
Annual ADFSL Conference on Digital Forensics, Security and Law 2015 
Proceedings 

May 19th, 11:45 AM 

An Empirical Comparison of Widely Adopted Hash Functions in An Empirical Comparison of Widely Adopted Hash Functions in 

Digital Forensics: Does the Programming Language and Operating Digital Forensics: Does the Programming Language and Operating 

System Make a Difference? System Make a Difference? 

Satyendra Gurjar 
Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS 
Department, University of New Haven, agurj1@newhaven.edu 

Ibrahim Baggili 
Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS 
Department, University of New Haven 

Frank Breitinger 
Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS 
Department, University of New Haven 

Alice Fischer 
Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS 
Department, University of New Haven, AFischer@newhaven.edu 

(c)ADFSL 

Follow this and additional works at: https://commons.erau.edu/adfsl 

 Part of the Aviation Safety and Security Commons, Computer Law Commons, Defense and Security 

Studies Commons, Forensic Science and Technology Commons, Information Security Commons, 

National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, and 

the Social Control, Law, Crime, and Deviance Commons 

Scholarly Commons Citation Scholarly Commons Citation 
Gurjar, Satyendra; Baggili, Ibrahim; Breitinger, Frank; and Fischer, Alice, "An Empirical Comparison of 
Widely Adopted Hash Functions in Digital Forensics: Does the Programming Language and Operating 
System Make a Difference?" (2015). Annual ADFSL Conference on Digital Forensics, Security and Law. 6. 
https://commons.erau.edu/adfsl/2015/tuesday/6 

This Peer Reviewed Paper is brought to you for free and 
open access by the Conferences at Scholarly Commons. 
It has been accepted for inclusion in Annual ADFSL 
Conference on Digital Forensics, Security and Law by an 
authorized administrator of Scholarly Commons. For 
more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2015
https://commons.erau.edu/adfsl/2015
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1320?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1114?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/429?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2015/tuesday/6?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/


An Empirical Comparison of Widely Adopted Hash Functions ... 2015 CDFSL Proceedings

AN EMPIRICAL COMPARISON OF WIDELY
ADOPTED HASH FUNCTIONS IN DIGITAL
FORENSICS: DOES THE PROGRAMMING

LANGUAGE AND OPERATING SYSTEM MAKE A
DIFFERENCE?

Satyendra Gurjar, Ibrahim Baggili, Frank Breitinger and Alice Fischer
Cyber Forensics Research and Education Group (UNHcFREG)

Tagliatela College of Engineering, ECECS Department
University of New Haven, West Haven CT, 06511

{agurj1, ibaggili, fbreitinger, afischer}@newhaven.edu

ABSTRACT
Hash functions are widespread in computer sciences and have a wide range of applications such as
ensuring integrity in cryptographic protocols, structuring database entries (hash tables) or identify-
ing known files in forensic investigations. Besides their cryptographic requirements, a fundamental
property of hash functions is efficient and easy computation which is especially important in digital
forensics due to the large amount of data that needs to be processed when working on cases. In
this paper, we correlate the runtime efficiency of common hashing algorithms (MD5, SHA-family)
and their implementation. Our empirical comparison focuses on C-OpenSSL, Python, Ruby, Java
on Windows and Linux and C♯ and WinCrypto API on Windows. The purpose of this paper is
to recommend appropriate programming languages and libraries for coding tools that include in-
tensive hashing processes. In each programming language, we compute the MD5, SHA-1, SHA-256
and SHA-512 digest on datasets from 2MB to 1GB. For each language, algorithm and data, we
perform multiple runs and compute the average elapsed time. In our experiment, we observed
that OpenSSL and languages utilizing OpenSSL (Python and Ruby) perform better across all the
hashing algorithms and data sizes on Windows and Linux. However, on Windows, performance of
Java (Oracle JDK) and C WinCrypto is comparable to OpenSSL and better for SHA-512.

Keywords: Digital forensics, hashing, micro benchmarking, security, tool building.

1. INTRODUCTION

Cryptographic hash functions are critical to dig-
ital forensic science (DFS). Almost all tools
written for forensic acquisition and analysis
compute hash values throughout the digital
forensic process to ensure the integrity of seized
devices and data. For instance, to ensure the
integrity of digital evidence in court, a forensic
examiner traditionally computes the hash digest
of the entire disk image that is then securely

stored. When it becomes necessary to verify
that a disk has remained intact without alter-
ation after being acquired, a new hash digest
is computed on the entire disk and compared
against the stored hash digest. If both hashes
coincide, we conclude that no alteration to the
original drive took place during the acquisition
process.
On the other hand, the availability and use

of electronic devices has dramatically increased.
Traditional books, photos, letters and records

© 2015 ADFSL Page 57



2015 CDFSL Proceedings An Empirical Comparison of Widely Adopted Hash Functions ...

have become e-books, digital photos, e-mail and
music files. This transformation has also influ-
enced the capacity of storage media, increasing
from a few megabytes to terabytes. According
to the Federal Bureau of Investigation (FBI)’s
Regional Computer Forensics Laboratory an-
nual report in 2012 (Regional Computer Foren-
sics Laboratory. Annual report, 2012), there
was a 40% increase in amount of data analyzed
in investigations. Due to the amount of data to
be processed, runtime efficiency becomes an im-
portant and timely issue.To that end, automatic
data filtration has become critical for speeding
up investigations.
A common procedure known as file filtering is

in use by today’s digital forensic scientists and
examiners, which requires hash functions. The
procedure is quite simple:

1. compute the hashes for all files on a target
device and

2. compare them to a reference database.

Depending on the underlying database, files
are either filtered out (e.g., files of the oper-
ating system) or filtered in (e.g., known illicit
content). A commonly used database for ‘filter-
ing out’ data is the National Software Reference
Library Reference Data Set (RDS) (RDS Hash-
sets, 2014) maintained by National Institute for
Standards and Technologies (NIST).
Traditional hash functions can only match

files exactly for every single bit. Forensic ex-
aminers frequently face the situation when they
need to know if files are similar. For example,
if two files are a different version of the same
software package or system files or if the files
partially match an image or video. Research
has found utility for hash functions for find-
ing similar files. Kornblum’s Context Triggered
Piecewise Hashing (CTPH) (Kornblum, 2006)
and Roussev’s similarity digest hashing (sdhash,
(Roussev, 2010a)) have presented these ideas.
These algorithms provide a probabilistic answer
for similarities of two or more files. Although
these algorithms are designed to detect similar-
ity, they make use of traditional / cryptographic
hash functions.

A common field of the application for hash
functions is in digital forensics. Since this area
has to deal with large amounts of data, the ease
of computation (runtime efficiency) of hashing
algorithms is very important.
In this paper we compare runtime efficiency of

hashing algorithm implementations in multiple
programming languages across different operat-
ing systems. Namely, we compare MD5, SHA-1,
SHA-256 and SHA-512 in C, C♯, Java, Python
and Ruby on both Windows and Linux. While
the DFS community has performed extensive re-
search on hash function applications, little to no
experimental work has been published with re-
gards to the variance in the runtime efficiency
of hash functions across different programming
languages and libraries. This is of critical im-
portance and may help scientists and practition-
ers alike when choosing a particular program-
ming language if their forensic applications are
hash function intensive.

2. RELATED WORK
Hash functions (e.g., SHA-1 (Gallagher & Di-
rector, 1995)) have a long tradition and are ap-
plied in various fields of computer science like
cryptography (Menezes, van Oorschot, & Van-
stone, 2001), databases (Sumathi & Esakkira-
jan, 2007, Sec. 9.6) or digital forensics (Altheide
& Carvey, 2011, p.56ff). Garfinkel (Garfinkel,
Nelson, White, & Roussev, 2010) also discussed
small block forensics using cryptographic hash
functions by calculating hashes on individual
blocks of data rather than on entire files. Tech-
niques described in his paper can be applied to
data acquired from memory images as well. A
hash based carving tool frag_find (frag_find,
2013) is used to find a MASTER file or frag-
ments in a disk image using small block hash-
ing. It computes hashes of small blocks (512
bytes) of MASTER files then compares it with
disk image blocks in each sector.
In contrast to cryptographic hash functions,

bytewise approximate matching do not have
a long history and probably had its break-
through in 2006 with an algorithm called con-
text triggered piecewise hashing (CTPH). Korn-

Page 58 © 2015 ADFSL



An Empirical Comparison of Widely Adopted Hash Functions ... 2015 CDFSL Proceedings

blum (Kornblum, 2006) used this algorithm to
identify similar files. The idea of CTPH is based
on spamsum (spamsum, 2002-2009), a spam de-
tection algorithm by Tridgell (Tridgell, 1999).
The basic idea is behind it is simple: split an
input into chunks, hash each chunk indepen-
dently and concatenate the chunk hashes to a
final similarity digest (a.k.a. fingerprint).
The sdhash tool1 was introduced four years

later (Roussev, 2010b) in an effort to address
some of the shortcomings of ssdeep. Instead of
dividing an input into chunks, the sdhash al-
gorithm picks statistically improbable features
to represent each object. A feature in this con-
text is a byte sequence of 64 bytes, which is
hashed using SHA-1 and inserted into a Bloom
filter (Bloom, 1970). The similarity digest of
the data object is a sequence of 256-byte Bloom
filters, each of which represents approximately
10KB of the original data.
Besides these two very prominent approaches,

more tools published over the last decade
mrsh-v2 (Breitinger & Baier, 2012) seem to be
promising since they use concepts from sdhash
and ssdeep. In addition to the tools, Bre-
itinger (Breitinger, Stivaktakis, & Baier, 2013)
presented a testing framework entitled FRame-
work to test Algorithms of Similarity Hashing
(FRASH) which is used to compare these al-
gorithms – efficiency was one of the important
metrics.

Saleem, Popov and Dahman (Saleem, Popov,
& Dahman, 2011) presented a comparison of
multiple security mechanisms including a hash-
ing algorithm in accordance with Information
Technology Security Evaluation Criteria (IT-
SEC). One of the criteria chosen in their anal-
ysis most relevant to this research is compu-
tational efficiency. In their experiments, they
concluded that SHA-256 had the slowest aver-
age time. They also referred to a collision at-
tack on MD5 (Wang & Yu, 2005) and SHA-1
(Wang, Yin, & Yu, 2005) and concluded SHA-
256 and SHA-512 show more Strength of Mech-
anism compared to MD5 and SHA-1.

1http://sdhash.org last visited 2014-09-29.

3. METHODOLOGY
In this section, we first explain our experimental
environment in Sec. 3.1 followed by an explana-
tion of how we present our results in Sec. 3.2.

3.1 Experimental environment
In order to compute runtime, we generated
files of multiple sizes from 2MB to 1GB
using Python’s os.urandom function. On
UNIX-like systems, this Python function uses
/dev/urandom and on Windows it uses Crypt-
GenRandom to generate random binary data.
In our experiments, the programs written in the
respective languages take four command line ar-
guments:

Warmup-count is the number of times to run
a hash function before we start collecting
elapsed time. This is to help programming
languages like Java that have a Just-In-
Time compiler to start, compile, and op-
timize code before we start collecting mea-
surements.

repeat-count is the number of times we are
going to run the hash function on the same
data to collect the elapsed time. Elapsed
time is collected for computing the digest
only. The time to load the file from disk
into the buffer is not included. For this
experiment, we set repeat − count = 10 for
each hashing algorithm and data file.

algorithm is the name of the hashing algo-
rithm to be used for a run. We use MD5,
SHA-1, SHA-256 and SHA-512 in our ex-
periments.

data-file is the name of the data-file whose
hash digest is to be computed. As we have
data files of multiple sizes, each run com-
putes the hash digest on every single data
file.

Each program prints the elapsed time, repeat
index and computed digest (for the verification
of correctness of the program).
Table 1 shows the used hardware for our ex-

periments where Table 2 describes the hashing

© 2015 ADFSL Page 59

http://sdhash.org


2015 CDFSL Proceedings An Empirical Comparison of Widely Adopted Hash Functions ...

algorithms. On Linux we tested the hashing al-
gorithms using Java, Ruby, Python and C (with
OpenSSL). For Windows we tested using Java,
Ruby, Python, C♯ and C (with two libraries
OpenSSL and WinCrypto). The source code of
the experiment is available on github: https://
github.com/sgurjar/hashfun-benchmark.

3.2 Data analysis and results
For each language, hashing algorithm and data
size, we recorded the elapsed time of the n = 10
runs. Next, we computed the mean values for
all runs. In addition, we wanted to identify the
best curve/graph that represents this set of data
points. More precisely, we wanted to identify
the best coefficients of the linear equation y =
a+bx where we decided to use the Least Squares
Mean2 (LSM). According to LSM, we identified
the coefficients as follows:

b = (n ∗
∑n

i=1 xi ∗ yi) − ((
∑n

i=1 xi) ∗ (
∑n

i=1 yi))
(n ∗

∑n
i=1 xi ∗ xi) − (

∑n
i=1 xi)2

(1)

a = (
∑n

i=1 yi) − (b ∗
∑n

i=1 xi)
n

(2)

where x is an independent variable represent-
ing the size of the data we are computing the
hash digest for, and y is the dependent vari-
able representing the average elapsed time for
a given language, algorithm and data size. b is
called slope of the line and is a measurement
of how well the implementation of an algorithm
will scale in a programming language, i.e. the
higher the slope the slower the implementation
for large amounts of data.

4. ASSESSMENT AND
EXPERIMENTAL RESULTS

We divided this section into five subsections.
The first four subsections are named according
to the tested algorithms MD5, SHA-1, SHA-256
and SHA-512 and present the detailed results of
our experiments. The last section visually sum-
marizes our results and discusses critical find-
ings.

2http://en.wikipedia.org/wiki/Least_squares
last visited 2014-09-29

Data Avg. elapsed time in milli-Sec.
in MB C Java Python Ruby

2 5 11 4 5
4 12 22 11 10
8 23 44 21 21
16 44 89 42 44
32 87 178 87 88
64 177 356 175 176

128 353 712 353 352
256 705 1420 704 706
512 1409 2848 1413 1407
640 1761 3523 1763 1765
768 2114 4252 2116 2119
896 2465 4978 2470 2470
1024 2820 5716 2823 2824

Table 3: Average elapsed time for MD5 on a
Linux system.

To present our results, we decided to have
three tables per algorithm:

1. The first table shows the average elapsed
time in milliseconds for Linux dependent
on the file size.

2. The second table shows the coefficients a
and b using equations 1 and 2.

3. The third table shows the average elapsed
time in milliseconds for Windows depen-
dent on the file size.

The column header C indicates that C-
OpenSSL is used while C (win) stands for the
WinCrypto library.

4.1 MD5
The detailed results for the MD5 algorithms are
shown in Table 3, 4 and 5.
As indicated by Table 3, languages using

OpenSSL (C, Python and Ruby) showed sim-
ilar performance on Linux, where Java was ap-
proximately half as fast. On Windows, Table
5, C-OpenSSL and Ruby were the fastest and
have perform similar than on the Linux system.
Python is faster than C♯, C WinCrypto, and
Java, but slower than when ran on Linux. C♯
and WinCrypto showed similar performance.

Page 60 © 2015 ADFSL

https://github.com/sgurjar/hashfun-benchmark
https://github.com/sgurjar/hashfun-benchmark
http://en.wikipedia.org/wiki/Least_squares


An Empirical Comparison of Widely Adopted Hash Functions ... 2015 CDFSL Proceedings

Part Specification
RAM 4GB
Processor Intel® Core2™ Duo Processor E6400 (2M Cache, 2.13 GHz, 1066 MHz FSB)
Unix Ubuntu 12.04.1 LTS, 32 bit
Win Windows Server 2012 R2, 64-bit

Table 1: Test Environment

Language Version Module
Linux:
Java 1.7.0_51 OpenJDK java.security.MessageDigest
Ruby 2.1.0 openssl
Python 2.7.3 hashlib
C GCC 4.6.3 -Ofast OpenSSL 1.0.1
Windows:
Java 1.7.0_51 SunJDK java.security.MessageDigest
Ruby 2.0.0 openssl
Python 2.7.6 hashlib
C♯ MS C♯ Compiler ver 12 System.Security.Cryptography
C MSVC C/C++ Compiler ver

18
WinCrypto and openssl-1.0.1f

Table 2: Runtime Environment Windows

Language a b
Linux:
C 0.209 2.752
Python −0.575 2.758
Ruby −0.488 2.758
Java −1.642 5.558
Windows:
C −0.276 2.751
C (win) 0.523 3.736
C♯ −0.367 3.669
Python −0.422 3.374
Ruby −0.206 2.647
Java 3.445 5.497

Table 4: MD5 a and b coefficients

Again, Java showed the slowest results; around
2 times slower as its counterparts (C-OpenSSL,
Python and Ruby) and 1.5 times slower than
C♯ and WinCrypto.
These findings also coincide with Table 4.

Comparing b shows that C and Ruby have simi-
lar efficiency regardless of the operating system

while Python is faster on the Linux system. As
expected, Java is almost two times slower, evi-
dent by the value of b = 5.558 (Linux).

4.2 SHA-1
The detailed results for SHA-1 are shown in Ta-
ble 6, 7 and 8 which shows that overall, SHA-1
is slower than MD5 with respect to all tested
scenarios.
Again, OpenSSL (C, Python and Ruby) on

Linux perform very well while we identified a
slight drawback for Python. The Windows sys-
tem shows a similar behavior – C has the fastest
implementation followed by Ruby. Next are C
(win), C♯ and Python with a small disadvan-
tage for the latter one. Regardless the operat-
ing system, Java was almost three times slower
than OpenSSL with a slope value of 9.303 and
8.345.

4.3 SHA-256
The detailed results for the SHA-256 are shown
in Table 9, 10 and 11.

© 2015 ADFSL Page 61



2015 CDFSL Proceedings An Empirical Comparison of Widely Adopted Hash Functions ...

Data Avg. elapsed time in milli-Sec.
in MB C♯ C C (win) Java Python Ruby

2 7 6 8 11 6 6
4 16 9 16 24 14 9
8 29 22 31 45 27 21

16 58 44 61 86 54 42
32 117 88 120 177 108 86
64 234 177 239 356 215 169
128 470 352 478 709 431 339
256 938 705 956 1414 863 677
512 1877 1408 1922 2849 1727 1354
640 2346 1759 2381 3506 2159 1693
768 2817 2113 2863 4230 2590 2033
896 3285 2464 3358 4920 3023 2372

1024 3761 2817 3825 5628 3454 2711

Table 5: Average elapsed time for MD5 on a Windows system.

Data Avg. elapsed time in milli-Sec.
in MB C Java Python Ruby

2 6 19 6 6
4 12 38 12 12
8 24 75 24 24
16 49 149 48 48
32 97 297 98 96
64 193 595 195 192

128 387 1187 393 386
256 771 2380 785 771
512 1542 4748 1570 1548
640 1934 5974 1969 1933
768 2320 7134 2362 2320
896 2705 8308 2757 2700
1024 3093 9550 3149 3094

Table 6: Average elapsed time for SHA-1 on a
Linux system.

While our experiments showed constant re-
sults for the Linux system with OpenSSL out-
performing Java, the tests on Windows vary.
For SHA-256 Ruby was fastest on Windows fol-
lowed by C and C (win). Again, Java remained
the slowest. Compared to the previous tests,
we uncovered an odd behavior of C♯ which per-
formed well expect for 1GB file. We hypoth-
esize that C♯ had a larger memory footprint

Language a b
Linux:
C −0.572 3.019
Python −0.357 3.023
Ruby −1.217 3.076
Java −1.353 9.303
Windows:
C 0.342 3.017
C (win) 0.468 3.568
C♯ 0.167 3.576
Python −0.346 3.774
Ruby −0.781 3.346
Java −0.668 8.345

Table 7: SHA-1 a and b coefficients

and 4GB RAM was not sufficient when han-
dling large data.

4.4 SHA-512
The detailed results for SHA-512 are shown in
Table 12, 13 and 14.
The results for SHA-512 are similar to SHA-

256. On the Linux system, Java is the slow-
est while all other results are almost identical.
On Windows, Ruby was the fastest followed by
Python. C, C♯, C (win) and Java showed sim-
ilar efficiency. However, on the 1GB data file,
C♯ again was slow, mostly due to what we hy-

Page 62 © 2015 ADFSL



An Empirical Comparison of Widely Adopted Hash Functions ... 2015 CDFSL Proceedings

Data Avg. elapsed time in milli-Sec.
in MB C♯ C C (win) Java Python Ruby

2 7 6 6 16 7 6
4 14 13 14 33 15 12
8 32 25 28 66 31 26

16 57 48 58 136 60 52
32 114 97 114 269 120 107
64 229 194 228 547 241 214
128 457 386 459 1062 482 427
256 916 773 913 2148 966 856
512 1831 1544 1836 4231 1931 1712
640 2288 1931 2280 5305 2417 2139
768 2745 2317 2738 6467 2897 2568
896 3204 2703 3205 7452 3382 3000

1024 3663 3091 3649 8567 3864 3424

Table 8: Average elapsed time for SHA-1 on a Windows system.

Data Avg. elapsed time in milli-Sec.
in MB C Java Python Ruby

2 18 29 17 17
4 36 59 36 35
8 73 117 72 71
16 144 236 142 143
32 291 470 287 287
64 577 942 573 575

128 1150 1897 1144 1146
256 2301 3769 2286 2336
512 4601 7545 4579 4568
640 5733 9395 5767 5730
768 6884 11417 6913 6875
896 8031 13226 7990 8034
1024 9163 15161 9135 9183

Table 9: Average elapsed time for SHA-256 on
a Linux system.

pothesize is a memory footprint.

Overall, we note that on Windows, SHA-512
was faster than SHA-256 for all of the lan-
guages, especially for larger data sizes. On
Linux, the speed for SHA-512 and SHA-256
were similar for all of the languages except
for Java where SHA-512 was much slower than
SHA-256.

Language a b
Linux:
C 1.724 8.946
Python 3.486 8.956
Ruby 2.237 8.959
Java −4.972 14.789
Windows:
C −5.176 9.037
C (win) 5.264 9.688
C♯ −1044.546 17.53
Python −0.503 10.189
Ruby −0.180 8.038
Java 2.561 13.085

Table 10: SHA-256 a and b coefficients

4.5 Result summary

This section discusses and summarizes the main
findings. A visual summary of all the experi-
mental results is presented in Figures 1 and 2.
While most graphs show an expected behavior,
there are two striking results. On Linux, the
Java implementation of SHA-512 shows an un-
expected behavior while on Windows C♯ is par-
ticularly eye-catching.
More precisely, on the Linux system,

programming languages using the OpenSSL
showed similar high performance. Regarding

© 2015 ADFSL Page 63



2015 CDFSL Proceedings An Empirical Comparison of Widely Adopted Hash Functions ...

Data Avg. elapsed time in milli-Sec.
in MB C♯ C C (win) Java Python Ruby

2 19 17 19 27 20 17
4 38 36 37 53 40 33
8 78 74 78 103 81 64

16 157 142 156 209 163 129
32 313 286 309 422 326 256
64 631 572 622 847 651 514
128 1263 1145 1255 1683 1303 1029
256 2541 2291 2486 3359 2607 2057
512 5077 4650 4988 6695 5219 4115
640 6352 5720 6242 8361 6520 5143
768 8342 7005 7431 10028 7822 6174
896 9008 8009 8683 11793 9128 7201

1024 28859 9295 9903 13370 10433 8231

Table 11: Average elapsed time for SHA-256 on a Windows system.

Figure 1. Ubuntu results 

Figure 2. Windows results 

Figure 1: Overview of the measurements results for Linux.

Java, which was significantly slower than the
OpenSSL library, we expected that for large
data files that the efficiency will go up as Just-

in-Time (JIT) compiler should have compiled
and optimized byte code into native code. How-
ever, the slow performance of Java was related

Page 64 © 2015 ADFSL



An Empirical Comparison of Widely Adopted Hash Functions ... 2015 CDFSL Proceedings

Data Avg. elapsed time in milli-Sec.
in MB C♯ C C (win) Java Python Ruby

2 13 20 19 19 13 12
4 26 42 36 39 27 20
8 53 77 73 75 55 40

16 107 153 148 147 110 81
32 209 306 297 300 220 162
64 421 613 597 595 441 326
128 842 1231 1192 1180 883 651
256 1686 2452 2378 2356 1766 1302
512 3425 4894 4747 4706 3534 2606
640 4428 6114 5933 5895 4416 3256
768 5475 7342 7138 7073 5300 3908
896 5981 8567 8319 8238 6183 4557

1024 22381 9808 9492 9411 7067 5214

Table 14: Average elapsed time for SHA-512 on a Windows system.
Figure 1. Ubuntu results 

Figure 2. Windows results Figure 2: Overview of the measurements for Windows.

to the underlying cryptographic primitives, as
noted by Garfinkel (Garfinkel et al., 2010).
MD5 and SHA-1 were three times faster than

SHA-256 and SHA-512.

On the Windows system, Java surprisingly
was faster and outperformed C, Python and C♯

© 2015 ADFSL Page 65



2015 CDFSL Proceedings An Empirical Comparison of Widely Adopted Hash Functions ...

Data Avg. elapsed time in milli-Sec.
in MB C Java Python Ruby

2 19 71 19 19
4 38 144 37 38
8 77 286 75 75
16 153 572 152 152
32 303 1144 304 303
64 611 2292 612 606

128 1221 4569 1224 1223
256 2431 9155 2448 2447
512 4870 18283 4864 4891
640 6079 22770 6123 6092
768 7335 27347 7335 7341
896 8565 31964 8572 8630
1024 9812 36527 9785 9714

Table 12: Average elapsed time for SHA-512 on
a Linux system.

for SHA-512. We could not find any explanation
why SHA-512 on Java has such high efficiency.
Again, programming languages using

OpenSSL, such as Ruby and Python, steadily
showed good and constant results on Windows.
WinCrypto API showed good performance, and
was better than OpenSSL for SHA-512. Overall
Ruby showed the best times for SHA-256 and
SHA-512
Main remarks:

• OpenSSL showed good performance across
both platforms. This also applies to pro-
gramming languages using OpenSSL as a
library, such as Ruby and Python.

• SHA-256 and SHA-512 have a similar run-
time. However, on Windows SHA-512 was
faster while on Linux it was the other way
round.

• On Windows Ruby was discovered to be
faster than Python. On Linux the two lan-
guages were very similar.

• OracleJDK showed a higher performance
on Windows than OpenJDK did on Linux.
OracleJDK was specially good for SHA-512
on large data sizes.

Language a b
Linux:
C −0.009 9.547
Python −1.803 9.557
Ruby −5.256 9.559
Java 4.422 35.648
Windows:
C 0.952 9.565
C (win) 0.906 9.277
C♯ −874.141 13.348
Python −0.548 6.902
Ruby −0.102 5.089
Java 3.091 9.194

Table 13: SHA-512 a and b coefficients

• C♯ started showing sudden spikes on
elapsed time for SHA-256 and SHA-512
when the data size reached 1GB. This may
be attributed to a lack of available RAM on
the system used.

4.6 Impact on the real world
In this section we discuss the impact of our
findings on a real world scenario. We assume
that an investigator receives one hard drive of
512GB, a smart phone having 32GB memory,
an SD-card of 8GB and an external backup de-
vice of 160GB. Furthermore, the user has 10GB
of cloud storage. We argue that this is a realis-
tic scenario and that (512 + 32 + 8 + 160 + 10 =
) 722GB can be easily found in a household
nowadays especially when storing multimedia
files such as videos and images.
Table 15 shows the upscaled results. For up-

scaling we used the times of processing 1024MB
= 1GB, multiplied it by 722 and divided it by
1000 – except for star-marked numbers. Since,
C♯ had problems with the 1024MB file, we up-
scaled using the 512MB file. Thus, the table
shows the estimated time in seconds.
To conclude, there might be time differences

of over 83 minutes for SHA-256 or even 322 min-
utes on Linux systems when using SHA-512.

5. CONCLUSION
Although most results were as expected, our
experiments uncovered some strange behav-

Page 66 © 2015 ADFSL



An Empirical Comparison of Widely Adopted Hash Functions ... 2015 CDFSL Proceedings

Language MD5 SHA-1 SHA-
256

SHA-
512

Linux:
C 2036 2233 6615 7084
Python 2038 2273 6595 7064
Ruby 2039 2233 6630 7013
Java 4126 6895 10946 26372
Windows:
C 2033 2231 6711 7081
C (win) 2761 2634 7149 6853
C♯ 2715 2644 7331* 4945*
Python 2493 2789 7532 5102
Ruby 1957 2472 5942 3764
Java 4063 6185 9653 6794

Table 15: Estimated time for processing
722GB.

ior. The results on Linux are pretty solid
and predictable – MD5 is the fastest while
SHA-512 is the slowest both others are in be-
tween. Since most programming languages ac-
cess the OpenSSL library, the times are quite
constant. The slowest implementation was
OpenJDK Java and therefore it is not recom-
mended for hashing large amounts of data. We
did not test OracleJDK on Linux.

Regarding Windows, the results are different
and show unexpected behavior. The results for
C (independent from the library) are reasonable
and mainly coincide with the Linux results. C♯
showed strange behavior for SHA-256 and SHA-
512 for larger files. We hypothesize that this is
due to a larger memory footprint. Results for
Python and Ruby are similar to the Linux re-
sults except for SHA-512 where algorithms are
way faster on Windows. We cannot explain this
behavior as of right now, and further experimen-
tation is needed to explain these results.

In conclusion, for writing a tool that needs to
be portable across Unix-like and Windows plat-
forms, C-OpenSSL is a good choice, however
scripting languages such as Ruby and Python
showed strong promise for quick prototyping.

REFERENCES
Altheide, C., & Carvey, H. (2011). Digital foren-

sics with open source tools: Using open
source platform tools for performing com-
puter forensics on target systems: Win-
dows, mac, linux, unix, etc (Vol. 1). Syn-
gress Media.

Bloom, B. H. (1970). Space/time trade-offs in
hash coding with allowable errors. Com-
munications of the ACM , 13 (7), 422–426.

Breitinger, F., & Baier, H. (2012, October).
Similarity Preserving Hashing: Eligible
Properties and a new Algorithm MRSH-
v2. 4th ICST Conference on Digital
Forensics & Cyber Crime (ICDF2C).

Breitinger, F., Stivaktakis, G., & Baier, H.
(2013). Frash: A framework to test al-
gorithms of similarity hashing. Digital In-
vestigation, 10 , S50–S58.

frag_find. (2013). https://github.com/
simsong/frag_find. ([Online; accessed
Sep-2014])

Gallagher, P., & Director, A. (1995). Secure
Hash Standard (SHS) (Tech. Rep.). Na-
tional Institute of Standards and Tech-
nologies, Federal Information Processing
Standards Publication 180-1.

Garfinkel, S., Nelson, A., White, D., & Roussev,
V. (2010). Using purpose-built functions
and block hashes to enable small block
and sub-file forensics. digital investiga-
tion, 7 , S13–S23.

Kornblum, J. D. (2006, August). Identifying
almost identical files using context trig-
gered piecewise hashing. In Proceedings
of the digital forensic workshop (p. 91-
97). Retrieved from http://dfrws.org/
2006/proceedings/12-Kornblum.pdf

Menezes, A. J., van Oorschot, P. C., & Van-
stone, S. A. (2001). Handbook of applied
cryptography (Vol. 5). CRC Press.

RDS Hashsets. (2014). http://www.nsrl.nist
.gov/. ([Online; accessed Sep-2014])

Regional Computer Forensics Labo-
ratory. Annual report. (2012).
http://www.rcfl.gov/downloads/
documents/RCFL_Nat_Annual12.pdf.

© 2015 ADFSL Page 67

https://github.com/simsong/frag_find
https://github.com/simsong/frag_find
http://dfrws.org/2006/proceedings/12-Kornblum.pdf
http://dfrws.org/2006/proceedings/12-Kornblum.pdf
http://www.nsrl.nist.gov/
http://www.nsrl.nist.gov/
http://www.rcfl.gov/downloads/documents/RCFL_Nat_Annual12.pdf
http://www.rcfl.gov/downloads/documents/RCFL_Nat_Annual12.pdf


2015 CDFSL Proceedings An Empirical Comparison of Widely Adopted Hash Functions ...

([Online; accessed Sep-2014])
Roussev, V. (2010a). Data fingerprinting with

similarity digests. In Advances in digital
forensics vi (pp. 207–226). Springer.

Roussev, V. (2010b). Data fingerprinting
with similarity digests. In K.-P. Chow
& S. Shenoi (Eds.), Advances in digi-
tal forensics vi (Vol. 337, pp. 207–226).
Springer Berlin Heidelberg. Retrieved
from http://dx.doi.org/10.1007/978
-3-642-15506-2_15 doi: 10.1007/978-3
-642-15506-2_15

Saleem, S., Popov, O., & Dahman, R. (2011).
Evaluation of security methods for en-
suring the integrity of digital evidence.
In Innovations in information technol-
ogy (iit), 2011 international conference on
(pp. 220–225).

spamsum. (2002-2009). http://
www.samba.org/ftp/unpacked/
junkcode/spamsum/. ([Online; accessed
Sep-2014])

Sumathi, S., & Esakkirajan, S. (2007). Fun-
damentals of relational database manage-
ment systems (Vol. 1). Springer Berlin
Heidelberg.

Tridgell, A. (1999). Efficient algorithms for
sorting and synchronization. Australian
National University Canberra.

Wang, X., Yin, Y. L., & Yu, H. (2005). Finding
collisions in the full sha-1. In Advances in
cryptology–crypto 2005 (pp. 17–36).

Wang, X., & Yu, H. (2005). How to break md5
and other hash functions. In Advances
in cryptology–eurocrypt 2005 (pp. 19–35).
Springer.

Page 68 © 2015 ADFSL

http://dx.doi.org/10.1007/978-3-642-15506-2_15
http://dx.doi.org/10.1007/978-3-642-15506-2_15
http://www.samba.org/ftp/unpacked/junkcode/spamsum/
http://www.samba.org/ftp/unpacked/junkcode/spamsum/
http://www.samba.org/ftp/unpacked/junkcode/spamsum/

	An Empirical Comparison of Widely Adopted Hash Functions in Digital Forensics: Does the Programming Language and Operating System Make a Difference?
	Scholarly Commons Citation

	Introduction
	Related work
	Methodology
	Experimental environment
	Data analysis and results

	Assessment and experimental results
	MD5
	SHA-1
	SHA-256
	SHA-512
	Result summary
	Impact on the real world

	Conclusion
	References

