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ABSTRACT 

Email is the most common and comparatively the most efficient means of exchanging information in 

today's world. However, given the widespread use of emails in all sectors, they have been the target of 

spammers since the beginning. Filtering spam emails has now led to critical actions such as forensic 

activities based on mining spam email. The data mine for spam emails at the University of Alabama at 

Birmingham is considered to be one of the most prominent resources for mining and identifying spam 

sources. It is a widely researched repository used by researchers from different global organizations. 

The usual process of mining the spam data involves going through every email in the data mine and 

clustering them based on their different attributes. However, given the size of the data mine, it takes an 

exceptionally long time to execute the clustering mechanism each time. In this paper, we have 

illustrated sampling as an efficient tool for data reduction, while preserving the information within the 

clusters, which would thus allow the spam forensic experts to quickly and effectively identify the ‘hot 

zone’ from the spam campaigns. We have provided detailed comparative analysis of the quality of the 

clusters after sampling, the overall distribution of clusters on the spam data, and timing measurements 

for our sampling approach. Additionally, we present different strategies which allowed us to optimize 

the sampling process using data-preprocessing and using the database engine's computational 

resources, and thus improving the performance of the clustering process. 

Keywords: Clustering, Data mining, Monte-Carlo Sampler, Sampling, Spam, Step Sequence Sampler, 

Stepping Random Sampler, Hot Zone 

1. INTRODUCTION 

Advancement of the IT infrastructure significantly affects the way people communicate. Social 

interaction and information exchange are highly dependent on emails and other such forms of media. 

At the same time, such medium of communication has been the target of misuse since the beginning. 

Thus, the negative motives from spammers have been a serious issue, which have led to phishing, 

viruses, malware bots, and other such attacks. 

Spam emails are mostly generated by malware bots on different computers across the Internet. 

However, malwares installed by the same spammer exhibit a specific pattern in the spam emails 

(Nhung and Phuong 2007; Ying et al., 2010). The content of the spam is usually generated using a 
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common template. Therefore, the identification of the pattern in these spam emails is significantly 

important to IT forensic experts. The identified pattern can then help identify a specific spammer and 

follow through with proper investigations (Dagon et al., 2007; Ono et al., 2007). Mining spam emails 

helps discover and correlate useful patterns. Most of the mining techniques are text-based, given that 

such spam emails are mostly text-oriented. Once the emails are scrutinized for such patterns, different 

clustering techniques and algorithms can be applied over the email data to group the spams based on 

some similarity criteria. The speed of producing faster clusters from large datasets depends on efficient 

algorithms. However, in case of very large datasets, it might be required to reduce the size of the data 

prior to the clustering process. 

In this paper, we focus on the evaluation of clustering performed on sampled spam emails. The data 

used is from the Spam Data Mine at the University of Alabama at Birmingham (UAB) (UAB-CIS, 

2013). The UAB Spam Data Mine is a large and widely researched repository for spam emails, and is 

used as a helpful resource by researchers from different global organizations. Given the huge number 

of spam emails collected every day, the clustering of the spams take a long time. However, in this 

work, instead of focusing on algorithms to optimize the clustering process, we considered sampling 

the dataset prior to fetching it to clustering algorithms. Once we are able to prove sampling as an 

efficient and applicable solution for data reduction, we believe appropriate clustering algorithms can 

be applied accordingly. We have adopted the previous work done by Chun Wei et al., to create the 

clusters based on patterns in the subject header of the spam emails (Wei et al., 2009). 

In this work, we have utilized four simple methods of sampling that we have applied on the spam data 

from the data mine. As a result, we aim in making the process of clustering more efficient and less 

time consuming. Furthermore, we provide the results to illustrate that the sampled data from the UAB 

Spam Data Mine preserves the information contained for forming clusters and highlight the ‘hot zone’.  

In this context, we refer to ‘hot zone’ as the most prominent clusters with respect to spamming 

activities. We have presented the results in order to support our claim of using sampled spam data to 

allow investigators a faster and better opportunity to identify the ‘hot zone’ in spam clusters. We 

illustrated the resulting clusters from the sampled data, and performed extensive comparative analysis 

with the clusters formed using the whole data set.  Our evaluation includes an analysis of the data 

distribution on the spam data, and also the time measurements for the different operations in the 

algorithm. The paper also includes a different approach to optimize the sampling process, utilizing the 

efficiency of the database engine, which allowed us to enhance the resulting performance of the 

required time. 

Contributions: The contributions in this paper are as follows: 

 We evaluate the sampling methods on actual spam emails from the UAB Spam Data Mine. The 

validation and effectiveness of sampling is based on the following: (a) quality of the clusters 

produced, (b) the data cover/distribution of spam emails within the data mine, and (c) the timing 

performance for the clustering operation. All the sampling models have been validated for varying 

sampling rates against the clusters created using the complete data set. Our results show that we 

are successfully able to highlight the ‘hot zone’ from the spam emails with a significant 

improvement in timing performance. 

 We present techniques and strategies for the most efficient way to implement the sampling process 

and retrieve the huge number of spam emails from the data mine, which are then used to execute 

the clustering algorithm. The experimental measurements using our optimization strategies 

illustrate that there are further improvements in performance, compared to naïve SQL query based 

retrieval of sampled spam records from the UAB Spam Data Mine. 

The rest of the paper is organized as follows. The motivation for the work is presented in Section 2. 

Section 3 describes the organization of the UAB Spam Data Mine, including the clustering algorithm 

from the work of Wei et al. (2009). The different sampling models are described in Section 4. The 
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results and corresponding analysis are presented in Section 5. Section 6 includes the optimization 

strategies to improve the efficiency of the sampling process. Finally the related works and conclusion 

are presented in Section 7 and Section 8 respectively. 

2. RESEARCH MOTIVATION 

The increasing number of Internet users has attracted criminals to the field of online crimes. eCrimes 

have been significantly on the rise since the last few years. This section illustrates the issue of eCrimes 

on the Internet, and the research motivation behind the work on investigating spam clusters, and the 

importance of identifying the hot zone. 

2.1 eCrimes on the Internet 

Information security and economics have become interdependent in recent times. Corporations employ 

information security specialists, as well as economists and lawyers to deal with the rising concern of 

eCrimes. The network of criminal activities has become more organized with structured online black 

markets, where the criminals trade insider information. Data and information, such as credit card and 

PIN codes, are sold to online anonymous brokers in these underground eCrime markets. According to 

Moore et al. (2009), credit card information are sold at advertised prices of $0.40 to $20.00 per card, 

and bank account credentials at $10 to $100 per bank account. Social security numbers and other 

personal details are sold for $1 to $15 per person, while online auction credentials fetches around $1 to 

$8 per identity. Subsequently, the brokers sell the information to specific expert hackers, who perform 

the final act of money laundering. 

The information collected in these online criminal activities incorporate specialized approaches. 

Usually, Internet users are driven to false websites with the help of advertising emails. These bulk 

emails are generally classified as spams, which are sent by spammers, using malicious software 

running on infected machines. The infected computers are used by the spammers to record keystrokes 

and send further spam emails.  

The monetizing channel for spam emails includes multiple organizations. It is illustrated by 

Levchenko et al. (2011), the spam value chain has multiple links between the money handling 

authorities and the spammers. Furthermore, according to an approximate consensus, 5% of online 

devices on the Internet are susceptible to being infected with malware. At least 10 million personal 

computers have been assumed to be infected with malware in 2008, the number for which should have 

had increased significantly over the last few years (Moore et al., 2009). Thus, these figures easily 

indicate that the network for criminal activities have outgrown the authorities dealing with eCrimes.  

2.2 Spam Investigation 

Spam emails are perceived as being analogous to junk mails. These emails are generally advertising 

emails, or with other forms of undesired content. However, spam emails are not as innocent as junk 

mails. They are sent to a large number of recipients, and usually have hidden motives along with the 

content of the email. They are considered as the primary channel for attackers to deploy Trojans, 

worms, viruses, spyware, and botnets on other machines across the Internet. 

The email body of spams has hidden scripts, cookies, and other attached content to attract the recipient 

of the email. Once the user opens the email, the scripts may use the current information from the 

browser to expose the identity of the user to the attacker. This is the easiest and a very well-known 

approach, but still the most common scenario where users are victims of identity thefts on the Internet. 

This information can be used to remotely access the user's machine and install unwanted malwares as 

botnets. The malware can then operate from the infected machine using the identity of the user, and 

send further spam emails or perform other unwanted tasks. 
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When an attacker sends a spam, he generally uses a template to generate the content of the email. The 

format of the content is thus prevalent in all the spam emails those are being sent. However, the 

spammers replace some words or phrases to introduce variation and hence bypass the spam filters. 

Thus, it becomes a non-trivial task for such filtering services to detect all the spam. Data mining from 

spam emails is useful to detect and investigate these patterns. The spam emails are scrutinized and 

parsed into different text-based segments. Each email comprises of certain attributes, such as the 

sender email, subject header, and the mail body. These individual attributes can be investigated to 

match other spam emails, and thus grouping similar spam emails. Once a pattern is observed, they can 

be clustered and classified as a specific spam campaign (Caruana and Li 2008; Kyriakopoulou and 

Kalamboukis 2008; Sasaki and Shinnou 2005; UAB-CIS 2013; Wei et al., 2009; Ying et al., 2010). 

The individual clusters obtained from grouping spam emails allow the eCrime investigators to identify 

a particular spammer. The clustered spams are examined to classify the spammer and obtain further 

track-down information. eCrime investigators use these collected data to hunt down online criminals 

and take appropriate actions against the involved personnel. 

The Spam Data Mine at UAB collects approximately 1 million spam emails each day (UAB-CIS, 

2013). The spam emails can then be used to find the patterns and perform clustering on the collected 

data. The identified clusters are assumed to be individual spam campaigns by an attacker. The 

extracted patterns from the spam emails are dependent on the template used by the spammer to 

generate the spam. However, it should also be noted that an attacker generally uses a given spam 

template for a few days, after which he changes the format of the emails. This constant change in the 

format of the spams makes it difficult to identify a particular attacker. As a result, spam emails 

collected over a small duration of time exhibits the specific pattern, after which the extracted cluster 

information does not apply any more.  

From the above scenario, we have observed the following requirements for investigating eCrimes 

using spam clusters. First, it is important that the identification of the spam campaigns should be done 

as early as possible. The multitude of financial loss resulting from eCrimes requires the investigation 

to proceed quickly. The sooner a particular spam campaign is taken down, the lesser is the financial 

loss. A quick action against a spam campaign would also mean that lesser people will fall as victims to 

the campaign on the Internet. However, given the huge amount of data, it requires a lot of time to 

execute the clustering operation. Thus, the inherent requirement to act quickly against such eCrimes is 

not fulfilled with the current approaches for clustering spam emails. Moreover, the quickly changing 

pattern of templates by the spammers makes it more difficult to extract the information from the spams 

and act on it accordingly. 

Second, the ‘hot zone’ of the spam campaigns are the ones about which conclusive remarks can be 

made about an attacker. Here, we refer ‘hot zone’ as the group of largest clusters and the most 

prominent spam campaigns on the Internet. The largest spam clusters imply a large number of similar 

spam emails. As a result, the larger clusters incorporate more information for the eCrime investigators 

and law enforcement authorities to study the criminals. It is more important to identify the largest 

clusters rather than obtaining an extensive number of clusters for the huge amount of spam from the 

data mine. It might not be the same scenario when it comes to user privacy protection and spam filters 

on web browsers and email clients, where more fine-grained spam filtering is required to protect the 

users on the Internet. Therefore, when it comes to criminal investigations and law enforcement, the 

prominent clusters are the ones of interest, while the smaller ones can be classified as outliers. 

3. CLUSTERING SPAM DATA 

For our work in this paper, we have adopted an existing clustering algorithm proposed by Wei (2010) 

and Wei et al. (2009). The algorithm has been executed using data from the UAB Spam Data Mine 

(UAB-CIS, 2013). In this section, we discuss the background and the description of the data mine, 

including the clustering technique proposed by Chun Wei et al. (2009, 2010) on the spam data. 
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3.1 Background 

The initial research issue for knowledge extraction or data mining is classifying data and creating 

representations of the feature space. Clustering is most commonly used for feature compression and 

extracting information (Kyriakopoulou and Kalamboukis, 2008). Specific features are compared and 

clustered into groups which represent a commonality among all of its data items. The task of 

measuring the similarity of data items can be performed in different ways. The most common methods 

for measuring similarity/dissimilarity are Jaccard and Levenshtein coefficients (Jaccard 1901; 

Levenshtein 1966). The distances can then be used in other clustering algorithms to create and 

evaluate clusters (Caruana and Li 2008; Kanungo et al., 2002; Hartigan and Wong 1979; Wei 2010; 

Ying et al., 2010). The clustering algorithms thus use the similarity or dissimilarity of individual data 

items based on the feature space, and group them into a common cluster based on preset threshold 

configurations. 

3.2 The Spam Data Mine 

We utilized the UAB Spam Data Mine (UAB-CIS, 2013) for the purpose of our research evaluation. 

The UAB Spam Data Mine is a research project under The Center for Information Assurance and Joint 

Forensics Research (CIS-JFR)
1
. The Center generates information about currently on-going campaigns 

by spammers. It archives spam emails received from numerous sources and honey-pots, and collects 

approximately 1 million spam emails each day. 

 

                                                      
1
 The Center (CIS-JFR), http://thecenter.uab.edu 

http://thecenter.uab.edu/
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The collection of spam emails from the sources is collected in a batch-wise operation. General users 

on the Internet, upon receiving a (suspected) spam email, marks the email as spam, and forwards it to 

the honey-pot email address for archiving. Additionally, numerous other honey-pots are placed at 

different points in the network which dedicatedly receive and archive spam emails. The archived spam 

emails are collected batch-wise at specific time intervals during the day. Thus, due to the manner these 

spam emails are stored and collected in the data mine, the records do not display a shuffled 

organization in their sequence. 

Subsequently, the spam data mine stores the data regarding spam emails parsed into different 

attributes. The current database design holds the following attributes for each spam email: message_id, 

subject, sender_name, sender_username, sender_domain, sender_ip, receiving_date, time_stamp, 

word_count. 

3.3 Algorithm for Clustering 

The method employed by Wei et al. (2009) for clustering the spam data is specific to the data from the 

UAB Spam Data Mine (UAB-CIS, 2013). In this section, we present the clustering algorithm designed 

and implemented by Wei et al. (2009) and also included as a part of the work in Wei (2010). For our 

purpose, we chose the rather ‘fast-n-dirty’ version of the clustering algorithm by Wei, which is shown 

in Algorithm 1. The clustering algorithm matched spam emails on exact similarity of sender email 

addresses. They are matched using the MD5 hash of the sender's email. Similar items were clustered 

into a common group. From within the clusters, some of them are set aside using a bounded threshold, 

which was set at a minimum of (mean + (4*standard deviation)).  

                                                              
Figure 1 Sampling Methods: Step Sequence Sampler (SSS), Stepping Random Sampler (SRS),  

and Monte Carlo Sampler (MCS) 

Next, the process was repeated for the word_count of the email body for all the small clusters, and 

further clusters were created. As a result, some of the clusters had both the sender_name and the 

word_count in the feature space, while some only had the word_count criteria. Finally, a Levenstein 

index is calculated to create a common pattern for the subject header for each of the clusters. The 

output patterns of subject headers for the spam emails are produced in the form ‘__ similar __ word’. 

Here, the blank spaces are the words which could be substituted for other words. The blank spaces 

together with the words ‘similar’ and ‘word’ define the basic template of the subject headers for each 

of the clusters of similar spam emails. 

4. SPAM DATA SAMPLING 

Sampling is a well-known technique for data reduction, given that it preserves the information from 

the original data set. In this section, we present our approaches to create the sampled data. We have 

presented four different schemes for creating the sampled data, which have been discussed in the 

following sections. For each of the models, we invoke the sampling method with the begin index, end 

index, and sampling rate parameters. 
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4.1 Simple Random Sampler 

The simple random sampler is implemented using the Java Random class
2
. The Java Random class 

initializes using a 48-bit long random seed. Subsequently, it is modified using a linear congruential 

formula to generate a stream of pseudo-random numbers (Knuth, 2006). Alternatively, Mersenne 

Twister is another method for polynomial calculations over two-element fields to generate uniform 

pseudo-random numbers (Matsumoto and Nishimura 1998). However, our random generator uses the 

linear congruential formula due to the simplicity of the model, and serves the purpose of our work. 

The simple random sampler takes in a range of values within a begin/end index for message_ids. 

Subsequently, it generates the random indexes within the given range, according to the desired 

sampling rate. However, the generated random indexes may or may not be evenly distributed across 

the range of values for the message_ids. 

4.2 Step Sequence Sampler 

The step sequence sampler is another method of sampling which we utilized for our spam data. As 

shown in Figure 1a, given the sampling rate r, we initially calculated the step frequency f. The range 

of values for the message_ids is then divided into f-segments, and the boundary index values are 

returned as the sampled indexes. As a result, the obtained sampled data is evenly distributed, and 

sequentially selected from the data set. 

 

4.3 Stepping Random Sampler 

The stepping random sampler is an extension of the step sequence sampler, as shown in Figure 1b. As 

before, we calculated the step frequency f for the given range of message_ids based on the sampling 

rate. After that, we utilized the Java Random class to randomly select an index from within each block. 

Thus, the sampled index values for the message_ids are evenly distributed with the frequency f, and 

randomized within each blocked segment, thus ensuring unbiased results. 

4.4 Monte Carlo Sampler 

Monte Carlo methods refer to computational algorithms which are based on repeated random sampling 

to obtain a desired goal. It is a process of calculating heuristic probability for a given scenario which is 

defined by the specific validation of a success or fail event (Hammersley et al., 1965). In our case, we 

designed a simple Monte Carlo sampler to probabilistically generate some random indexes for 

choosing the sampled message_ids, as illustrated in Figure 1c, and presented in Algorithm 2.  

In the Monte Carlo sampler, for each index i, where i is between begin and end, we ‘roll’ between 0 -

100. If the random ‘roll’ is less than or equal to the sampling rate r, we select the specific index i. 

Thus, the sampled indexes are sequentially selected or discarded from within the range of begin and 

end indexes for message_ids. However, the number of index values that we receive from the Monte 

                                                      
2
 Java Random class, http://docs.oracle.com/javase/7/docs/api/java/util/Random.html 

http://docs.oracle.com/javase/7/docs/api/java/util/Random.html
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Carlo sampler is not exact, but probabilistically close to match the sampling rate r. The success or fail 

events in Monte Carlo models are usually executed for a large number of events. Therefore, according 

to the model, the larger the range of message_ids, the closer we get to the desired value for the number 

of sampled items (Hammersley et al., 1965). 

4.5 Comparison of Sampling Methods 

Table 1 Comparison of properties for the Random Sampler (RS), Step Sequence Sampler (SSS), Stepping 

Random Sampler (SRS), and the Monte Carlo Sampler (MCS) 

The properties of the different sampling methods are summarized in Table 1. In this context, we define 

the following properties for the different sampling methods. 

i. Randomness in the sampling process implies the probability of a particular index being chosen 

in the sample. 

ii. Sequential sampling refers to the criteria of the chosen indexes being in order once the 

sampling process has completed. 

iii. Repetition in sampling means the possibility of an index being chosen more than once. 

iv. Data cover represents the feature of the chosen sampled indexes being evenly distributed over 

the range of values from the original data set. 

v. Number of samples refers to the number of indexes chosen, given the total number of indexes 

n, and the sampling rate r. 

As shown in Table 1, the simple random sampler provides good randomness, as it depends on a simple 

linear congruential formula to generate the pseudo-random number stream. However, it is not 

sequential, as the chosen index samples are generated at random, and does not preserve order. 

Additionally, the simple random sampler does not guarantee uniqueness, as the same number can be 

generated more than once. Therefore, the already mentioned properties can be utilized to state that the 

simple random sampler does not provide a guaranteed data cover either. The step sequence sampler 

does not provide any randomness and is purely sequential. However, we are able to ensure no 

repetition and full data cover. Using the stepping random sampler allows mediocre randomness, but 

contains sequence, ensures uniqueness, and also provides a full data cover. Finally, the Monte Carlo 

method provides good randomness and ensures sequentiality with no repetition. However, it has a 

probabilistic sample size of approximately (n*r), where n is the data size and r is the sampling rate. 

The probability of the sample size will get closer to (n*r) with a greater range of values for the 

indexes. 

5. RESULTS AND ANALYSIS 

In this section, we present the results obtained from the different sampling methods presented 

previously. The sampled data were mined and used to create clusters, based on the algorithm of Wei et 

al. (2010) (Ying et al., 2010). We also provide an analysis of the results and comparison of each of the 

sampling methods against clustering performed on the full data set. The results presented have been 

generated using two days' spam data. As mentioned earlier, the data mine collects a huge number of 

spam emails, and there were a total of approximately 1.8 million spam emails in these two days. 

 

 RS SSS SRS MCS 

Randomness good bad med good 

Sequential no yes yes yes 

Repetition maybe no no no 

Data cover maybe yes yes maybe 

Number of samples 

 

n*r n*r n*r ≈ n*r 

 



ADFSL Conference on Digital Forensics, Security and Law, 2014 

 

251 

5.1 Clustering Quality 

Initially, we performed the clustering on the whole spam data for a range of two days. With the 

clusters formed, we selected the ten largest clusters and analyzed their statistics. We recorded the 

number of data points, pattern of the subject within the cluster, and the percentage of data that each of 

the clusters has with respect to the data size. We refer to clustering factor as the value between 0 and 

1, which represents the size of the cluster in terms of the size of the data. The rightmost bar on Figure 

2 shows the distribution of the clusters which were created from complete data set for the given range 

of days. It can be seen that the ten largest clusters actually represent almost 25% of the whole data set, 

with three largest clusters representing approximately 9%, 8%, and 3% respectively. 

Next, we executed the clustering algorithm on sampled data with each of our samplers. The sampling 

was performed at varying rates of 1%, 2%, 3%, 5%, and 8% respectively. For each of the cases, we 

analyzed the clusters created with the sampled data. To visualize the clustering quality with better 

understanding, we normalized each of the sampled clusters using the size of the sample to calculate the 

clustering factor for each. Using a normalized view for the sampled clusters thus makes it easier to 

evaluate the quality of the clustering with respect to the clusters formed using the full data set. The 

clustering factor for each of the sampling methods at varying sampling rates is illustrated in Figure 2. 

From the results, it can be seen that random sampling, step sequence, and stepping random create the 

clusters with a similar clustering factor as that of the full data set. Thus, the more similar the clustering 

factors and distributions are, the better they can be claimed to have performed. It should also be noted 

that all the three sampling methods perform in a stable manner with their varying sampling rates. 

Additionally, we verified that each of the ten largest clusters from the sampled data actually coincides 

with at least eight of the largest clusters from the full dataset. However, they might sometimes be 

slightly out of order in the sampled cluster sizes. Moreover, the top three to five clusters as shown in 

Figure 2 is always the same clusters in all the cases, which verifies that the sampling effectively allows 

us to identify the ‘hot zone’ of spam campaigns. Table 2 describes the patterns of subject headers for 

each of the top ten clusters created in order of their sizes. It can be seen that most of the clusters 

created from the 2% step sequence sampling are exactly in the same order if compared to the clusters 

created using the full data set. However, there are minor interchanges in the position of the clusters in 

their ordering. Nonetheless, they are not the top clusters, and are usually of similar sizes and hence 

tend to swap places with minor changes in the order. 

Table 2 Subject Header Patterns of Ten Largest Clusters Compared using Full Dataset Vs. 2% Sampled Data 

 

However, with the Monte Carlo sampler, it can be seen that the sampled data had some skewness 

towards the clustering data points. This can be claimed as both positive and negative. Given that the 

results tend to have a greater clustering factor for the larger clusters and represent almost 45% of the 

sampled data, it can be argued that Monte Carlo sampling makes it easier to focus on the largest 

No. Clustering on full data  set Clustering  using 2% Step Sequence 

1 Canadian Pharmacy: BUY NOW VIAGRA & CIALIS ! Canadian Pharmacy: BUY NOW VIAGRA & CIALIS ! 

2 New prices New prices 

3 Lowest prices Lowest prices 

4    Vigara Now       Vigara    =    

5    Vigara       Vigara Now    

6 Corporate eFax message -   pages Corporate eFax message -   pages 

7    Vigara   SALE! United Parcel Service notification    

8 United Parcel Service notification       Vigara    

9 Vigara Now       Vigara =    

10    Vigara   Off! 
Purchase your Levitra from one of our drugstores today. 

Levitra/Viagr/Cialis from $1.25    
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clusters. However, they tend to distort the actual distribution of clusters and misrepresent the 

clustering factor for each of the clusters compared to the full data. An interesting convergence towards 

the desired clustering factor distribution can be seen as the sampling rate is increased. 

Therefore, from the clusters created and the clustering factors, we are able to infer the effect of the 

different sampling methods. It can be seen that random, step sequence, and stepping random sampling 

tends to preserve the distribution of the original data set of spams. Therefore, we can say that the 

sampling models for the above three are representative sampling. On the other hand, Monte Carlo 

seems to perform well in highlighting larger clusters and removing noise from smaller clusters. Hence, 

we call it noise suppressive sampling. Given the context and the requirement, each of the sampling 

methods can be utilized accordingly. 

5.2 Data Cover 

We utilized the clusters created from our experiments to analyze the distribution of the data in the 

spam data mine. We are interested to visualize how the spam emails have been archived in the data 

mine, with respect to the cluster each spam email belongs to. In this context, data cover refers to the 

distribution of the spam emails in the data set. 

Figure 3 illustrates the graph to help visualize the distribution for the complete dataset. The x-axis 

corresponds to the total number of message_ids for the given date. The y-axis specifies the number of 

spam emails in the cluster to which the corresponding message_id belongs to. The colored lines are 

formed by very closely placed data points, and each of the colors represents a different cluster. 

We also present the data cover graphs generated from the clusters created using the four different 

sampling methods, shown in Figures 4, 5, 6, and 7 respectively. The sampled graphs have been 

produced only for a sampling rate of 2%, which is sufficient to prove the effectiveness of sampling. It 

can be seen that each of the sampling methods have been equally capable to successfully identify the 

same top clusters which have been created by the complete data set. Additionally, it can be seen that 

most items which belong to the same cluster reside closely in the data set. This observation is useful in 

asserting the fact that sampling the data which preserves the sequentiality is also able to preserve the 

representation of the dataset. 

An interesting observation is the comparison of tailing or sparse data from Figure 3 compared to any 

of the other Figures 4, 5, 6, and 7. All the sampling methods have nicely cleaned the scattered data 

points.  

However, the sampled data for step sequence sampler and Monte Carlo sampler (Figure 5 and 7) still 

shows some minor traces of the existence of the scattered data in comparison to the original data. In all 

the cases, the leveling clusters at the bottom are cluttered together. However, these are the smaller 

clusters and do not play any interesting role in the identification of the ‘hot zone’. 

Thus, Figures 3, 4, 5, 6, and 7 illustrates the way the data set is organized. This can lead us to 

generalize a pattern of arrivals of spam emails into the archive. Additionally, such a pattern of data 

arrival strengthens ours claim of sampling being sufficient and effective to preserve the characteristics 

of the dataset and the largest clusters from the spam emails in the data mine.  
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Figure 4 Spam Distribution based on Clusters for Simple 

Random 2% Sampling 
Figure 5 Spam Distribution based on Clusters for Step 

Sequence 2% Sampling 

Figure 6 Spam Distribution based on Clusters for 

Stepping Random 2% Sampling 
Figure 7 Spam Distribution based on Clusters for Monte 

Carlo 2% Sampling 

Figure 2 Clustering Factor for Ten Largest Clusters Figure 3 Spam Distribution based on Clusters for 

Complete Dataset 
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5.3 Timing Performance 

Here, we present the timing performance enhancement from mining and clustering the sampled data 

compared to using the whole dataset. The database was deployed on a x86 64-bit machine, using Intel 

2.4 Ghz processor, with 6 processing cores and 12 GB RAM. Additionally, we executed the Java 

program to perform the clustering on the same machine. Hence, all timing measurements have been 

recorded based on the corresponding execution times. Figure 8 illustrates the timing measurements 

from the different sampling rates, including the timing for the complete data set. 

The mean time required for loading the data from the database is 4261 milliseconds, and is depicted by 

the lower block in the timing bars in Figure 8. The loading time of the data is almost constant for all 

cases. This is because the query executed on the database from the application requests for the 

complete dataset for the specified day(s). Once the data is received, the application then performs an 

application level filtering of the data, by either selecting or discarding the item, based on the sampled 

indexes generated separately. Thus, given that the machine executing the program had sufficient main 

memory, the task of on-memory filtering of the data was performed within a very short time.  

The interesting measurement to be noticed is the upper segment in Figure 8, which corresponds to the 

processing time required for each of the cases of reduced data size using varying sampling rates. Once 

the data have been loaded and sampled, the clustering algorithm (Wei 2010; Ying et al., 2010) creates 

the clusters based on the given data. It can be distinctively seen that the time required for the whole 

data set is very high, compared to the sampled data clustering. Additionally, the algorithm adapted 

from Chun Wei et. al.'s work is the simple and faster version, which still is significantly high 

compared to the measurements obtained for the sampled data. The increase in time required with 

increasing sampling rate is not exactly linear, but not quadratic either. Thus, the reduction in the 

amount of time to perform a whole data set clustering can be reduced by a factor greater than linear if 

a sampled data set is used. 

6. SAMPLING OPTIMIZATION 

For further research, we explored some strategies to optimize the process of sampling. In our opinion, 

the timing performance of sampling can be improved if we are able to perform the operation on the 

database engine. The following sections illustrate our process of investigation and the methods we 

adopted to fulfill the requirements. 

 

Figure 8 Timing Performance for Application Level 

Filtering 

Figure 9 Timing Performance for Database Filtering 

using Naive SQL Query 
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6.1 Data Preprocessing 

Given the huge number of spam emails gathered every day, reading the data items from the database 

required a significant amount of time. In the clustering implementation by Chun Wei et. al. (Wei et al., 

2009), they performed a read operation on the whole data for a specific date. As a result, this incurred 

to a huge number of read operations on the database server. 

We performed some initial data preprocessing to reduce the number of read operations while 

retrieving the data items from the database. We created a new table, namely daily_index, with fields 

receiving_date and message_id. The table was populated using the minimum values for the 

message_id for each date from the spam table. With the daily_index table created, we can now easily 

retrieve the range of values for message_id for the given dates for which we will perform the 

clustering. For each sampling method, we initially provide the message_id range, get the sampled 

indexes, and subsequently, retrieve only the required data items from the database based on the desired 

sampling rate r. As a result of this operation, we are able to save (n-(n*r/100)) read operations from 

the database; where n is the total number of records for the given date. 

6.2 Naïve SQL Query 

The initial time measurements were taken based on an application level filtering for the sampling 

process. On the contrary, with the data pre-processing and the daily_index table created, we initially 

generated indexes for the sampled message_ids. Subsequently, we queried the database with a long 

matching clause of the sampled message_ids to retrieve the required rows. However, in this form of 

queries, we failed to improve the timing requirement. The size of the query was itself very large, and 

the database took a very long time to select and load the sampled records. The measurements from the 

naïve SQL query are illustrated in Figure 9. It can be seen clearly that even though the processing time 

is reduced, the sampling queries take an exceptionally long time to load the sampled data. Thus, as we 

failed to improve the performance using the naïve SQL query, we investigated further options to 

optimize the sampling process.  

6.3 Cross-Product with Temporary Table 

Next, we considered executing the query in a different fashion. In this approach, similar to the 

previous, we performed the sampling selection using the daily_index table. However, the next 

operation included creating a temporary table with only the selected message_ids. A query was then 

executed on the database to return the cross-product of the temporary table and the spam table. The 

execution of cross-product operation is optimized by the database itself, and therefore, the database is 

able to return the resulting records in split seconds. The timing measurements from using a temporary 

table and cross-product operation are shown in Figure 10. 

It can be seen that the total time required for the sampled data is much lesser than the time required for 

the complete data set. As it was seen previously in Figure 9, the load times for the sampled records 

were significantly high compared to the full data retrieval. However, in this case, it can be seen from 

Figure 10 that the load times for sampled message_ids are around a few hundred milliseconds, which 

are much lesser compared to the full data. The maximum load time was required when we reached a 

sampling rate of 8%, which was still equal to the load time for the whole data set. If we compare our 

results from the initial timing measurements presented in Figure 8, it can be seen that the times for 

sampling rates 1%, 2%, 3%, and 5% are all much lesser in our optimized sampling operation. In the 

case of 8%, it is still lesser, but maybe comparable to the previously recorded measurements. 
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Figure 10 Timing Performance for Database Filtering using Temporary Table 

Therefore, with the given results, we can argue that the proposed approach is significantly better than 

the original application layer filtering. We have successfully illustrated that the processing time for the 

sampled clustering using a temporary table is much better for reasonable sampling rates. Additionally, 

sampled clustering using this strategy reduces a lot of task load on the machine which executes the 

clustering algorithm. Even though we had both the program and the database on the same machine, it 

can be surely assumed that the database server is usually a separate machine with more processing 

power. Therefore, the described method of optimizing the process of sampling takes advantage of the 

processing power of the database engine, and keeps the machine running the clustering algorithm 

much lighter in its operation. 

7. RELATED WORKS 

Researchers have been working on interaction with large databases for a long time. Data mining and 

knowledge extraction technologies have been a rather new addition to the list of research works on 

large data sets. The clustering algorithm used here has been the ‘fast-n-dirty’ version of Wei's work 

(Wei 2010; Wei et al., 2009). The focus of this paper was to illustrate the efficiency which can be 

reached prior to the process of clustering, leading to a faster identification of the ‘hot zone’. Therefore, 

the algorithm for clustering is separate from the sampling process. As a result, any underlying 

algorithm for the sampling models will provide more efficient results with respect to time and space.  

The performance of the clustering process and the quality of the resultant clusters depends on the 

corresponding clustering algorithms. In this paper, we have successfully illustrated that we are able to 

identify the prominent spam clusters from the sampled data, with radical improvements in timing 

performance for clustering algorithms. There are multiple clustering algorithms which explore the 

text-based patterns in spam emails (Kyriakopoulou and Kalamboukis 2008; Ramachandran et al., 

2007; Sasaki and Shinnou 2005; Wei 2010; Wei et al., 2009), including clustering algorithms 

specifically applicable for large datasets (Ganti et al., 1999). Halkidi et al., proposed further 

techniques, which can be used to validate the clustering quality (2001). Therefore, given that we have 

proved sampling to be an effective data reduction process, our following research will focus on 

optimizing the clustering algorithms. 

We have explored different strategies and related works on clustering mechanisms. The oldest centroid 

based clustering method is the k-means algorithm (Hartigan and Wong, 1979). Later, many optimized 

and efficient versions of the k-means algorithm have been proposed (Kanungo et al., 2002). One of the 

earliest works on modern clustering techniques was proposed by Koontz et al. (1975). They proposed 
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a branch and bound clustering algorithm based on global combinatorial optimization. DBSCAN is a 

well-known density-based clustering algorithm. Arlia et al., proposed a method of parallelizing 

DBSCAN, which is suitable for high-dimensional data, and thus can be useful in implementing a 

suitable clustering algorithm for the huge number of spam emails (Arlia and Coppola, 2001). ST-

DBSCAN is a different variation of DBSCAN, proposed by Birant et al. (2007), which performs the 

clustering based on identifying core objects, noise objects, and adjacent clusters. Ying et al., has 

already presented in (Ying et al., 2010) a variation of DBSCAN to successfully identify spam clusters. 

The proposed research aims for faster clustering results from spam emails. Henceforth, it can be 

suitably stated that, given the organization of the spam data mine, we will be able to preserve the 

results from these clustering algorithms, when compared to clustering based on sampled data. 

There has been significant research on sampling methodologies so far. The random sampling with 

reservoir, proposed by Vitter (Vitter 1985), uses a non-replacing one pass sampler, requires constant 

space, and runs in O(n(1 + log(N/n))) time. These sampling models aim to introduce randomness in 

the sampled items. However, we are interested in identifying the most prominent clusters. The purpose 

is fulfilled using the proposed models and are shown to be effective in determining the ‘hot zone’ 

appropriately. Nagwani et al. (2010) proposed a weighted matching technique of attributes to measure 

attribute similarity of email content. The weights of the attributes are custom assigned and are then 

used to create the spam clusters. An algorithm for text clustering based on vector space is presented by 

Sasaki et al., in (Sasaki and Shinnou, 2005). The proposed algorithm creates disjoint clusters with the 

underlying spherical k-means algorithm to obtain centroid vectors of the spam clusters.  

There are other works related to email filtering which can be related to analyzing the content of spam 

emails. An interesting approach for filtering spam emails based on behavioral blacklisting has been 

proposed by Ramachandran et al. (2007). The proposed method overcomes the problem of varying 

sender IP addresses by classifying sending patterns and behaviors of spammers, and subsequently 

enforcing blacklisting decisions. Thomas et al., presents an interesting approach for spam detection, 

which includes real-time web crawling of URLs, based on blacklists and whitelists (Thomas et al., 

2011). All the approaches for clustering spam emails are suitable and will have varying results. These 

algorithms are typically applicable for spam filters, usually on web browsers and email clients. 

However, given the size of the dataset of the UAB Spam Data Mine (UAB-CIS, 2013), we suggest 

that the purpose of identifying the ‘hot zone’ by eCrime investigators and law enforcement authorities 

is better served by avoiding such fine-grained spam detection algorithms. 

8. CONCLUSION 

Spam campaigns and emails create a lot of hassle in today's world. A lot of people fall victims to such 

scams every day. Most spams are sent using malware bots, which are installed on affected PCs and 

spread around like a virus. The UAB Spam Data Mine collects such spam emails, and provides reports 

on ongoing spam campaigns. Clustering the spam data to categorize and identify the spammer has 

been implemented using the full dataset. In this paper, we presented different models for sampling the 

spam data, to be used as a tool for data reduction. Subsequently, the sampled data were utilized to 

create the clusters.  

Our obtained results substantially prove that sampling the data and creating the clusters allow the 

investigators to interpret the same conclusions, as opposed to using the whole data set. As a result, we 

claim that it is much faster and efficient to perform the clusters after sampling the data, and thus 

identify the ‘hot zone’ within a significantly shorter period of time. We have provided extensive 

experimental results using actual spam data and investigated the distribution of spam in the data mine, 

which reinforced our claims of sampling being more effective given its purpose. Furthermore, we also 

presented an optimization strategy which utilizes the computational power of database engines to 

perform the sampling operation more efficiently, and thus promises faster results in terms of the time 

required. 
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