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Abstract 

 

Researcher: Matthew John Lehman 

Title:  Study of Surface Tension, Natural Evaporation, and Subcooled Boiling 

Evaporation of Aqueous Surfactant Solutions 

 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 2016 

The relation between surface tension and surfactant concentration and its effect on 

solution evaporation under natural convection and subcooled pool boiling is examined 

through experimental methods.  Aqueous solutions of sodium lauryl sulfate (SLS), 

ECOSURFTM EH-14, and ECOSURFTM SA-9 are used in this study. SLS is an anionic 

surfactant while EH-14 and SA-9 are environmentally-friendly nonionic surfactants.    

Surfactants, surface active agents, are known to affect evaporation performance of 

solutions and are studied in relation to water loss prevention and heat dissipation. 

Surfactants could be useful under drought conditions which present challenges to water 

management on a yearly basis in arid areas of the world.  Recent water scarcity in the 

greater Los Angeles area, south eastern Africa nations, eastern Australia and eastern 

Mediterranean countries has highlighted the cost of water loss by evaporation. Surfactants 

are studied as a potential effective method of suppressing evaporation in water reservoirs 

and lowering associated human suffering and costs. Surfactants are also studied as 

performance enhancers for the working fluid of heat dissipation devices, such as pulsating 

heat pipes used for electronics cooling. Some surfactants have been shown to lower thermal 

resistances and friction pressure in such devices and thereby increase their efficiency. 
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The static surface tensions of the aqueous-surfactant solutions are measured by 

Wilhelmy plate method. The surfactants are shown to lower surface tension significantly 

from pure water.  The surface tension values found at the Critical Micelle Concentration 

are 33.8 mN/m for SLS, 30.3 mN/m for EH-14, and 30.0 mN/m for SA-9.  All three 

surfactants reduced natural convection water loss over 5 days with SLS showing the 

greatest effect on evaporation rates.  The maximum evaporation reduction by each 

surfactant from distilled water with no surfactants after 5 days is 26.1% for SLS, 20.8% for 

EH-14, and 18.4% for SA-9.  Surfactant caused less than 15% change in total mass 

evaporation during solution boiling and caused either increase or decrease in mass 

evaporation depending on surfactant and its concentration.  
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Introduction 

Sodium lauryl sulfate, ECOSURFTM EH-14, and ECOSURFTM SA-9 are studied in 

aqueous solutions in order to see their effects on surface tension, natural evaporation, and 

subcooled boiling evaporation. Relevant literature concerning surfactants, surface tension, 

and surfactants effect on the evaporation of water in natural and boiling conditions is 

reviewed here. Description of the significance and purpose of the current study follow the 

review of literature. 

1.1 Introduction to Surfactants and Surface Tension 

1.1.1 Surfactants 

Surfactants, surface active agents, are unique chemicals with many engineering 

applications. The most common use of surfactants is cleaning detergents such as body wash 

and dish soap.  The surfactants are the ingredient that removes stains and debris from 

clothes and dishes. This application accounts for over half of surfactants produced.  A few 

other common applications of surfactants are petroleum production, paints, and paper 

processing. All applications use the unique nature of surfactants to alter the attraction 

between the solvent and a given gas, solid, or liquid (Schramm et al., 2003). 

Surfactants are composed of an amphipathic molecular structure meaning one end 

of the molecular chain is lyophobic, repelled by the solvent, and the other end is lyophilic, 

attracted to the solvent (Rosen, 2004).  For example, when used in water, the ends are 

hydrophobic and hydrophilic.  Surfactants are classified by the charge of the lyophilic 

section as depicted in Figure 1.1.  Nonionic surfactants have no charge on the lyophilic 

molecular chain section, anionic surfactants have a negative charge, cationic have a 
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positive charge, and amphoteric surfactants have both positive and negative charges on the 

lyophilic end.  The charges on the amphoteric surfactants can offset and leave the surfactant 

with no net charge or, for specified conditions, can form either a net negative or net positive 

charge (Myers, 2006). 

 

 

Figure 1.1 Molecular structure representation for nonionic, anionic, cationic, and 

amphoteric surfactants (Salager, 2002). 

 

An example of the use of these charges is making natural surfaces hydrophobic.  

Surfaces are usually negatively charged (Rosen, 2004). Thus, using a cationic surfactant 

would cause the hydrophilic end of the surfactant to be oriented towards the surface leaving 

the hydrophobic end oriented away from the surface. The surface will now have a 

hydrophobic nature due to the surfactants aligned there.  Figure 1.2 shows a schematic of 

increasing concentration of surfactants and their alignment at the interface. 
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Figure 1.2 Surfactant concentration increasing from low to above CMC (Kyowa, 2015). 

 

The lyophobic nature of the surfactants causes a distortion in the solvent molecular 

structure (Rosen, 2004).  To remedy this distortion, the surfactants move to the interfaces 

of the solution and orient the lyophobic end away from the solution interior. At lower 

concentrations, most of the surfactant mass resides at the interfaces of the solution as this 

is the main method of energy reduction for surfactants (Myers, 2006). However at a given 

concentration, the surfactants will begin to form spherical clusters with the lyophobic end 

oriented to the interior of the cluster. These clusters, called micelles, are another method 

the system uses to lower the distortion caused by the lyophobic nature of surfactants. Figure 

1.3 shows a schematic of micelle formation and some possible formation structures.  The 

number of surfactant molecules that can aggregate into a single micelle for SLS at 23oC is 

71 (Myers, 2006). 
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Figure 1.3 Micelle orientation and potential structure forms (Rosen, 2004) 

 

The onset concentration at which these clusters form is called the Critical Micelle 

Concentration (CMC). CMC in surfactant solutions is a changing point of the relation 

between several physical attributes and surfactant concentration.  These attributes include, 

among others, solution charge, surfactant solubility, and surface tension as exemplified in 

Figure 1.4.  Micelles increase surfactant solubility and are the “predominant form of 

surfactant” present above CMC (Myers, 2006, p.110). Thus, above CMC surfactants begin 

to affect activity within the body of the solution in addition to affecting activity at the 

interfaces.  Additional surfactant mass above CMC goes almost exclusively into micelle 

formation (Myers, 2006, p.124). 
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Figure 1.4 Solution properties in relation to CMC (Schramm et al., 2003). 

 

 Many factors can affect the CMC value for surfactants.  For hydrocarbon 

surfactants, the CMC will decrease with increasing number of carbons in the molecular 

chain.  Polar atoms in the hydrocarbon chain increase the CMC. The CMC decreases with 

increasing hydrophobicity.  The ionic, or hydrophilic, end of the surfactant has significantly 

less effect on the CMC as compared to the hydrophobic end (Myers, 2006).  

Other characteristics significant to surfactant performance include Krafft point and 

cloud point.  Krafft point is the temperature at which the solubility increases due to the 

ability for the surfactants to aggregate in micelles (Schramm et al., 2003).  Cloud point is 

the temperature at which an aqueous surfactant solution separates into 2 phases.  At the 

cloud point, the surfactant becomes insoluble in the water and the solution becomes turbid 

(Myers, 2006). This separation is reversed when the solution is cooled below cloud point 

(Rosen, 2004). 
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1.1.2 Surface Tension 

The accumulation of surfactants at the interface has a large effect on surface 

tension, a measurement of energy needed to expand the area of the surface.  Surface tension 

causes the surface of a liquid to contract to the smallest area possible and originates from 

a molecular attraction imbalance at the surface.  The molecules at the surface have stronger 

molecular bonding with interior solution molecules as compared with the external phase. 

The resulting imbalance, which is visually represented in Figure 1.5, explains the shape of 

water droplets and the ability of flies to rest on a water surface.  In general, surfactants 

lower surface tension. Surfactants are thus useful when the surface area of the system is 

large compared to the volume or when the activity at the boundaries has strong influence 

on the system (Rosen, 2004).  

 

 

Figure 1.5 Imbalance of molecular forces at surface (Kyowa, 2015). 

 

Important factors in the ability of surfactants to reduce surface tension are 

concentration of the surfactant at the surface, orientation and packing, adsorption rate, and 

energy changes including Gibbs free energy. Two common values used to quantify the 

capabilities of surfactants are efficiency and effectiveness.  Efficiency is the amount of 

Surface 

Molecul

es 
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change a given amount of surfactant will affect a system characteristic such as surface 

energy, and effectiveness is the maximum amount of change a surfactant can cause to a 

system characteristic (Rosen, 2004).  For example, to quantify the effect of a surfactant on 

surface tension, the efficiency might be 10 mN/m per 500 PPM, if the relation was linear, 

whereas the effectiveness might be 30 mN/m if 30 mN/m is the most the surfactant can 

lower the surface tension.   In dilute surfactant solutions the efficiency is determined by 

the ratio of the interface concentration (Cinterface) to the bulk concentration (Cbulk) and this 

ratio is related to free energy (G) by the following relation (Rosen, 2004, p.35): 

𝐶𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

𝐶𝑏𝑢𝑙𝑘
= 𝑒(−∆𝐺 𝑅𝑇)⁄       (1-1) 

Where R is the universal gas constant and T is the absolute temperature. This relation arises 

from the fact that interior (bulk) molecule need energy to move to the surface (Rosen, 

2004). 

 Adsorption at liquid-gas interfaces is governed by the Gibbs adsorption equation 

(Rosen, 2004, p.61): 

𝑑𝜎 =  − ∑ Γ𝑖𝑑𝜇𝑖𝑖      (1-2) 

Where dσ is the change in surface tension (mN/m), Γi is the surface excess concentration 

for ith component of the system (moles/1000*m2), dμi is the change in chemical potential 

of the ith component.  For solutions of one surfactant and one solvent, this equation 

becomes: 

𝑑𝜎 = −𝑅𝑇Γ1𝑑(𝑙𝑛𝐶1)     (1-3) 

Where R is the universal gas constant (8.31 J/mol*K), T is the solution temperature (K), 

Γ1 is the surface excess concentration (mol/1000*m2), C1 is the surfactant molar 

concentration (mol/liter).  
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The effectiveness of surface tension reduction can be based on the ratio of surface 

concentration to bulk concentration. Surface excess concentration will reach its maximum 

value at Critical Micelle Concentration.  The efficiency in surface tension reduction is 

highest below CMC.  The surface concentration (C1
s) in moles per liter is related to surface 

excess concentration (Γ1) in moles per cm2 by the following relation (p.212):  

𝐶1
𝑠 =

1000Γ1

𝑑
+ 𝐶1     (1-4) 

Where d is the thickness of the inter-facial region (cm).  For surfactants, the inter-facial 

region is 50x10-8cm or less. Because C1 is 0.01M or less it can be ignored in the equation 

above without significant error.  The effectiveness of surfactants in lowering surface 

tension depends on the number of ions involved at the surface, effectiveness of the 

surfactant adsorption, and the relation between CMC and the effectiveness (Rosen, 2004).    

1.1.3 Measuring Surface Tension 

Several methods of measuring surface tension exist.  Pendant drop method is a 

manual method. The solution is pressed through a needle. A droplet forms at the end of the 

capillary as depicted in Figure 1.6.  The maximum droplet size before gravity breaks the 

droplet from the needle is measured.  Surface tension is then calculated by the following 

relation: 

𝜎 = Δ𝜌𝑔𝑑𝑒
2 1

𝐻
     (1-5) 

Where Δρ is density difference (kg/m3), g is gravitational acceleration (m/s2), 1/H is a 

dimensionless correction coefficient, and de is droplet diameter (m) (Kyowa, 2015, p.11). 
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Figure 1.6 Schematic of Pendant Drop Method and important dimensions (Kyowa, 2015). 

  

Du Nouy Ring Method is a more precise surface tension measurement and is widely 

used.  The ring is pulled slowly through the surface.  As the ring breaks away from the 

surface a meniscus is formed by the attraction between the surface and ring as shown in 

Figure 1.7. The tensiometer, the surface tension measurement device, will then measure 

the force required to break the meniscus. Surface tension is found from the force 

measurement by the following relation (Kyowa, 2015, p.10): 

𝜎 =
𝐹

4𝜋𝑟
𝑘      (1-6) 

Where F is the force required to break the meniscus (N), r is the ring radius (m), and k is 

the correction factor.  Du Nouy method keeps the surface in a non-equilibrium state during 

measurement by expanding and contracting the surface. To make an accurate measurement 

with a surfactant solution, there must not be motion in the surface or the surface 

concentration and surfactant orientation will be affected.  Therefore, using Du Nouy 

method with surfactant solutions may yield measurements erring to a higher value (L.G, 

1999).  
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Figure 1.7 Schematic of Du Nouy ring measurement (Kyowa, 2015). 

 

 Wilhelmy plate method can measure surface tension of a surface in equilibrium and 

is thus useful for surfactant solutions (L.G., 1999).  A plate, usually platinum, is dipped 

into the solution and then raised until it is just in contact with the surface. This action is 

usually performed by raising and lowering the platform on which the specimen rests as 

shown in Figure 1.8. 

 

 

Figure 1.8 Wilhelmy plate method technique (L.G., 1999). 

 

The tensiometer measures the force the surface applies to the plate.  Tension is calculated 

from the following relation: 

𝜎 =
𝐹

𝐿∗𝑐𝑜𝑠𝜃
     (1-7) 
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Where F is the force measured (N), L is wetted perimeter which is the perimeter of the 

bottom of the plate (m), θ is the angle at which the solution wets the plate (Kruss, 2016).  

For most solutions, θ = 0 is assumed (Kyowa, 2015). A schematic of a Wilhelmy plate 

measurement and the important parameters is shown in Figure 1.9.    

 

 

Figure 1.9 Schematic of Wilhelmy plate measurement (Kyowa, 2015). 

 

The Wilhelmy method is more accurate than the pendant drop method and Du Nouy 

for surfactants but cannot be used for cationic surfactants.  The platinum surface has a 

negative charge that attracts the positive charge of the cationic lyophilic end to the surface.  

The plate surface is then lyophobic which affects the interaction of the solution and the 

plate and hence the surface tension measurements (C.R., 2004).  For the current study with 

nonionic and anionic surfactants, the Wilhelmy plate represents the most accurate method 

for determining the equilibrium surface tension of the aqueous solutions. 
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1.2 Natural Evaporation Suppression 

1.2.1 Significance of Evaporation Suppression 

Drought conditions are afflicting many parts of the world with the potential for 

worsening conditions due to climate change.  According to data acquired by the National 

Ocean and Atmosphere Administration (NOAA), the average winter precipitation in 

California for 2011 through 2014 was the second lowest on record since 1895. This low 

rainfall lead to water storage levels 56% of the average levels for previous winter months 

according to the California Department of Water Resources (Seager et al., 2015).  

Precipitation in the greater Los Angeles area was below 60% of normal for 2016 up to June 

24 according to the California Nevada River Forecast Center as shown in Figure 1.10 

(CRNFC, 2016). 

These conditions are seen in other arid areas of the world. Australia has seen slight 

to severe rainfall deficiencies in Queensland and Victoria since October 2012 according to 

the Australian Government’s Bureau of Meteorology website (2016).  Some areas have 

seen the lowest rainfall on record over a 43 month period as shown in Figure 1.12.  Many 

nations in southeastern Africa are experiencing lower than normal precipitation during the 

rainy season with parts of Mozambique, Zimbabwe and South Africa receiving less than 

half their normal rainfall. In 2015, South Africa had the lowest annual rainfall total since 

1904.  Some areas recorded precipitation 20% of normal for the winter of 2015 to 2016 as 

shown in Figure 1.11 (Di Liberto, 2016). A recent tree ring study conducted by NASA 

showed that the eastern Mediterranean Levant region (Cyprus, Israel, Jordan, Lebanon, 

Syria, and Turkey) has experienced a drought from 1998-2012 that is the driest period in 

the past 500 years (Gray, 2016).     
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Figure 1.10 Precipitation data for California in 2016 up to June 24 (Seager et al., 2015). 
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Figure 1.11 Rainy season rainfall deficiencies in southern Africa (Di Liberto, 2016). 

 

 
Figure 1.12 Rainfall deficiencies in Australia from 2012-2016 (Australian Bureau of 

Meteorology 2016). 



15 

These worldwide drought conditions make water evaporation a major issue.  In arid 

regions, water evaporation often accounts for 25 to 30% of water use (Hightower & Brown, 

2004).  Water loss from storage can exceed 40% (Dawood et al., 2013) and often does in 

the agricultural regions of Australia (Prime E. et al., 2012).  In a 1958 U.S. Geological 

Survey Press Release, the water evaporation lost by an area including several states was 

11.5 million acre-feet as compared to the total water use 111 million acre-feet (Magin & 

Randall, 1960). A similar study in 1956 found that a single lake in Oklahoma lost, by 

evaporation, the amount of water used by 80000 people over the same time span (Manges 

& Crowe, 1965).   

Reduction of the evaporation rates from reservoirs would help alleviate human 

suffering and financial costs associated with droughts.  Methods of reducing evaporation 

from reservoirs include reducing exposed surface area per volume by increasing the depth 

of the reservoir or using mechanical covers such as roofs or floating rafts but the most 

economical and effective appear to be surface films (Magin & Randall, 1965).  Ultra-thin 

chemical layers are also the only potentially cost-effective method of evaporation reduction 

for irrigation channels (Prime E. et al., 2012). Water savings by these films have been 

shown to be 20 times greater than the cost of application (Roberts, 1957). A study in Illinois 

indicated that a 33% reduction of water evaporation would be equal to a 17% increase in 

reservoir storage capacity (Roberts, 1957). Surface films can provide this level of cost-

effective evaporation reduction. 

1.2.2 Surfactant Monolayers and Natural Evaporation 

Included in the surface film classification are surfactant monolayers which have 

been shown to lower evaporation of water by up to 50% (Zhang et al., 2003).  Monolayers 
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are one molecule thick films that form at a phase boundary such as the air-water interface 

(Barnes, 2008). Some surfactants that form well compressed monolayers useful in 

evaporation suppression are long-chain fatty acids, long-chain alcohols, alkoxy ethanols, 

some methyl and ethyl esters of fatty acids, and calcium salts of long-chain fatty acids 

(Barnes, 2008). Studies indicate that surfactant films effects on surface tension are a 

significant contributor to evaporation reduction (Hightower & Brown, 2004). This relation 

is explored in the current study. 

The most common molecule that forms condensed monolayers has a long, linear, 

fully saturated alkyl chain with a polar group at one end (Barnes, 2008). “Compounds with 

12 or more carbon atoms in the aliphatic chain and with a hydrophilic headgroup can form 

stable and insoluble monolayers” (Prime E.L. et al., 2012, p.48). Increasing the length of 

the hydrocarbon chain of the fatty acids and long chain alcohols decreases the permeability 

of the monolayer (Magin & Randall, 1960). Increasing the alkyl chain length lowers 

evaporation rates but reduces spreading rate, which is the rate at which a surfactant can 

reform a disrupted monolayer (Prime E.L. et al., 2012). Increasing the chain length gives 

an exponential increase in evaporation resistance (Barnes, 2008). The effects of changes to 

the hydrophilic end on evaporation reduction are not known (Prime E.L. et al., 2012). 

In “Review of Literature on Evaporation Suppression,” George B. Magin, Jr. and 

Lois E. Randall (1960) reported that an extensive amount of research had been done prior 

to 1960 in both in the laboratory and the field.  Several different types of surfactants were 

shown to lower water evaporation rates.  In 1950’s evaporation reduction studies, the long 

chain alcohols, cetyl alcohol and stearyl alcohol, showed the most promise with 

evaporation losses reduced by up to 60% (Barnes, 1997). Cetyl alcohol (C16OH) and stearyl 
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alcohol (C18OH) are composed of a hydrophilic hydroxyl group and a hydrophobic 

hydrocarbon chain (Prime E. et al., 2012).  A cetyl alcohol monomolecular film in one 

study was found to have 65000 units of resistance (cm2*s/g, a reciprocal of an evaporation 

rate) to evaporation as compared to the 3 units of a clean water surface (Magin & Randall, 

1960). A thin film of cetyl alcohol on a pond reduced evaporation from 50 to 70 percent 

and was shown to be harmless to fish and other wildlife except for mosquito larvae (Magin 

& Randall, 1960). In field tests, cetyl alcohol (C16OH) and stearyl alcohol (C18OH) reduced 

evaporation by up to 40% but did not show good long term performance under dynamic 

conditions with "rapid loss from the water surface and lack of stability to wind and wave 

action" (Prime E. et al., 2012, p.3). Winds above 10 km/hr broke up these monolayers 

(Prime E. et al., 2012). 

Cetyl alcohol and stearyl alcohol are well known in literature as evaporation 

suppressants.  However, many other surfactants have been studied in relation to 

evaporation suppression.  Fatty acids were shown to decrease evaporation rate by a factor 

of 104 (Magin & Randall, 1960).  A freshly-formed thin film of n-docosanol almost 

completely eliminated evaporation but became increasingly permeable as the film age 

increased (Magin & Randall, 1960). Environmentally-friendly surfactant monolayers have 

been shown to reduce evaporation by 40-70% (Hightower & Brown, 2004).   

Despite early results showing the depression of evaporation, field test results had 

high variability and because of this monomolecular films have not been exploited at a 

commercial level (Fellows et al., 2015).  Many field tests have shown promise though. A 

Canadian product based on cetyl alcohol has been tested on several dams in Australia.  The 

evaporation reduction ranged from 0 to 40% with indicated savings overall of 20% (Barnes, 
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2008).  Fatty alcohols, mostly stearyl and cetyl, were applied to a lake near Jaipur, India. 

Results showed up to a 30% reduction in water loss (Barnes, 2008).  A recent study at 

Sandia National Laboratories in Albuquerque, New Mexico set pools of water 8 foot in 

diameter outside with alcohol-functionalized straight chain hydrocarbons.  Results showed 

a 60-70% evaporation reduction over a week time with the monolayer evaporation 

resistance decreasing over time (Hightower & Brown, 2004).  

 

 

Figure 1.13 Sandia National Laboratories test results and testing pools (Hightower & 

Brown, 2004). 

 

Other surfactants have been tested in the field as well.  On outdoor test ponds, 

Mages and Crow (1965) found that a continuous surfactant monolayer yielded an 

evaporation reduction of 36%, a similar effect to a mesh suspended six inches above the 

water surface. A blend of straight-chain saturated higher alcohols (5% C14, 44% C16, 46% 

C15, and 5% C30) reduced evaporation in an outdoor testpan by 70% (Manges & Crow, 

1965).  Testing of 1 mg of hexadeconal in 55 gallon drums showed water savings of 27% 

during months of July, August, and September of 1956 (Roberts, 1957). 
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A thorough testing of a novel surfactant was performed by Prime E. et al. including 

laboratory and field testing. Three surfactant application techniques were used. In the first 

method, the unnamed (under patent application) surfactant was completely dissolved in the 

water.  In the second, the surfactant was suspended in the water without completely 

dissolving.  In the third, the surfactant was applied as a fine powder on the surface.  Water 

savings in wind tunnel for horizontal wind by this unnamed surfactant ranged from 67% to 

84%. The completely dissolved surfactant solutions performed the best and the solid 

formulations performed better than suspended formulations. Field trials of the novel 

surfactants showed savings ranging from 20% to 60% across multiple small reservoirs and 

bodies of water. Field trials show that surfactants need more than CMC to form evaporation 

suppressing monolayers. Prime E. et al. found through field trials that the best performing 

dosage of the surfactant was 18 times the amount needed to form a complete monolayer 

with a daily reapplication of 2 to 3 times the monolayer amount (Prime E. et al., 2012). 

Field testing of surfactants has had high variability (Fellows, 2015). Several issues 

encountered in field tests include impurities and contaminants, vaporization of the film, 

displacement by wind, bacterial decomposition, organic material accumulation on the 

surface, and photo-degradation from irradiation (Barnes, 2008).  Winds are known to be a 

major issue for monomolecular film stability in the field (Prime E.L. et al., 2012).  The 

wind shear creates waves which have been shown to break up monolayers and thereby 

reduce effectiveness (Hightower & Brown, 2004).   

Based off these issues, an ideal monolayer has high evaporation resistance, high 

equilibrium spreading pressure, high spreading rate, stability under wind shear, slow 

vaporization rate, resistance to solar degradation, resistance to bacterial decomposition, 
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and negligible environmental and ecological effects (Barnes, 2008). Only tightly packed 

surface films are useful evaporation suppressants (Prime E. et al., 2012).  The optimal 

methods of spreading and reapplication of monolayers have yet to be determined (Barnes, 

2008).  Laboratory tests are the first step for selecting new monomolecular layers for 

evaporation reduction in reservoirs that meet all the requirements mentioned (Prime E.L. 

et al., 2012).  The resistance of a monolayer to evaporation can be found by measuring the 

difference between two surfaces one with a monolayer and one without (Barnes, 1997).  

This technique is especially important in field tests or wherever there is variability in 

testing conditions. 

1.2.3 Health Effects of Surfactants 

Surfactants can exhibit toxicity towards organisms.  Effects of surfactants on 

aquatic organisms can include “membrane disruption and protein denaturation” (Schramm 

et al., 2003, p.37).   However, this toxicity is reasonably predictable in surfactants and can 

be determined by tests before application (Schramm et al., 2003).  A test of hexadeconal 

(or cetyl alcohol) for evaporation suppression on a large pond showed that the only 

ecological effects were an increase in surface temperature and suffocation of mosquito 

larvae (Hightower & Brown, 2004).  Some surfactants may reduce the solution or 

reservoirs access to oxygen which could have an effect on decaying organic matter. (Magin 

& Randall, 1960). However, most surfactants have been shown to have small effects on 

temperature of the water and negligible effects on the oxygenation of the water but may 

have some effects on ultraviolet penetration (Prime E. et al., 2012).  Biodegradability of 

surfactants and the potential dangers posed by the results of the decomposition must also 

be taken into account but are also predictable (Schramm et al., 2003). 



21 

1.2.4 Theory of Monolayers 

The Hertz-Knudsen equation, shown below, indicates that the mass flux is 

relatively insensitive to temperature of the vapor in contact with the surface and the 

temperature of the liquid surface.  

𝐽 = 𝜂𝑒√
𝑀

2𝜋𝑅
(

𝑃𝑆𝑎𝑡

√𝑇𝐿
−

𝑃𝑉

√𝑇𝑉
)    (1-8) 

The commanding factor seems to be the vapor pressure of the water near the interface 

which in turn depends on motion of the vapor above the interface and the roughness of the 

surface. The surfactant monolayers provide additional roughness to the surface as well as 

providing dampening to waves on the surface through surface elasticity (Fellows et al., 

2015). Surfactants can add elasticity to air-water surfaces and dampen turbulence near the 

surface (Kou et al., 2011). 

Surfactant monolayers also introduce compressibility to the air-water interface 

which would otherwise be absent. In a study on oleic acid and cetyl alcohol monolayers, 

the surface temperature was held below the bulk temperature due to this compressed layer 

that retarded convective motion of a thin layer of water limited to near the surface. A study 

on the natural evaporation effects of cetyl alcohol and stearic acid showed that evaporation 

resistance increased with increasing surface pressure. However, the same study showed 

contradictory results as to the abilities of monolayers to inhibit natural convection.  Heat 

transfer and motion in the solution can be inhibited by a surfactant monolayer.  Bower and 

Saylor (2011) investigated oleyl alcohol, stearic acid, and stearyl alcohol versus a clean 

surface in glass tanks in a laboratory.  The monolayers were subjected to natural 

convection.  They concluded that convective heat transfer was more efficient without a 

monolayer because the shear-yielding surfactant layers inhibited convection near the 
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surface. The monolayers decreased the mobility of the air-water interface and dampened 

any turbulence of the water under the surface. They also found that the Nusselt number 

(the ratio of convective to conductive heat transfer across the surface) and Rayleigh 

number (the ratio of buoyancy and viscosity forces multiplied by the ratio of momentum 

and thermal diffusivities) the relationship was significantly different between the clean 

surface and the monolayer surfaces but the relation showed little change between different 

surfactant monolayers (Bower & Saylor, 2011).   

Several theories on surfactant monolayers evaporation suppression effects exist. On 

layers no thicker than a few molecules, the surfactant monolayers have been theorized to 

act as impermeable hydrophobic barriers (Fellows et al., 2015). When air movement is 

minuscule or the water surface is too small to sustain any wave movement, the evaporation 

reduction is explained by the hydrogen-bonding at the surface which creates a “structure 

that is thermodynamically less favorable to evaporation than a clean water surface” 

(Fellows et al., 2015, p.40).  The dependence of evaporation resistance on temperature and 

chain lengths is consistent with an energy barrier theory (Barnes, 2008). The Energy 

Barrier Theory explains the dependence of evaporation suppression efficiency on 

temperature, chain length, and surface pressure. It is unable to predict evaporation 

resistance values or explain the effects of impurities on evaporation (Barnes, 1997).  

The Density Fluctuation Theory claims that the evaporation only occurs through 

holes in the monolayer large enough to allow water molecules to escape. The holes are 

assumed to arise from local fluctuations in the monolayer structure or forced to open by 

the kinetic energy of interior molecules moving into the surface. This theory can predict 

resistance values accurately.  However, the theory requires an evaporation coefficient to 
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be known and it does not explicitly explain the effects of temperature, alkyl chain length, 

chain length, or impurities (Barnes, 1997). 

The Accessible Area Theory claims that solutions will evaporate through naturally 

occurring holes, with sum of the areas of these holes being the “accessible area” in the 

monolayer, at the same rate as a clean surface. This theory provides reasonable predictions 

for resistance values while taking into account the concentrations of the surfactant on the 

surface.  The theory does not account for the effects of the alkyl chain lengths, temperature, 

or impurities and requires a known value for an evaporative coefficient (Barnes, 1997). 

Barnes concludes in “Permeation through Monolayers” that Energy Barrier Theory 

and Accessible Area Theory are not applicable to monolayers as a whole but rather 

“interdomain regions” where the structure of the film is less ordered and more loosely 

packed (Barnes, 1997, p.157).  Another theory attempted to account for the additional 

elasticity added to air-water surfaces that dampens turbulence near the surface and thus 

convection (Kou et al., 2011).  However, the Inhibition of Convection Theory was shown 

be ineffective for many surfactants including octadecanol and cholesterol (Barnes, 1997).  

1.2.5 Calculating Natural Evaporation Mass Transfer 

 For an air-water interface without surfactants where water and air are still, mass 

transfer is governed by diffusion of the water into air.  This can be quantified with Fick’s 

Law of Diffusion (Cengel & Ghajar, 2011, p.798): 

𝑚̇𝑑𝑖𝑓𝑓 = 𝐷𝐻2𝑂−𝐴𝑖𝑟 ∗ 𝐴 ∗
𝑑𝐶𝐴

𝑑𝑥
    (1-9) 

Where ṁdiff is the mass transfer rate by diffusion (kg/s), A is the surface area (m2), dCA/dx 

is the change in concentration as the distance from the surface increases.  The diffusion 
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coefficient in Fick’s Law above is calculated with the following relation (Cengel & Ghajar, 

2011, p.803): 

𝐷𝐻2𝑂−𝐴𝑖𝑟 = (1.87 ∗ 10−10) ∗
𝑇2.072

𝑃
 (𝑚2 𝑠)⁄    (1-10) 

 

Where T is the temperature of the surface (K) and P is the total pressure (atm).  The 

monolayers effect on this relation is significant but not yet quantified in literature and 

varies depending on surfactant type.  

Natural and forced convective evaporation from an air-water interface without 

surfactants can be quantified using a mass transfer coefficient (hmass) which is similar in 

concept to a heat transfer coefficient (hheat).  The mass transfer coefficient has a unit of 

meters-per-second (m/s) and can be related to heat transfer coefficient for the same control 

volume by the Chilton-Colburn Analogy (Cengel & Ghajar, 2011, p.836): 

ℎℎ𝑒𝑎𝑡

ℎ𝑚𝑎𝑠𝑠
= 𝜌𝑐𝑝 (

𝛼

𝐷𝐴𝐵
)

2
3⁄

    (1-11) 

Where ρ is density of air (kg/m3), cp is the specific heat of air (J/kg*K), α is the thermal 

diffusivity of air (m2/s), and DAB is the mass diffusivity at the interface (m2/s).  For air-

water interfaces, the ratio of thermal diffusivity to mass diffusivity (also known as the 

Lewis Number) is close to unity and thus the correlation can be reduced to the following 

with little loss in accuracy (Cengel & Ghajar, 2011, p.837): 

ℎ𝑚𝑎𝑠𝑠 =
ℎℎ𝑒𝑎𝑡

𝜌𝑐𝑝
     (

𝑚

𝑠
)     (1-12) 

The mass flux (ṁconv) is then calculated with the following equation (Cengel & 

Ghajar, 2011, p.833): 

𝑚̇𝑐𝑜𝑛𝑣 = ℎ𝑚𝑎𝑠𝑠𝐴𝑠(𝜌𝐴,𝑠 − 𝜌𝐴,∞)  (
𝑘𝑔

𝑠
)   (1-13) 
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Where the As is the surface area (m2), ρA,s is the mass concentration of species A at the 

surface (kg/m3), ρA,∞ is the mass concentration of species A in the air (kg/m3). For the 

current study, species A is water vapor. 

The heat transfer coefficient for natural convection may be found by the following 

relations (Cengel & Ghajar, 2011, p.527): 

ℎℎ𝑒𝑎𝑡,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑘𝐾𝑅𝑎𝐿

𝑛

𝐿𝐶
    (

𝑊

𝑚2∗𝐾
)   (1-14) 

 

Where n is a constant equal to ¼ for laminar flow, Lc is ¼ of the diameter and is the 

characteristic length (m), K is a constant coefficient less than unity which is dependent on 

geometry, and k is thermal conductivity of air (W/m*K). RaL is the Rayleigh number for a 

horizontal surface given by the following equation (Cengel & Ghajar, 2011, p.526): 

𝑅𝑎𝐿 =
𝑔𝛽(𝑇𝑠−𝑇∞)𝐿𝑐

3

𝜈𝛼
     (1-15) 

Where g is gravitation acceleration (m/s2), β = 1/Tf is the coefficient of thermal expansion 

(1/K), Tf = (Ts + Too)/2 is film temperature (K), Ts is surface temperature (K), T∞ is 

temperature of flow (K), ν is kinematic viscosity of air (m2/s), and α is thermal diffusivity 

of air (m2/s).  

The heat transfer coefficient for forced convection can be found by the following 

relations for laminar flow over a flat horizontal plate (Cengel & Ghajar, 2011, p.424): 

ℎℎ𝑒𝑎𝑡,𝑓𝑜𝑟𝑐𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 0.664𝑅𝑒𝐿
0.5𝑃𝑟

1

3
𝑘

𝐿𝑐
     (

𝑊

𝑚2∗𝐾
)  (1-16) 

 

Where Lc is characteristic length (m), ReL = Lc*V/ν is Reynolds number, Pr = ν/α is 

Prandtl number, k is thermal conductivity of air (W/m*K), d is the diameter of the circular 

surface (m), ν is kinematic viscosity of air (m2/s), α is thermal diffusivity of air (m2/s), and 

V is the velocity of the air flow (m/s). 
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Summary of Mass Transfer Calculation 

The air just above the water surface is saturated quickly due to molecules escaping 

through the interface.  The water vapor is then dispersed by diffusion, buoyancy (natural 

convection), or air currents (forced convection) (Shah, 2014). The values calculated using 

the equations enumerated for these mass fluxes are respectively: 0.015 g/hr, 0.34 g/hr, and 

1.7 g/hr. (See Appendix C for calculations.)  The effects from forced and natural convection 

on the current study are lowered considerably but not eliminated by the muslin gauze 

covering.  Thus, the actual mass flux from the solutions should be higher than the 0.015 

g/hr and significantly lower than 0.34 g/hr.  

1.3 Evaporation at Boiling 

1.3.1 Surfactants and Boiling 

Nucleate boiling is a very efficient mode of heat transfer (Cheng et al., 2007).  

Boiling has many applications in energy conversion systems, heat exchange systems, air 

conditioning and refrigeration (Cheng et al., 2007). Boiling is also used in industry for 

steam production in turbines or for high heat transfer coefficients in electronics cooling 

(Dikici & Al-Sukaini, 2016).  Surfactants can greatly enhance boiling performance.  This 

can be accomplished at such low concentrations that no significant changes in physical 

properties other than surface tension are made (Cheng et al., 2007).  

The main factors assessed to be contributing to enhanced heat transfer are heat flux, 

surfactant concentration, surface tension, and molecular weight (Dikici & Al-Sukaini, 

2016).  Surfactant type is also important as the ionic nature and molecular weight have an 

effect on boiling phenomena (Wasekar & Manglik, 2000).  For example, the accessible 

area and the hydrophobic interaction of alkyl chains can have significant effects on 
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evaporation suppression in boiling mechanisms (Zhang & Wang, 2003).  Nucleate pool 

boiling heat transfer has been seen to increase with increasing surfactant concentration with 

this increase slowing after the critical micelle concentration (Cheng et al., 2007).  Although 

seen in some boiling tests, this peak at CMC in boiling enhancement has not been 

established as a common correlation (Wasekar & Manglik, 2000). Some surfactants 

enhance boiling heat transfer while others do not but the reason for this is unclear (Cheng 

et al., 2007).     

Surface tension and viscosity are known to affect the boiling phenomena. The 

depression of surface tension increases in surfactant types from nonionic to anionic to 

cationic (Cheng et al., 2007).  Increase in heat transfer could be related to increase of vapor 

nuclei formation shown in Figure 1.14.  Improvement in boiling heat transfer by surfactants 

is associated with lowering of interfacial tension at the heated surface which allows smaller 

bubbles to release from the surface (Elghanam, 2011).  This increases the formation rate of 

the vapor nuclei which causes increased convection near the surface (Wasekar & Manglik, 

2000).  Heat transfer coefficient (hheat) has been found to have the following relation to 

surface tension (σ) (Dikici & Al-Sukaini, 2016):  

ℎℎ𝑒𝑎𝑡 𝛼 𝜎𝑛     (1-17) 

Experimental values for n have ranged from -2.5 to +1.275 with surfactant solutions 

which indicates surfactant type is very important (Cheng et al., 2007).  The rate of vapor 

nuclei formation increases with decreasing surface tension by the relation (Dikici & Al-

Sukaini, 2016):   

𝑁 ∝  𝑒−𝜎3
     (1-18) 
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The Fritz equation also suggests that the bubble departure diameter is directly 

proportional to surface tension (Wasekar & Manglik, 2000).  The Fritz equation is shown 

below (Yang et al., 1999, p. 203): 

𝐷𝑏 = 0.0208 ∗ 𝜃 ∗ √
𝜎

𝑔∗(𝜌𝑙−𝜌𝑣)
    (1-19) 

Where Db is bubble diameter (m), θ is contact angle (radians), g is gravitational 

acceleration (m/s2), ρl is the liquid density (kg/m3), ρv is the vapor density (kg/m3), and σ 

is the surface tension (N/m). The increase of vapor nuclei formation and decrease in bubble 

diameter with the addition of sodium lauryl sulfate to boiling water is shown in the images 

of Figure 1.14 from the Dikici & Al-Sukaini (2016) boiling studies. 

 

 

Figure 1.14 Boiling at heat flux 30.38 kW/m2 no SLS and with SLS (Dikici & Al-

Sukaini, 2016). 

 

Some studies indicate that dynamic surface tension (instead of equilibrium surface 

tension) and surfactant adsorption is important to the boiling phenomenon (Cheng et al., 

2007).  The dynamic surface tension is related to the ability of the surfactant to reabsorb at 

the heated surface as the monolayer is repeatedly broken by vapor nuclei formation.  
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Dynamic surface tension rises with increasing concentration and increasing vapor nuclei 

formation rate (Cheng et al., 2007).  Heat transfer enhancement does not always relate to 

either equilibrium or dynamic surface tension (Wasekar & Manglik, 2000). Viscosity 

increases with increasing concentration for all surfactants and may affect boiling 

phenomena at higher concentrations (Dikici & Al-Sukaini, 2016). 

Subcooled boiling heat transfer is also increased by addition of surfactants but 

boiling hysteresis has been witnessed (Cheng et al., 2007).  Subcooled boiling occurs when 

the liquid temperature is below saturation temperature but boiling is still occurring at the 

heated surface (Cengel & Ghajar, 2011).  The current study explores the surfactant effect 

on subcooled boiling. 

Another surfactant characteristic that could affect boiling is cloud point, the 

temperature at which an aqueous surfactant solution separates into two phases and becomes 

turbid.  Cloud points for anionic surfactants are higher than nonionic and thus are not 

generally encountered in boiling of aqueous anionic surfactant solutions. The turbidity is 

reversed by cooling the solution back to a temperature below the cloud point (Dikici & Al-

Sukaini, 2016).    

 

1.3.2 Previous Studies on Current Surfactants 

Some studies have been performed on sodium lauryl sulfate effects on the boiling 

of water. Elghanam (2011) studied several surfactants including SLS effects on boiling.  

SLS was tested in nucleate pool boiling with a stainless steel heating element.  Results for 

SLS showed an increase in heat transfer coefficient from a clean surface of 170% at 200 

PPM, 200% at 500 PPM, 280% at 1000 PPM, 330% at 1500 PPM (Elghanam, 2011).  
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Wasekar and Manglik (2000) found in a study with SLS that boiling curves were moved 

left indicating an increase in heat transfer coefficient as shown in Figure 1.15.  

 

 

Figure 1.15 Shift of boiling curves with increasing SLS (Wasekar & Manglik, 2000). 

  

Sodium lauryl sulfate, ECOSURFTM EH-14, and ECOSURFTM SA-9 were studied 

by graduate students under Dr. Birce Dikici. The boiling curves were observed to shift to 

left with the addition of all three surfactants with respect to water.  Boiling heat transfer 

enhancement for SLS was higher than that of ECOSURFTM EH-14 and ECOSURFTM SA-

9 for aqueous solutions.  Maximum increases in heat transfer coefficients from pure water 

were 46% for SLS at 400 PPM, 30% for EH-14 at 800 PPM, and 21% for SA-9 at 200 

PPM.  Enhancement of heat transfers at lower concentrations is due to surfactants 

depression of interfacial tension at the heated surface but is due to increases in viscosity at 
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higher concentrations.  Surfactant solutions boiled more vigorously than water without 

surfactants (Dikici & Al-Sukaini, 2016).  The boiling curves for the Dikici & Al-Sukaini 

study are shown in Figures 1.16, 1.17, and 1.18. 

 

 

Figure 1.16 Boiling curves for aqueous solution: SLS (Dikici & Al-Sukaini, 2016).  
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Figure 1.17 Boiling curves for aqueous solution: EH-14 (Dikici & Al-Sukaini, 2016). 

  

 

Figure 1.18 Boiling curves for aqueous solution: SA-9 (Dikici & Al-Sukaini, 2016).  
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1.3.3 Calculating Boiling Mass Transfer 

 Boiling mass transfer for the current study of water without surfactants can be 

estimated by the following equations for nucleate pool boiling (Cengel & Ghajar, 2011, 

p.588): 

𝑞̇𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑒 = 𝜇𝑙ℎ𝑓𝑔 [
𝑔(𝜌𝑙−𝜌𝑔)

𝜎
]

1

2
[

𝑐𝑝𝑙(𝑇𝑠−𝑇𝑠𝑎𝑡)

𝐶𝑠𝑓ℎ𝑓𝑔𝑃𝑟𝑙
𝑛 ]

3

                             (1-20) 

Where q̇nucleate is nucleate boiling heat flux (W/m2), µl is viscosity of the liquid (kg/m*s), 

hfg is enthalpy of vaporization (J/kg), g is gravitational acceleration (m/s2), ρl is density of 

the liquid (kg/m3), ρg is density of the vapor (kg/m3), σ is surface tension of the vapor-

liquid interface (N/m), cpl is specific heat of the liquid (J/kg*C), Ts is the surface 

temperature of the heater (oC), Tsat is saturation temperature of the fluid (oC), Csf is 

experimental constant that depends on surface-fluid combination, Prl is Prandtl number of 

the liquid, and n is an experimental constant that depends on the fluid.  

 The evaporation rate (ṁevaporation) in kg/s is then found by the following equation 

(Cengel & Ghajar, 2011, p.597): 

𝑚̇𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐴𝑞̇𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑒

ℎ𝑓𝑔
                                       (1-21) 

Where A is surface area of the heated surface (m2).  

 For the current study, equations 1-20 and 1-21 predict an evaporation rate of 35.5 

g/min which is a general estimate because this study deals with subcooled boiling. (See 

Appendix C: Subcooled Boiling Evaporation Calculations for complete calculations.) 

1.4 Summary 

Surfactants are known to lower surface tension of solutions due to their surface 

activity. The use of surfactants in evaporation suppression has yielded varying results.  
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Surface tension may not directly relate to evaporation suppression but may be used as an 

indicator of surface excess concentration and thus the compactness of the surfactant 

monolayer.  The surfactant monolayer then acts as a barrier to evaporation with several 

theories as to why this occurs including energy barrier theory, density fluctuation theory, 

and accessible area theory.  Each theory fails to explain some aspect of the monolayer 

evaporation suppression phenomena.   

Surfactants have been shown to increase nucleate boiling heat transfer and vapor 

nuclei formation.  SLS, ECOSURFTM EH-14, and ECOSURFTM SA-9 were shown to 

increase nucleate boiling heat transfer and vapor nuclei formation.  However, subcooled 

boiling behavior is markedly different from nucleate boiling and surfactants effect on 

subcooled boiling evaporation has not been widely explored.  The studies done have seen 

enhancement of heat transfer and large vapor cluster formation before subcooled boiling 

begins.  

For the current study, evaporation rates for natural evaporation tests should range 

between 0.015 g/hour to 1.7 g/hour with the average rate being closer to the low end of this 

range.  For subcooled boiling, the mass loss for the current study should be close to but 

less than 35.5 g/min for the solution without surfactants.  Aqueous-surfactant solutions are 

expected to have lower mass losses than the 0 PPM solutions for natural evaporation and 

higher mass losses for the subcooled boiling evaporation.    

1.5 Hypothesis 

 Based on literature, the sodium lauryl sulfate and ECOSURFTM EH-14 and SA-9 

are expected to lower surface tension considerably.  The surfactants are expected to lower 

natural evaporation rates due to the monolayer they form at the air-water interface.  
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Evaporation by subcooled pool boiling evaporation of the aqueous surfactant solutions is 

expected to increase due to increases in heat transfer coefficient seen by Dikici & Al-

Sukaini (2016).  Some difference in performance is expected between the anionic (SLS) 

and nonionic (EH-14 and SA-9) surfactants in subcooled boiling tests as this charge will 

affect interaction with the heated glass beaker surface.  A relation between surface tension, 

CMC, and evaporation suppression is expected for both natural evaporation and subcooled 

boiling evaporation.  

1.6 Significance of the Study 

Water usage is a growing issue due to global warming.  Drought conditions are seen 

annually in locations worldwide. Surfactants could be used to lower evaporation rates thus 

cutting water loss from reservoirs and increasing efficiency of engineering boiling water 

usage.   The unique behavior of the amphiphilic surfactant molecules could be the answer 

to managing the loss of water that has plagued humanity across the world since the origin 

of humans.  The use of surfactants to prevent water loss could be the next step in humanity’s 

endeavor to tame the world that it calls home.  The use of surfactants to increase heat 

transfer of boiling water could increase the ability of devices using this mode of heat 

transfer to help engineers cope with an ever increasing challenge to improve performance 

of devices. The study of surfactants capabilities and applications could potentially affect a 

span of engineering and scientific fields.     

1.7 Statement of the Problem 

Many studies have been performed on sodium lauryl sulfate and its effect on surface 

tension and various engineering applications. No studies observe its effect on natural 
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evaporation or subcooled boiling evaporation.  No literature data exists related to 

ECOSURFTM EH-14 and SA-9 surface tension or evaporation suppression studies as these 

are new surfactants.   The current study explores the capability of surfactants to lower water 

loss by natural evaporation and to increase water loss by subcooled boiling evaporation 

and examines EH-14 and SA-9 as eco-friendly alternatives to SLS.  

1.8 Purpose Statement 

The purpose of the current study is to obtain the surfactant concentrations most 

effective at lowering water loss of aqueous solutions under natural evaporation and 

increasing water loss under subcooled boiling evaporation and obtain a relation between 

the evaporation effects and surface tension. 

1.9 Delimitations 

Three surfactants studied are sodium lauryl sulfate (SLS), ECOSURFTM EH-14, 

ECOSURFTM SA-9. The concentrations studied range from 0 to 3500 parts per million 

(PPM) for SLS, 0 to 6500 PPM for EH-14, and 0 to 100 PPM for SA-9. The surface tension 

was measured with Wilhelmy plate method.    

1.10 Limitations and Assumptions 

Changes in the laboratory environment in which evaporation tests are conducted 

are assumed to be small enough to allow comparison between tests run at different times. 
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Methodology 

Aqueous solutions with various concentrations of sodium lauryl sulfate, 

ECOSURFTM EH-14, and ECOSURFTM SA-9 are tested to determine the surfactants’ 

effects on surface tension, natural evaporation and subcooled boiling evaporation. 

2.1 Surfactant Solution Preparation 

The surfactants were mixed with distilled (processed by steam distillation, micron 

filtration, ultraviolet light, and ozonation) water to form dilute aqueous solutions.  The 100 

mL glass beaker was first cleaned with isopropyl alcohol.  The surfactant mass was 

measured into the beaker. After measuring out the surfactant mass, 100.0 grams of distilled 

water was added to the beaker.  The solutions were then mixed with a magnetic stirrer for 

5 minutes at setting of 3 as shown in Figure 2.1.  The magnet was removed from the 

solution with a plastic spoon immediately after stirring ended. The two highest 

concentrations of the EH-14 and SLS solutions were mixed for an additional minute to 

ensure complete mixing.  
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Figure 2.1 Stirring of solution with rotating magnet. 

 

2.2 Surface Tension Measurement 

 The surface tensiometer is set on a countertop and the legs are adjusted to ensure 

the platform is level.  The tensiometer is plugged into a transformer which is plugged into 

a wall outlet.  The transformer converts the 120 V wall outlet voltage to the 220 V required 

by the tensiometer.  The Wilhelmy plate is checked to verify the plate bottom surface will 

be perpendicular on all faces to a solution surface when hung from the tensiometer balance 

hook.  The plate is rinsed with water and then flame cleansed.  Flame cleansing is 

completed by immersing the plate in a 99.9% isopropyl alcohol-lamp flame until the plate 

begins turning red. The plate is then hung on the balance. 
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The solutions are mixed and allowed to sit for 30 minutes before measurements so 

that equilibrium surface tension is measured.  After calibration, the beaker of solution is 

set on the tensiometer platform.  The platform is raised manually until the plate surface has 

been mostly wetted.  The platform is then lowered until the meniscus formed between the 

plate and the solution surface is about to break.  Once the measurement displayed on the 

digital screen comes to a set value, it is recorded.  The platform is lowered until the plate 

and solution separate and then the dip and raising to point of meniscus break is repeated.  

This last procedure evaluates the measurement repeatability.  

 

 

 

Figure 2.2 Wilhelmy plate surface tension measurement method used (L.G., 1999). 

 

 The plate is adjusted, rinsed and flame cleansed before every measurement. The 

tensiometer is calibrated before each measurement.  Every measurement session is started 

by measuring pure water to make sure the tensiometer reads the correct value known from 

literature at room temperature. Pure water has a surface tension of 72.75 mN/m at 20oC 

and 1 atmosphere with an uncertainty of 0.36 mN/m (Vargaftik et al., 1983, p.819). 
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2.3 Natural Evaporation Tests 

 Solutions are mixed in 100 mL glass beakers and set on a cabinet top in the corner 

of the lab.  The beakers are covered with cotton muslin gauze as shown in Figure 2.3 to 

prevent debris from affecting the surfactant monolayers and damp any random breezes over 

the beakers.  The gauze covering allows an assumption of natural convection.  The 

solutions sit for 5 days undisturbed except for mass measurements taken at 24, 48, 72, 96, 

and 120 hours from initial measurements.  These initial measurements are taken after all 

the concentrations have been mixed for the specific surfactant. The concentrations of the 

surfactants in the aqueous solutions are seen in the table below. The concentration intervals 

were chosen to include the critical micelle concentration. The units used for concentration 

are parts per million (PPM) which is defined as (Dikici & Al-Sukaini, 2016, p.4): 

𝑃𝑃𝑀 =
1,000,000  𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑡𝑎𝑛𝑡

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
   (2-1) 

 

Table 2.1 Solutions tested in natural evaporation. 

 

 

 

 

 

 

Surfactant Concentrations Tested (PPM) Water Mass (g) 

Sodium Lauryl 

Sulfate 

0, 500, 1000, 1500, 2000, 

2500, 3000, 3500 
100.0 

ECOSURFTM EH-14 
0, 500, 1500, 2500, 3500, 

4500, 5500, 6500 
100.0 

ECOSURFTM SA-9 0, 20, 40, 60, 80, 100 100.0 
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Figure 2.3 Solutions covered with muslin gauze for natural evaporation test. 

 

2.4 Subcooled Boiling Evaporation Tests 

 Each solution is prepared and allowed to sit for 30 minutes to reach an equilibrium 

state. Table 2.2 shows the concentrations tested for each surfactant. The total initial mass 

is measured and the beaker is set on the Benchmark hotplate.  Two thermocouples are 

immersed into the solution.  The thermocouples are attached to the Omega SD Card Data 

Logger and temperature is measured versus time for the experiment.  A subcooled boiling 

test setup is shown in Figure 2.4.  The heat on the hotplate is set to 9 (the highest setting) 

and the solution is brought to boiling temperature of water.  After solution reaches boiling 

temperature, the heat is shut off and the beaker sits on the hotplate for 5 minutes.  The 

remaining total mass is measured precisely five minutes after the hotplate is shutoff. As 

the solution and beaker are still near 100 Celsius, thermal protection is used for both hands 

and the mass scale.  The solutions are tested one at a time and hotplate surface is allowed 

to cool to room temperature before each test run. 
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Table 2.2 Solutions tested in boiling evaporation tests. 

 

 

 

Figure 2.4 Boiling evaporation test setup. 

 

2.5 Surfactants Analyzed 

 The surfactants used in this study were sodium lauryl sulfate, ECOSURFTM EH-14, 

and ECOSURFTM SA-9.  SLS is used in detergents, cosmetics, and pharmaceutical 

products.  EH-14 is used in agrochemicals, cleaning detergents, paints, and textile 

processing.  SA-9 is used in hard surface cleaners, detergents, paper processing, textile 

Surfactant 
Concentrations Tested 

(PPM) 

Solution Water Mass 

(g) 

Sodium Lauryl Sulfate 
0, 500, 1000, 1500, 2000, 

2500 
100.0 

ECOSURFTM EH-14 
0, 500, 1500, 2500, 3500, 

4500 
100.0 

ECOSURFTM SA-9 0, 20, 40, 60, 80, 100 100.0 
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processing, and paints.  Relevant data for these surfactants is found in Table 2.3 (Dikici & 

Al-Sukaini, 2016; Dow, 2013; Dow, 2012; Frey Scientific, 2014).   

 

Table 2.3 Information on surfactants used in current study (Dikici & Al-Sukaini, 2016; 

Dow, 2013; Dow, 2012; Frey Scientific, 2014). 

Surfactant 
Sodium Lauryl Sulfate 

(SLS) 

ECOSURFTM 

EH-14 

ECOSURFTM 

SA-9 

Manufacturer Frey Scientific Dow Dow 

Type Anionic Nonionic Nonionic 

Other Name Sodium Dodecyl Sulfate 
Alcohol 

Alkoxylate 

Seed Oil 

Surfactant 

Chemical Formula CH3(CH2)11OSO3Na - - 

CMC (PPM) 2365 4018 22 

Molar Mass  (g/mol) 288.38 1036 668 

Density (g/cm3) 1.05 1.0538 0.9831 

Appearance White Powder 
Clear Slippery 

Liquid 

Pale Yellow 

Liquid 

 

 

2.6 Equipment 

Masses were measured with A&D GF-300 Digital Scale Balance.  This scale uses 

a Super Hybrid Sensor to weigh the mass.  The weighing capacity is 310 gram maximum 

and 0.001 gram minimum.  The standard deviation is 0.001 grams.  The scale has a 

sensitivity drift of +/- 0.002 g per degree Celsius. 
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Figure 2.5  A&D GF-300 Digital Scale Balance. 

 

 

Figure 2.6  Benchmark Scientific H4000-HS Hotplate and Stirrer. 

 

Mixing was performed with the magnetic stirring function of the Benchmark 

Scientific H4000-HS Hotplate and Stirrer.  The H4000-HS has white ceramic surface that 

is 18cm (7.1 in) by 18cm (7.1 in).  The surface temperature range is 80 Celsius to 380 

Celsius with 9 potential heat settings.  The magnetic stirrer has a speed range of 60 RPM 

to 1500 RPM with 9 potential stir speed settings.  The hotplate and stirrer draws 120 volts 

at 60 hertz.   
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 Surface tension measurements were conducted using the BZY-101 Automatic 

Surface Tensiometer.  The tensiometer’s measuring range is 0 milli-newton per meter 

(mN/m) to 600 mN/m.  The minimum resolution is 0.1 mN/m and the standard deviation 

is +/- 0.1 mN/m. 

 

 

Figure 2.7 Automatic surface tensiometer used in surface tension measurements. 

 

The tensiometer was purchased from a Chinese company Shanghai Fangrui 

Instrument Co., Ltd.  The required supply voltage was 220 Volts (V) and thus a transformer 

was purchased to complete the required conversion.  The Goldsource® Step Up & Down 

Transformer STU-300N converted the 120 V wall outlet to the 220 V required by the 

tensiometer.  
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Figure 2.8 Transformer used to convert wall outlet voltage to the required voltage. 

 

The temperature data was recorded using the Omega 4-Channel Portable 

Thermometer/ Data Logger with SD Card Data Recorder.  The Omega RDXL4SD runs off 

battery and displays the temperature measured by the attached thermocouples onto a digital 

display and records the data on an SD Card.  Type K thermocouples were used.  The 

response time of the thermocouples is 0.0002 seconds in still water (Dikici & Al-Sukaini, 

2016).   

 

Figure 2.9 Omega 4-Channel Portable Thermometer/ Data Logger used in study. 

 

  

Photographs were taken with CASIO Exilim EX-FH20 camera. This camera has 

9.1 megapixels clarity in normal mode and 7 megapixel clarity at a high-speed photo setting 

capable of 40 captures per second. The camera also has a 20X optical zoom and anti-shake 

mechanism.  The camera is shown in Figure 2.10. 
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Figure 2.10 CASIO Exilim EX-FH20 camera used in study. 

 

2.7 Treatment of the Data 

2.7.1 Normalizing Natural Evaporation Measurements 

The measurements for natural evaporation are normalized by the following ratio 

(Prime, E. et al., 2012, p.23): 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑀𝑎𝑠𝑠 𝐿𝑜𝑠𝑠 =  
(𝑀𝑎𝑠𝑠 𝐿𝑜𝑠𝑠)𝑐𝑜𝑛𝑡𝑟𝑜𝑙−(𝑀𝑎𝑠𝑠 𝐿𝑜𝑠𝑠)𝑠𝑎𝑚𝑝𝑙𝑒

(𝑀𝑎𝑠𝑠 𝐿𝑜𝑠𝑠)𝑐𝑜𝑛𝑡𝑟𝑜𝑙
∗ 100               (2-2) 

The ratio will show the effectiveness of monolayers in lowering evaporation and allows 

comparison between testing despite the range of the control mass loss. (Explanation of 

laboratory environment effects on natural evaporation tests was tested and is explained in 

the Reliability Testing section).  The control sample is the solution consisting of distilled 

water with no surfactant. For example, a natural evaporation test of an aqueous solution of 

1000 PPM SLS loses 4 grams of water and the solution with no surfactant loses 5 grams of 

water.  The normalized mass loss for the 1000 PPM SLS solution is equal to: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑀𝑎𝑠𝑠 𝐿𝑜𝑠𝑠 =  
5𝑔−4𝑔

5𝑔
∗ 100 = 20%   (2-3) 
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2.7.2 Repeatability Testing 

 The reliability of the surface tension measurements was tested by measuring the 

tension of a clean water surface at the beginning of every surface tension measurement 

session.  The surface tension of water is known from literature to be 72.75 mN/m at 20oC 

and 1 atmosphere (Vargaftik et al., 1983, p.819).   

 The influence of the laboratory environment on natural evaporation tests was tested.  

The experiment to test these effects consisted in setting out 6 beakers of 100.0g of distilled 

water on the cabinet top and covering all 6 beakers with the muslin gauze. This set up was 

consistent with the natural evaporation tests run.  The initial mass was measured and the 

final mass was measured after each part of this experiment.  The experiment had three parts 

each lasting 1 hour.  In part 1, all doors in the laboratory were closed and the lab had been 

closed for 8 hours or more.  The mass loss from each beaker during this part 1 hour was 

measured.  Part 2 was initiated by refilling the beakers to 100.0g of distilled water.  All 

doors in the laboratory, this includes 2 bay doors and 1 personal door, were opened to the 

exterior atmosphere of 34.4 oC, 57% humidity, and wind speeds of 4.2 m/s (Time and Date 

AS, 2016). The part 2 hour long test was started immediately after doors were opened. The 

doors were left open for duration of the test.  Immediately after the Part 2 hour elapsed, the 

doors were closed and the Part 3 hour was started. The mass loss during each part of the 

experiment was measured and the temperature of the lab was recorded with a type K 

thermocouple. 

 Thus, the mass evaporation rates of water under three laboratory conditions were 

tested.  Part 1 tested the evaporation under equilibrium conditions.  During Part 1 there was 

standard fluctuation of the lab temperature as AC unit cycled on and off.  Part 2 tested the 
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evaporation as the room became exposed to the external weather. Part 3 tested the 

evaporation as AC units returned the room temperature to 20oC after the doors were closed.  

Results of this test are shown in Figure 2.11. 

 

 

Figure 2.11 Laboratory environment effects on evaporation test results. 

 

 The results show that environment conditions significantly change evaporation 

rates of water.  The open doors exposed the water to higher air temperatures and humidity 

and thus lowered evaporation rates despite wind causing significant air motion in the lab.  

The water evaporation increased significantly after the doors were closed.  This indicates 

that the water warmed to the new room temperature over Part 2 and, as the AC returned 
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room temperature to the normal 20oC, natural and forced air convection was experienced 

by the air-water interface.  

 Due to these effects on natural evaporation testing, the mass loss measurements 

were normalized to control sample as discussed in Methodology: Treatment of the Data. 

The control sample is the distilled water solution that has no surfactant in it and thus has a 

clean surface.  This allows comparison between testing even though activity in the 

laboratory prevented consistent conditions over the 5 day tests.  This normalization is used 

for evaporation field tests of surfactants found in literature. The 5 day tests resemble field 

tests due to the lab environment changes. 

2.7.3 Hypothesis Testing 

 The measurements taken for the tests show how the addition of surfactants affect 

the surface tension, natural evaporation rates, and subcooled boiling evaporation rates of 

distilled water. 
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Results and Discussions 

Sodium lauryl sulfate, ECOSURFTM EH-14, and ECOSURFTM SA-9 are studied in 

aqueous solutions for effects on surface tension, natural evaporation, and subcooled boiling 

evaporation. The results of the current study are presented and discussed in this section. 

3.1 Surface Tension Measurements 

 The results of surface tension measurements for aqueous surfactant solutions with 

sodium lauryl sulfate, ECOSURFTM EH-14, and ECOSURFTM SA-9 are given in Figures 

3.1, 3.2, and 3.3 respectively.  Average surface tension of distilled water was measured as 

70.0 (mN/m) for 20 °C as shown at the 0 PPM concentration measurements.  The surface 

tension at 20oC found in literature is 72.75 mN/m (Vargaftik et al., 1983, p.819).  Thus, the 

average distilled water surface tension measurement was 3.8% lower than literature data 

for water surface tension.   
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Figure 3.1 Surface tension measurements of aqueous SLS solutions. 

 

 

Figure 3.2 Surface tension measurements of aqueous EH-14 solutions. 
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Figure 3.3 Surface tension measurements of aqueous SA-9 solutions. 

 

3.1.1 Sodium Lauryl Sulfate 

Aqueous SLS solution surface tension decreased as the solution concentration is 

increased to 1000 PPM as shown in Figure 3.1. The surface tension value obtained at 1000 

ppm is 28.9 (mN/m) at 20°C.  After exceeding the CMC of 2365 PPM, no considerable 

change in surface tension is observed.   Surface tension value for concentrations near and 

exceeding CMC is 33.5 (mN/m) at 20oC. 

The lowest surface tension for SLS was at 1000 PPM was below the CMC of 2365 

PPM.  The dip in surface tension may be due to molecular interaction between SLS 

molecule s in the surface.  At 1000 PPM, the SLS surface concentration may be low enough 

that surfactant molecules have not begun to interact with each other.  The increase in 

surface tension with an increase in concentration from 1000 PPM may be the result of more 

interaction between surfactant molecules. The surface tension would then increase until the 

surface is saturated with surfactants at the CMC. 
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3.1.2 ECOSURFTM EH-14 

Aqueous EH-14 solution surface tension showed a decrease as the solution 

concentration is increased to 2500 PPM as shown in Figure 3.2. The surface tension value 

obtained at 2500 ppm is 30.4 (mN/m) at 20°C.  After exceeding the CMC of 4018 PPM, 

no considerable change in surface tension is observed. For concentrations near and 

exceeding CMC, the surface tension observed is 30.2 (mN/m). 

3.1.3 ECOSURFTM SA-9 

Aqueous SA-9 solution surface tension showed a decrease as the solution 

concentration is increased to 20 PPM as shown in Figure 3.3. The surface tension value 

obtained at 20 ppm is 31.4 (mN/m) at 20°C.  After exceeding the CMC of 22 PPM, no 

considerable change in surface tension is observed.  The surface tension observed for 

concentrations near or exceeding CMC is 30.0 (mN/m). 

3.1.4 Discussion of Surface Tension Measurements 

SLS, EH-14, and SA-9 all had similar trends in surface tension versus concentration 

as shown in Figures 3.1, 3.2, and 3.3.  The surfactants’ initial (i.e. lowest) respective 

concentrations of 500 PPM for SLS, 500 PPM for EH-14, and 20 PPM for SA-9 each 

reduced the surface tension of water by over 30 mN/m.  Then increasing concentrations up 

to CMC lowered surface tension by less than 8 mN/m for EH-14 and less than 3 mN/m for 

SLS and SA-9. Increasing the concentrations above the respective CMCs did not have 

significant additional effects on the surface tension. The trend may be explained by the 

surfactants effect on inter-molecular bonding in the surface.  Pure water has strong 

cohesion due to the attraction of the water molecules. The initial concentration of surfactant 

may interfere with this attraction at local levels enough to lower the overall cohesive force 
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of the surface, the surface tension, significantly.  Addition of more surfactant mass above 

the initial concentrations would thus have little additional effect on surface tension because 

the cohesion of the pure water surface as a whole has already been broken by the initial 

surfactant concentration mass.  Increase of concentrations above CMC does not 

significantly affect surface tension because this additional mass goes to micelles within the 

solution body and does not aggregate at the surface (Myers, 2006). 

3.1.5 Comparison of SLS Measurements to Literature Data 

 

Figure 3.4 Surface tension measurements SLS aqueous solutions found in literature. 
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techniques used for measuring surface tension. For example, the highest measurements for 

concentrations between 0 and 2000 PPM found in literature were done with the Pendent 

Drop Method (Doganci et al., 2011) and the lowest measurements found for the same range 

of concentrations were done with the Du Nouy (Ring) Method (Chen et al., 2010).  The 

solution mixing techniques and other preparation techniques may affect measurements.  

For example, the current study procedure included cleaning the beakers with isopropyl 

alcohol before mixing solutions.  Temperature of the solutions at time of measurement will 

also affect surface tension measurements as temperature changes can affect the hydrogen 

bonding occurring between surfactants and the water (Myers, 2006, p.202). If the bonding 

between molecules within the surface is weakened the overall cohesion of the surface will 

be changed and thus the surface tension will also be changed. A change in water 

temperature from 20oC to 25oC corresponds to a surface tension decrease of 0.76 mN/m 

(Vargaftik et al., 1983).  The current study measurements agree with the Cheng et al. (2007) 

measurements for concentrations from 0 to 500 PPM which were completed with the 

Wilhelmy plate method and agree well with all literature measurements for concentrations 

of 2000 PPM and higher.  Since EH-14 and SA-9 are new surfactants, no surface tension 

measurements for them are published in literature.  

3.2 Natural Evaporation Measurements 

3.2.1 Sodium Lauryl Sulfate  

Mass loss measurements for the SLS natural evaporation tests are shown in Figures 

3.5 and 3.6. 
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Figure 3.5 Natural evaporation losses for 0, 500, 1000, 1500, 2000, 2500 PPM SLS. 
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Figure 3.6 Natural evaporation losses for 3000 and 3500 PPM SLS. 
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Figure 3.7 Average mass loss measurements over all SLS natural evaporation tests. 

 

The normalized measurements for the SLS natural evaporation tests are shown in 

Figures 3.8 and 3.9.  The measurements for natural evaporation are normalized by Equation 

2-2 as previously discussed in Methodology: Treatment of the Data.  The average 

evaporation suppression by SLS, shown in Figures 3.8 and 3.9, increased with increasing 

concentration in the aqueous solution up to CMC.  The evaporation suppression decreased 

with time for all concentrations. The deterioration may be due to diffusion of the surfactant 

into the water or air or addition of contaminants, such as dust, from the environment 

(Barnes 1997). The largest deterioration in evaporation suppression from the beginning to 

the end of the test period was 14% for 2500 PPM.  The 2000 PPM concentration yielded 

the best natural evaporation suppression effects over 120 hours for SLS ranging from 18% 

to 32%. 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0 12 24 36 48 60 72 84 96 108 120 132 144 156

M
as

s 
E

v
ap

o
ra

te
d
 (

g
)

Time Elapsed (Hours)

No Surfactant
500 PPM
1000 PPM
1500 PPM
2000 PPM
2500 PPM
3000 PPM
3500 PPM



60 

 

 

 
Figure 3.8 Normalized natural evaporation for 500 to 3000 PPM SLS. 
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Figure 3.9 Normalized natural evaporation for 3500 PPM SLS. 

 

 

Figure 3.10 Natural evaporation suppression by SLS monolayers over 120 hours. 
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The evaporation suppression variation with increasing concentration at the air-

water interface over 120 hours by SLS monolayers are shown in Figure 3.10.  The average 

evaporation suppression increases slightly as concentration increases to CMC and then 

drops with increases in concentration above CMC.   

Comparison between the measurements (Figures 3.5 and 3.6) and normalized 

measurements (Figures 3.8, 3.9, and 3.10) shows that variation in laboratory conditions 

may have some effect on experimental results.  (This was discussed in a separate test 

explained in Methodology: Treatment of Data: Reliability Testing.) The measurements 

show that the concentrations of 3000 and 3500 PPM, which are much higher than CMC, 

performed the best as they had the lowest average mass losses.  However, the control (0 

PPM) solution measurements associated with tests of 3000 PPM and 3500 PPM show that 

the test conditions yielded lower evaporation effects for all solutions.  The normalized 

measurements take into account the variation in conditions by comparison to the 0 PPM 

solution and shows that the 2000 PPM solutions performed better than the 3000 PPM and 

3500 PPM solutions in evaporation suppression.   

Surfactant monolayer theory suggests that the 2000 PPM should provide the highest 

evaporation suppression. Performance in laboratory setting should peak near the CMC 

(2365 PPM for SLS) because evaporation suppression is due to the monolayer formed at 

the air-water interface (Barnes, 1997) and CMC is an indication of surface saturation 

(Myers, 2006). Assuming the packing of the surfactant film is not adversely affected by 

the molecular structure, the film density should increase with increasing concentration up 

to CMC and then level off for concentrations exceeding CMC as additional surfactants 
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enter the body of the water in micelles (Myers, 2006).  As the concentration of surfactant 

increases above CMC the free energy of the system will increase (due to increase of the 

structural distortion by additional surfactants) which may lead to an increase of evaporation 

(Vuglinsky, 2009).  Micelles minimize this increase but do not eliminate the increase in 

system energy (Rosen, 2004). 

 

 

Figure 3.11 Maximum natural evaporation suppression versus surface tension for SLS. 
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monolayer.  The close packing of the surfactant molecules may prevent permeation of 

water molecules through the surfactant monolayer, i.e. lower evaporation (Barnes, 1997). 

The increase in evaporation suppression associated with the surface tension increase from 

1000 PPM to 1500 PPM is not witnessed for the surface tension increase from 1500 PPM 

to 2000 PPM.  This discrepancy indicates that factors other than surface tension may be 

more relevant in determining the natural evaporation suppression performance of SLS for 

the concentrations tested.  

3.2.2 ECOSURFTM EH-14 

 The mass loss measurements of ECOSURFTM EH-14 from the natural evaporation 

testing, shown in Figures 3.12 and 3.13, show that EH-14 suppresses evaporation of water.  

The results across tests varied slightly except for the 5500 PPM and 6500 PPM results 

which were more consistent across test runs.  The control samples mass losses after 120 

hours ranged from 6.5 to 9.5g from 100 g solutions (6.5-9.5%). The mass losses from the 

5500 PPM and 6500 PPM were consistently the lowest staying near 6 g (6%).    

 

 

Figure 3.12 Natural evaporation mass losses for 0 and 500 PPM EH-14
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Figure 3.13 Natural evaporation mass losses for 1500 to 6500 PPM EH-14. 
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Average of the mass loss measurements for EH-14 natural evaporation tests from 

Figures 3.12 and 3.13 are shown in Figure 3.14.  The average mass loss is lowest for the 

concentrations much higher than the CMC of 4018 PPM. The average mass loss after 120 

hours did vary significantly for the concentrations from 1500 PPM to 4500 PPM. 

 

 

Figure 3.14 Average mass loss measurements for EH-14 natural evaporation tests. 
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Figure 3.15 Normalized evaporation mass loss measurements: 500 to 5500 PPM EH-14 
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Figure 3.16 Normalized evaporation mass loss measurements: 6500 PPM EH-14. 

 

The average evaporation suppression over the 120 hours of the natural evaporation 

tests are shown in Figure 3.17.  

 

 

Figure 3.17 Natural evaporation suppression by EH-14 over 120 hours. 

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 24 48 72 96 120 144
N

o
rm

al
iz

ed
 M

as
s 

L
o
ss

Time Elapsed (Hours)

6500 PPM

0%

5%

10%

15%

20%

25%

30%

35%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

E
v
ap

o
ra

ti
o

n
 S

u
p
p
re

ss
io

n

Concentration (PPM)



69 

The average suppression after 120 hours increases with increasing concentration up 

to 1500 PPM, as shown in Figure 3.17.  No significant change is observed in the average 

evaporation suppression with increasing concentration from 1500 PPM to the CMC of 

4018 PPM.  After CMC, the evaporation suppression decreases with increasing 

concentration. 

The variation of the maximum evaporation suppression after 120 hours versus the 

measured surface tension for ECOSURFTM EH-14 natural evaporation tests is shown in 

Figure 3.18. 

 

 

Figure 3.18 Maximum natural evaporation suppression versus surface tension for EH-14. 
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(500 PPM) and 32.2 mN/m (1500 PPM).  The concentrations well above the CMC of 4018 

PPM had the lowest evaporation suppression and the lowest surface tension. The expected 

relation is decreasing evaporation suppression with increasing surface tension as discussed 

in the SLS results.  (See second from last paragraph in Section 3.2.1 for explanation.)  This 

relation is not clearly shown by the current study results for ECOSURFTM EH-14. 

 

3.2.3 ECOSURFTM SA-9 

The measurements of mass loss by natural evaporation for ECOSURFTM SA-9, 

shown in Figures 3.19 and 3.20, show that SA-9 reduces evaporation of water.  The mass 

loss across tests was consistent for the aqueous-surfactant solutions.  The control mass 

losses after 120 hours ranged from just under 7 g to 8 g from 100 g solutions (7-8%).  All 

surfactant solution mass losses ranged from 6 g to 7 g (6-7%) and showed little variation 

across concentrations.   

 

 

Figure 3.19 Natural evaporation mass loss measurements: 0 and 20 PPM SA-9.
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Figure 3.20 Natural evaporation mass loss measurements: 40 to 100 PPM SA-9. 
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PPM would show an increase in the surfactant mass active at the air-water interface where 

the surfactant would have the most effect on evaporation. 

 

 

Figure 3.21 Average mass loss by SA-9 aqueous solutions in natural evaporation tests. 

 

Normalized mass loss measurements for SA-9 aqueous solutions in natural 
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Figure 3.22 Normalized natural evaporation mass losses: 20, 40, 60, 80 PPM SA-9. 
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Figure 3.23 Normalized natural evaporation mass losses: 100 PPM SA-9. 
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suppression after 120 hours of 18%.  

The evaporation suppression versus concentration in the natural evaporation tests 

of aqueous SA-9 solutions is shown in Figure 3.24.  The evaporation suppression did not 

change significantly when concentration is increased above the 20 PPM concentration.   
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Figure 3.24 Natural evaporation suppression of water by SA-9 after 120 hours. 

 

As discussed in the Sodium Lauryl Sulfate section, the concentration just below the 

CMC of 22 PPM should have the best evaporation suppression.  The normalized mass loss 

measurements show that the 20 PPM solution had consistently high evaporation 

suppression as compared to other concentrations.  The mass loss measurements show that 

the mass losses did not increase or decrease with increasing concentrations of SA-9.  There 

is no disagreement between the conclusions drawn from mass loss measurements and the 

normalized measurements for ECOSURFTM SA-9. 

The variation of the maximum evaporation suppression after 120 hours versus the 

measured surface tension for ECOSURFTM SA-9 natural evaporation tests is shown in 

Figure 3.25. 
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Figure 3.25 Maximum natural evaporation suppression versus surface tension for SA-9. 

 

The evaporation suppression does not have a direct relation to surface tension.  The 

expected decrease of evaporation suppression with increasing surface tension (see second 

from last paragraph in Section 3.2.1 for explanation) is seen between 30.8 mN/m (40 PPM) 

and 31.4 mN/m (20 PPM) but is not seen for other changes in surface tension between 

surfactant solutions.  As all but 20 PPM are above the CMC, the surface tension for the 

current study solutions do not change significantly.  Thus, surface tension may not be the 

only parameter affecting the surface evaporation. 

 

3.2.4 Further Discussion of Natural Evaporation Results 

Results from this study do not show a strong relation between surface tension and 
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suggest that there may be other factors may more important than surface tension in 

determining surfactant ability to lower evaporation of water. Other surfactant 

characteristics which could affect the evaporation suppression include the density of 

packing at the air-water interface (Prime E. et al., 2012), the surface pressure (Barnes, 

2008), and the elasticity of the surfactant monolayer (Bower & Saylor, 2011).  These 

factors could affect the diffusion rates of water into air and also hinder motion of molecules 

of the water near the interface thus lowering convection.  

The evaporation rates predicted for natural evaporation for water without 

surfactants for the current study conditions were: 0.015 g/hr if mass transfer occurred by 

diffusion alone, 0.34 g/hr if mass transfer occurred by natural convection, and 1.7 g/hr if 

mass transfer occurred by forced convection. (See Appendix C for calculations.)  The 

muslin gauze was expected to hinder most of both forced and natural convection.  

Therefore, the expected evaporation rate for the current study was higher than 0.015 g/hr 

but significantly lower than 0.34 g/hr.  The average evaporation rate for water without 

surfactant over all tests was observed to be 0.062 g/hr.  
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3.3 Subcooled Boiling Evaporation Measurements 

 The mass loss measurements for SLS, EH-14, and SA-9 aqueous solutions during 

subcooled pool boiling evaporation tests are shown in Figures 3.26, 3.27, and 3.28 

respectively. 

  

3.3.1 Sodium Lauryl Sulfate 

 

Figure 3.26 Subcooled boiling mass evaporation measurements for SLS solutions. 

  

Figure 3.26 shows the mass evaporated at subcooled boiling versus the 

concentration of sodium lauryl sulfate.  A 10% decrease of evaporation mass loss at the 

1000 PPM concentration was observed.  The subcooled boiling evaporation occurs at the 

heated surface as opposed to the evaporation occurring at the air-water interface in the 

natural evaporation tests.  Thus, the effects seen for subcooled boiling may not be similar 

to the effects seen for natural evaporation.  The SLS monolayer at the heated surface may 
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hinder motion at the heated surface during the boiling initiation and thus lower heat transfer 

for the subcooled boiling conditions. 

 

3.3.2 ECOSURFTM EH-14 

 

Figure 3.27 Subcooled boiling mass evaporation measurements for EH-14 solutions. 

  

The mass loss measurements ECOSURFTM EH-14 aqueous solutions during 

subcooled pool boiling evaporation tests are shown in Figure 3.27.  EH-14 had some effect 

on the subcooled boiling evaporation of water.  The general trend was an increase in mass 

loss with increasing concentration up to 2500 PPM.  The concentrations near the CMC of 

4018 PPM decreased the mass loss during subcooled boiling.  An average 8.7% increase 

of evaporation mass loss at 2500 PPM and an average 13.4% decrease of evaporation mass 

loss at 3500 PPM are observed.  The lack of increase in evaporation for concentrations near 
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the CMC of 4018 PPM indicates that the EH-14 micelle formation adversely affects vapor 

formation for subcooled boiling.  The micelles may negatively affect the re-adsorption rate 

of the surfactant molecules to the heated surface.  The surfactants on the heated surface 

will be moved away from the surface by the vapor nuclei released from the heated surface.  

 

3.3.3 ECOSURFTM SA-9  

 

Figure 3.28 Subcooled mass evaporation measurements for SA-9 solutions. 

 

The mass loss measurements for ECOSURFTM SA-9 aqueous solutions during 

subcooled pool boiling evaporation tests are shown in Figure 3.28. SA-9 did not 

significantly affect the evaporation mass loss of subcooled boiling water.  The SA-9 lack 

of effect on evaporation may be due to the relative high concentrations tested. 

Concentrations for SLS and EH-14 near or above their respective CMCs showed little 

effect on subcooled boiling evaporation.  SA-9 concentrations tested were all near or higher 
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than the CMC of 22 PPM.  Thus, all three surfactants tested showed insignificant effect on 

subcooled boiling evaporation for concentrations near or above their respective CMC.  

3.3.4 Further Discussion of Subcooled Boiling Evaporation Results  

The relation, observed below CMC, between surface tension and evaporation 

suppression was opposite for SLS and ECOSURFTM EH-14.  The trends under CMC seen 

in the current study were that the lowering of surface tension led to a decrease in 

evaporation by the anionic surfactant (SLS) and an increase in evaporation by the nonionic 

surfactant (EH-14).  An explanation for the contrast may be that the SLS monolayer at the 

heated surface is lowering convective motion at the heated surface and the EH-14 

monolayer is not.  The two surfactants monolayers may have different effects because of 

the interaction between the surfactants and the heated surface, which is negatively, charged 

(Rosen, 2004).    Thus, a negative charge on the SLS may cause a different effect from the 

neutral charge of the EH-14 on the sub-cooled boiling phenomena occurring at the negative 

surface.  

The mass loss for boiling water without surfactants was calculated as 35.5 g/min 

for the current study conditions. The average mass loss for water without surfactants in 

current study tests is observed to be 1.79 g/min.  The calculated value is higher than the 

observed values because Rohsenow correlation is used for nucleate boiling rather than 

subcooled boiling.  Also, the assumed value for Csf may be too low or the assumed value 

for surface temperature may be too high.   See Appendix C for calculations.   

Adding surfactants can lower the liquid-vapor surface tension and thereby increase 

the frequency of the bubble departure from the heated surface and thus increases heat 
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transfer.  The increase of heat transfer by decreasing surface tension (σ) can be seen in the 

Rohsenhow correlation (Cengel, 2011): 

𝑞̇𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑒 = 𝜇𝑙ℎ𝑓𝑔 [
𝑔(𝜌𝑙−𝜌𝑔)

𝝈
]

1

2
[

𝑐𝑝𝑙(𝑇𝑠−𝑇𝑠𝑎𝑡)

𝐶𝑠𝑓ℎ𝑓𝑔𝑃𝑟𝑙
𝑛 ]

3

= ℎℎ𝑒𝑎𝑡(𝑇𝑠 − 𝑇𝑠𝑎𝑡) =
𝑚̇𝑏ℎ𝑓𝑔

𝐴
  (3-1) 

Additionally, the increase in heat transfer will translate to an increase in boiling mass 

evaporation rate (ṁb). Under steady state conditions, all heat addition to boiling water will 

result in water evaporation (Cengel, 2011).  The study of air-water surface tension will not 

have a direct relation to boiling at the heated surface but could be used as an indication of 

how much of the surfactant mass will be available to aggregate at the heated surface.   

Dikici & Al-Sukaini (2016) found that SLS, ECOSURFTM EH-14, and 

ECOSURFTM SA-9 increased heat transfer and lowered wall temperatures at a given heat 

flux.  The concentrations which had the highest effects on boiling were 400 PPM for SLS, 

800 PPM for EH-14, and 200 PPM for SA-9.  Increases in concentrations beyond these 

respective concentrations showed “no further improvement” (p.5).   Up to 31%, 18%, and 

10% lower wall superheats for SLS, EH-14, and SA-9 respectively were found as compared 

to water.  Boiling heat transfer coefficients were observed to increase by up to 46% for 

SLS, 30% for EH-14, and 21% for SA-9. The heat flux in the current study is much higher 

than the max heat flux used in the Dikici & Al-Sukaini study.  Thus, the results of the two 

studies are not compared. 
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Conclusions and Recommendations 

 Sodium lauryl sulfate, ECOSURFTM EH-14, and ECOSURFTM SA-9 were tested 

in aqueous solutions for their effects on surface tension, natural evaporation, and subcooled 

boiling evaporation.  The conclusions of the study and recommendations for future studies 

are presented in this section. 

4.1 Conclusions 

4.1.1 Surface Tension Suppression 

Sodium lauryl sulfate, ECOSURFTM EH-14, ECOSURFTM SA-9 surfactants were 

shown to depress the surface tension of distilled water. The lowest respective concentration 

for each surfactant (500 PPM for SLS, 500 PPM for EH-14, and 20 PPM for SA-9) had the 

greatest effect on surface tension with some additional effect observed with increase of 

concentration up to critical micelle concentration. No significant change in surface tension 

was observed with increasing concentration above CMC.  SLS had the highest surface 

tension for concentrations higher than CMC with values measured at 33.5 (mN/m). EH-14 

and SA-9 both had minimum surface tensions measured near 30.0 (mN/m). SLS 

measurements were consistent with measurements found in literature concentrations from 

0 to 500 PPM and from 2000 to 3500 PPM. 

4.1.2 Natural Evaporation Suppression 

Evaporation Suppression by Surfactants 

SLS, SA-9, and EH-14 all lowered the natural evaporation of aqueous solutions.  

The application of a surfactant monolayer lowered evaporation of water by up to 35%.  

SLS was the most effective at lowering evaporation rates in these natural evaporation tests 
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with natural evaporation suppression ranging from 10% to 35%.  EH-14 was more effective 

than SA-9 at evaporation suppression. The water saved by EH-14 ranged from 10% to 23% 

for the 5 day tests. The water saved by SA-9 over the 5 day tests ranged from 0% to 26%.  

The most consistently effective concentrations at natural evaporation suppression were all 

near but below the respective CMCs: 2000 PPM for SLS, 3500 PPM for EH-14, and 20 

PPM for SA-9.   

Natural Evaporation and Surface Tension 

 A consistent relation between natural evaporation suppression and surface tension 

suppression was not seen for any of the surfactants tested.  The evaporation suppression 

decreased with decreasing surface tension for SLS. However, the natural evaporation 

suppression increased with decreasing surface tension for EH-14 and SA-9.  These trends 

were only seen below CMC.  Thus, the current study shows that surface tension is not the 

only parameter affecting the natural evaporation.          

Natural Evaporation Suppression and CMC 

 Effect of CMC was difficult to ascertain for SA-9 because of its low CMC.  For 

SLS and EH-14, the natural evaporation suppression for concentrations above these 

surfactants’ respective CMCs were the lowest measured.  The concentrations below CMC 

were more effective at lowering evaporation of water. The results of this study indicate that 

micelles may lower the effectiveness of natural evaporation suppression for both SLS and 

EH-14.  

4.1.3 Subcooled Boiling Evaporation Suppression 

The surfactants of this study had varying effects on subcooled aqueous solution 

evaporation.  SLS was the only surfactant to lower evaporation at concentrations below 
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CMC. EH-14 increased evaporation below CMC and SA-9 had showed least effect on 

evaporation at all concentrations.  SLS and EH-14 both showed a relation between CMC 

and the subcooled boiling evaporation effects.  The SLS effects on evaporation were 

mitigated near CMC and the EH-14 effects were reversed near CMC (from increasing 

water loss to lowering water loss).  The SA-9 solutions were all near or above CMC and 

all concentrations showed insignificant effects on evaporation losses.  

The effects on subcooled boiling evaporation for all 3 surfactants generally stayed 

below 10% increases or decreases.  Thus, the effect on subcooled boiling evaporation was 

minimal despite significant heat transfer coefficients observed by Dikici & Al-Sukaini 

(2016) for the current study surfactants. No relation was seen between evaporation and 

surface tension suppression.  This is may be due to the vapor nuclei formation occurring at 

the heated surface and not the air-water interface.  Pre-boiling evaporation may be affected 

by the monolayer at the air-water interface but this effect was not measured in the current 

study.  Surface tension at the air-water interface may be used to indicate how much of the 

surfactant is active at the heated surface. However, the contact angle between the heated 

surface and the surfactant solutions may be a better indicator of surfactant effect on activity 

at the heated surface.    

4.2 Recommendations 

 Several conclusions were drawn based on the current study of sodium lauryl sulfate, 

ECOSURFTM EH-14, and ECOSURFTM SA-9 effects on surface tension, natural 

evaporation, and subcooled boiling evaporation.  Recommendations for future studies 

based on the conclusions of the current study follow. 
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4.2.1 Natural Evaporation Further Studies 

 The current study showed that SLS, EH-14, and SA-9 all suppress the natural 

evaporation of water.  Experimenting should be done to determine the monolayers 

performance under wind shear.  Wind shear increases the convection over the air-water 

interface.  The ability of the monolayers to lower convection rates and not break up under 

wind shear is very important.  Based on literature, monolayers may have more effects on 

lowering convection than on suppressing water to air diffusion. The effects of wind shear 

on the monolayers evaporation suppression effects is the next logical step to determine the 

potential of these surfactants to lower water reservoir evaporation losses. 

4.2.2 Subcooled Boiling Evaporation Further Studies 

  The surfactants effect on subcooled pool boiling evaporation was minimal and 

variable.  However, due to surfactants activity at interfaces, studies could be performed on 

subcooled flow boiling.  Some caution would be warranted due to potential flash points if 

surfactant sediment were to build up on the heated surface.  
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Appendix A 

Measured Values 

Table A.1 Surface tension measurements of aqueous SLS solutions. 

Concentration 

(PPM) 

Reading 

(mN/m) 

Repeat 

(mN/m) 

Reading 

(mN/m) 

Repeat 

(mN/m) 

0 69 68.9 71.2 71.2 

500 35.1 35.1 33.1 33.1 

1000 28.9 28.9 28 28 

1500 31.7 31.7 30.6 30.6 

2000 33.6 33.6 33.1 33.1 

2500 33.7 33.8 33.9 33.9 

3000 33.4 33.5 - - 

3500 33.5 33.5 - - 

 

Table A.2 Surface tension measurements of aqueous EH-14 solutions 

Concentration 

(PPM) 

Reading 

(mN/m) 

Repeat 

(mN/m) 

Reading 

(mN/m) 

Repeat 

(mN/m) 

0 69.9 70 70.2 70.3 

500 37.8 37.7 37.8 37.7 

1500 32.1 32 32.4 32.4 

2500 30 30.1 30.7 30.7 

3500 30.2 30.3 30.2 30.2 

4500 30.3 30.2 30.2 30.4 

5500 29.8 29.9 - - 

6500 30.2 30.2 - - 

 

Table A.3 Surface tension measurements of aqueous SA-9 solutions 

Concentration 

(PPM) 

Reading 

(mN/m) 

Repeat 

(mN/m) 

Reading 

(mN/m) 

Repeat 

(mN/m) 

0 68.3 68.2 71.4 71.4 

20 33.2 33.3 29.6 29.6 

40 32.2 31.6 29.7 29.7 

60 30.5 30 29.8 29.8 

80 30.8 30.3 29.6 29.6 

100 30.5 30.2 29.7 29.7 
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Table A.4 Natural evaporation mass loss measurements for aqueous SLS: Test 1 

SLS 

Concentration 

(PPM) 

After 

24 hrs 

(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 

(g) 

After 

120 hrs 

(g) 

0 2.305 4.488 6.130 8.097 9.792 

500 1.479 2.879 4.048 5.336 6.575 

1000 1.757 3.424 4.734 6.250 7.613 

1500 1.494 2.826 4.061 5.418 6.657 

2000 1.486 2.801 4.079 5.438 6.656 

2500 1.520 3.006 3.980 5.252 6.420 

 

Table A.4 Natural evaporation mass loss measurements for aqueous SLS: Test 2 

SLS 

Concentration 

(PPM) 

After 

24 hrs 

(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 

(g) 

After 

120 hrs 

(g) 

0 1.701 3.354 4.741 5.934 7.186 

500 1.397 2.764 3.925 5.082 6.225 

1000 1.436 2.812 3.957 5.077 6.232 

1500 1.384 2.724 3.856 4.978 6.138 

2000 1.367 2.635 3.714 4.793 5.899 

2500 1.374 2.728 4.212 5.482 6.810 

 

Table A.5 Natural evaporation mass loss measurements for aqueous SLS: Test 3 

SLS 

Concentration 

(PPM) 

After 

24 hrs 

(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 

(g) 

After 

120 hrs 

(g) 

0 1.350 2.703 3.789 4.927 6.147 

3000 1.212 2.424 3.396 4.484 5.604 

3500 1.419 2.722 3.734 4.847 6.083 

 

Table A.6 Natural evaporation mass loss measurements for aqueous SLS: Test 4 

SLS 

Concentration 

(PPM) 

After 

24 hrs 

(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 

(g) 

After 

120 hrs 

(g) 

0 1.643 3.016 4.367 5.642 6.952 

3000 1.238 2.242 3.487 4.560 5.599 

3500 1.186 2.221 3.408 4.448 5.505 
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Table A.7 Natural evaporation mass loss measurements for aqueous EH-14: Test 1 

EH-14 

Concentration 

(PPM) 

After 

24 hrs 
(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 
(g) 

After 120 

hrs 
(g) 

0  - 3.283 -  7.277 8.920 

500  - 3.595 - 6.215 7.600 

1500 -  3.084 -  5.707 7.049 

2500 -  3.050  - 5.590 6.849 

3500  - 3.175  - 5.811 7.079 

4500  - 3.254  - 5.899 7.213 

 

Table A.8 Natural evaporation mass loss measurements for aqueous EH-14: Test 2 

EH-14 

Concentration 

(PPM) 

After 

24 hrs 
(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 
(g) 

After 120 

hrs 
(g) 

0 1.697 3.023 4.328 5.743 7.064 

500 1.258 2.422 3.597 4.889 5.961 

1500 1.238 2.386 3.521 4.762 5.829 

2500 1.263 2.416 3.538 4.779 5.855 

3500 1.250 2.406 3.529 4.765 5.857 

4500 1.299 2.511 3.724 5.050 6.148 

 

Table A.9 Natural evaporation mass loss measurements for aqueous EH-14: Test 3 

EH-14 

Concentration 

(PPM) 

After 

24 hrs 
(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 
(g) 

After 120 

hrs 
(g) 

0 2.009 3.515 5.906 7.511 9.324 

500 1.727 3.313 4.905 6.568 8.227 

1500 1.516 2.873 4.361 5.836 7.165 

2500 1.596 3.028 4.531 6.223 7.725 

3500 1.533 2.931 4.445 5.975 7.459 

4500 1.487 2.878 4.355 5.897 7.167 

 

Table A.10 Natural evaporation mass loss measurements for aqueous EH-14: Test 4 

EH-14 

Concentration 

(PPM) 

After 

24 hrs 
(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 
(g) 

After 120 

hrs 
(g) 

0 1.565 2.927 4.010 5.659 6.935 

5500 1.325 2.771 3.807 4.859 5.989 

6500 1.379 2.691 3.804 5.057 6.159 
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Table A.11 Natural evaporation mass loss measurements for aqueous EH-14: Test 5 

EH-14 

Concentration 

(PPM) 

After 

24 hrs 
(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 
(g) 

After 120 

hrs 
(g) 

0 1.415 3.002 4.156 5.290 6.434 

5500 1.346 2.457 3.658 4.742 5.779 

6500 1.234 2.421 3.604 4.717 5.803 

 

Table A.12 Natural evaporation mass loss measurements for aqueous SA-9: Test 1 

SA-9 

Concentration 

(PPM) 

After 

24 hrs 
(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 
(g) 

After 120 

hrs 
(g) 

0 1.675 3.195 4.796 6.348 7.919 

20 1.301 2.550 3.851 5.323 6.534 

40 1.280 2.523 3.702 4.930 6.053 

60 1.269 2.516 3.707 4.942 6.108 

80 1.241 2.460 3.654 4.883 6.075 

100 1.238 2.453 3.609 4.785 5.877 

 

Table A.13 Natural evaporation mass loss measurements for aqueous SA-9: Test 2 

SA-9 

Concentration 

(PPM) 

After 

24 hrs 
(g) 

After 

48 hrs 

(g) 

After 

72 hrs 

(g) 

After 

96 hrs 
(g) 

After 120 

hrs 
(g) 

0 1.485 3.096 4.372 5.582 6.803 

20 1.265 2.487 3.630 4.785 5.922 

40 1.423 2.839 4.156 5.452 6.722 

60 1.357 2.668 3.932 5.196 6.448 

80 1.240 2.444 3.592 4.774 5.941 

100 1.294 2.583 4.025 5.377 6.810 
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Table A.14 Subcooled boiling evaporation measurements for aqueous SLS: Test 1 

SLS Concentration 

(PPM) 

Initial Mass* 

(g) 

Final Mass* 

(g) 

Mass Evaporated 

(g) 

0 152.038 143.087 8.951 

500 151.621 142.651 8.97 

1000 151.635 143.583 8.052 

1500 152.488 144.301 8.187 

2000 151.32 142.061 9.259 

2500 151.186 142.447 8.739 

*Includes beaker dry mass. 

Table A.15 Subcooled boiling evaporation measurements for aqueous EH-14: Test 1 

EH-14 Concentration 

(PPM) 

Initial Mass* 

(g) 

Final Mass* 

(g) 

Mass Evaporated 

(g) 

0 151.914 142.9 9.014 

500 151.649 142.1 9.549 

1500 151.741 141.36 10.381 

2500 152.257 141.428 10.829 

3500 151.661 143.609 8.052 

4500 151.447 143.455 7.992 

*Includes beaker dry mass. 

Table A.14 Subcooled boiling evaporation measurements for aqueous EH-14: Test 2 

EH-14 Concentration 

(PPM) 

Initial Mass* 

(g) 

Final Mass* 

(g) 

Mass Evaporated 

(g) 

0 151.900 142.17 9.730 

500 151.674 143.35 8.324 

1500 151.755 142.343 9.412 

2500 152.253 142.715 9.538 

3500 151.653 143.472 8.181 

4500 151.474 142.89 8.584 

*Includes beaker dry mass. 
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Table A.15 Subcooled boiling evaporation measurements for aqueous SA-9: Test 1 

SA-9 Concentration 

(PPM) 

Initial Mass* 

(g) 

Final Mass* 

(g) 

Mass Evaporated 

(g) 

0 154.447 146.210 8.237 

20 154.095 145.643 8.452 

40 152.973 144.182 8.791 

60 154.448 145.313 9.135 

80 154.639 146.087 8.552 

100 153.611 144.851 8.760 

*Includes beaker dry mass. 

Table A.15 Subcooled boiling evaporation measurements for aqueous SA-9: Test 2 

SA-9 Concentration 

(PPM) 

Initial Mass* 

(g) 

Final Mass* 

(g) 

Mass Evaporated 

(g) 

0 154.469 145.54 8.929 

20 154.183 145.635 8.548 

40 154.487 145.67 8.817 

60 154.554 146.404 8.150 

80 154.967 146.714 8.253 

100 154.058 145.405 8.653 

*Includes beaker dry mass. 
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Appendix B 

Subcooled Boiling Phenomena Visualization 

 Turbidity and violent vapor release in the subcooled boiling tests were 

photographed.  The EH-14 aqueous solutions became turbid as temperature approached 

its cloud point of 84 Celsius. The solution reversed the turbidity and became clear as the 

temperature cooled below 84 Celsius after completion of a boiling test. Figure B.1 shows 

an EH-14 aqueous solution above its cloud point. 

 

 

Figure B.1 Aqueous EH-14 1000 PPM solution at 98 Celsius. 

  

 Some violent vapor release was seen with SLS and SA-9 solutions.  The sudden 

eruption of vapor from the heated surface was caught with high speed photography as 

seen below for a 1000 PPM SLS solution in subcooled boiling.  Two tests had to be 

repeated due to these types of vapor formation pushing liquid out of the beaker due to the 

high speed and force with which the vapor nuclei left the heated surface. 
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Figure B.2 Violent vapor release sequence of subcooled boiling 1000 PPM SLS solution.  

 

 

Figure B.3 Violent vapor release sequence of subcooled boiling 1000 PPM SLS solution.  

  

 The cause of this eruption, seen originating in the far images on the left of Figures 

B.2 and B.3 may be flash point.  Flash point is the temperature at which the surfactant 

will ignite (Rosen, 2004).  The flash point may be reached because of boiling hysteresis 

which is a thermal overshoot on the surface. The SLS and SA-9 monolayers may cause 

this hysteresis behavior by hindering convection near the heated surface.  
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Appendix C 

Evaporation Rate Calculations 

Natural Evaporation Calculations 

 Evaporation rate of water into air from a 100 mL beaker is calculated for three 

scenarios: still water and air at the interface with the air and water at the same 

temperature, convection of air over the water surface due to buoyancy caused by a 

temperature difference between the air and water, and forced convection over the water 

surface.  Thermodynamic values for water vapor and air are taken from Cengel & Ghajar 

(2011) Table A-9: Properties of saturated water and Table A-15: Properties of air at 1 

atm. The following conditions are used: 

T∞ = 20oC, equilibrium room temperature as measured 

Relative humidity = 50%, standard relative humidity in air conditioned room 

d = 0.05m, diameter of the beaker as measured 

A = 0.00196m2, from diameter of the beaker 

P = 1 atmosphere, reasonable assumption for laboratory 

Cvapor_at_surface = 0.0173 kg/m3, density of saturated water vapor at 20oC 

Cwater_vapor_∞ = 0.00865 g/m3, density of water at 20oC and 50% relative humidity 

 

Still water and air at interface: Diffusion 

 Using Equation 1-10, the mass diffusion coefficient is: 

𝐷𝐻2𝑂−𝐴𝑖𝑟 = (1.87 ∗ 10−10) ∗
𝑇2.072

𝑃
 (𝑚2 𝑠)⁄  

𝐷𝐻2𝑂−𝐴𝑖𝑟 = (1.87 ∗ 10−10) ∗
(293 𝐾)2.072

(1 𝑎𝑡𝑚)
 (𝑚2 𝑠)⁄  

𝐷𝐻2𝑂−𝐴𝑖𝑟 = 0.000024 (𝑚2 𝑠)⁄  
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The concentration gradient is assumed to be linear and dx is assumed to be 0.1 m. Then 

plugging into Equation 1-9: 

𝑚̇𝑑𝑖𝑓𝑓 = 𝐷𝐻2𝑂−𝐴𝑖𝑟 ∗ 𝐴 ∗
𝑑𝐶𝐴

𝑑𝑥
 

𝑚̇𝑑𝑖𝑓𝑓 = 0.000024 (
𝑚2

𝑠
) ∗ 0.00196(𝑚2) ∗

0.0173 (
𝑘𝑔
𝑚3) − 0.00865 (

𝑘𝑔
𝑚3)

0.1 (𝑚)
 

𝑚̇𝑑𝑖𝑓𝑓 = 4.1 ∗ 10−9 (
𝑘𝑔

𝑠
) = 𝟎. 𝟎𝟏𝟓 (

𝒈

𝒉𝒓
) 

 

 

Thus, the expected evaporation rate for distilled water (without surfactant) if both the air 

and water are still at the interface is 0.015 g/hr. 

 

Air movement due to buoyancy: Natural convective evaporation 

Convection due to buoyancy will only occur if the water temperature is above the 

air temperature (Cengel & Ghajar, 2011).  For the current study, the room temperature 

was measured at 20oC. Thus, a water temperature (Ts) of 27oC (300 K) was chosen as a 

practical maximum temperature the water may reach if the laboratory doors were opened 

to the Florida climate.  The T∞ was chosen to be a minimum of 20oC (293 K) as the 

temperature the room would return to after doors were closed. Starting with Equation 1-

15: 

𝑅𝑎𝐿 =
𝑔𝛽(𝑇𝑠 − 𝑇∞)𝐿𝑐

3

𝜈𝛼
 

 

Where, g = 9.81 m/s2, Tf = (Ts+T∞)/2 = (300+293)/2 = 297 K, β = 1/Tf = 0.0034 (1/K), Lc 

= d/4 = 0.0125 (m), ν = 0.000015 (m2/s), and α = 0.000021 (m2/s).  

𝑅𝑎𝐿 =
9.81 ∗ 0.0034 ∗ (300 − 293) ∗ 0.01253

0.000015 ∗ 0.000021
= 1450 
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Then, for k = 0.025 (W/m*K) and assuming n = 0.25 and C =0.54 for laminar natural 

convection over a horizontal surface (Cengel & Ghajar, 528), the natural convection heat 

transfer coefficient is found using Equation 1-14: 

ℎℎ𝑒𝑎𝑡,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑘𝐶𝑅𝑎𝐿

𝑛

𝐿𝐶
 

ℎℎ𝑒𝑎𝑡,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
0.025 (

𝑊
𝑚 ∗ 𝐾) ∗ 0.54 ∗ 14500.25

0.0125 (𝑚)
 

ℎℎ𝑒𝑎𝑡,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 6.7 (
𝑊

𝑚2 ∗ 𝐾
) 

 

For air at 20oC, cp = 1007 (J/kg) and ρ = 1.204 (kg/m3).  Then the mass transfer 

coefficient is found with Equation 1-12: 

ℎ𝑚𝑎𝑠𝑠 =
ℎℎ𝑒𝑎𝑡

𝜌𝑐𝑝
 

ℎ𝑚𝑎𝑠𝑠 =
6.7 (

𝑊
𝑚2 ∗ 𝐾

)

1.204 (
𝑘𝑔
𝑚3) ∗ 1007 (

𝐽
𝑘𝑔 ∗ 𝐾

)
 

ℎ𝑚𝑎𝑠𝑠 = 0.0055 (
𝑚

𝑠
) 

The density at the surface is the that of 100% water vapor, ρA,s = 0.0173 (kg/m3).  The 

density of water vapor in air at relative humidity of 50% is ρA,∞ = 0.009 (kg/m3) and As = 

0.00196 (m2). Then, Equation 1-13 yields 

𝑚̇𝑐𝑜𝑛𝑣 = ℎ𝑚𝑎𝑠𝑠𝐴𝑠(𝜌𝐴,𝑠 − 𝜌𝐴,∞)     (
𝑘𝑔

𝑠
) 

𝑚̇𝑛𝑎𝑡𝑢𝑟𝑎𝑙_𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 0.0055 (
𝑚

𝑠
) ∗ 0.00196 (𝑚2) ∗ (0.0173 (

𝑘𝑔

𝑚3
) − 0.00865 (

𝑘𝑔

𝑚3
)) 

𝑚̇𝑛𝑎𝑡𝑢𝑟𝑎𝑙_𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 9.3 ∗ 10−8 (
𝑘𝑔

𝑠
) 

𝑚̇𝑛𝑎𝑡𝑢𝑟𝑎𝑙_𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 𝟎. 𝟑𝟒 (
𝒈

𝒉𝒓
) 
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Air movement due to currents:  Forced convective evaporation 

For forced convection from the air conditioning currents in the room, the 

temperature of the air and water was assumed to both be 20oC.  The velocity of the air 

generated by air conditioning over the beakers located in the corner of the laboratory was 

given a conservative estimate of 1 m/s. For T=20oC, Lc = d/4 = 0.0125 (m), ν = 0.000015 

(m2/s), and α = 0.000021 (m2/s). Then, 

𝑅𝑒𝐿 =
𝐿𝑐 ∗ 𝑉

𝜈
=

0.0125 (𝑚) ∗ 1 (
𝑚
𝑠

)

0.000015 (
𝑚2

𝑠 )
= 833 

𝑃𝑟 =
𝜈

𝛼
=

0.000015 (
𝑚2

𝑠 )

0.000021 (
𝑚2

𝑠 )
= 0.71 

Plugging ReL and Pr into Equation 1-16 

ℎℎ𝑒𝑎𝑡,𝑓𝑜𝑟𝑐𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 0.664𝑅𝑒𝐿
0.5𝑃𝑟

1
3

𝑘

𝐿𝑐
 

ℎℎ𝑒𝑎𝑡,𝑓𝑜𝑟𝑐𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 0.664 ∗ 8330.5 ∗ 0.71
1
3 ∗

0.025 (
𝑊

𝑚 ∗ 𝐾)

0.0125 (𝑚)
 

ℎℎ𝑒𝑎𝑡,𝑓𝑜𝑟𝑐𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 34.2 (
𝑊

𝑚2 ∗ 𝐾
) 

Using the Chilton-Colburn Analogy (Equation 1-12): 

ℎ𝑚𝑎𝑠𝑠 =
ℎℎ𝑒𝑎𝑡

𝜌𝑐𝑝
     (

𝑚

𝑠
) 

ℎ𝑚𝑎𝑠𝑠,𝑓𝑜𝑟𝑐𝑒𝑑 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
34.2 (

𝑊
𝑚2 ∗ 𝐾

)

1.204 (
𝑘𝑔
𝑚3) ∗ 1007 (

𝐽
𝑘𝑔 ∗ 𝐾

)
 

 

ℎ𝑚𝑎𝑠𝑠 = 0.028 (
𝑚

𝑠
) 

Then Equation 1-13 yields, 
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𝑚̇𝑐𝑜𝑛𝑣 = ℎ𝑚𝑎𝑠𝑠𝐴𝑠(𝜌𝐴,𝑠 − 𝜌𝐴,∞)  (
𝑘𝑔

𝑠
) 

𝑚̇𝑓𝑜𝑟𝑐𝑒𝑑_𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 0.028 (
𝑚

𝑠
) ∗ 0.00196(𝑚2) ∗ (0.0173 (

𝑘𝑔

𝑚3
) − 0.00865 (

𝑘𝑔

𝑚3
)) 

𝑚̇𝑓𝑜𝑟𝑐𝑒𝑑_𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 4.7 ∗ 10−7 (
𝑘𝑔

𝑠
) = 1.7 (

𝑔

ℎ𝑟
) 

Summary 

The values calculated for mass flux by diffusion, buoyancy (natural convection), 

or air currents (forced convection) are respectively: 0.015 g/hr, 0.34 g/hr, and 1.7 g/hr.  

The effects from forced and natural convection on the current study should be lowered 

significantly but not eliminated by the muslin gauze covering.  Thus, the actual mass flux 

from the solutions should be higher than the 0.015 g/hr and significantly lower than 0.34 

g/hr.  

 

Subcooled Boiling Evaporation Calculations 

      The heat flux and evaporation rate for boiling distilled water without surfactants 

is calculated here as an estimate for the current study subcooled boiling experiments.  

Thermodynamic values for water vapor and air are taken from Cengel & Ghajar (2011) 

Table A-9: Properties of saturated water. For pure water at saturation temperature: Tsat = 

100 C, σ = 0.0589 N/m, ρl = 957.9 kg/m3, ρv = 0.6 kg/m3, Prl = 1.75, hfg = 2257000 J/kg, 

µl = 0.000282 kg/m*s, and cpl = 4217 J/kg*K.  For the current study with the hotplate set 

at its highest setting and glass beaker as the heated surface, the Ts = 116.91C.  The Cs,f 
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and n are assumed to be 0.013 and 1 respectively (Cengel & Ghajar, 2011). Plugging 

these values into Equation 1-20: 

𝑞̇𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑒 = 0.282 ∗ 2257 ∗ [
9.81 ∗ (957.9 − 0.6)

0.0589
]

1
2

∗ [
4217 ∗ (16.91)

0.013 ∗ 2257000 ∗ 1.751
]

3

 

Yields, 

𝑞̇𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑒 = 6.8 ∗ 105  𝑊 𝑚2⁄  

The diameter of the glass beaker is 0.05 m.  Thus, A = πd2/4 = 0.00196 m2 and using 

Equation 1-21: 

𝑚̇𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 =  
0.00196 ∗ 6.8 ∗ 105

2257000
= 5.9 ∗ 10−4

𝑘𝑔

𝑠
= 35.5 

𝑔

𝑚𝑖𝑛
 

This value is a general estimate of the evaporation rate because this study deals with 

subcooled boiling.  
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