
Annual ADFSL Conference on Digital Forensics, Security and Law 2014
Proceedings

May 29th, 3:10 PM

Hot Zone Identification: Analyzing Effects of Data Sampling on Hot Zone Identification: Analyzing Effects of Data Sampling on

SPAM Clustering SPAM Clustering

Rasib Khan
Department of Computer and Information Sciences, University of Alabama at Birmingham,
rasib@cis.uab.edu

Mainul Mizan
Department of Computer and Information Sciences, University of Alabama at Birmingham,
mainul@cis.uab.edu

Ragib Hasan
Department of Computer and Information Sciences, University of Alabama at Birmingham,
ragib@cis.uab.edu

Alan Sprague
Department of Computer and Information Sciences, University of Alabama at Birmingham,
sprague@cis.uab.edu

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Aviation Safety and Security Commons, Computer Law Commons, Defense and Security

Studies Commons, Forensic Science and Technology Commons, Information Security Commons,

National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, and

the Social Control, Law, Crime, and Deviance Commons

Scholarly Commons Citation Scholarly Commons Citation
Khan, Rasib; Mizan, Mainul; Hasan, Ragib; and Sprague, Alan, "Hot Zone Identification: Analyzing Effects
of Data Sampling on SPAM Clustering" (2014). Annual ADFSL Conference on Digital Forensics, Security
and Law. 2.
https://commons.erau.edu/adfsl/2014/thursday/2

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2014
https://commons.erau.edu/adfsl/2014
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1320?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1114?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/429?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2014/thursday/2?utm_source=commons.erau.edu%2Fadfsl%2F2014%2Fthursday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

ADFSL Conference on Digital Forensics, Security and Law, 2014

243

HOT ZONE IDENTIFICATION: ANALYZING EFFECTS OF

DATA SAMPLING ON SPAM CLUSTERING

Rasib Khan

rasib@cis.uab.edu

Mainul Mizan

mainul@cis.uab.edu

Ragib Hasan

ragib@cis.uab.edu

Alan Sprague

sprague@cis.uab.edu

Department of Computer and Information Sciences

University of Alabama at Birmingham

 115A Campbell Hall, 1300 University Boulevard

Birmingham, Alabama 35294-1170

ABSTRACT

Email is the most common and comparatively the most efficient means of exchanging information in

today's world. However, given the widespread use of emails in all sectors, they have been the target of

spammers since the beginning. Filtering spam emails has now led to critical actions such as forensic

activities based on mining spam email. The data mine for spam emails at the University of Alabama at

Birmingham is considered to be one of the most prominent resources for mining and identifying spam

sources. It is a widely researched repository used by researchers from different global organizations.

The usual process of mining the spam data involves going through every email in the data mine and

clustering them based on their different attributes. However, given the size of the data mine, it takes an

exceptionally long time to execute the clustering mechanism each time. In this paper, we have

illustrated sampling as an efficient tool for data reduction, while preserving the information within the

clusters, which would thus allow the spam forensic experts to quickly and effectively identify the ‘hot

zone’ from the spam campaigns. We have provided detailed comparative analysis of the quality of the

clusters after sampling, the overall distribution of clusters on the spam data, and timing measurements

for our sampling approach. Additionally, we present different strategies which allowed us to optimize

the sampling process using data-preprocessing and using the database engine's computational

resources, and thus improving the performance of the clustering process.

Keywords: Clustering, Data mining, Monte-Carlo Sampler, Sampling, Spam, Step Sequence Sampler,

Stepping Random Sampler, Hot Zone

1. INTRODUCTION

Advancement of the IT infrastructure significantly affects the way people communicate. Social

interaction and information exchange are highly dependent on emails and other such forms of media.

At the same time, such medium of communication has been the target of misuse since the beginning.

Thus, the negative motives from spammers have been a serious issue, which have led to phishing,

viruses, malware bots, and other such attacks.

Spam emails are mostly generated by malware bots on different computers across the Internet.

However, malwares installed by the same spammer exhibit a specific pattern in the spam emails

(Nhung and Phuong 2007; Ying et al., 2010). The content of the spam is usually generated using a

mailto:rasib@cis.uab.edu
mailto:mainul@cis.uab.edu
mailto:ragib@cis.uab.edu
mailto:sprague@cis.uab.edu

ADFSL Conference on Digital Forensics, Security and Law, 2014

244

common template. Therefore, the identification of the pattern in these spam emails is significantly

important to IT forensic experts. The identified pattern can then help identify a specific spammer and

follow through with proper investigations (Dagon et al., 2007; Ono et al., 2007). Mining spam emails

helps discover and correlate useful patterns. Most of the mining techniques are text-based, given that

such spam emails are mostly text-oriented. Once the emails are scrutinized for such patterns, different

clustering techniques and algorithms can be applied over the email data to group the spams based on

some similarity criteria. The speed of producing faster clusters from large datasets depends on efficient

algorithms. However, in case of very large datasets, it might be required to reduce the size of the data

prior to the clustering process.

In this paper, we focus on the evaluation of clustering performed on sampled spam emails. The data

used is from the Spam Data Mine at the University of Alabama at Birmingham (UAB) (UAB-CIS,

2013). The UAB Spam Data Mine is a large and widely researched repository for spam emails, and is

used as a helpful resource by researchers from different global organizations. Given the huge number

of spam emails collected every day, the clustering of the spams take a long time. However, in this

work, instead of focusing on algorithms to optimize the clustering process, we considered sampling

the dataset prior to fetching it to clustering algorithms. Once we are able to prove sampling as an

efficient and applicable solution for data reduction, we believe appropriate clustering algorithms can

be applied accordingly. We have adopted the previous work done by Chun Wei et al., to create the

clusters based on patterns in the subject header of the spam emails (Wei et al., 2009).

In this work, we have utilized four simple methods of sampling that we have applied on the spam data

from the data mine. As a result, we aim in making the process of clustering more efficient and less

time consuming. Furthermore, we provide the results to illustrate that the sampled data from the UAB

Spam Data Mine preserves the information contained for forming clusters and highlight the ‘hot zone’.

In this context, we refer to ‘hot zone’ as the most prominent clusters with respect to spamming

activities. We have presented the results in order to support our claim of using sampled spam data to

allow investigators a faster and better opportunity to identify the ‘hot zone’ in spam clusters. We

illustrated the resulting clusters from the sampled data, and performed extensive comparative analysis

with the clusters formed using the whole data set. Our evaluation includes an analysis of the data

distribution on the spam data, and also the time measurements for the different operations in the

algorithm. The paper also includes a different approach to optimize the sampling process, utilizing the

efficiency of the database engine, which allowed us to enhance the resulting performance of the

required time.

Contributions: The contributions in this paper are as follows:

 We evaluate the sampling methods on actual spam emails from the UAB Spam Data Mine. The

validation and effectiveness of sampling is based on the following: (a) quality of the clusters

produced, (b) the data cover/distribution of spam emails within the data mine, and (c) the timing

performance for the clustering operation. All the sampling models have been validated for varying

sampling rates against the clusters created using the complete data set. Our results show that we

are successfully able to highlight the ‘hot zone’ from the spam emails with a significant

improvement in timing performance.

 We present techniques and strategies for the most efficient way to implement the sampling process

and retrieve the huge number of spam emails from the data mine, which are then used to execute

the clustering algorithm. The experimental measurements using our optimization strategies

illustrate that there are further improvements in performance, compared to naïve SQL query based

retrieval of sampled spam records from the UAB Spam Data Mine.

The rest of the paper is organized as follows. The motivation for the work is presented in Section 2.

Section 3 describes the organization of the UAB Spam Data Mine, including the clustering algorithm

from the work of Wei et al. (2009). The different sampling models are described in Section 4. The

ADFSL Conference on Digital Forensics, Security and Law, 2014

245

results and corresponding analysis are presented in Section 5. Section 6 includes the optimization

strategies to improve the efficiency of the sampling process. Finally the related works and conclusion

are presented in Section 7 and Section 8 respectively.

2. RESEARCH MOTIVATION

The increasing number of Internet users has attracted criminals to the field of online crimes. eCrimes

have been significantly on the rise since the last few years. This section illustrates the issue of eCrimes

on the Internet, and the research motivation behind the work on investigating spam clusters, and the

importance of identifying the hot zone.

2.1 eCrimes on the Internet

Information security and economics have become interdependent in recent times. Corporations employ

information security specialists, as well as economists and lawyers to deal with the rising concern of

eCrimes. The network of criminal activities has become more organized with structured online black

markets, where the criminals trade insider information. Data and information, such as credit card and

PIN codes, are sold to online anonymous brokers in these underground eCrime markets. According to

Moore et al. (2009), credit card information are sold at advertised prices of $0.40 to $20.00 per card,

and bank account credentials at $10 to $100 per bank account. Social security numbers and other

personal details are sold for $1 to $15 per person, while online auction credentials fetches around $1 to

$8 per identity. Subsequently, the brokers sell the information to specific expert hackers, who perform

the final act of money laundering.

The information collected in these online criminal activities incorporate specialized approaches.

Usually, Internet users are driven to false websites with the help of advertising emails. These bulk

emails are generally classified as spams, which are sent by spammers, using malicious software

running on infected machines. The infected computers are used by the spammers to record keystrokes

and send further spam emails.

The monetizing channel for spam emails includes multiple organizations. It is illustrated by

Levchenko et al. (2011), the spam value chain has multiple links between the money handling

authorities and the spammers. Furthermore, according to an approximate consensus, 5% of online

devices on the Internet are susceptible to being infected with malware. At least 10 million personal

computers have been assumed to be infected with malware in 2008, the number for which should have

had increased significantly over the last few years (Moore et al., 2009). Thus, these figures easily

indicate that the network for criminal activities have outgrown the authorities dealing with eCrimes.

2.2 Spam Investigation

Spam emails are perceived as being analogous to junk mails. These emails are generally advertising

emails, or with other forms of undesired content. However, spam emails are not as innocent as junk

mails. They are sent to a large number of recipients, and usually have hidden motives along with the

content of the email. They are considered as the primary channel for attackers to deploy Trojans,

worms, viruses, spyware, and botnets on other machines across the Internet.

The email body of spams has hidden scripts, cookies, and other attached content to attract the recipient

of the email. Once the user opens the email, the scripts may use the current information from the

browser to expose the identity of the user to the attacker. This is the easiest and a very well-known

approach, but still the most common scenario where users are victims of identity thefts on the Internet.

This information can be used to remotely access the user's machine and install unwanted malwares as

botnets. The malware can then operate from the infected machine using the identity of the user, and

send further spam emails or perform other unwanted tasks.

ADFSL Conference on Digital Forensics, Security and Law, 2014

246

When an attacker sends a spam, he generally uses a template to generate the content of the email. The

format of the content is thus prevalent in all the spam emails those are being sent. However, the

spammers replace some words or phrases to introduce variation and hence bypass the spam filters.

Thus, it becomes a non-trivial task for such filtering services to detect all the spam. Data mining from

spam emails is useful to detect and investigate these patterns. The spam emails are scrutinized and

parsed into different text-based segments. Each email comprises of certain attributes, such as the

sender email, subject header, and the mail body. These individual attributes can be investigated to

match other spam emails, and thus grouping similar spam emails. Once a pattern is observed, they can

be clustered and classified as a specific spam campaign (Caruana and Li 2008; Kyriakopoulou and

Kalamboukis 2008; Sasaki and Shinnou 2005; UAB-CIS 2013; Wei et al., 2009; Ying et al., 2010).

The individual clusters obtained from grouping spam emails allow the eCrime investigators to identify

a particular spammer. The clustered spams are examined to classify the spammer and obtain further

track-down information. eCrime investigators use these collected data to hunt down online criminals

and take appropriate actions against the involved personnel.

The Spam Data Mine at UAB collects approximately 1 million spam emails each day (UAB-CIS,

2013). The spam emails can then be used to find the patterns and perform clustering on the collected

data. The identified clusters are assumed to be individual spam campaigns by an attacker. The

extracted patterns from the spam emails are dependent on the template used by the spammer to

generate the spam. However, it should also be noted that an attacker generally uses a given spam

template for a few days, after which he changes the format of the emails. This constant change in the

format of the spams makes it difficult to identify a particular attacker. As a result, spam emails

collected over a small duration of time exhibits the specific pattern, after which the extracted cluster

information does not apply any more.

From the above scenario, we have observed the following requirements for investigating eCrimes

using spam clusters. First, it is important that the identification of the spam campaigns should be done

as early as possible. The multitude of financial loss resulting from eCrimes requires the investigation

to proceed quickly. The sooner a particular spam campaign is taken down, the lesser is the financial

loss. A quick action against a spam campaign would also mean that lesser people will fall as victims to

the campaign on the Internet. However, given the huge amount of data, it requires a lot of time to

execute the clustering operation. Thus, the inherent requirement to act quickly against such eCrimes is

not fulfilled with the current approaches for clustering spam emails. Moreover, the quickly changing

pattern of templates by the spammers makes it more difficult to extract the information from the spams

and act on it accordingly.

Second, the ‘hot zone’ of the spam campaigns are the ones about which conclusive remarks can be

made about an attacker. Here, we refer ‘hot zone’ as the group of largest clusters and the most

prominent spam campaigns on the Internet. The largest spam clusters imply a large number of similar

spam emails. As a result, the larger clusters incorporate more information for the eCrime investigators

and law enforcement authorities to study the criminals. It is more important to identify the largest

clusters rather than obtaining an extensive number of clusters for the huge amount of spam from the

data mine. It might not be the same scenario when it comes to user privacy protection and spam filters

on web browsers and email clients, where more fine-grained spam filtering is required to protect the

users on the Internet. Therefore, when it comes to criminal investigations and law enforcement, the

prominent clusters are the ones of interest, while the smaller ones can be classified as outliers.

3. CLUSTERING SPAM DATA

For our work in this paper, we have adopted an existing clustering algorithm proposed by Wei (2010)

and Wei et al. (2009). The algorithm has been executed using data from the UAB Spam Data Mine

(UAB-CIS, 2013). In this section, we discuss the background and the description of the data mine,

including the clustering technique proposed by Chun Wei et al. (2009, 2010) on the spam data.

ADFSL Conference on Digital Forensics, Security and Law, 2014

247

3.1 Background

The initial research issue for knowledge extraction or data mining is classifying data and creating

representations of the feature space. Clustering is most commonly used for feature compression and

extracting information (Kyriakopoulou and Kalamboukis, 2008). Specific features are compared and

clustered into groups which represent a commonality among all of its data items. The task of

measuring the similarity of data items can be performed in different ways. The most common methods

for measuring similarity/dissimilarity are Jaccard and Levenshtein coefficients (Jaccard 1901;

Levenshtein 1966). The distances can then be used in other clustering algorithms to create and

evaluate clusters (Caruana and Li 2008; Kanungo et al., 2002; Hartigan and Wong 1979; Wei 2010;

Ying et al., 2010). The clustering algorithms thus use the similarity or dissimilarity of individual data

items based on the feature space, and group them into a common cluster based on preset threshold

configurations.

3.2 The Spam Data Mine

We utilized the UAB Spam Data Mine (UAB-CIS, 2013) for the purpose of our research evaluation.

The UAB Spam Data Mine is a research project under The Center for Information Assurance and Joint

Forensics Research (CIS-JFR)
1
. The Center generates information about currently on-going campaigns

by spammers. It archives spam emails received from numerous sources and honey-pots, and collects

approximately 1 million spam emails each day.

1
 The Center (CIS-JFR), http://thecenter.uab.edu

http://thecenter.uab.edu/

ADFSL Conference on Digital Forensics, Security and Law, 2014

248

The collection of spam emails from the sources is collected in a batch-wise operation. General users

on the Internet, upon receiving a (suspected) spam email, marks the email as spam, and forwards it to

the honey-pot email address for archiving. Additionally, numerous other honey-pots are placed at

different points in the network which dedicatedly receive and archive spam emails. The archived spam

emails are collected batch-wise at specific time intervals during the day. Thus, due to the manner these

spam emails are stored and collected in the data mine, the records do not display a shuffled

organization in their sequence.

Subsequently, the spam data mine stores the data regarding spam emails parsed into different

attributes. The current database design holds the following attributes for each spam email: message_id,

subject, sender_name, sender_username, sender_domain, sender_ip, receiving_date, time_stamp,

word_count.

3.3 Algorithm for Clustering

The method employed by Wei et al. (2009) for clustering the spam data is specific to the data from the

UAB Spam Data Mine (UAB-CIS, 2013). In this section, we present the clustering algorithm designed

and implemented by Wei et al. (2009) and also included as a part of the work in Wei (2010). For our

purpose, we chose the rather ‘fast-n-dirty’ version of the clustering algorithm by Wei, which is shown

in Algorithm 1. The clustering algorithm matched spam emails on exact similarity of sender email

addresses. They are matched using the MD5 hash of the sender's email. Similar items were clustered

into a common group. From within the clusters, some of them are set aside using a bounded threshold,

which was set at a minimum of (mean + (4*standard deviation)).

Figure 1 Sampling Methods: Step Sequence Sampler (SSS), Stepping Random Sampler (SRS),

and Monte Carlo Sampler (MCS)

Next, the process was repeated for the word_count of the email body for all the small clusters, and

further clusters were created. As a result, some of the clusters had both the sender_name and the

word_count in the feature space, while some only had the word_count criteria. Finally, a Levenstein

index is calculated to create a common pattern for the subject header for each of the clusters. The

output patterns of subject headers for the spam emails are produced in the form ‘__ similar __ word’.

Here, the blank spaces are the words which could be substituted for other words. The blank spaces

together with the words ‘similar’ and ‘word’ define the basic template of the subject headers for each

of the clusters of similar spam emails.

4. SPAM DATA SAMPLING

Sampling is a well-known technique for data reduction, given that it preserves the information from

the original data set. In this section, we present our approaches to create the sampled data. We have

presented four different schemes for creating the sampled data, which have been discussed in the

following sections. For each of the models, we invoke the sampling method with the begin index, end

index, and sampling rate parameters.

ADFSL Conference on Digital Forensics, Security and Law, 2014

249

4.1 Simple Random Sampler

The simple random sampler is implemented using the Java Random class
2
. The Java Random class

initializes using a 48-bit long random seed. Subsequently, it is modified using a linear congruential

formula to generate a stream of pseudo-random numbers (Knuth, 2006). Alternatively, Mersenne

Twister is another method for polynomial calculations over two-element fields to generate uniform

pseudo-random numbers (Matsumoto and Nishimura 1998). However, our random generator uses the

linear congruential formula due to the simplicity of the model, and serves the purpose of our work.

The simple random sampler takes in a range of values within a begin/end index for message_ids.

Subsequently, it generates the random indexes within the given range, according to the desired

sampling rate. However, the generated random indexes may or may not be evenly distributed across

the range of values for the message_ids.

4.2 Step Sequence Sampler

The step sequence sampler is another method of sampling which we utilized for our spam data. As

shown in Figure 1a, given the sampling rate r, we initially calculated the step frequency f. The range

of values for the message_ids is then divided into f-segments, and the boundary index values are

returned as the sampled indexes. As a result, the obtained sampled data is evenly distributed, and

sequentially selected from the data set.

4.3 Stepping Random Sampler

The stepping random sampler is an extension of the step sequence sampler, as shown in Figure 1b. As

before, we calculated the step frequency f for the given range of message_ids based on the sampling

rate. After that, we utilized the Java Random class to randomly select an index from within each block.

Thus, the sampled index values for the message_ids are evenly distributed with the frequency f, and

randomized within each blocked segment, thus ensuring unbiased results.

4.4 Monte Carlo Sampler

Monte Carlo methods refer to computational algorithms which are based on repeated random sampling

to obtain a desired goal. It is a process of calculating heuristic probability for a given scenario which is

defined by the specific validation of a success or fail event (Hammersley et al., 1965). In our case, we

designed a simple Monte Carlo sampler to probabilistically generate some random indexes for

choosing the sampled message_ids, as illustrated in Figure 1c, and presented in Algorithm 2.

In the Monte Carlo sampler, for each index i, where i is between begin and end, we ‘roll’ between 0 -

100. If the random ‘roll’ is less than or equal to the sampling rate r, we select the specific index i.

Thus, the sampled indexes are sequentially selected or discarded from within the range of begin and

end indexes for message_ids. However, the number of index values that we receive from the Monte

2
 Java Random class, http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

http://docs.oracle.com/javase/7/docs/api/java/util/Random.html

ADFSL Conference on Digital Forensics, Security and Law, 2014

250

Carlo sampler is not exact, but probabilistically close to match the sampling rate r. The success or fail

events in Monte Carlo models are usually executed for a large number of events. Therefore, according

to the model, the larger the range of message_ids, the closer we get to the desired value for the number

of sampled items (Hammersley et al., 1965).

4.5 Comparison of Sampling Methods

Table 1 Comparison of properties for the Random Sampler (RS), Step Sequence Sampler (SSS), Stepping

Random Sampler (SRS), and the Monte Carlo Sampler (MCS)

The properties of the different sampling methods are summarized in Table 1. In this context, we define

the following properties for the different sampling methods.

i. Randomness in the sampling process implies the probability of a particular index being chosen

in the sample.

ii. Sequential sampling refers to the criteria of the chosen indexes being in order once the

sampling process has completed.

iii. Repetition in sampling means the possibility of an index being chosen more than once.

iv. Data cover represents the feature of the chosen sampled indexes being evenly distributed over

the range of values from the original data set.

v. Number of samples refers to the number of indexes chosen, given the total number of indexes

n, and the sampling rate r.

As shown in Table 1, the simple random sampler provides good randomness, as it depends on a simple

linear congruential formula to generate the pseudo-random number stream. However, it is not

sequential, as the chosen index samples are generated at random, and does not preserve order.

Additionally, the simple random sampler does not guarantee uniqueness, as the same number can be

generated more than once. Therefore, the already mentioned properties can be utilized to state that the

simple random sampler does not provide a guaranteed data cover either. The step sequence sampler

does not provide any randomness and is purely sequential. However, we are able to ensure no

repetition and full data cover. Using the stepping random sampler allows mediocre randomness, but

contains sequence, ensures uniqueness, and also provides a full data cover. Finally, the Monte Carlo

method provides good randomness and ensures sequentiality with no repetition. However, it has a

probabilistic sample size of approximately (n*r), where n is the data size and r is the sampling rate.

The probability of the sample size will get closer to (n*r) with a greater range of values for the

indexes.

5. RESULTS AND ANALYSIS

In this section, we present the results obtained from the different sampling methods presented

previously. The sampled data were mined and used to create clusters, based on the algorithm of Wei et

al. (2010) (Ying et al., 2010). We also provide an analysis of the results and comparison of each of the

sampling methods against clustering performed on the full data set. The results presented have been

generated using two days' spam data. As mentioned earlier, the data mine collects a huge number of

spam emails, and there were a total of approximately 1.8 million spam emails in these two days.

 RS SSS SRS MCS

Randomness good bad med good

Sequential no yes yes yes

Repetition maybe no no no

Data cover maybe yes yes maybe

Number of samples

n*r n*r n*r ≈ n*r

ADFSL Conference on Digital Forensics, Security and Law, 2014

251

5.1 Clustering Quality

Initially, we performed the clustering on the whole spam data for a range of two days. With the

clusters formed, we selected the ten largest clusters and analyzed their statistics. We recorded the

number of data points, pattern of the subject within the cluster, and the percentage of data that each of

the clusters has with respect to the data size. We refer to clustering factor as the value between 0 and

1, which represents the size of the cluster in terms of the size of the data. The rightmost bar on Figure

2 shows the distribution of the clusters which were created from complete data set for the given range

of days. It can be seen that the ten largest clusters actually represent almost 25% of the whole data set,

with three largest clusters representing approximately 9%, 8%, and 3% respectively.

Next, we executed the clustering algorithm on sampled data with each of our samplers. The sampling

was performed at varying rates of 1%, 2%, 3%, 5%, and 8% respectively. For each of the cases, we

analyzed the clusters created with the sampled data. To visualize the clustering quality with better

understanding, we normalized each of the sampled clusters using the size of the sample to calculate the

clustering factor for each. Using a normalized view for the sampled clusters thus makes it easier to

evaluate the quality of the clustering with respect to the clusters formed using the full data set. The

clustering factor for each of the sampling methods at varying sampling rates is illustrated in Figure 2.

From the results, it can be seen that random sampling, step sequence, and stepping random create the

clusters with a similar clustering factor as that of the full data set. Thus, the more similar the clustering

factors and distributions are, the better they can be claimed to have performed. It should also be noted

that all the three sampling methods perform in a stable manner with their varying sampling rates.

Additionally, we verified that each of the ten largest clusters from the sampled data actually coincides

with at least eight of the largest clusters from the full dataset. However, they might sometimes be

slightly out of order in the sampled cluster sizes. Moreover, the top three to five clusters as shown in

Figure 2 is always the same clusters in all the cases, which verifies that the sampling effectively allows

us to identify the ‘hot zone’ of spam campaigns. Table 2 describes the patterns of subject headers for

each of the top ten clusters created in order of their sizes. It can be seen that most of the clusters

created from the 2% step sequence sampling are exactly in the same order if compared to the clusters

created using the full data set. However, there are minor interchanges in the position of the clusters in

their ordering. Nonetheless, they are not the top clusters, and are usually of similar sizes and hence

tend to swap places with minor changes in the order.

Table 2 Subject Header Patterns of Ten Largest Clusters Compared using Full Dataset Vs. 2% Sampled Data

However, with the Monte Carlo sampler, it can be seen that the sampled data had some skewness

towards the clustering data points. This can be claimed as both positive and negative. Given that the

results tend to have a greater clustering factor for the larger clusters and represent almost 45% of the

sampled data, it can be argued that Monte Carlo sampling makes it easier to focus on the largest

No. Clustering on full data set Clustering using 2% Step Sequence

1 Canadian Pharmacy: BUY NOW VIAGRA & CIALIS ! Canadian Pharmacy: BUY NOW VIAGRA & CIALIS !

2 New prices New prices

3 Lowest prices Lowest prices

4 Vigara Now Vigara =

5 Vigara Vigara Now

6 Corporate eFax message - pages Corporate eFax message - pages

7 Vigara SALE! United Parcel Service notification

8 United Parcel Service notification Vigara

9 Vigara Now Vigara =

10 Vigara Off!
Purchase your Levitra from one of our drugstores today.

Levitra/Viagr/Cialis from $1.25

ADFSL Conference on Digital Forensics, Security and Law, 2014

252

clusters. However, they tend to distort the actual distribution of clusters and misrepresent the

clustering factor for each of the clusters compared to the full data. An interesting convergence towards

the desired clustering factor distribution can be seen as the sampling rate is increased.

Therefore, from the clusters created and the clustering factors, we are able to infer the effect of the

different sampling methods. It can be seen that random, step sequence, and stepping random sampling

tends to preserve the distribution of the original data set of spams. Therefore, we can say that the

sampling models for the above three are representative sampling. On the other hand, Monte Carlo

seems to perform well in highlighting larger clusters and removing noise from smaller clusters. Hence,

we call it noise suppressive sampling. Given the context and the requirement, each of the sampling

methods can be utilized accordingly.

5.2 Data Cover

We utilized the clusters created from our experiments to analyze the distribution of the data in the

spam data mine. We are interested to visualize how the spam emails have been archived in the data

mine, with respect to the cluster each spam email belongs to. In this context, data cover refers to the

distribution of the spam emails in the data set.

Figure 3 illustrates the graph to help visualize the distribution for the complete dataset. The x-axis

corresponds to the total number of message_ids for the given date. The y-axis specifies the number of

spam emails in the cluster to which the corresponding message_id belongs to. The colored lines are

formed by very closely placed data points, and each of the colors represents a different cluster.

We also present the data cover graphs generated from the clusters created using the four different

sampling methods, shown in Figures 4, 5, 6, and 7 respectively. The sampled graphs have been

produced only for a sampling rate of 2%, which is sufficient to prove the effectiveness of sampling. It

can be seen that each of the sampling methods have been equally capable to successfully identify the

same top clusters which have been created by the complete data set. Additionally, it can be seen that

most items which belong to the same cluster reside closely in the data set. This observation is useful in

asserting the fact that sampling the data which preserves the sequentiality is also able to preserve the

representation of the dataset.

An interesting observation is the comparison of tailing or sparse data from Figure 3 compared to any

of the other Figures 4, 5, 6, and 7. All the sampling methods have nicely cleaned the scattered data

points.

However, the sampled data for step sequence sampler and Monte Carlo sampler (Figure 5 and 7) still

shows some minor traces of the existence of the scattered data in comparison to the original data. In all

the cases, the leveling clusters at the bottom are cluttered together. However, these are the smaller

clusters and do not play any interesting role in the identification of the ‘hot zone’.

Thus, Figures 3, 4, 5, 6, and 7 illustrates the way the data set is organized. This can lead us to

generalize a pattern of arrivals of spam emails into the archive. Additionally, such a pattern of data

arrival strengthens ours claim of sampling being sufficient and effective to preserve the characteristics

of the dataset and the largest clusters from the spam emails in the data mine.

ADFSL Conference on Digital Forensics, Security and Law, 2014

253

Figure 4 Spam Distribution based on Clusters for Simple

Random 2% Sampling
Figure 5 Spam Distribution based on Clusters for Step

Sequence 2% Sampling

Figure 6 Spam Distribution based on Clusters for

Stepping Random 2% Sampling
Figure 7 Spam Distribution based on Clusters for Monte

Carlo 2% Sampling

Figure 2 Clustering Factor for Ten Largest Clusters Figure 3 Spam Distribution based on Clusters for

Complete Dataset

ADFSL Conference on Digital Forensics, Security and Law, 2014

254

5.3 Timing Performance

Here, we present the timing performance enhancement from mining and clustering the sampled data

compared to using the whole dataset. The database was deployed on a x86 64-bit machine, using Intel

2.4 Ghz processor, with 6 processing cores and 12 GB RAM. Additionally, we executed the Java

program to perform the clustering on the same machine. Hence, all timing measurements have been

recorded based on the corresponding execution times. Figure 8 illustrates the timing measurements

from the different sampling rates, including the timing for the complete data set.

The mean time required for loading the data from the database is 4261 milliseconds, and is depicted by

the lower block in the timing bars in Figure 8. The loading time of the data is almost constant for all

cases. This is because the query executed on the database from the application requests for the

complete dataset for the specified day(s). Once the data is received, the application then performs an

application level filtering of the data, by either selecting or discarding the item, based on the sampled

indexes generated separately. Thus, given that the machine executing the program had sufficient main

memory, the task of on-memory filtering of the data was performed within a very short time.

The interesting measurement to be noticed is the upper segment in Figure 8, which corresponds to the

processing time required for each of the cases of reduced data size using varying sampling rates. Once

the data have been loaded and sampled, the clustering algorithm (Wei 2010; Ying et al., 2010) creates

the clusters based on the given data. It can be distinctively seen that the time required for the whole

data set is very high, compared to the sampled data clustering. Additionally, the algorithm adapted

from Chun Wei et. al.'s work is the simple and faster version, which still is significantly high

compared to the measurements obtained for the sampled data. The increase in time required with

increasing sampling rate is not exactly linear, but not quadratic either. Thus, the reduction in the

amount of time to perform a whole data set clustering can be reduced by a factor greater than linear if

a sampled data set is used.

6. SAMPLING OPTIMIZATION

For further research, we explored some strategies to optimize the process of sampling. In our opinion,

the timing performance of sampling can be improved if we are able to perform the operation on the

database engine. The following sections illustrate our process of investigation and the methods we

adopted to fulfill the requirements.

Figure 8 Timing Performance for Application Level

Filtering

Figure 9 Timing Performance for Database Filtering

using Naive SQL Query

ADFSL Conference on Digital Forensics, Security and Law, 2014

255

6.1 Data Preprocessing

Given the huge number of spam emails gathered every day, reading the data items from the database

required a significant amount of time. In the clustering implementation by Chun Wei et. al. (Wei et al.,

2009), they performed a read operation on the whole data for a specific date. As a result, this incurred

to a huge number of read operations on the database server.

We performed some initial data preprocessing to reduce the number of read operations while

retrieving the data items from the database. We created a new table, namely daily_index, with fields

receiving_date and message_id. The table was populated using the minimum values for the

message_id for each date from the spam table. With the daily_index table created, we can now easily

retrieve the range of values for message_id for the given dates for which we will perform the

clustering. For each sampling method, we initially provide the message_id range, get the sampled

indexes, and subsequently, retrieve only the required data items from the database based on the desired

sampling rate r. As a result of this operation, we are able to save (n-(n*r/100)) read operations from

the database; where n is the total number of records for the given date.

6.2 Naïve SQL Query

The initial time measurements were taken based on an application level filtering for the sampling

process. On the contrary, with the data pre-processing and the daily_index table created, we initially

generated indexes for the sampled message_ids. Subsequently, we queried the database with a long

matching clause of the sampled message_ids to retrieve the required rows. However, in this form of

queries, we failed to improve the timing requirement. The size of the query was itself very large, and

the database took a very long time to select and load the sampled records. The measurements from the

naïve SQL query are illustrated in Figure 9. It can be seen clearly that even though the processing time

is reduced, the sampling queries take an exceptionally long time to load the sampled data. Thus, as we

failed to improve the performance using the naïve SQL query, we investigated further options to

optimize the sampling process.

6.3 Cross-Product with Temporary Table

Next, we considered executing the query in a different fashion. In this approach, similar to the

previous, we performed the sampling selection using the daily_index table. However, the next

operation included creating a temporary table with only the selected message_ids. A query was then

executed on the database to return the cross-product of the temporary table and the spam table. The

execution of cross-product operation is optimized by the database itself, and therefore, the database is

able to return the resulting records in split seconds. The timing measurements from using a temporary

table and cross-product operation are shown in Figure 10.

It can be seen that the total time required for the sampled data is much lesser than the time required for

the complete data set. As it was seen previously in Figure 9, the load times for the sampled records

were significantly high compared to the full data retrieval. However, in this case, it can be seen from

Figure 10 that the load times for sampled message_ids are around a few hundred milliseconds, which

are much lesser compared to the full data. The maximum load time was required when we reached a

sampling rate of 8%, which was still equal to the load time for the whole data set. If we compare our

results from the initial timing measurements presented in Figure 8, it can be seen that the times for

sampling rates 1%, 2%, 3%, and 5% are all much lesser in our optimized sampling operation. In the

case of 8%, it is still lesser, but maybe comparable to the previously recorded measurements.

ADFSL Conference on Digital Forensics, Security and Law, 2014

256

Figure 10 Timing Performance for Database Filtering using Temporary Table

Therefore, with the given results, we can argue that the proposed approach is significantly better than

the original application layer filtering. We have successfully illustrated that the processing time for the

sampled clustering using a temporary table is much better for reasonable sampling rates. Additionally,

sampled clustering using this strategy reduces a lot of task load on the machine which executes the

clustering algorithm. Even though we had both the program and the database on the same machine, it

can be surely assumed that the database server is usually a separate machine with more processing

power. Therefore, the described method of optimizing the process of sampling takes advantage of the

processing power of the database engine, and keeps the machine running the clustering algorithm

much lighter in its operation.

7. RELATED WORKS

Researchers have been working on interaction with large databases for a long time. Data mining and

knowledge extraction technologies have been a rather new addition to the list of research works on

large data sets. The clustering algorithm used here has been the ‘fast-n-dirty’ version of Wei's work

(Wei 2010; Wei et al., 2009). The focus of this paper was to illustrate the efficiency which can be

reached prior to the process of clustering, leading to a faster identification of the ‘hot zone’. Therefore,

the algorithm for clustering is separate from the sampling process. As a result, any underlying

algorithm for the sampling models will provide more efficient results with respect to time and space.

The performance of the clustering process and the quality of the resultant clusters depends on the

corresponding clustering algorithms. In this paper, we have successfully illustrated that we are able to

identify the prominent spam clusters from the sampled data, with radical improvements in timing

performance for clustering algorithms. There are multiple clustering algorithms which explore the

text-based patterns in spam emails (Kyriakopoulou and Kalamboukis 2008; Ramachandran et al.,

2007; Sasaki and Shinnou 2005; Wei 2010; Wei et al., 2009), including clustering algorithms

specifically applicable for large datasets (Ganti et al., 1999). Halkidi et al., proposed further

techniques, which can be used to validate the clustering quality (2001). Therefore, given that we have

proved sampling to be an effective data reduction process, our following research will focus on

optimizing the clustering algorithms.

We have explored different strategies and related works on clustering mechanisms. The oldest centroid

based clustering method is the k-means algorithm (Hartigan and Wong, 1979). Later, many optimized

and efficient versions of the k-means algorithm have been proposed (Kanungo et al., 2002). One of the

earliest works on modern clustering techniques was proposed by Koontz et al. (1975). They proposed

ADFSL Conference on Digital Forensics, Security and Law, 2014

257

a branch and bound clustering algorithm based on global combinatorial optimization. DBSCAN is a

well-known density-based clustering algorithm. Arlia et al., proposed a method of parallelizing

DBSCAN, which is suitable for high-dimensional data, and thus can be useful in implementing a

suitable clustering algorithm for the huge number of spam emails (Arlia and Coppola, 2001). ST-

DBSCAN is a different variation of DBSCAN, proposed by Birant et al. (2007), which performs the

clustering based on identifying core objects, noise objects, and adjacent clusters. Ying et al., has

already presented in (Ying et al., 2010) a variation of DBSCAN to successfully identify spam clusters.

The proposed research aims for faster clustering results from spam emails. Henceforth, it can be

suitably stated that, given the organization of the spam data mine, we will be able to preserve the

results from these clustering algorithms, when compared to clustering based on sampled data.

There has been significant research on sampling methodologies so far. The random sampling with

reservoir, proposed by Vitter (Vitter 1985), uses a non-replacing one pass sampler, requires constant

space, and runs in O(n(1 + log(N/n))) time. These sampling models aim to introduce randomness in

the sampled items. However, we are interested in identifying the most prominent clusters. The purpose

is fulfilled using the proposed models and are shown to be effective in determining the ‘hot zone’

appropriately. Nagwani et al. (2010) proposed a weighted matching technique of attributes to measure

attribute similarity of email content. The weights of the attributes are custom assigned and are then

used to create the spam clusters. An algorithm for text clustering based on vector space is presented by

Sasaki et al., in (Sasaki and Shinnou, 2005). The proposed algorithm creates disjoint clusters with the

underlying spherical k-means algorithm to obtain centroid vectors of the spam clusters.

There are other works related to email filtering which can be related to analyzing the content of spam

emails. An interesting approach for filtering spam emails based on behavioral blacklisting has been

proposed by Ramachandran et al. (2007). The proposed method overcomes the problem of varying

sender IP addresses by classifying sending patterns and behaviors of spammers, and subsequently

enforcing blacklisting decisions. Thomas et al., presents an interesting approach for spam detection,

which includes real-time web crawling of URLs, based on blacklists and whitelists (Thomas et al.,

2011). All the approaches for clustering spam emails are suitable and will have varying results. These

algorithms are typically applicable for spam filters, usually on web browsers and email clients.

However, given the size of the dataset of the UAB Spam Data Mine (UAB-CIS, 2013), we suggest

that the purpose of identifying the ‘hot zone’ by eCrime investigators and law enforcement authorities

is better served by avoiding such fine-grained spam detection algorithms.

8. CONCLUSION

Spam campaigns and emails create a lot of hassle in today's world. A lot of people fall victims to such

scams every day. Most spams are sent using malware bots, which are installed on affected PCs and

spread around like a virus. The UAB Spam Data Mine collects such spam emails, and provides reports

on ongoing spam campaigns. Clustering the spam data to categorize and identify the spammer has

been implemented using the full dataset. In this paper, we presented different models for sampling the

spam data, to be used as a tool for data reduction. Subsequently, the sampled data were utilized to

create the clusters.

Our obtained results substantially prove that sampling the data and creating the clusters allow the

investigators to interpret the same conclusions, as opposed to using the whole data set. As a result, we

claim that it is much faster and efficient to perform the clusters after sampling the data, and thus

identify the ‘hot zone’ within a significantly shorter period of time. We have provided extensive

experimental results using actual spam data and investigated the distribution of spam in the data mine,

which reinforced our claims of sampling being more effective given its purpose. Furthermore, we also

presented an optimization strategy which utilizes the computational power of database engines to

perform the sampling operation more efficiently, and thus promises faster results in terms of the time

required.

ADFSL Conference on Digital Forensics, Security and Law, 2014

258

ACKNOWLEDGEMENT

This research was supported by a Google Faculty Research Award, the Office of Naval Research

Grant #N000141210217, the Department of Homeland Security Grant #FA8750-12-2- 0254, and by

the National Science Foundation under Grant \#0937060 to the Computing Research Association for

the CIFellows Project. We would like to thank Jason Britt and Gary Warner for providing the support

for the UAB Spam Data Mine.

REFERENCES

Arlia, D. & Coppola, M. (2001). Experiments in parallel clustering with dbscan. Euro-Par 2001

Parallel Processing. Lecture Notes in Computer Science, 2150. Springer Berlin Heidelberg, 326–331.

Birant, D. & Kut, A. (2007). ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data &

Knowledge Engineering, 60(1), 208 – 221.

Caruana, G. & Li, M. (2008). A survey of emerging approaches to spam filtering. ACM Computing

Surveys, 44(2), 9:1–9:27.

Dagon, D., Gu, G., Lee, C., & Lee, W. (2007). A taxonomy of botnet structures. Proceedings of the

23rd Annual Computer Security Applications Conference. ACSAC ’07, 325–339.

Ganti, V., Ramakrishnan, R., Gehrke, J., & Powell, A. (1999). Clustering large datasets in arbitrary

metric spaces. Proceedings of the 15
th

International Conference on Data Engineering (ICDE ’99).

IEEE Computer Society, Washington, DC, USA.

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of

Intelligent Information Systems, 17, December, 2-3, 107–145.

Hammersley, J. M., Handscomb, D. C., & Weiss, G. (1965). Monte Carlo methods. Physics Today, 18,

55.

Hartigan, J. A. & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of

the Royal Statistical Society. Series C (Applied Statistics) 28(1), 100–108.

Jaccard, P. (1901). Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions

voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 241–272.

Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., & Wu, A. (2002). An efficient k-

means clustering algorithm: analysis and implementation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(7), 881–892.

Knuth, D. E. (2006). The art of computer programming. 4, fascicle 4, 1. print.. Generating all trees.

Addison-Wesley.

Koontz, W. L. G., Narendra, P. M., & Fukunaga, K. (1975). A Branch and Bound Clustering

Algorithm. IEEE Transactions on Computers, 24(9), 908–915.

Kyriakopoulou, A. & Kalamboukis, T. (2008). Combining clustering with classification for spam

detection in social bookmarking systems. Proceedings of European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery in Databases Discovery Challenge,

(ECML/PKDD RSDC ’08), 47–54.

Levchenko, K., Pitsillidis, A., Chachra, N., Enright, B., Halvorson, T., Kanich, C…Savage, S. (2011).

Click trajectories: End-to-end analysis of the spam value chain. Proceedings of The IEEE Symposium

on Security & Privacy, 431–446.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals. Soviet

Physics Doklady. 10(8 Feb), 707–710.

ADFSL Conference on Digital Forensics, Security and Law, 2014

259

Matsumoto, M. & Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed

uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation

(TOMACS) - Special issue on uniform random number generation, 8(1 Jan), 3–30.

Moore, T., Clayton, R., & Anderson, R. (2009). The economics of online crime. The Journal of

Economic Perspectives, 23(3), 3–20.

Nagwani, N. K. & Bhansali, A. (2010). An Email Clustering Model Using Weighted Similarities

between Emails Attributes. International Journal of Research and Reviews in Computer Science

(IJRRCS), 1, 2.

Nhung, N. P. & Phuong, T. M. (2007). An efficient method for filtering image-based spam e-mail.

Proceedings of The 12
th
 international conference on Computer analysis of images and patterns,

(CAIP’07). Springer-Verlag, Berlin, Heidelberg, 945–953.

Ono, K., Kawaishi, I., & Kamon, T. (2007). Trend of Botnet Activities. Proceedings of the 41
st
 Annual

IEEE International Carnahan Conference on Security Technology, (ICCST) ’07, 243–249.

Ramachandran, A., Feamster, N., & Vempala, S. (2007). Filtering spam with behavioral blacklisting.

Proceedings of the 14
th
 ACM Conference on Computer and Communications Security, (CCS) ’07.

ACM, New York, NY, USA, 342–351.

Sasaki, M. & Shinnou, H. (2005). Spam detection using text clustering. Proceedings of the

International Conference on Cyberworlds, 4(4), p. 319.

Thomas, K., Grier, C., Ma , J., Paxson , V., & Song, D. (2011). Design and evaluation of a real-time

url spam filtering service. Proceedings of the 2011 IEEE Symposium on Security and Privacy, (S&P

’11), IEEE, 447–462.

UAB-CIS. (2013). Department of CIS, University of Alabama at Birmingham, UAB Spam Data Mine.

Retrieved from http://www.cis.uab.edu/UABSpamDataMine.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on Mathematical Software

(TOMS), 11(1 Mar), 37–57.

Wei, C. (2010). Clustering Spam Domains and Hosts: Anti-Spam Forensics with Data Mining. Ph.D.

thesis, University of Alabama at Birmingham.

Wei, C., Sprague, A., & Warner, G. (2009). Clustering malware-generated spam emails with a novel

fuzzy string matching algorithm. Proceedings of the 2009 ACM symposium on Applied Computing,

(SAC ’09), ACM, New York, NY, USA, 889–890.

Ying, W., Kai, Y., & Zhong, Jian Z. (2010). Using DBSCAN clustering algorithm in spam identifying.

Proceedings of the 2
nd

 International Conference on Education Technology and Computer. (ICETC)

’10, 1, 398–402.

http://www.cis.uab.edu/UABSpamDataMine

ADFSL Conference on Digital Forensics, Security and Law, 2014

260

	Hot Zone Identification: Analyzing Effects of Data Sampling on SPAM Clustering
	Scholarly Commons Citation

	Hot Zone Identification: Analyzing Effects of Data Sampling on SPAM Clustering

