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ABSTRACT

We present 4.5 and 8 �m photometric observations of 18 cool white dwarfs obtained with the Spitzer Space
Telescope. Our observations demonstrate that four white dwarfs with TeA < 6000 K show slightly depressed mid-
infrared fluxes relative to white dwarf models. In addition, another white dwarf with a peculiar optical and near-
infrared spectral energy distribution (LHS 1126) is found to display significant flux deficits in Spitzer observations.
These mid-infrared flux deficits are not predicted by the current white dwarf models including collision-induced
absorption due to molecular hydrogen.We postulate that either the collision-induced absorption calculations are in-
complete or there are other unrecognized physical processes occurring in cool white dwarf atmospheres. The spectral
energy distribution of LHS 1126 surprisingly fits a Rayleigh-Jeans spectrum in the infrared, mimicking a hot white
dwarf with effective temperature well in excess of 105K. This implies that the source of this flux deficit is probably not
molecular absorption but some other process.

Subject headinggs: infrared: stars — stars: individual (LHS 1126, WD 0038�226) — white dwarfs

Online material: color figure

1. INTRODUCTION

The SloanDigital Sky Survey (Adelman-McCarthy et al. 2006)
has increased the number of known field cool white dwarfs from
tens of objects to thousands (Kilic et al. 2006; Harris et al. 2006).
In addition, Hubble Space Telescope observations of the globular
clusters M4 (Hansen et al. 2004) and ! Cen (Monelli et al. 2005)
resulted in the discovery of more than two thousandwhite dwarfs.
A careful analysis of these large data sets require a complete under-
standing of the structure and evolution of the white dwarf stars.
The main uncertainty in the white dwarf luminosity functions de-
rived from these data sets is caused by the inadequate description
of energy transport in white dwarf atmospheres, which affects
both the cooling rate and observational appearance of these stars
(Hansen 1998).

Cool white dwarfs have atmospheres dominated by hydrogen
or helium. Both hydrogen and helium are neutral below 5000K,
and the primary opacity source in H-rich cool (TeA � 5500 K)
white dwarf atmospheres is believed to be collision-induced
absorption (CIA; Frommhold 1993) of molecular hydrogen
(Bergeron et al. 1995; Hansen 1998; Saumon & Jacobson 1999).
H-rich white dwarfs are predicted to become redder as they cool
until the effects of CIA become significant below 5500 K. CIA
opacity is strongly wavelength dependent and is expected to pro-
duce broad absorption features in the near-infrared. This flux
deficiency can be seen in several stars, designated as ultracool
white dwarfs (Oppenheimer et al. 2001; Harris et al. 2001;
Gates et al. 2004; Farihi 2004, 2005).

There are two known opacity mechanisms in pure He-rich
white dwarf atmospheres: Rayleigh scattering and He� free-free

absorption. Rayleigh scattering is thought to be the dominant
opacity source, and therefore He-rich white dwarfs are expected
to have blackbody-like spectral energy distributions (SEDs). On
the other hand, Kowalski et al. (2005) argued that He� free-free
absorption may be 2–3 orders of magnitude more significant,
which would make it the dominant opacity source. In addition,
Kowalski & Saumon (2004) showed that the atmosphere of
He-rich white dwarfs with TeA < 10000K should be treated as a
dense fluid rather than an ideal gas and that refraction effects
become important. The density can be as high as 2 g cm�3 in
these atmospheres, and the index of refraction departs signifi-
cantly from unity. Kowalski et al. (2005) used their updated
models to match the observed sequence of cool white dwarfs
from Bergeron et al. (1997, hereafter BRL97) and suggested that
the coolest white dwarfs have mixed H/He atmospheres.

Bergeron & Leggett (2002) tried to fit the optical and near-
infrared photometry of two ultracool white dwarfs, LHS 3250
and SDSS 1337+00, and ruled out their models for pure hydrogen
atmospheric composition for these stars. They found that the
overall SEDs of these stars can be better fitted with mixed H/He
models, yet the peak of the SEDs near 60008 is predicted to be
too narrow. There are only threewhite dwarfswith significantCIA
that fit the current white dwarf models in the optical and near-
infrared.WD 0346+246 (Oppenheimer et al. 2001) and GD 392B
(Farihi 2004) both require low-gravity (log g � 7), mixed H/He
model atmosphere solutions. In addition, Bergeron et al. (1994)
found a 5400 K, log g ¼ 7:9, and log N (He) /N (H) ¼ 0:8 model
atmosphere solution for LHS 1126. BRL97 used newCIA opacity
calculations and suggested that the helium abundance in thiswhite
dwarf is log N (He) /N (H) ¼ 1:86.

The Spitzer Space Telescope (Werner et al. 2004) opened a
new window into the universe by enabling accurate mid-infrared
photometry of faint objects (microjansky-level sensitivity). In
order to understand the CIA opacity, and other unrecognized
sources of opacity in cool white dwarf atmospheres, we used
Spitzer to observe nearby, relatively bright, cool white dwarfs.
In this paper, we present our mid-infrared photometry for 18
cool white dwarfs including LHS 1126. Our observations are
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discussed in x 2, while an analysis of these data and results is
discussed in x 3.

2. TARGET SELECTION AND OBSERVATIONS

We selected our targets from the spectroscopically confirmed
white dwarf catalog (McCook & Sion 1999) and required that
they have KS � 15 mag as measured by the Two Micron All
Sky Survey (2MASS).5 Observations reported here were ob-
tained as part of the Spitzer Cycle 1 GO-Program 2313 (P.I.:
Marc Kuchner). We used the Infrared Array Camera (IRAC;
Fazio et al. 2004) to obtain 4.5 and 8 �m (effective wavelengths
of 4.493 and 7.782 �m) photometry of 18 cool white dwarfs
with 5000 K < TeA < 9000 K. An integration time of 30 s per
dither, with five dithers for each target, was used (150 s total
integration time).

We used the products of the Spitzer Science Center pipeline,
the Basic Calibrated Data (BCD) frames and the Post-BCD
frames (mosaics), for our analysis. We used the IRAF6 phot rou-
tine to perform aperture photometry on individual BCD frames.
Experience showed that the point response function for the IRAC
instrument is not well defined, and we obtained better results
with aperture photometry than with point-spread-function–fitting
photometry. In order to maximize the signal-to-noise ratio, we
used a 5 pixel aperture for bright, isolated objects and 2 or 3 pixel
apertures for faint objects or objects in crowded fields. We cor-
rected the resulting fluxes by the aperture correction factors deter-
mined by the IRAC team (see the IRAC Data Handbook). We
checked the results from 2, 3, and 5 pixel apertures for each ob-
ject and found them to be consistent within the errors.

Following the IRAC calibration procedure, corrections for
the location of the source in the array were taken into account

before averaging the fluxes of each of the five frames at each
wavelength.We also performed photometry on themosaic images
and found the results to be consistent with the photometry from
individual frames. We divided the estimated fluxes by the color
corrections for a Rayleigh-Jeans spectrum (Reach et al. 2005b).
These corrections are 1.0121 and 1.0339 for the 4.5 and 8 �m
bands, respectively. Based on the work of Reach et al. (2005b),
we expect that our IRAC photometry is calibrated to an accuracy
of 3%. The average fluxes measured from the Spitzer images
along with the 2MASS photometry, spectral types, and tempera-
tures for our objects are given in Table 1. The error bars were
estimated from the observed scatter in the five images (corre-
sponding to five dither positions) plus the 3% absolute cali-
bration error, added in quadrature.

3. RESULTS

Figure 1 shows the optical and infrared SEDs (triangles) of
the 18 coolwhite dwarfs (ordered inTeff) thatwe observedwith the
IRAC instrument.Most of our objects were observed byBergeron
et al. (2001; hereafter BLR01) and therefore have accurate BVRI
photometry and temperature determinations. For the four DA
white dwarfs not included in BLR01’s analysis (WD 0018�267,
WD 0141�675, WD 0839�327, and WD 1223�659), we used
the UBV photometry from the McCook & Sion (1999) catalog.
The near-infrared photometry comes from the 2MASS Point
Source Catalog.
The expected fluxes from synthetic photometry of white

dwarf model atmospheres (integrated over the filter bandpasses;
kindly made available to us by D. Saumon and D. Koester) are
shown as circles in Figure 1. These models include CIA opa-
cities for H-rich objects with TeA < 7000 K. We normalized the
model atmospheres to the observed SEDs in theV band (0.55�m),
with the exception of WD 1748+708 (G240-72). WD 1748+708
shows a 15% deep, 2000 8 wide absorption feature centered at
�5300 8 that affects its BVR photometry (BRL97). Hence, we
matched its model to the observations in the I band. Solid lines
represent the same models normalized to the observed SEDs

TABLE 1

Infrared Photometry of Cool White Dwarfs

Object Spectral Type

Teff
(K)a

FJ

(mJy)

FH

(mJy)

FK

(mJy)

F4.5 �m

(mJy)

F8 �m

(mJy)

WD 0009+501 .............. DAP 6540/6683 6.40 � 0.12 5.14 � 0.10 3.53 � 0.07 0.94 � 0.05 0.32 � 0.02

WD 0018�267 ............. DA . . ./5498 15.88 � 0.29 14.72 � 0.30 10.51 � 0.20 2.79 � 0.09 1.02 � 0.04

WD 0038�226 ............. C2H: 5400/. . . 7.34 � 0.14 4.14 � 0.09 2.13 � 0.05 0.48 � 0.02 0.19 � 0.03

WD 0101+048b............. DA 8080/8160 6.32 � 0.12 4.49 � 0.09 2.86 � 0.06 0.75 � 0.03 0.29 � 0.03

WD 0126+101b............. DA 8500/8700 3.89 � 0.07 2.69 � 0.06 1.73 � 0.04 0.45 � 0.02 0.16 � 0.07

WD 0141�675 ............. DA . . ./6469 11.37 � 0.20 8.85 � 0.18 6.20 � 0.12 1.64 � 0.06 0.59 � 0.03

WD 0552�041 ............. DZ 5060/5016 9.63 � 0.18 7.35 � 0.15 5.17 � 0.10 1.80 � 0.06 0.72 � 0.07

WD 0553+053 .............. DAP 5790/5853 10.73 � 0.19 8.36 � 0.17 5.79 � 0.11 1.64 � 0.05 0.51 � 0.04

WD 0752�676 ............. DA 5730/5774 12.94 � 0.23 10.47 � 0.21 7.57 � 0.15 2.06 � 0.08 0.77 � 0.04

WD 0839�327b ............ DA . . ./8978 37.26 � 0.68 24.81 � 0.51 16.04 � 0.32 4.01 � 0.14 1.45 � 0.06

WD 0912+536 .............. DCP 7160/7273 7.57 � 0.14 5.32 � 0.11 3.72 � 0.07 1.10 � 0.04 0.41 � 0.03

WD 1055�072 ............. DC 7420/7252 4.95 � 0.09 3.45 � 0.07 2.69 � 0.06 0.64 � 0.02 0.25 � 0.03

WD 1121+216c ............. DA 7490/7540 5.93 � 0.11 4.39 � 0.09 2.91 � 0.06 0.81 � 0.03 0.34 � . . .

WD 1223�659 ............. DA . . ./7793 7.39 � 0.14 5.10 � 0.12 3.20 � 0.07 0.90 � 0.04 0.36 � 0.07

WD 1748+708 .............. DXP 5590/5964 13.15 � 0.24 9.98 � 0.20 6.62 � 0.13 1.89 � 0.06 0.70 � 0.04

WD 1756+827 .............. DA 7270/7285 5.61 � 0.10 4.18 � 0.09 2.83 � 0.06 0.75 � 0.02 0.26 � 0.04

WD 1953�011.............. DAP 7920/7851 9.43 � 0.17 6.29 � 0.13 4.15 � 0.09 1.13 � 0.04 0.41 � 0.02

WD 2140+207 .............. DQ 8860/9407 10.24 � 0.18 6.90 � 0.14 4.52 � 0.09 1.19 � 0.05 0.41 � 0.03

a Estimated Teff from BLR01 vs. this study.
b Suspected or known double degenerate.
c The 8 �m photometry of WD 1121+216 is affected by a nearby star.

5 Vizier Online Data Catalog, 2246 (R. M. Cutri et al., 2003)
6 IRAF is distributed by the National Optical Astronomy Observatory,

which is operated by the Association of Universities for Research in Astronomy
(AURA), Inc., under cooperative agreement with the National Science Foun-
dation (NSF).
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in the J band. Changing the normalization of the models to the
J band does not change our results significantly since the models
and observations agree fairly well between the V and J bands.

In order to derive new Teff values for our objects, we used pure
H and pure He white dwarf models ( log g ¼ 8) and employed a
�2 minimization technique to fit V, RI (if available), JHK, and
4.5 and 8 �m photometry. The Vand R photometry was omitted
in our analysis ofWD 1748+708 because of the strong absorption
feature observed in these filters. Our estimated Teff values for
the eight DAwhite dwarfs that are in common with the BLR01
sample are on average slightly hotter (+66 � 81 K) than the
BLR01 temperatures, although they are consistent within the
errors.

3.1. White Dwarfs with TeA < 7000 K

A comparison of observed versus expected SEDs from white
dwarf model atmospheres shows that all of the cool white dwarfs
with TeA < 6000 K (except the DZ white dwarf WD 0552�041)
show slightly depressed mid-infrared fluxes relative to white
dwarf models. In addition, WD 0038�226 (LHS 1126) dis-
plays significant flux deficits (more than 5 � in each band) in the
mid-infrared. There are also two more stars with 6000 K <
TeA < 7000 K (WD 0009+501 and WD 0141�675) that dis-
play �1 � flux deficits. Figures 2 and 3 show the observed flux

ratios in different filters for the white dwarfs in our sample. H- and
He-rich white dwarfs are shown as filled and open circles, re-
spectively.White dwarfs with uncertain spectral types (LHS 1126
and WD 1748+708) are shown as triangles. Cooling tracks for
H- (solid line) and He-rich (dashed line) white dwarfs, along
with a blackbody cooling track (dotted line) are also shown. Fig-
ure 2 shows that H-rich white dwarfs with TeA < 7000 K emit
less flux at 8 �m than predicted from the white dwarf models. In
addition, their infrared colors (Fig. 3) require most of them to be
warmer than 6500 K; they mimic warmer/bluer objects in the
infrared.

LHS 1126 shows strong molecular features in the optical that
are thought to be due to C2H. These absorption features are
blueshifted by about 150 8 compared to the C2 Swan bands.
Several investigators tried to explain these features in terms of
either pressure shifts in a He-dominated atmosphere or magnetic
displacements of the Swan bands (see Schmidt et al. 1995).
However, Bergeron et al. (1994) and Schmidt et al. (1995)
showed that both scenarios failed for this star. In addition, Schmidt
et al. (1995) suggested that C2H is the most probable molecule
to form under the conditions in LHS 1126. WD 1748+708 shows
a very broad feature in the optical (see the discussion above) and
has a�200MGmagnetic field (Angel 1977). BLR01 suggested
that this broad feature may be explained as a C2H molecular

Fig. 1.—SEDs of cool white dwarfs observed with the Spitzer Space Telescope. The observed fluxes are shown as triangles with error bars, whereas the expected flux
distributions from synthetic photometry of white dwarf models (kindly made available to us by D. Saumon andD. Koester) are shown as circles. Solid lines represent the
same models normalized to the observed SEDs in the J band. The object name, atmospheric composition, Teff, and spectral type are given in each panel.

SPITZER OBSERVATIONS OF COOL WDs 1053No. 2, 2006



Fig. 1.—Continued

Fig. 2.—Ratio of observed fluxes in V, J, and 8 �m bands for DA ( filled
circles) and DB (open circles) white dwarfs. White dwarfs with uncertain
spectral types are shown as triangles. Expected cooling tracks for DA (5000–
60000 K, solid line) and DB white dwarfs (5000–8000 K, dashed line) are also
shown. A dotted line shows the expected sequence for a blackbody (5000–105 K).

Fig. 3.—Ratio of observed fluxes in J,H, and 4.5 �m bands. The symbols are
the same as in Fig. 2. Note that the discontinuity at 7000 K is due to transition
from Koester models to Saumon models.



feature broadened by the strong magnetic field. Hence, all of the
stars with mid-infrared flux deficits have either H-rich atmo-
spheres or show trace amounts of hydrogen.

The coolest white dwarf in our sample is a DZ white dwarf,
WD 0552�041, with an estimated TeA ¼ 5016K. The observed
SED fits the model predictions fairly well for this star with the
exception of the B photometry, which is probably affected by
the metals in the photosphere (Wolff et al. 2002). The origin of
metals in white dwarf atmospheres has been a mystery for a long
time (Zuckerman et al. 2003). The discovery of debris disks
around the white dwarfs G29-38 (Zuckerman & Becklin 1987;
Reach et al. 2005a) and GD 362 (Becklin et al. 2005; Kilic et al.
2005) suggests that accretion from a debris disk may explain the
observed metal abundances in DAZ white dwarfs. Nevertheless,
we do not see any mid-infrared excess around the cool DZ white
dwarf WD 0552�041.

3.2. White Dwarfs with TeA > 7000 K

The remaining 10 objects with TeA > 7000 K do not show
any excess or deficit in their flux distributions. There are three
known or suspected double degenerate stars in our sample (WD
0101+048, WD 0126+101, and WD 0839�327; Maxted et al.
2000).We do not see any evidence of a composite SED for these
objects; if they are equal-mass binaries, the primary and sec-
ondary stars must have similar temperatures. Limits on possible
substellar companions or debris disks around these stars, as well
as �100 other white dwarfs, will be discussed in a future pub-
lication (T. von Hippel et al. 2006, in preparation). One caveat
seen in Figure 1 is that WD 1121+216 is near a brighter source,
and even a 2 pixel aperture on the white dwarf is contaminated
by the light from the nearby star. Hence, we provide only an
upper limit for 8 �m photometry of this object.

WD 2140+207 is a DQ star showing molecular C2 Swan bands
in the optical. The presence of carbon in cool He white dwarf
atmospheres is thought to be the result of convective dredge-up
(Pelletier et al. 1986). Figure 1 shows that the SED of WD
2140+207 fits a blackbody distribution reasonably well. The
absence of metal lines in the optical spectrum of this star, plus
the absence of excess infrared radiation, provide further evidence
that the carbon was not accreted from the interstellar medium or
a circumstellar debris disk. One caveat between our analysis and
BLR01’s analysis is that using pure He model atmospheres,
BLR01 estimated TeA ¼ 8860 � 300 K for this star. Fitting
VRIJHK and 4.5 and 8 �m photometry of this star with a black-
body, we estimate the temperature of this star to be 9407K.None
of the other stars in our sample that are in commonwith the BLR01
sample show this discrepancy. Dufour et al. (2005) reanalyzed
the DQ stars in the BLR01 sample and demonstrated that the in-
clusion of carbon in model atmosphere calculations reduces
the estimated effective temperatures and surface gravities for
DQ white dwarfs. They obtained an even lower Teff measure-
ment (8200 � 250 K) for WD 2140+207.

4. DISCUSSION

Our Spitzer observations showed that all H-rich white dwarfs
with TeA < 7000 K show slight mid-infrared flux deficits. Having
several stars with small deficits makes these deficits significant.
Moreover, LHS 1126 shows significantly depressed mid-infrared
fluxes relative to white dwarf models. J. H. Debes et al. (2005,
private communication) have also found 10%–20% flux deficits
(�3 � significance) at 4.5, 5.6, and 8 �m in two DAZ white
dwarfs with TeA ¼ 6820 and 7310 K. Combining the facts that
WD 0552�041 (with a pure He atmosphere) does not show a
clear flux deficit, and all H-rich white dwarfs cooler than 7000 K

do exhibit mid-infrared flux deficits, LHS 1126 and WD
1748+708 are likely to have mixed H/He atmospheres. This is
also consistent with Bergeron et al.’s (1994) and Wolff et al.’s
(2002) analysis. However, one question remains to be answered:
can these flux deficits be explained by CIA?

The atmospheres of M, L, and T dwarfs are also expected to
exhibit CIA (Borysow et al. 1997). Roellig et al. (2004) ob-
tained mid-infrared spectroscopy of M, L, and T dwarfs in the
5–15 �m range. Their Figure 2 shows that the observed spectra
are in good agreement with the model atmosphere calculations,
with only a few minor deviations. Hence, CIA calculations for
low-density atmospheres seem to be accurate.

The near-infrared (1–2 �m) flux deficit in LHS 1126 was
discovered earlier by Wickramasinghe et al. (1982). Bergeron
et al. (1994) and BRL97 explained this deficit as CIA by mole-
cular hydrogen due to collisions with helium and found the H/He
ratio to be �0.01. Wolff et al. (2002) used Faint Object Spectro-
graph data plus optical and infrared photometry of LHS 1126 to
model this star’s SED in the 0.2–2.2 �m range. They found that
the hydrogen abundance reported byBergeron et al. (1994)would
result in an extremely strong Ly� absorption and that the SED is
best fitted with an abundance ratio of H/He ¼ 3 ; 10�6. Wolff
et al. (2002) and Bergeron et al. (1994) models do not give a
consistent picture for the H/He ratio, and neither model is ad-
equate. We revisit this problem by extending our wavelength
coverage to 8 �m. Figure 4 shows the ultraviolet spectrum
(kindly made available to us by D. Koester) and optical and
infrared photometry of LHS 1126 along with a 5400 K black-
body (dotted line).Mixed atmospherewhite dwarfmodels (kindly
made available to us by D. Saumon) with TeA ¼ 5400 K,
log g ¼ 7:9, and log N (He)/N (H) ¼ 1:5 (lower solid line) and
log N (He)/N (H) ¼ 1 (upper solid line) are also shown. These
white dwarf models include CIA opacities but not Ly� ab-
sorption; therefore, they cannot be used to match the ultraviolet
data. If we just use the optical and near-infrared photometry (as
in Bergeron et al. 1994), we could fit the observations with a
log N (He)/N (H) ¼ 1 1:5 model. However, these models can-
not explain the observed flux deficits in the Spitzer observations.
Bergeron et al. (1995) and Hansen (1998) models cannot explain
these flux deficits either (B. M. S. Hansen & P. Bergeron 2005,
private communication). CIA is expected to create wiggles and

Fig. 4.—SED of LHS 1126, along with a 5400 K blackbody (dotted line).
White dwarf models with TeA ¼ 5400 K, log g ¼ 7:9, and logN (He)/N (H) ¼
1:5 (lower solid line) and logN (He)/N (H) ¼ 1 (upper solid line) are also shown.
The dashed line shows a power lawwith� ¼ 2. [See the electronic edition of the
Journal for a color version of this figure.]
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bumps in the spectrum up to 3 �m, and the SEDs of cool white
dwarfs are expected to return to normal in themid-infrared (Fig. 4;
see also Fig. 6 of Jorgensen et al. 2000).

Figure 4 also shows a power-law distribution with � ¼ 2,
i.e., a Rayleigh-Jeans spectrum (dashed line). The infrared SED
of LHS 1126 follows a Rayleigh-Jeans spectrum fairly well. It is
striking to note that we can fit the ultraviolet and optical part of
the SED with a 5400 K blackbody, and the infrared part of the
SED with TeA > 105 K. The power law is a reasonable, but not
a perfect, fit to the infrared SED of this object, and photometry
in the other IRAC channels or spectroscopy with Spitzer may
reveal more structure in the mid-infrared, but the current data
suggest the following:

1. The CIA opacity calculations are incomplete, and there is a
significant, unexplained flux deficit in the mid-infrared. As the
densities in white dwarf atmospheres approach a significant
fraction of the liquid state densities, molecular absorption (H2-H2,
H2-He), emission, and light scattering are expected to become
increasingly important. Current CIA opacity calculations in
dense media may be incomplete in certain wavelength regimes,
for example, the rotovibrational band ofH2 CIAmay be enhanced
compared to predictions (L. Frommhold & D. Saumon 2005,
private communication). On the other hand, the featureless
spectra of the ultracool white dwarfs (Gates et al. 2004), and the
reasonably good fit of a Rayleigh-Jeans distribution to the LHS
1126 SED in the infrared, suggest another mechanism to ex-
plain the mid-infrared flux deficits observed in white dwarfs.
CIA is expected to disappear with the dissociation of molecules
when Teff increases past 5500 K. Therefore, white dwarfs with
TeA > 6000 K that show infrared flux deficits could not be ex-
plained by changing the CIA opacities.

2. The mid-infrared flux deficits are caused by some as yet
unrecognized physical process(es). The problemmay be caused
by an unknown or poorly understood absorption process, or it
may be the result of a different source function operating in
these dense atmospheres. H� bound-free absorption is thought

to be the most important source of opacity in warmer DAwhite
dwarfs. More work is required to test if possible changes in this
absorption could help explain themid-infrared flux deficits. The
input physics used in white dwarf model atmospheres is mostly
based on the ideal gas approximation. The extreme conditions
in white dwarf atmospheres require a new look at dense medium
effects on the equation of state, chemistry, opacities, and radi-
ative transfer. Refractive opacities, presence of heavy elements,
or formation of trace species and many other factors can change
the opacity sources in white dwarf atmospheres (see Kowalski
[2006] for a detailed discussion).

Near/mid-infrared photometry and spectroscopy of ultracool
white dwarfs and the so-called C2H stars will be useful to test
these ideas. At this time, we only report and do not understand
the observed mid-infrared flux deficits, but this mystery needs
to be resolved before we can use the cool white dwarfs as
accurate chronometers to find the age of Galactic populations.

We would like to thank Didier Saumon, Lothar Frommhold,
Jason Kalirai, Brad Hansen, and Pierre Bergeron for helpful
discussions, and our referee, Jay Farihi, for helpful suggestions
that greatly improved the article. This work is based in part on
observations made with the Spitzer Space Telescope, which is
operated by the Jet Propulsion Laboratory (JPL), California
Institute of Technology under NASA contract 1407. Support
for this work was provided by NASA through award project
NBR: 1269551 issued by JPL/California Institute of Technol-
ogy to the University of Texas. This publication makes use of
data products from the 2MASS, which is a joint project of the
University of Massachusetts and the Infrared Processing and
Analysis Center/California Institute of Technology, funded by
NASA and the NSF. This material is based upon work sup-
ported by NASA under grant NAG5-13070 issued through the
Office of Space Science.

REFERENCES

Adelman-McCarthy, J. K., et al. 2006, ApJS, 162, 38
Angel, J. R. P. 1977, ApJ, 216, 1
Becklin, E. E., et al. 2005, ApJ, 632, L119
Bergeron, P., & Leggett, S. K. 2002, ApJ, 580, 1070
Bergeron, P., Leggett, S. K., & Ruiz, M. T. 2001, ApJS, 133, 413 (BLR01)
Bergeron, P., Ruiz, M. T., & Leggett, S. K. 1997, ApJS, 108, 339 (BRL97)
Bergeron, P., et al. 1994, ApJ, 423, 456
———. 1995, ApJ, 443, 764
Borysow, A., et al. 1997, A&A, 324, 185
Dufour, P., Bergeron, P., & Fontaine, G. 2005, ApJ, 627, 404
Farihi, J. 2004, ApJ, 610, 1013
———. 2005, AJ, 129, 2382
Fazio, G. G., et al. 2004, ApJS, 154, 10
Frommhold, L. 1993, Collision-Induced Absorption in Gases (Cambridge:
Cambridge Univ. Press)

Gates, E., et al. 2004, ApJ, 612, L129
Hansen, B. M. S. 1998, Nature, 394, 860
Hansen, B. M. S., et al. 2004, ApJS, 155, 551
Harris, H. C., et al. 2001, ApJ, 549, L109
———. 2006, AJ, 131, 571
Jorgensen, U. G., Hammer, D., Borysow, A., & Falkesgaard, J. 2000, A&A,
361, 283

Kilic, M., von Hippel, T., Leggett, S. K., & Winget, D. E. 2005, ApJ, 632, L115
Kilic, M., et al. 2006, AJ, 131, 582
Kowalski, P. M. 2006, ApJ, in press
Kowalski, P. M., & Saumon, D. 2004, ApJ, 607, 970
Kowalski, P. M., Saumon, D., & Mazevet, S. 2005, in ASP Conf. Ser. 334, 14th
European Workshop on White Dwarfs, ed. D. Koester & S. Moehler (San
Francisco: ASP), 203

Maxted, P. F. L., Marsh, T. R., & Moran, C. K. J. 2000, MNRAS, 319, 305
McCook, G. P., & Sion, E. M. 1999, ApJS, 121, 1
Monelli, M., et al. 2005, ApJ, 621, L117
Oppenheimer, B. R., et al. 2001, ApJ, 550, 448
Pelletier, C., et al. 1986, ApJ, 307, 242
Reach, W. T., et al. 2005a, ApJ, 635, L161
———. 2005b, PASP, 117, 978
Roellig, T. L., et al. 2004, ApJS, 154, 418
Saumon, D., & Jacobson, S. B. 1999, ApJ, 511, L107
Schmidt, G. D., Bergeron, P., & Fegley, B., Jr. 1995, ApJ, 443, 274
Werner, M. W., et al. 2004, ApJS, 154, 1
Wickramasinghe, D. T., Allen, D. A., & Bessel, M. S. 1982, MNRAS, 198, 473
Wolff, B., Koester, D., & Liebert, J. 2002, A&A, 385, 995
Zuckerman, B., & Becklin, E. E. 1987, Nature, 300, 138
Zuckerman, B., Koester, D., Reid, I. N., & Hunsch, M. 2003, ApJ, 596, 477

KILIC ET AL.1056


	The Mystery Deepens: Spitzer Observations of Cool White Dwarfs
	Scholarly Commons Citation

	tmp.1473950730.pdf.ozuCe

