤ β̇max ∀t ∈ [0, TH ] (3.15)

The Volterra-based model predictive control is implemented in discrete time with

time step ΔT . Instead of computing the entire optimal control sequence, the MPC

algorithm computes the nodal values of the optimal control sequence and linearly

interpolate the nodal values to obtain the full optimal control sequence within the

cost horizon period. By calculating the nodal values, the computational time on the

optimization problem is significantly reduced. The nodal values of the optimal control

sequence is calculated by minimizes Eq.(3.16) over the optimization horizon.

J =
n∑

k=0

{wα[α(k)− αref ]
2 + wββ

2(k)}ΔT (3.16)

subject to the control input constraint shown in Eq.(3.15) and the discrete-time

Volterra predictive model:

α(n) = V α
0 (n)ΔT +

n∑
k=0

V α
1 (k)β(n− k)ΔT +

n∑
k=0

n∑
l=0

V α
2 (k, l)β(n− k)β(n− l)ΔT 2

+
n∑

k=0

n∑
l=0

n∑
m=0

V α
3 (k, l,m)β(n− k)β(n− l)β(n−m)ΔT 3 (3.17)
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To implement the MPC algorithm, the fmincon function within MATLAB’s op-

timization toolbox is utilized. The function is a nonlinear programming solver that

determines the minimum of an objective function subject to constraints that can be

specified as

min
x
f(x) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(x) ≤ 0

ceq(x) = 0

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

(3.18)

where c(x) and ceq(x) represent nonlinear inequality and equality constraints, A

(matrix form) and b (vector form) are linear inequality constraints, Aeq (matrix form)

and beq (vector form) are linear equality constraints, and lastly lb and ub represent

lower and upper bounds respectively.

In the MPC routine implementation, the fmincon function employs an iterative

strategy to minimize the cost function defined in Eq.(3.11). Equality and inequality

constraints do not exist in this optimization problem, thus the parameters for those

constraint fields are left empty. The upper and lower bounds, which are defined

as the upper and lower limits of the trailing edge flap deflection, are specified as

in Eq.(3.15). With these constraints in place, the optimized control action will not

exceed the trailing edge flap’s deflection limits. An extra fmincon parameter named

option is added to activate the parallel computing option within MATLAB while
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running simulations for controller designs that are being implemented on the nonlinear

aeroelastic system. This parallel computing option reduced the computational time

for the nonlinear MPC implementation by half or more.

Figure 3.2. Optimization function fmincon routine in flowchart form.

With all the input parameters and constraints defined, the solver’s optimization

routine is depicted in Figure 3.2. The initial conditions of all states and the control

are passed into the cost function. If the solution of the cost function is acceptable,

then the optimized control input with its corresponding states will be saved as a time

history. On the other hand, if the solution is not acceptable, then a new control action

will be computed. The optimization process continues until the optimal control input

sequence is obtained.
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Figure 3.3. MPC routine in flowchart form.

The optimization routine is incorporated into the MPC algorithm as depicted in

the flow chart in Figure 3.3. The process begins with the initial condition defined

by the user, which is sent to the cost function along with the reference output value

and the Volterra kernels. The Volterra kernels are used to form the Volterra-based

predictive model that computes the predicted output values. The fmincon function

is used to minimize the cost function and determine the allowable optimized control

action. If the output is acceptable, the optimized control action will be applied to the

aeroelastic simulation model created in Simulink. State outputs from the simulation

model will define the initial condition for the next optimization interval and the

process continues until the simulation reaches the final time.
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4. Controller Implementation on a Linear Aeroelastic System

In this chapter, different linear controllers were implemented on the linear aeroelastic

system. These controllers include the LQR baseline controller in continuous and

discrete time using different methods to define the Q matrix , the LQR-based MPC

controller and the LMPC controller. Each controller’s response and performance are

presented and discussed within this chapter. Furthermore, a comparison is performed

between all chosen controllers for regulator and tracking cases at U = 6 m/s and U

= 12.5 m/s.

4.1 Classical LQR Baseline Controller

The LQR controller described in Chapter 2 was applied to the linear aeroelastic

system to provide a baseline for evaluating the performance of the MPC strategies.

Referring to Chapter 2, two methods were used to define the Q matrix. Tables 4.1 -

4.8 present different combinations of values that were chosen for the Q and R matrices

to tune the LQR controller in both continuous and discrete time for the U = 6 m/s

and U = 12.5 m/s cases respectively.
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Table 4.1. Maximum value for each state in Q using method 1 for the
continuous-time LQR controller at 6 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch

1

1 1

10 5 5

2 20 5 10

3 20 20 1

4 20 10 1

Table 4.2. Maximum value for each state in Q using method 1 for the
continuous-time LQR controller at 12.5 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch

1 1 1 20 5 1

2

0.1 0.1

10

1

0.5

3 1 0.5

4 0.5 0.5

Table 4.3. Maximum value for each state in Q using method 2 for the
continuous-time LQR controller at 6 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch

0 0

0.25

0 5
0.5

1

10



51

Table 4.4. Maximum value for each state in Q using method 2 for the
continuous-time LQR controller at 12.5 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch

0 0

0.5

0

10.8

1

0.5
5

1

Table 4.5. Maximum value for each state in Q using method 1 for the
discrete-time LQR controller at 6 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch

1

1 1 5

2
1

2 5

3 2
5

4 5

Table 4.6. Maximum value for each state in Q using method 1 for the
discrete-time LQR controller at 12.5 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch

1

1 1 5
2

1

2
5

3 5



52

Table 4.7. Maximum value for each state in Q using method 2 for the
discrete-time LQR controller at 6 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch

0 0

1

0

1

5

5
10

50

Table 4.8. Maximum value for each state in Q using method 2 for the
discrete-time LQR controller at 12.5 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch

0 0

3

0

2

5

5
2

5

4.1.1 Continuous-Time LQR: Free-stream Velocity at 6 m/s

In general, the pitch response and control effort are more aggressive after the LQR

controller is applied to the linear aeroelastic system. Due to the control action, the

settling time of the response has reduced compared to the open-loop response.
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Figure 4.1. Pitch response for LQR baseline controller on the linear
aeroelastic system with Q chosen using method 1 at 6 m/s.

Figure 4.2. Control effort for LQR baseline controller on the linear
aeroelastic system with Q chosen using method 1 at 6 m/s.
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Table 4.9 shows the performance of the LQR controller through the pitch RMS

error and the control effort. As Qα̇
max gets larger, the error on pitch increases while

the control effort is reduced. This can also be seen in Figure 4.1, where there are

more oscillations in the pitch response for both the third and fourth sets of the Q

and R matrices. The first set of Q and R (light blue) yields the best qualitative

balance of pitch response and control effort out of all the sets. Although the time

to settle is slightly greater than the pitch response from the second set of Q and R,

the qualitative controller performance is reasonable, within limitations and not overly

aggressive.

Table 4.9. RMSE and control effort for LQR controller using method
1 to determine the Q matrix at 6 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

1

1 1

10 5 5 1.479 7.414

2 20 5 10 1.461 8.362

3 20 20 1 1.639 0.067

4 20 10 1 1.628 0.260
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According to Table 4.10, the value of Qα
max has a proportional and inverse re-

lationship with pitch error and control effort respectively. Referring to Figures 4.3

and 4.4, the pitch response oscillates for almost 2 seconds before it settles to zero

when Qα
max is chosen to be 10. The pitch response and control effort obtained from

the LQR controller with Qα
max = 1 and RPitch = 5 in the cost function (light blue)

provides the best qualitative performance out of all combinations of Q and R that

were implemented. Although the closed-loop pitch response overshoots more than

the open-loop response, the time to settle is shorter and the largest flap deflection

required is -5 degrees.

Table 4.10. RMSE and control effort for LQR controller using method
2 to determine the Q matrix at 6 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

0 0

0.25

0 5

1.441 8.339

0.5 1.487 7.220

1 1.506 5.077

10 1.636 0.093
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Figure 4.3. Pitch response for LQR baseline controller on the linear
aeroelastic system with Q chosen using method two.

Figure 4.4. Control effort for LQR baseline controller on the linear
aeroelastic system with Q chosen using method two.
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4.1.2 Continuous-Time LQR: Free-stream Velocity at 12.5 m/s

A LQR controller was designed to stabilize the linear aeroelastic system at U =

12.5 m/s and regulate the pitch response to zero. Recall that the open-loop system is

unstable at this flight condition. Four different sets of Q and R matrix combinations

were used to tune the controller. The RMS error presented in Table 4.11 shows that

the second, third and fourth sets yield a better pitch response compared to the first

set as the pitch RMS error is less, and the response has more damping with a shorter

settling time. While the pitch error and performance of the controller are similar

between the second, third and fourth sets, it can be concluded that the controller

using the third set of Q and R matrices yields the most reasonable performance.

Table 4.11. RMSE and control effort for LQR controller using method
1 to determine the Q matrix at 12.5 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

1 1 1 20 5 1 1.490 2.719

2

0.1 0.1

10

1 0.5

1.416 5.162

3 1 1.415 5.216

4 0.5 1.412 5.379



58

Figure 4.5. Pitch response for LQR baseline controller on the linear
aeroelastic system at U = 12.5 m/s with Q chosen using method one.

Figure 4.6. Control effort for LQR baseline controller on the linear
aeroelastic system at U = 12.5 m/s with Q chosen using method one.
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According to the results in Table 4.12, using the second method to determine

the Q matrix sufficiently reduced the control effort compared to the first method

summarized in Table 4.11. By allowing more control deflection on the trailing edge

flap, the pitch error is minimized. Within these designs, the controller with Qα
max =

0.5 and RPitch = 5, depicted as a purple line in Figures 4.7 and 4.8, provides a

response with the least pitch RMS error with acceptable control effort. From Figure

4.8, the controller yielded a pitch response with the shortest settling time and a

smooth control action with the largest deflection no more than -5 degrees.

Table 4.12. RMSE and control effort for LQR controller using method
2 to determine the Q matrix at 12.5 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

0 0

0.5

0

1

1.466 3.378

0.8 1.522 2.266

1 1.562 1.889

0.5
5

1.024 5.004

1 1.569 7.208
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Figure 4.7. Pitch response for LQR baseline controller on the linear
aeroelastic system at U = 12.5 m/s with Q chosen using method two.

Figure 4.8. Control effort for LQR baseline controller on the linear
aeroelastic system at U = 12.5 m/s with Q chosen using method two.
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4.1.3 Discrete-Time LQR: Free-stream Velocity at 6 m/s

The LQR baseline controller was implemented in discrete-time to yield responses

that are comparable with the LMPC controller. New sets of Q and R matrices were

defined in Tables 4.5-4.8 for the LQR controller in discrete-time.

Table 4.13. RMSE and control effort for discrete-time LQR controller
using method 1 to determine the Q matrix at 6 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

1

1 1 5

2
1

1.548 2.662

2 5 1.615 0.644

3 2
5

1.631 8.349

4 5 1.495 5.441

Table 4.13 shows the performance of the discrete-time LQR controller through

the pitch RMS error and the control effort. As Qα̇
max gets larger, the error on pitch

increases while the control effort is reduced. This can also be seen in Figure 4.9, where

the second set has the least overshoot in the pitch response, and results in having a

large control action which is close to the control surface’s limitation. The first set of

Q and R (purple) yields the best qualitative balance of pitch response and control

effort out of all the sets. Although the time to settle is slightly greater than the pitch

response from the fourth set of Q and R, the qualitative controller performance is

reasonable, within limitations and not overly aggressive.
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Figure 4.9. Pitch response for discrete-time LQR baseline controller
on the linear aeroelastic system with Q chosen using method 1 at 6
m/s.

Figure 4.10. Control effort for discrete-time LQR baseline controller
on the linear aeroelastic system with Q chosen using method 1 at 6
m/s.



63

According to Table 4.14, more control effort is being used as the value of RPitch

gets larger with the Qα
max value remaining unchanged. Referring to Figure 4.12, all

sets of Q and R matrices yield control effort within the limitation. The pitch response

and control effort obtained from the discrete-time LQR controller with Qα
max = 5 and

RPitch = 50 in the cost function (purple) provides the best qualitative performance,

which is shown in Figure 4.9. Although it used the most control effort out of all com-

binations of Q and R matrices, the closed-loop pitch response has the least overshoot

and the shortest settling time.

Table 4.14. RMSE and control effort for discrete-time LQR controller
using method 2 to determine the Q matrix at 6 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

0 0

1

0

1 1.629 0.212

5 1.566 2.597

5
10 1.611 0.731

50 1.538 4.774
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Figure 4.11. Pitch response for discrete-time LQR baseline controller
on the linear aeroelastic system with Q chosen using method two.

Figure 4.12. Control effort for discrete-time LQR baseline controller
on the linear aeroelastic system with Q chosen using method two.
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4.1.4 Discrete-Time LQR: Free-stream Velocity at 12.5 m/s

A discrete-time LQR controller was designed to stabilize the linear aeroelastic

system at U = 12.5 m/s and regulate the pitch response to zero. Recall that the

open-loop system is unstable at this flight condition. Three different sets of Q and R

matrix combinations were used to tune the controller. The RMS error presented in

Table 4.15 shows that the third set yields a good balance between the pitch RMS error

and control effort quantitatively. This conclusion can also be drawn qualitatively

by analyzing the pitch response and control effort plots of the discrete-time LQR

controller through Figures 4.13 and 4.14.

Table 4.15. RMSE and control effort for discrete-time LQR controller
using method 1 to determine the Q matrix at 12.5 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

1

1 1 5
2

1 1.485 2.448

2
5

1.458 3.801

3 5 1.467 2.997
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Figure 4.13. Pitch response for discrete-time LQR baseline controller
on the linear aeroelastic system at U = 12.5 m/s with Q chosen using
method one.

Figure 4.14. Control effort for discrete-time LQR baseline controller
on the linear aeroelastic system at U = 12.5 m/s with Q chosen using
method one.
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According to the results in Table 4.16, using the second method to determine

the Q matrix sufficiently reduced the control effort compared to the first method

summarized in Table 4.15. Within these designs, the controller with Qα
max = 3 and

RPitch = 5, depicted as an orange line in Figures 4.15 and 4.16, provides a response

with the least pitch RMS error with acceptable control effort. From Figure 4.15,

the controller yielded a pitch response with the shortest settling time and minimal

overshoot.

Table 4.16. RMSE and control effort for discrete-time LQR controller
using method 2 to determine the Q matrix at 12.5 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

0 0

3

0

2 1.783 0.985

5 1.617 1.633

5
2 1.968 1.734

5 1.683 1.237
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Figure 4.15. Pitch response for discrete-time LQR baseline controller
on the linear aeroelastic system at U = 12.5 m/s with Q chosen using
method two.

Figure 4.16. Control effort for discrete-time LQR baseline controller
on the linear aeroelastic system at U = 12.5 m/s with Q chosen using
method two.
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4.2 LMPC Stability

It is well known that linear controllers with quadratic cost function with infinite

horizon have powerful stability properties. Hence, LQR controllers are used to sta-

bilize linear system in various industrial applications world-wide. With MPC getting

popular in the 1970s, extensive research has been done on investigating the closed-loop

stability properties of a LMPC controller. Two papers, namely A Modified Quadratic

Cost Problem and Feedback Stabilization of a Linear System and Stabilizing state-

feedback design via the Moving Horizon Method written by Kwon and his colleagues

set the stage for LMPC closed-loop stability. The first paper showed asymptotic sta-

bility is achieved with a modified control law using the receding horizon concept with

fixed terminal constraints on the state. The methods for stabilizing a linear time-

invariant system and linear time-varying system were discussed. The second paper

considered a modification in the cost function by including a terminal cost term over

a fixed depth horizon, which yields a stable closed-loop system. The details for each

paper are discussed in the following sections.

4.2.1 Method 1: Terminal Constraint

Consider a linear time-invariant system with constant A, B and C matrices:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(4.1)
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Kwon and Pearson utilized the following cost function (Kwon & Pearson, 1977):

J(u) =

∫ tf

t0

[xT (t)Qx(t) + uT (t)Ru(t)]dt (4.2)

where Q and R are symmetric positive semi-definite and positive definite matrices

respectively with boundary conditions of

x(t0) = x0

x(tf ) = 0

If {A,B} is completely controllable, the minimization of Eq.(4.2) subject to the ter-

minal constraint results in the following optimal feedback control law:

u(t) = −R−1BTP−1(t)x(t) (4.3)

where P (t) is obtained by solving the following matrix Riccati equation:

dP (t)

dt
= −AP (t)− P (t)AT − P (t)CTQCP (t) + BR−1BT (4.4)

The above procedure for computing the optimal input forms Theorem 3.1 (Kwon

& Pearson, 1977), which states that if the A and B matrices of the LTI system is

controllable, then the system with the fixed optimal feedback gain is asymptotically

stable.

On the other hand, a similar approach is used to determine the optimal feed-

back control that leads a linear time-varying system to achieve asymptotic stability.

Consider the following LTV system:

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t)

(4.5)
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where A(t), B(t) and C(t) are piecewise continuous matrices and consider a cost

function in the following form:

J(u) =

∫ tf

t0

[xT (t)Q(t)x(t) + uT (t)R(t)u(t)]dt (4.6)

where Q(t) and R(t) are piecewise continuous symmetric positive definite matrices

with the same initial and terminal boundary conditions as the LTI system. A two

dimension Hamiltonian system is introduced to obtain the optimal solution:⎡
⎢⎢⎣ẋ(t)
ṗ(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ A(t) −B(t)R−1(t)BT (t)

−cT (t)Q(t)C(t) −AT (t)

⎤
⎥⎥⎦
⎡
⎢⎢⎣x(t)
p(t)

⎤
⎥⎥⎦ (4.7)

The state transition matrix of the Hamiltonian system is denoted by S(t, t0) and

defined as the following 2 by 2 matrix:

S(t, t0) =

⎡
⎢⎢⎣ψ(t, t0) ω(t, t0)

χ(t, t0) Λ(t, t0)

⎤
⎥⎥⎦ (4.8)

If the LTV system is completely controllable within the interval of [t, tf ], then the

optimal closed-loop feedback control is found to be

u(t) = −R−1(t)BT (t)P−1(t, tf )x(t) (4.9)

where P (t, tf ) can be obtained by integrating the Riccati equation with respect to τ

over the interval [t, tf ]:

− dP (τ)

dt
= −A(τ)P (τ)− P (τ)AT (τ)− P (τ)CT (τ)Q(τ)C(τ)P (τ)

+B(τ)R−1(τ)BT (τ) (4.10)
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Another method to obtain P (t, tf ) is through the use of the Hamiltonian system

and the state transition matrix, which result in P (t, tf ) = −ψ−1(t, tf )Ω(t, tf ). For

the LTV system, Kwon and Pearson concluded that if {A(t), B(t)} and {A(t), C(t)}

are uniformly controllable and observable respectively, with the Q and R matrices

fulfilling the following assumptions:

α1I ≤ Q(t) ≤ α2I

α3I ≤ R(t) ≤ α4I

where α1, α2, α3 and α4 are positive constants, then the LTV system with the optimal

feedback control law presented in Eq.(4.9) is uniformly asymptotically stable.

4.2.2 Method 2: Terminal Cost Term

The second method to guarantee closed-loop stability for the moving horizon

method is to amend the cost function by adding a terminal cost term as shown below

(Kwon, Bruckstein, & Kailath, 1983):

J(u) =

∫ tf

t0

[xT (t)Q(t)x(t) + uT (t)R(t)u(t)]dt+ xT (tf )F (tf )x(tf ) (4.11)

Here Q(t), R(t) and F (t) are known time-varying symmetric positive definite weight-

ing matrices for the LTV system. These matrices are essentially design parameters

and play a crucial role in determining the properties of the controller. Kwon et al.

discussed three choices for F (t) within the paper:

Choice 1 : F (t) = 0
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Choice 2 : F (t) =∞

Choice 3 :
d

dt
F (t) + AT (t)F (T ) + F (t)A(t)− F (t)B(t)R−1(t)BT (t)F (t) +Q(t) ≤ 0

When F (t) = 0, the cost function becomes the normal cost function presented

in Eq.(4.2). The theorem mentioned if the pair {A,B} is controllable with Q and

R being symmetric positive-definite matrices, then there exists a finite horizon (T ),

such that by minimizing the cost function expressed in Eq.(4.2) the optimal feedback

control law is:

u(t) = −R−1BTK(T )x(t) (4.12)

For a LTI system with constant Q, R and F matrices, the constant optimal gain

K(T ) is computed through the backwards Riccati equation:

−dK(T )

dT
= K(T )A+ ATK(T )−K(T )BR−1B(T )K(T ) +Q (4.13)

with an initial condition of K0 = F . The optimal control law presented in Eq.(4.12)

stabilizes a LTI system without terminal constraints. The same procedure and control

law with time-varying matrices will also stabilize a LTV system.

In general, F (t) =∞ turn outs to be important in providing a stabilizing optimal

control law for a LTV system and it depends on to the systems controllability prop-

erties. An infinite weight assigned to the final state implies that the optimal control

obtained from minimizing a quadratic cost over the given time interval is required

to drive the final state to zero at the end of the time horizon. For some ε > 0 the
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following inequality holds for all time if the pair {A(t), B(t)} is uniformly completely

controllable:

α1I ≤ W (t, t+ ε) ≤ α2I

‖ϕ(t1, t2)‖≤ γ|t1 − t2|

In the above inequality, α is a positive constant, ϕ represents the state transition

matrix of A(t), γ is an operator to map the information between two spaces within

the bounded intervals and W (t, t+ ε) is the controllability matrix defined as

W (t, t+ ε) =

∫ t2

t1

ϕ(t1, ε)BεB
T
ε ϕ

T (t1, ε)dε (4.14)

With the above definition, Kwon et al. concluded that when the pair {A(t), B(t)} is

uniformly completely controllable and satisfies 0 ≤ Qt ≤ α4I and α5I ≤ Rt ≤ α6I,

then for any T > ε, the following optimal feedback control law will stabilize the

system:

u(t) = −R−1(t)BT (t)P−1(t, t+ T )x(t) (4.15)

where P (t, t + T ) is obtained from the following Riccati equation with respect to τ

over the interval [t, tf ]:

−dP (τ)

dt
= −P (τ)AT (τ)− A(τ)P (τ)− P (τ)Q(τ)P (τ) + B(τ)R−1(τ)B(τ) (4.16)

The last case is when F(t) is defined as the third choice, then K(t, ε) is obtained

via the solution of the backward Riccati equation:

− dK(t, ε)

dt
= K(t, ε)A(t) + AT (t)K(t, ε)

−K(t, ε)B(t)R−1(t)BT (t)K(t, ε) +Q (4.17)
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satisfying the following inequality for t ≤ ε1 ≤ ε2:

K(t, ε1 : Fε1) ≥ K(t, ε2 : Fε2)

Moreover, if the {A(t), B(t)} pair is uniformly completely controllable and for all

time, α3I ≤ Qt ≤ α4I and α5I ≤ Rt ≤ α6I, then for any T such that δ ≤ T ≤ ∞

there exist the following bounds on the optimal control gain:

α7I ≤ K(t, t+ T ) ≤ α8I

The above requirements are presented in Lemma 4.1 of the paper (Kwon et al., 1983).

By satisfying the above condition, the optimal feedback control

u(t) = −R−1(t)BT (t)K(t, t+ T )x(t) (4.18)

yields a closed-loop system that is uniformly asymptotically stable.

4.3 LQR Fixed Horizon Controller

The classical LQR controller implemented in the above section utilized a cost func-

tion with infinite horizon and has well understood stability properties. The question

regarding guaranteed closed-loop stability for a linear system within a fixed horizon

is raised. As discussed in Section 4.2.1, if the pair {A,B} is completely controllable

with Q ≥ 0 and R ≥ 0, then the linear time-invariant system is asymptotically stable

for any t > 0 with the optimal fixed gain control law defined by Eq.(4.3). Before

implementing the LQR fixed horizon controller, the controllability of the aeroelas-
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tic system is evaluated by determining the rank of the controllability matrix. The

controllability matrix is defined by (Hespanha, 2009):

C :=

[
B AB A2B · · · An−1B

]
n×(kn)

The controllability matrix of the aeroelastic system is full rank; thus the system is

completely controllable.

Figure 4.17. Diagonal value of P within the fixed horizon at 6 m/s
with Q matrix defined using method 1.

By solving the matrix Ricatti equation defined in Eq.(4.4), the values of P (t) are

computed throughout the fixed horizon. As Eq.(4.4) is integrated, the P matrix is
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computed at each time step. Figure 4.17 depicts the change of the diagonal of P

matrix within the fixed horizon. As the values of P11, P22, P33 and P44 converge to

constant values within the first second, the optimal control gain also converges to a

constant fixed gain. Then, P (t) at the end of the fixed horizon is used to calculate

the optimal fixed gain, KLQRFH
= R−1BTP−1(T ). The following response of the

aeroelastic system is obtained by implementing the optimal fixed feedback gain and

setting the finite horizon to 4 seconds.

In Section 4.1, the best combination of Q and R matrices is determined at each

free-stream velocity. Figures 4.18-4.21 depict the comparison between pitch response

and control effort for a LQR controller with these weight matrices combinations using

an infinite cost function (blue line) and a finite cost function (dashed red line) at

different free-stream velocity with different methods to define the Q matrix. One

common factor between all the figures is the LQR controller using a finite horizon

cost function performs the same as the classical LQR controller. This observation

suggests that the 4 seconds fixed horizon defined in the finite horizon LQR controller

is a large horizon compare to the settling time of the aeroelastic system. Hence, the

LQR controller with finite horizon set at 4 seconds has the same stability properties

that a classical LQR controller possess.
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Figure 4.18. Comparison between infinite and fixed horizon LQR
controller at 6 m/s with Q matrix defined using method 1.

Figure 4.19. Comparison between infinite and fixed horizon LQR
controller at 6 m/s with Q matrix defined using method 2.
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Figure 4.20. Comparison between infinite and fixed horizon LQR
controller at 12.5 m/s with Q matrix defined using method 1.

Figure 4.21. Comparison between infinite and fixed horizon LQR
controller at 12.5 m/s with Q matrix defined using method 2.
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4.4 Linear Volterra-Based MPC

The linear Volterra-based MPC was implemented on the linear aeroelastic system

for both the U = 6 m/s and U = 12.5 m/s cases. For the linear MPC implementation,

only the zero- and first- order Volterra kernels (i.e. V0 + V1) are used in the predictive

model.

4.4.1 LMPC: Free-stream Velocity at 6 m/s

Figures 4.22 and 4.23 depict the pitch response and control action of the LMPC

with a cost horizon of TH = 4 sec and a control horizon of TC = 2 sec regulating

the pitch to zero at a flight condition of U = 6 m/s. As the control discretization

value is reduced, the control effort increases, as shown in Table 4.17. This results

in high frequency oscillation of the trailing edge flap as presented in Figure 4.23.

Although the pitch response with a 0.25 second control discretization (orange) has

slight oscillation between 0.5 and 1.25 seconds with an amplitude of 0.1 degree, which

is depicted in Figure 4.22, it is well damped compared to the other responses and has

a similar time to settle as the open-loop response.
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Figure 4.22. Regulator case pitch response for LMPC on the linear
aeroelastic system at 6 m/s.

Figure 4.23. Regulator case control effort for LMPC on the linear
aeroelastic system at 6 m/s.
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Table 4.17. RMSE and control effort for LMPC regulator case on the
linear aeroelastic system at 6 m/s.

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

Open-Loop Response

N/A 0.606 N/A

Linear MPC Controller - (V0 + V1)

4 2

0.5 0.797 0.701

0.25 0.768 1.258

0.1 0.755 2.297

The discrete-time LQR and LMPC designs that showed the best performance

were implemented and compared for the linear regulator case. Figures 4.24 and 4.25

depict the pitch responses and control effort for each controller design. Regardless

of the value of the Q matrix, the discrete-time LQR controller resulted in the most

overshoot compared to the LMPC and the open-loop response. The LMPC pitch

response was well damped with slight oscillation before it regulated to 0 degrees at

1 second with minimal control action from the trailing edge flap. In conclusion, as

shown in Table 4.18, the LMPC qualitatively and quantitatively outperformed the

baseline discrete-time LQR controller at this flight condition.
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Figure 4.24. Pitch response comparison between open-loop, discrete-
time LQR and LMPC on the linear system at free-stream velocity of
6 m/s.

Figure 4.25. Control effort comparison between the discrete-time LQR
and LMPC on the linear system at free-stream velocity of 6 m/s.



84

Table 4.18. RMSE and control effort comparison between chosen
controllers at U = 6 m/s.

Controller Pitch RMSE Control Effort

LMPC 0.768 1.258

DLQR (Q defined using Method 1) 1.548 2.662

DLQR (Q defined using Method 2) 1.538 4.774

The LMPC was then implemented for a tracking case in which the goal was to

drive the pitch angle from zero to a constant value of 1 degree. Figures 4.26 and

4.27 depict the pitch response and control effort for this case with results obtained

by varying the control discretization from 0.1 second to 1 second. The pitch response

with control discretization of 0.1 second does not track the reference pitch angle

well as it oscillates every 2 seconds after it first approaches the reference value. This

deviation happened every 2 seconds causing the control action to oscillate aggressively

in an effort to drive the pitch response back to the reference value. The LMPC with

ΔTD = 0.5 seconds yields the best performance with a RMSE of 0.242 degrees for

pitch and control effort of 6.351, as presented in Table 4.19.
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Figure 4.26. Tracking case pitch response using LMPC on the linear
aeroelastic system at 6 m/s.

Figure 4.27. Tracking case control effort using LMPC on the linear
aeroelastic system at 6 m/s.
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Table 4.19. RMSE and control effort for tracking case using LMPC
on the linear aeroelastic system at 6 m/s.

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

4 2

1 0.277 6.301

0.5 0.242 6.351

0.25 0.219 6.384

0.1 0.179 6.762

4.4.2 LMPC: Free-stream Velocity at 12.5 m/s

The aeroelastic system is unstable at U = 12.5 m/s, which corresponds to the

linear flutter speed; thus the primary control objective is to stabilize the system and

regulate the pitch response to zero. As shown in Figure 4.28, both LMPC controllers

with 0.25 and 0.1 second control discretizations stabilize the system with the pitch

response settling at 4 and 2 seconds respectively. Referring to Table 4.20, the LMPC

controller with 0.1 second control discretization yields the least pitch RMS error with

the drawback of having a higher frequency oscillation in the control action during the

first few seconds, which is depicted in Figure 4.29. Hence, the controller with 0.25

second control discretization produced the best performance to stabilize and regulate

the linear aeroelastic system’s response at the unstable flight condition.
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Figure 4.28. Regulator case pitch response using LMPC on the linear
aeroelastic system at 12.5 m/s.

Figure 4.29. Regulator case control effort using LMPC on the linear
aeroelastic system at 12.5 m/s.
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Table 4.20. RMSE and control effort for regulator case using LMPC
on the linear aeroelastic system at 12.5 m/s.

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

Open-Loop Response

N/A 4.421 N/A

Linear MPC Controller - (V0 + V1)

4 2
0.25 0.188 2.252

0.1 0.157 2.324

Figures 4.30 and 4.31 portray the pitch responses and control effort for the discrete-

time LQR and LMPC controller designs at free-stream velocity of 12.5 m/s. All

controllers successfully stabilize the system and regulate the pitch response to zero

with different settling times. Although the LMPC has the longest settling time of 5

seconds, its requires the least control action. Both the discrete-time LQR and LMPC

controllers have their relative advantages and disadvantages, and further tuning of

the parameters and weights could potentially yield improved performance. However,

the quantitative analysis of RMS error presented in Table 4.21 concludes that the

LMPC controller has better performance than the other chosen controllers.
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Figure 4.30. Pitch response comparison between open-loop, discrete-
time LQR and LMPC for the linear system at U = 12.5 m/s.

Figure 4.31. Control effort comparison between the discrete-time LQR
and LMPC controllers on the linear system at U = 12.5 m/s.
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Table 4.21. RMSE and control effort comparison between chosen
controllers at U = 12.5 m/s.

Controller Pitch RMSE Control Effort

LMPC 0.188 2.252

DLQR (Q defined using Method 1) 1.467 2.997

DLQR (Q defined using Method 2) 1.617 1.633

Although the LMPC controller successfully stabilizes the system and regulates

the pitch response to zero, the LMPC was not effective for the tracking case. The

controller did stabilize the pitch response; however it oscillated around the reference

value of 1 degree with an amplitude of 0.2 degree without converging to a constant

pitch angle. These observations are evident from the responses depicted in Figures

4.32 and 4.33. In this case, the RMSE results presented in Table 4.22 are inconclusive.

Table 4.22. RMSE and control effort for tracking case using LMPC
on the linear aeroelastic system at 12.5 m/s.

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

4 2

0.25 0.219 6.384

0.1 0.179 6.762

0.05 0.165 6.959
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Figure 4.32. Tracking case pitch response using LMPC on the linear
aeroelastic system at 12.5 m/s.

Figure 4.33. Tracking case control effort using LMPC on the linear
aeroelastic system at 12.5 m/s.
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5. Controller Implementation on a Nonlinear Aeroelastic System

In this chapter, different controllers are implemented on the nonlinear aeroelastic

system. These controllers include the LQR baseline controller in discrete time using

different methods to define the Q matrix and the NMPC controller using a second-

and third-order Volterra model. The response and performance of each controller are

presented and discussed within this chapter. A performance comparison is provided

for all implemented controllers for the regulator case at U = 6 m/s and U = 12.5

m/s.

5.1 Classical LQR Baseline Controller

Using the LQR controller design process discussed in Chapter 2, the linear feed-

back gain is computed and implemented on the nonlinear aeroelastic system. Al-

though applying a linear controller on a nonlinear system will typically not be opti-

mal, this strategy provides a baseline with which to evaluate the performance of the

NMPC controller. The following sections present the pitch response and control effort

for each controller design at different free-stream velocities. Referring to Chapter 2,

there are two methods used to define the Q matrix. Tables 5.1-5.4 present different

maximum value combinations that are chosen for the Q matrix to tune the controller.
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Table 5.1. Maximum value for each state in Q using method 1 for
tuning the LQR controller at 6 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch

1

1 1

1

1

1

2 10 10

3 10 0.5

Table 5.2. Maximum value for each state in Q using method 1 for
tuning the LQR controller at 12.5 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch

1

1 1

1

1

0.1

2 0.05

3
5

0.1

4 0.05

Table 5.3. Maximum value for each state in Q using method 2 for
tuning the LQR controller at 6 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch

0 0

1

0

50

100

5
50

100

0.5 100
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Table 5.4. Maximum value for each state in Q using method 2 for
tuning the LQR controller at 12.5 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch

0 0

1

0

1

5

5 1

0.5 1

5.1.1 Discrete-Time LQR: Free-stream Velocity at 6 m/s

The pitch response and control effort of the LQR controller with the Q matrix

defined using method 1 are portrayed in Figures 5.1 and 5.2 respectively. Results

from the first and third set of Q and R matrices show larger damping and shorter

settling times compared to the open-loop response. The third set has a slightly lower

RMS error in pitch with the least control effort utilized in the process of regulating

the pitch response to 0 degrees, as shown in Table 5.5. Hence, the discrete-time LQR

controller with the third set of Q and R matrices is chosen to represent this controller

design.
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Figure 5.1. Pitch response for discrete-time LQR baseline controller
on the nonlinear aeroelastic system with Q chosen using method 1 at
U = 6 m/s.

Figure 5.2. Control effort for discrete-time LQR baseline controller
on the nonlinear aeroelastic system with Q chosen using method 1 at
U = 6 m/s.
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Table 5.5. RMSE and control effort for the discrete-time LQR con-
troller using method 1 to determine the Q matrix on the nonlinear
aeroelastic system at U = 6 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

1

1 1

1

1

1 1.755 3.191

2
10

10 2.052 9.484

3 0.5 1.722 1.360

The pitch response from the controllers using the second method to define the

Q matrix had similar performance and time to settle as the open-loop response,

which is depicted in Figures 5.3 and 5.4. Based on the RMSE presented in Table

5.6, the controller with Qα
max = 0.5 and RPitch = 100 (light green) yielded the best

performance with pitch RMS error and control effort of 1.746 and 2.290 respectively.

Table 5.6. RMSE and control effort for the discrete-time LQR con-
troller using method 2 to determine the Q matrix on the nonlinear
aeroelastic system at U = 6 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

0 0

1

0

50 1.782 2.072

100 1.762 2.243

5
50 1.780 0.946

100 1.781 1.519

0.5 100 1.746 2.290



97

Figure 5.3. Pitch response for discrete-time LQR baseline controller
on the nonlinear aeroelastic system with Q chosen using method 2 at
U = 6 m/s.

Figure 5.4. Control effort for discrete-time LQR baseline controller
on the nonlinear aeroelastic system with Q chosen using method 2 at
U = 6 m/s.
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5.1.2 Discrete-Time LQR: Free-stream Velocity at 12.5 m/s

All discrete-time LQR controller designs successfully stabilized the nonlinear aeroe-

lastic system, which enters a bounded limit cycle oscillation in the open-loop. Figures

5.5 and 5.6 show that the controllers with the first and third set of Q and R matrices

have a similar pitch response and control effort, while the same comment can be made

for the controllers with the second and fourth set of Q and R matrices. The first and

third set of Q and R matrices yielded a pitch response with settling time at around

1.5 seconds and minimal overshoot. The cost of having a better transient response

is more control action is required. This observation is validated by the RMSE and

control effort shown in Table 5.7. Based on these results, the controller with the third

set of Q and R matrices yields the best performance among the other designs with a

pitch error and control effort of 1.836 and 1.131 respectively.

Table 5.7. RMSE and control effort for the discrete-time LQR con-
troller using method 1 to determine the Q matrix on the nonlinear
aeroelastic system at U = 12.5 m/s.

Sets Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

1

1 1

1

1

0.1 1.836 1.135

2 0.05 1.915 0.735

3
5

0.1 1.836 1.131

4 0.05 1.916 0.732
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Figure 5.5. Pitch response for the discrete-time LQR baseline con-
troller on the nonlinear aeroelastic system with Q chosen using
method 1 at U = 12.5 m/s.

Figure 5.6. Control effort for the discrete-time LQR baseline con-
troller on the nonlinear aeroelastic system with Q chosen using
method 1 at U = 12.5 m/s.
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Figures 5.7 and 5.8 depict the pitch response and control effort of the LQR con-

trollers using the second method to define the Q and R matrices. The controllers

stabilized the nonlinear aeroelastic system and regulated the pitch response to 0 de-

gree. Although the controller with Qα
max = 5 and RPitch = 1 required the least control

action, it provided the worst transient performance as the pitch response oscillated

about 0 for more than 4 seconds before converging to 0 degrees. The controller with

Qα
max = 0.5 and RPitch = 1 (purple) yielded the least RMS error in pitch and control

effort according to Table 5.8, and it obtained the best transient performance as the

time to settle is around 1.25 seconds while the maximum trailing edge flap deflection

required is slightly less than -4 degrees.

Table 5.8. RMSE and control effort for the discrete-time LQR con-
troller using method 2 to determine the Q matrix on the nonlinear
aeroelastic system at U = 12.5 m/s.

Qh
max Qḣ

max Qα
max Qα̇

max RPitch Pitch RMSE Control Effort

0 0

1

0

1 1.896 1.191

5 1.986 2.555

5 1 2.013 0.450

0.5 1 1.890 1.717



101

Figure 5.7. Pitch response for the discrete-time LQR baseline con-
troller on the nonlinear aeroelastic system with Q chosen using
method 2 at U = 12.5 m/s.

Figure 5.8. Control effort for the discrete-time LQR baseline con-
troller on the nonlinear aeroelastic system with Q chosen using
method 2 at U = 12.5 m/s.
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5.2 NMPC Stability

Closed-loop stability of NMPC controllers is an important consideration. Dif-

ferent methods to achieve closed-loop stability using a finite horizon strategy have

been proposed in numerous papers (Mayne & Michalska, 1990; Mayne et al., 2000;

Rawlings & Muske, 1993; Findeisen & Allgöwer, 2002). Most of the methods require

modifying the NMPC controller setup such that closed-loop stability can be guaran-

teed independently of the plant and the performance of the controller. Approaches

mentioned in the papers can be categorized into the following three approaches and

presented in the order of increasing complexity:

1. Suitable tuning of controller design parameters

2. Modify constraints requirement

3. Quasi-infinite horizon MPC scheme

5.2.1 Method 1: Tuning Design Parameters

NMPC does not necessarily guarantee closed-loop stability even when the predic-

tive model perfectly represents the plant. The simplest method to achieve closed-

loop stability is by suitable tuning of controller design parameters, namely prediction

horizon, control horizon, weighting matrices and constraints (Zhao, Diehl, Longman,

Bock, & Schlöder, 2004). If the prediction horizon is chosen to be large compared

with the settling time of the plant, then the stability properties of an infinite horizon
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are achieved (Mayne et al., 2000). The objective function with an infinite horizon

control is expressed as follows:

J =
1

2

∫ ∞

0

(xTQx+ uTRu)dt (5.1)

where Q and R are symmetric positive definite weighting matrices. If the plant is

stable, then the receding horizon controller with the objective function presented in

Eq.(5.1) is stabilizing (Rawlings & Muske, 1993). Moreover, for a stabilizable {A,B},

the receding horizon controller with the above objective function is stabilizing if the

open-loop plant is unstable.

5.2.2 Method 2: Modify Constraints Requirement

The remaining approaches require modification of the setup of the MPC controller.

With these modifications, the controller will achieve guaranteed closed-loop stability

independent of the controller performance. Hence, there is no guarantee of acceptable

performance from the controller. Closed-loop stability can be enforced by adding a

terminal constraint of the form:

x(TH) = 0

This terminal constraint ensures that the state will reach the desired final state at

the end of the prediction horizon. Linear systems with terminal constraints were

thoroughly investigated by Kwon and Pearson (1977). Mayne and Michalska (1990)

showed that under certain reasonable conditions and assumptions, closed-loop sta-

bility of nonlinear systems using a MPC controller can be realized. They proposed
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10 different assumptions throughout the paper and these assumptions are used in

the following two theorems. Furthermore, the proof for both theorems treated the

objective function as a Lyapunov function as Q is positive definite.

Theorem 1(Mayne & Michalska, 1990): If assumptions 1 to 9 are satisfied,

then the closed-loop system using the receding horizon strategy is (locally) asymptoti-

cally stable (i.e. there exists a ball, such that for any initial condition the solution of

the closed-loop system tends to zero as time goes to infinity).

Theorem 2(Mayne & Michalska, 1990): If assumptions 1 to 10 are satisfied,

then the closed-loop system using the receding horizon strategy is (globally) asymp-

totically stable (i.e. for every initial condition the solution of the closed-loop system

tends to zero as time goes to infinity).

5.2.3 Method 3: Quasi-Infinite Horizon NMPC Scheme

The last approach to ensure closed-loop stability is to employ the quasi-infinite

horizon NMPC scheme presented by Chen and Allgöwer (1997) on a system modeled

as a general nonlinear set of ordinary differential equations (ODEs) expressed in the

following form, subject to x(0) = x0:

ẋ(t) = f(x(t), u(t))

The general idea of the quasi-infinite horizon NMPC scheme is to use a terminal

region (Ω) and terminal penalty matrix (P ) that are determined off-line to ensure

the nonlinear system is led into the region about the end point (origin) where the
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model can be linearized. If the linearized system is stabilizable, then the terminal

penalty matrix is adjusted in the cost function to satisfy an equality, which states

the finite horizon cost function will transform into an infinite horizon cost function

where asymptotic closed-loop stability is achieved. In this scheme, a terminal regional

constraint is added and the objective function (J) is modified to include a terminal

penalty term, as defined below.

Terminal Regional Constraint:

x(TH) ∈ Ω

where the compact and convex terminal set Ω is defined as

Ω = {x ∈ R
n | xTPx ≤ α}

Objective Function with Terminal Penalty Term:

J =
1

2

∫ TH

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt+ xT (TH)Px(TH) (5.2)

The following assumptions are made for this approach (Johansen, 2004):

A1: Q, R, P > 0

A2: ymin < 0 < ymax and umin < 0 < umax

A3: The function f is twice continuously differentiable with f(0, 0) = 0

Consider the Jacobian linearization at the origin:

A =
∂f

∂x
(0, 0) B =

∂f

∂u
(0, 0)

and make the following assumption:
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A4: {A,B} is stabilizable

Let K be the optimal gain matrix from the linear state feedback control, u = −Kx,

such that AK = A − BK and AK is asymptotically stable. The following Lemma

can be stated (H. Chen & Allgöwer, 1997):

Lemma 1. If assumptions A1-A4 are satisfied, then the following Lyapunov equation

is defined

(AK + κI)TP + P (AK + κI) = −Q∗ (5.3)

where Q∗ = Q+KTRK is a symmetric positive definite matrix and κ > 0 satisfies

κ < −λmax(AK)

Furthermore, there exists a constant α > 0 such that Ω defined above satisfies the

following points:

i. The linear feedback controller respects the input constraints in Ω

ii. Ω is positively invariant. Hence, the nonlinear system with linear feedback

control u = −Kx is asymptotically stable for all x(0).

iii. The infinite horizon cost function subject to the nonlinear system controlled by

the linear feedback controller is bounded by the terminal penalty term.

J∞ =
1

2

∫ ∞

0

(xTQx+ uTRu)dt ≤ xT (TH)Px(TH) (5.4)

The following procedure (Findeisen & Allgöwer, 2002) can be used to determine

the terminal region (Ω) and the terminal penalty matrix (P ).
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Step 1. Solve the linear control problem based on the Jacobian linearization model to

get a locally stabilizing linear state feedback control gain (K).

Step 2. Choose a constant κ that satisfies κ < −λmax(AK) and solve the following

Lyapunov equation to get a symmetric positive definite P .

(AK + κI)TP + P (AK + κI) = −(Q+KTRK)

Step 3. Find the largest possible α1 defining a region

Ωα1 = {x ∈ R
n | xTPx ≤ α1}

such that Kx ∈ U , for all x ∈ Ωα1.

Step 4. Find the largest possible α defining a terminal region,

Ωα = {x ∈ R
n | xTPx ≤ α}

such that the optimal value of the following optimization problem is non-

positive:

max
x
{xTPφ(x)− κ · xTPx | xTPx ≤ α}

where φ(x) := f(x,Kx)− AKx.
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5.3 Nonlinear Volterra-Based MPC

The Volterra-based model predictive control strategy was implemented to control

the pitch response of the nonlinear aeroelastic system at two different free-stream

velocities, namely at U = 6 m/s and U = 12.5 m/s. The first free-stream velocity

is chosen at 6 m/s as it corresponds to the stable region of the system, while the

second value is chosen at 12.5 m/s, which corresponds to a limit cycle condition for

the nonlinear aeroelastic system. At each free-stream velocity condition, the Volterra

model was used to predict the pitch response and the MPC algorithm was utilized

to regulate the pitch response to zero and also to drive the pitch response to track a

constant reference value.

5.3.1 NMPC: Free-stream Velocity at 6 m/s

The NMPC algorithm was first implemented to regulate the pitch response from

an initial pitch angle of 5 degrees to 0 degrees, then it was utilized to track a step

input with a specific pitch angle value. It should be noted that, as the system is

stable at this free-stream velocity condition, the pitch response will naturally decay

to zero without any control effort. For each regulator and tracking case, discussion is

provided on how the pitch response and control effort were affected by different MPC

controller parameters and the Volterra model.
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5.3.2 The Effect of Control Discretization and Predictive Model

Volterra models were used as predictive models within the NMPC strategy. In all

the examples provided, the cost function weights were chosen as wα = 100 and wβ = 0

unless otherwise stated. This means the cost function did not penalize the control

effort and was simply designed to regulate the pitch response to zero. Implementation

of the MPC algorithm requires the selection of the cost (or optimization) horizon, TH ,

the control horizon, TC (i.e. the portion of the computed control history that is applied

before a new optimization is performed), and the control discretization ΔTD. Since

the zero- and first-order kernels have 4 seconds memory (i.e. the kernels decay to zero

in 4 seconds) and the second- and third- order kernels only have 2 seconds memory

at this flight condition, the largest possible and reasonable value for the optimization

horizon, TH , for the linear and nonlinear predictive models would be 4 and 2 seconds

respectively.

Figures 5.9 and 5.10 depict the pitch response and control effort obtained using

the linear MPC algorithm with TH = 4 seconds and TC = 2 seconds using several

different control discretization values. The open-loop pitch response was also plotted

for comparison. The results showed that with finer control discretization, the pitch

responses were attenuated faster with larger control deflections from the trailing edge

flaps. This trend is clearly seen as the control discretization is reduced from 1 second

(light blue) to 0.1 seconds (purple). The control effort increased significantly and

showed higher frequency oscillations while the pitch response improved marginally.
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Figure 5.9. Pitch response for nonlinear regulator case using the linear
predictive model with different control discretizations with TH = 4 sec
and TC = 2 sec.

Figure 5.10. Control effort for nonlinear regulator case using the linear
predictive model with different control discretizations with TH = 4 sec
and TC = 2 sec.
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This trend is also demonstrated in the RMSE analysis presented in Table 5.9. These

results imply that 0.5 second and 0.25 second control discretizations would be the

better choices in this case based on pitch RMS error and control effort.

Table 5.9. RMSE and control effort for Linear MPC regulator case
with TH = 4 sec and TC = 2 sec for various control discretizations
(ΔTD).

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

Open-Loop Response

N/A 0.588 N/A

Linear MPC Controller - (V0 + V1)

4 2

1 0.608 0.160

0.5 0.596 0.543

0.25 0.552 0.975

0.1 0.553 1.780

The MPC algorithm with the same choice of parameters was then applied to

track a predefined pitch angle reference value (αref = 1 degree). The resulting pitch

response and control effort are shown in Figures 5.11 and 5.12 respectively. For

all control discretization values, the controller did not successfully drive the pitch

response of the nonlinear aeroelastic system to the desired pitch reference angle as

there was a steady state error of roughly 0.06 degrees.
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Figure 5.11. Pitch response for nonlinear tracking case using the linear
predictive model with different control discretizations with TH = 4 sec
and TC = 2 sec.

Figure 5.12. Control effort for nonlinear tracking case using the linear
predictive model with different control discretizations with TH = 4 sec
and TC = 2 sec.
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Table 5.10. RMSE for Linear MPC tracking case at TH = 4 sec and
TC = 2 sec with various control discretizations (ΔTD).

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

Linear MPC Controller - (V0 + V1)

4 2

1 0.223 6.348

0.5 0.196 6.413

0.25 0.181 6.436

0.1 0.154 6.646

Although there was steady state error within the pitch response, the pitch response

leveled to a constant value within 4 seconds. For the finest discretization level of ΔTD

= 0.1 seconds, the control effort becomes very large and oscillatory in nature, with

a control effort of 6.646, the largest control effort out of all the designs. Both the

performance plots and error analysis suggest that a coarser discretization level, such

as 1 second or 0.5 seconds, which result in a lower frequency control input, would be

better choices for this case.

The Nonlinear MPC (NMPC) was then implemented on the nonlinear aeroelastic

system and compared to the linear MPC results. The NMPC was implemented using

the second-order Volterra model and the third-order Volterra model. The second-

order nonlinear model includes the zero-, first- and second-order kernels (i.e. V0 +
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V1 + V2), while the third- order Volterra model also includes the third-order kernels

(i.e. V0 + V1 + V2 + V3).

The pitch response and control effort for the regulator case are shown in Figures

5.13-5.16. Figures 5.13 and 5.14 depict the results using the second-order nonlinear

predictive model, whereas Figures 5.15 and 5.16 show the results of using the third-

order nonlinear predictive model.

Table 5.11. RMSE and control effort for second- and third-order
NMPC regulator case with TH = 2 sec and TC = 2 sec with vari-
ous control discretizations (ΔTD).

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

Second-Order MPC Controller - (V0 + V1 + V2)

2 2

1 0.608 0.180

0.5 0.596 0.615

0.25 0.554 1.037

0.1 0.554 1.798

Third-Order MPC Controller - (V0 + V1 + V2 + V3)

2 2

1 0.608 0.180

0.5 0.596 0.609

0.25 0.554 1.034

0.1 0.554 1.794
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Figure 5.13. Pitch response for nonlinear regulator case using the
second-order nonlinear predictive model with different control dis-
cretizations with TH = 2 sec and TC = 2 sec.

Figure 5.14. Control effort for nonlinear regulator case using the
second-order nonlinear predictive model with different control dis-
cretizations with TH = 2 sec and TC = 2 sec.
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Figure 5.15. Pitch response for nonlinear regulator case using the
third-order nonlinear predictive model with different control dis-
cretizations with TH = 2 sec and TC = 2 sec.

Figure 5.16. Control effort for nonlinear regulator case using the third-
order predictive model with different control discretizations with TH
= 2 sec and TC = 2 sec.
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The pitch response and control effort from both nonlinear predictive models show

the same trend as the results obtained using the linear predictive model in that

control discretizations of 0.5 seconds or 0.25 seconds provide the best results. These

observations from the plots are supported by the quantitative pitch RMS error and

control effort analysis presented in Table 5.11. In general, the second-order NMPC

has a slightly higher control effort compared to the third-order NMPC, while the

pitch RMS error is the same in both cases.

The pitch response and control effort for the tracking case are shown in Figure 5.17-

5.20. Figures 5.17 and 5.18 depict the results of the second-order nonlinear predictive

model, whereas Figures 5.19 and 5.20 show the results of the third-order nonlinear

predictive model. The pitch response and control effort from both nonlinear predictive

models show the same trend as the regulator case. As the control discretization is

reduced, more control effort is required and aggressive oscillations can be seen in

the both the pitch response and control effort plots. In addition, the RMS error

presented in Table 5.12 demonstrates that the third-order NMPC has a lower RMS

error in pitch and control effort compared to the error analysis for the second-order

NMPC. Therefore, the third-order NMPC with control discretization of 1 second or

0.5 seconds would be the best choice for the tracking case.
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Figure 5.17. Pitch response for nonlinear tracking case using the
second-order nonlinear predictive model with different control dis-
cretizations with TH = 2 sec and TC = 2 sec.

Figure 5.18. Control effort for nonlinear tracking case using the
second-order nonlinear predictive model with different control dis-
cretizations with TH = 2 sec and TC = 2 sec.
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Figure 5.19. Pitch response for nonlinear tracking case using the third-
order nonlinear predictive model with different control discretizations
with TH = 2 sec and TC = 2 sec.

Figure 5.20. Control effort for nonlinear tracking case using the third-
order nonlinear predictive model with different control discretizations
with TH = 2 sec and TC = 2 sec.
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Table 5.12. RMSE and control effort for second- and third-order
NMPC tracking cases with TH = 2 sec and TC = 2 sec with vari-
ous control discretizations (ΔTD).

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

Second-Order MPC Controller - (V0 + V1 + V2)

2 2

1 0.213 7.054

0.5 0.190 7.139

0.25 0.175 7.141

0.1 0.148 7.314

Third-Order MPC Controller - (V0 + V1 + V2 + V3)

2 2

1 0.212 6.849

0.5 0.187 6.914

0.25 0.171 6.933

0.1 0.198 7.687

To obtain a better understanding of how the linear and nonlinear predictive models

affect the pitch response and control effort of MPC controllers applied to the nonlinear

aeroelastic system, the results using all predictive models were directly compared. In

the following examples, the cost (optimization) horizon and control horizon were both

chosen to be 2 seconds while designing the linear and nonlinear MPC controllers.
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According to Figures 5.21 and 5.22 similar trends can be seen in all predictive

models as the nonlinear aeroelastic system is open-loop stable. The predictive models

provide similar results for this nonlinear regulator case. The results obtained with

a control discretization of 0.5 seconds has a smoother trend in attenuating the pitch

response to zero and it requires less control effort. This conclusion is also supported by

the RMS error analysis, as the results shown in Table 5.11 for a control discretization

of 0.5 seconds show a good balance between pitch RMS error and control effort. Thus,

0.5 seconds was chosen as the value of the control discretization in the NMPC for the

regulator case.

Figure 5.21. Pitch response comparison of different predictive models
for nonlinear regulator case with 0.5 second and 0.25 second control
discretizations.
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Figure 5.22. Control effort comparison of different predictive models
for nonlinear regulator case with 0.5 second and 0.25 second control
discretizations.

The same comparison study was performed for the nonlinear tracking case. The

pitch response and control effort with 1 second and 0.5 seconds control discretizations

are shown in Figures 5.23 and 5.24 respectively. In general, the third-order nonlinear

predictive model shows the best performance in tracking the desired pitch angle with a

minimal steady state error. Also, the 1 second control discretization provides better

results as there are minimal oscillations while tracking the reference pitch angle.

Although this case requires more control effort, the required amount is still within

the trailing edge flap deflection limits. Therefore, a nonlinear predictive model with

1 second control discretization was used in the remaining simulation analysis for the

tracking case.
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Figure 5.23. Pitch response comparison of different predictive mod-
els for nonlinear tracking case with 1 second and 0.5 second control
discretizations.

Figure 5.24. Control effort comparison of different predictive mod-
els for nonlinear tracking case with 1 second and 0.5 second control
discretizations.
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5.3.3 The Effect of Control Horizon

Control horizon (TC) is another important parameter for designing a MPC con-

troller. It determines how many seconds of the optimized control sequence are im-

plemented on the actual nonlinear aeroelastic system. Therefore, the value of the

control horizon must be less than or equal to the cost horizon (TH). Based on results

from the previous section, the third-order nonlinear predictive model with 0.5 seconds

control discretization is implemented with varying control horizon parameter.

Figure 5.25 shows that the pitch response with a 2 seconds control horizon has a

longer settling time and aggressive control deflection compared to the results of other

control time horizons. The 1 second control horizon provides the best qualitative

results because the pitch response has the least overshoot and the shortest settling

time with minimal control effort, as depicted in Figure 5.26. Hence, the control

horizon of 1 second is an appropriate choice for the regulator case NMPC controller.

Table 5.13. RMSE and control effort for nonlinear regulator case using
NMPC with varying control time horizon.

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

2

2

0.5

0.596 0.609

1 0.607 0.069

0.5 0.595 0.593



125

Figure 5.25. Nonlinear regulator case pitch response with ΔTD = 0.5
second at different control time horizons (Tc).

Figure 5.26. Nonlinear regulator case control effort with ΔTD = 0.5
second at different control time horizons (Tc).
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Figures 5.27 and 5.28 present the pitch response and control effort for varying

control time horizon for the tracking case. The 0.5 second control time horizon

clearly yields the best qualitative performance as there is no overshoot and it tracks

the desired pitch angle with minimal oscillation and control effort. According to the

RMS error analysis presented in Table 5.14, it also yields the least pitch RMS error

of 0.209 and control effort of 6.697. Thus, 0.5 second is the most suitable value for

the control horizon parameter for the tracking case.

Table 5.14. RMSE and control effort for nonlinear tracking case using
NMPC with varying control time horizon.

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

2

2

1

0.212 6.849

1 0.211 6.877

0.5 0.209 6.697
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Figure 5.27. Nonlinear tracking case pitch response with ΔTD = 1
sec with different control time horizons (Tc).

Figure 5.28. Nonlinear tracking case control effort with ΔTD = 1 sec
with different control time horizons (Tc).
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5.3.4 The Effect of Volterra Kernel Padding

As previously mentioned, the cost horizon for the linear MPC controller is set

at 4 seconds while the nonlinear MPC controller horizon is set at 2 seconds. After

analyzing the simulation results, it is clear that the third-order nonlinear predictive

model provides a higher level of precision in predicting the response of the nonlinear

aeroelastic system. However, results from the tracking case demonstrated that the

linear predictive model can track the desired pitch angle accurately without any

sudden oscillations after it settles at the reference value, while the nonlinear predictive

model fails to do so. These results suggest that the full 4 seconds memory of the

linear Volterra kernel should be used to improve the performance of the nonlinear

MPC controller.

Kernel padding is used to increase the memory of second- and third- order Volterra

kernels from 2 seconds to 4 seconds. The memory of the second- and third- order

Volterra kernels was extended from 2 seconds to 4 seconds by padding zeros to the

data set. This means the second- and third- order Volterra kernels will not contribute

to the nonlinear predictive model after 2 seconds; however it will allow the nonlinear

predictive model to utilize the remaining data in the zero- and first- order Volterra

kernels to track the reference pitch angle. After padding, the cost horizon of the

NMPC can be set to 4 seconds. With this approach, the pitch response performance

improved for both regulator and tracking cases by shortening the settling time and

tracking the target pitch angle with minimal control effort. This can be seen in Figures
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5.29-5.32. The RMS error and control effort analysis in Table 5.15 also reveals the

same observations.

Although more control effort is required for the tracking case, the required flap

deflection is still within the deflection limits. The NMPC with padded Volterra kernels

used for regulating the pitch response improved the performance by minimizing both

the pitch error and control effort. This suggests that a longer cost horizon will improve

the performance of the NMPC controller. In conclusion, Volterra kernel padding is

required for all cases in order to obtain a lower pitch RMS error.

Table 5.15. RMSE and control effort for nonlinear regulator and track-
ing cases using NMPC with padded and non-padded Volterra kernels.

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

Regulator Case

2
2 0.5

0.666 0.681

4 0.665 0.662

Tracking Case

2
2 1

0.237 6.801

4 0.236 6.839
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Figure 5.29. Nonlinear regulator case pitch responses with padded
and non-padded NMPC at TC = 2 sec.

Figure 5.30. Nonlinear regulator case control effort with padded and
non-padded NMPC at TC = 2 sec.
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Figure 5.31. Nonlinear tracking case pitch responses with padded and
non-padded NMPC at TC = 2 sec.

Figure 5.32. Nonlinear tracking case control effort with padded and
non-padded NMPC at TC = 2 sec.
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5.3.5 The Effect of Cost Function Weighting

Weighting factors on pitch response (wα) and control effort (wβ) appear in the

cost function (J), and they serve as MPC controller tuning parameters. The purpose

of the weighting factors is to adjust the priority on minimizing the pitch error relative

to minimizing the control effort. Figures 5.33 and 5.34 show the pitch response and

control effort for both cases with multiple combinations of weighting factors.

Figures 5.33 and 5.34 show that there is an increase in the damping of the pitch

response and the time to settle is reduced from 3 seconds to 2 seconds. In addition,

it reduced the control effort by a significant amount. This can be seen in both the

plots and the pitch RMS error and control effort analysis presented in Table 5.16.

Although the pitch RMS error has a trend of increasing as the pitch error weighting

is decreased in the cost function, the control effort is reduced significantly from 0.609

to 0.072. Hence, the weighting factor combination of 80% on pitch and 20% on control

yields an acceptable pitch response with minimal control effort.

For the tracking case, on the other hand, the pitch response and control effort

depicted in Figures 5.35 and 5.36 show that pitch error must have 100% weighting over

the control effort. If not, the pitch response does not track the reference pitch angle

as the control effort is not sufficient. The same conclusion can be made by analyzing

the error given in Table 5.17 because the pitch RMS error increases dramatically as

more penalty is given to the control effort.These results imply that the weighting

combination of wα = 100 and wβ = 0 needs to be used for all NMPC tracking cases.
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Figure 5.33. Regulator case pitch response with various combinations
of weighting factors.

Figure 5.34. Regulator case control effort with various combinations
of weighting factors.
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Table 5.16. RMSE and control effort for nonlinear regulator case with
various combinations of pitch and control weighting factors.

Pitch

Weight

Control

Weight

Control

Discretization Pitch RMSE Control Effort

(wα) (wβ) (ΔTD)

100 0

0.5

0.596 0.609

90 10 0.604 0.138

80 20 0.606 0.072

Figure 5.35. Nonlinear tracking case pitch response with various com-
binations of weighting factors.
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Figure 5.36. Nonlinear tracking case control effort with various com-
binations of weighting factors.

Table 5.17. RMSE for tracking case with various combinations of
pitch and control weighting factors.

Pitch

Weight

Control

Weight

Control

Discretization Pitch RMSE Control Effort

(wα) (wβ) (ΔTD)

100 0

0.5

0.171 6.933

90 10 0.853 1.070

80 20 0.925 0.536

70 30 0.954 0.327

60 40 0.970 0.219
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5.3.6 NMPC Design Summary at U = 6 m/s

After analyzing the effect of the MPC controller parameters on pitch response

and control effort, two NMPC controllers were designed for nonlinear regulator and

tracking cases with parameter values that yield the best pitch response and control

effort in each case. Table 5.18 summarizes the final design parameter values and

quantitative analysis results for both NMPC controllers.

Table 5.18. NMPC final design parameters with quantitative analysis
results for both nonlinear regulator and tracking cases.

Description Symbol
Value

Regulator Tracking

Optimization Time Horizon TH 4 4

Control Time Horizon TC 0.5 0.5

Final Simulation Time T 10 8

Simulation Time Step ΔT 0.01 0.01

Control Input Discretization ΔTD 0.25 1

Pitch Weighting Factor wα 100 100

Control Effort Weighting Factor wβ 0 0

Pitch RMSE αRMSE 0.552 0.235

Control Effort CE 1.025 6.622
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For the regulator case shown in Figures 5.37 and 5.38, the pitch response is slightly

damped with a short settling time of approximately 1.5 seconds with maximum con-

trol effort of 0.4 degree downward flap deflection. The nonlinear MPC controller

achieved this performance with the help of adding weight factors on the control effort

and reducing the priority on the pitch error.

The pitch response for the tracking case is depicted in Figure 5.39. It is shown

that the nonlinear MPC controller performs well with no overshoot, a short settling

time of approximately 2.5 seconds and tracks the reference pitch angle with zero

steady-state error. As shown in Figure 5.40, the maximum control effort is 7 degrees

downward flap deflection, which is within the flap deflection limits.

Figure 5.37. Pitch response from nonlinear regulator case NMPC
controller with specific parameter values.
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Figure 5.38. Control effort from nonlinear regulator case NMPC con-
troller with specific parameter values.

Figure 5.39. Pitch response from nonlinear tracking case NMPC con-
troller with specific parameter values.
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Figure 5.40. Control effort from nonlinear tracking case NMPC con-
troller with specific parameter values.

Figures 5.41 and 5.42 compare the open-loop response with the pitch response

produced by the LQR and NMPC controllers. It is clear that the discrete-time LQR

controller has a similar settling time as the NMPC controller. The NMPC controller

has the best qualitative pitch response as it has the least initial overshoot and the

required control effort is minimal comparing to the DLQR controller, as shown in

Table 5.19. Additional tuning of the parameters and weights may further improve

the NMPC performance. With the current NMPC design, the controller outperforms

the baseline discrete-time LQR controller qualitatively and quantitatively.
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Figure 5.41. Nonlinear pitch response comparison between open-loop,
DLQR and NMPC controllers at free-stream velocity of 6 m/s.

Figure 5.42. Control effort comparison between DLQR and NMPC
controllers at free-stream velocity of 6 m/s.
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Table 5.19. RMSE and control effort comparison between chosen
controllers at U = 6 m/s.

Controller Pitch RMSE Control Effort

Open-Loop Response 0.588 N/A

NMPC 0.552 1.025

DLQR (Q defined using Method 1) 1.722 1.360

DLQR (Q defined using Method 2) 1.746 2.290

5.4 NMPC: Free-stream Velocity at 12.5 m/s

The MPC controllers are than applied to the nonlinear aeroelastic system at a free-

stream velocity of 12.5 m/s, which corresponds to a limit cycle oscillation condition

for the nonlinear system. In this case, the zero- and first- order Volterra kernels were

identified over a 4 second window. As the flight condition is not asymptotically stable,

the Volterra kernels have infinite memory meaning the kernels will not decay to zero

in finite time. Hence, the only method to identify a Volterra model for this system is

to identify kernels that the same duration as the training data set. In this case, a 4

second training input-output data set was used to extract kernels within a 4 second

horizon.

Using the same approach as the U = 6 m/s case, the MPC controllers were em-

ployed to regulate the pitch response from an initial pitch angle of 5 degrees to zero.

The open-loop pitch response is a limit cycle oscillation, corresponding to bounded

oscillations. Since second- and third-order Volterra kernels were not identified at this
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flight condition, the LMPC controller is implemented to stabilize and regulate the

pitch response. The weighting factors within the cost function were chosen as wα =

100 and wβ = 0 unless otherwise stated. Since the first-order kernel was identified

with a duration of 4 seconds, the largest feasible choice for the cost horizon is TH =

4 sec.

5.4.1 Regulator Case

Figures 5.43 and 5.44 depict the pitch response and control effort that were ob-

tained using the linear MPC controller with TH = 4 sec, TC = 2 sec and several

values of the control input discretization ΔTD. The open-loop pitch response is also

shown for comparison purposes. Since the open-loop response at this flight condition

is characterized by a limit cycle with frequency of approximately 2 Hz, the Nyquist

sampling criteria implies that the control input must be applied at a minimum of 4 Hz

in order to be effective. This corresponds to a maximum control discretization (i.e.

coarsest allowable) of 0.25 seconds. The results show that the linear MPC controller

successfully stabilizes the pitch response and regulates to zero with a reasonable level

of control effort. With a control discretization of 0.1 and 0.05 seconds, the pitch

response is attenuated and settles more quickly at a cost of larger control effort, and

saturates at the flap deflection limit.
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Figure 5.43. Regulator case pitch response for nonlinear aeroelastic
system using the linear MPC controller with different control input
discretizations.

Figure 5.44. Regulator case control effort for nonlinear aeroelastic
system at using the linear MPC controller with different control input
discretizations.
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Table 5.20. RMSE and control effort for regulator case at 12.5 m/s.

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

Open-Loop Response

N/A 3.272 N/A

Linear MPC Controller - (V0 + V1)

4 2

0.25 1.209 0.605

0.1 0.604 1.792

0.05 0.584 2.865

To further improve the performance of the MPC controller, different combinations

of weights were used in the cost function to minimize the overshoot and oscillation

in the pitch response. Results presented in Figures 5.45 and 5.46 demonstrate im-

provement in pitch response by reducing the overshoot and time to settle. The pitch

response with weights of wα = 90 and wβ = 10 in the cost function showed the best

qualitative performance with reasonable amount of control effort from the flap.
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Figure 5.45. Regulator case pitch response for the nonlinear aeroelas-
tic system using the linear MPC controller with different combinations
of weights.

Figure 5.46. Regulator case control effort for the nonlinear aeroelastic
system using the linear MPC controller with different combinations
of weights.
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Table 5.21. RMSE and control effort for regulator case at U = 12.5
m/s with various combinations of weights.

Pitch

Weight

Control

Weight

Control

Discretization Pitch RMSE Control Effort

(wα) (wβ) (ΔTD)

90 10
0.1

0.407 1.429

80 20 0.583 0.985

Figures 5.47 and 5.48 show that all three controllers stabilize, the open-loop pitch

response and result in pitch responses that converged within the first 5 seconds. The

LQR controller accomplishes the task with better performance than the NMPC as

the settling time is less than 2 seconds. The NMPC controller completed the task

but with a longer settling time and minor oscillations with amplitude of 0.5 degrees

within the first 2 seconds. Although further investigation and tuning is required on

the NMPC to achieve better transient performance at this flight condition, the RMS

error in Table 5.22 shows the NMPC controller performs better than the classical

LQR controller quantitatively.
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Figure 5.47. Nonlinear pitch response comparison between open-loop,
DLQR and NMPC controllers at free-stream velocity of U = 12.5 m/s.

Figure 5.48. Control effort comparison between DLQR and NMPC
controllers at free-stream velocity of U = 12.5 m/s.
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Table 5.22. RMSE and control effort comparison between chosen
controllers at U = 12.5 m/s.

Controller Pitch RMSE Control Effort

Open-Loop Response 3.272 N/A

LMPC 0.407 1.429

DLQR (Q defined using Method 1) 1.836 1.131

DLQR (Q defined using Method 2) 1.890 1.717

5.4.2 Tracking Case

Table 5.23. RMSE and control effort for tracking case at U = 12.5 m/s.

Cost

Horizon

Control

Horizon

Control

Discretization Pitch RMSE Control Effort

(TH) (TC) (ΔTD)

4 2
0.25 0.193 2.253

0.1 0.170 2.322

The linear MPC controller with the same choice of parameters was then applied to

a tracking case, where the controller drives the pitch angle from zero initial condition

to a constant pitch reference value of 1 degree. Figures 5.49 and 5.50 show the pitch

response and control effort respectively. For both chosen control discretization values,

the pitch response is drive to an average value that corresponds to the commanded

value of 1 degree; however, the pitch response oscillates about this value with an
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Figure 5.49. Tracking case pitch response for the nonlinear aeroelastic
system using the linear MPC controller with different control input
discretizations.

Figure 5.50. Tracking case control effort for the nonlinear aeroelastic
system at using the linear MPC controller with different control input
discretizations.
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amplitude of 0.2 degrees. It appears that a linear MPC controller is not sufficient

to control the nonlinear aeroelastic system to track a desired pitch reference value at

the flutter speed. Thus, further investigation is required for the tracking case at this

flight condition.
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6. Conclusion and Future Work

6.1 Conclusion

The main objective of this research was to investigate the potential effectiveness of

using Volterra-based MPC strategies to control an aeroelastic system and to evaluate

the performance of these controllers. The results from the NMPC controller showed

that the nonlinear predictive model using the first-, second- and third- order Volterra

kernels was sufficient to model and compensate for the weak nonlinearities cause by

the nonlinear spring within the aeroelastic system. This evaluation was performed

through regulator and tracking cases at U = 6 m/s and U = 12.5 m/s. The latter

case corresponds to the unstable flutter speed for the linear system and results in a

bounded limit cycle oscillation in the nonlinear system. Classical LQR controllers

were implemented on the linear and nonlinear aeroelastic systems in continuous and

discrete-time as baseline controllers to evaluate the performance of the Volterra-based

MPC controllers.

The results showed that all controllers successfully stabilized the linear aeroe-

lastic system at the flutter condition and provided adequate tracking performance.

Simulation results using the controllers implemented on the linear aeroelastic system

demonstrated that the LMPC controller outperformed the classical LQR controller

both qualitatively and quantitatively, in terms of the RMS error in the pitch angle
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and the control effort required. For controllers implemented on the nonlinear aeroe-

lastic system, the simulation results showed that the NMPC did not outperform the

classical LQR baseline controller qualitatively in the regulator case, but did provide

superior quantitative performance as demonstrated by the pitch RMS error and con-

trol effort. It is also shown that the incorporation of the second and third-order

Volterra kernels in the nonlinear MPC controller provides superior tracking perfor-

mance on the nonlinear aeroelastic system compared to the results obtained using

only a linear model.

This study also investigated the effect of several MPC design parameters including

the optimization horizon, the control horizon, and the control discretization. A kernel

padding technique is used to prolong the memory of the Volterra kernels and extend

the optimization horizon, which resulted in shorter settling time on the pitch response.

Further tuning of the design parameters and cost function weights could potentially

improve the closed-loop response of the system. In addition, the thesis discussed

methods to achieve closed-loop stability using linear and nonlinear MPC strategies.

6.2 Future Work

This thesis provides the foundation for implementing Volterra-based MPC strate-

gies to control a nonlinear aeroelastic system. Future work for this study could include

determining an effective way to tune the MPC controllers, identifying the second- and

third-order Volterra kernels at U = 12.5 m/s and implementing the NMPC stability

strategy at this flight condition. Furthermore, online system ID can be implemented
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to identify and update the Volterra kernels at different flight conditions. The MPC

algorithm presented in this thesis can potentially be extended to other systems with

fast dynamics. For example, MPC could be applied to control a UAV operating in

complex environments with obstacle avoidance constraints.
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Chen, H., & Allgöwer, F. (1997). A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability. In Control conference (ecc), 1997 european (pp.
1421–1426).

Chen, X., & Wang, L. (2013). Cascaded model predictive control of a quadrotor uav. In
Control conference (aucc), 2013 3rd australian (pp. 354–359).

Cherry, J. A., & Snelgrove, W. M. (1998). On the characterization and reduction of
distortion in bandpass filters. Circuits and Systems I: Fundamental Theory and Ap-
plications, IEEE Transactions on, 45 (5), 523–537.

Chon, K. H., Chen, Y.-M., Holstein-Rathlou, N.-H., & Marmarelis, V. Z. (1998). Non-
linear system analysis of renal autoregulation in normotensive and hypertensive rats.
Biomedical Engineering, IEEE Transactions on, 45 (3), 342–353.

Cutler, C., Morshedi, A., & Haydel, J. (1983). An industrial perspective on advanced
control. In Aiche annual meeting.



155

Cutler, C. R., & Ramaker, B. L. (1980). Dynamic matrix control - a computer control
algorithm. In Proceeding of the joint automatic control conference (p. 72).

Dai, L., Mahmoud, M. S., Fu, M., & Xia, Y. (2012). Discrete-time model predictive control.
INTECH Open Access Publisher.

Deshmukh, S., & Sawarkar, S. (2015). Convergence analysis of model predictive con-
trol. International Journal of Advance Research in Computer Science and Software
Engineering , 5 (3), 125–131.

Donovan, G. C., Geronimo, J. S., & Hardin, D. P. (1996). Intertwining multiresolution
analyses and the construction of piecewise-polynomial wavelets. SIAM Journal on
Mathematical Analysis , 27 (6), 1791–1815.

Du, J., Kondak, K., Bernard, M., Zhang, Y., Lü, T., & Hommel, G. (2008). Model
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A. Numerical Values of A and B Matrices for the Aeroelastic System

At free-stream velocity of U = 6 m/s:

AU6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−291.16 −1.67 −3.39 0.15

1847.66 −40.57 20.22 −6.67

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BU6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−1.71

3.03

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

At free-stream velocity of U = 12.5 m/s:

AU12.5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−291.15 −13.36 −4.02 0.05

1847.66 7.67 22.83 −6.28

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BU12.5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−7.44

13.15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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