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ABSTRACT
We explore the application of artiÐcial neural networks (ANNs) for the estimation of atmospheric pa-

rameters log g, and [Fe/H]) for Galactic F- and G-type stars. The ANNs are fed with medium-(Teff,resolution (*jD 1È2 nonÈÑux-calibrated spectroscopic observations. From a sample of 279 stars withA� )
previous high-resolution determinations of metallicity and a set of (external) estimates of temperature
and surface gravity, our ANNs are able to predict with an accuracy of K over theTeff p(Teff) \ 135È150
range K, log g with an accuracy of p(log g) \ 0.25È0.30 dex over the range4250 ¹ Teff ¹ 6500
1.0¹ log g ¹ 5.0 dex, and [Fe/H] with an accuracy p([Fe/H])\ 0.15È0.20 dex over the range
[4.0¹ [Fe/H]¹ 0.3. Such accuracies are competitive with the results obtained by Ðne analysis of high-
resolution spectra. It is noteworthy that the ANNs are able to obtain these results without consideration
of photometric information for these stars. We have also explored the impact of the signal-to-noise ratio
(S/N) on the behavior of ANNs and conclude that, when analyzed with ANNs trained on spectra of
commensurate S/N, it is possible to extract physical parameter estimates of similar accuracy with stellar
spectra having S/N as low as 13. Taken together, these results indicate that the ANN approach should
be of primary importance for use in present and future large-scale spectroscopic surveys.
Subject headings : Galaxy : halo È methods : data analysis È

nuclear reactions, nucleosynthesis, abundances È stars : abundances È
stars : Population II

On-line material : machine-readable tables

1. INTRODUCTION

Many important problems in Galactic and extragalactic
astronomy can only be constrained through the acquisition
of extremely large databases of low- and/or medium-
resolution spectroscopy. Efficient multiobject spectrometers
are now in routine operation, e.g., Hydra on WIYN and the
Cerro Tololo Inter-American Observatory (CTIO) (Barden
et al. 1993), 2dF from the Anglo-Australian Telescope
(AAT) (Gray et al. 1993), AMOS at Lick Observatory
(Brodie & Epps 1993), or WYFFOS on the William Hers-
chel Telescope (WHT) (Bingham et al. 1994). Spectrographs
capable of obtaining several hundred spectra at a time are
now a reality, such as that used in the Sloan Digital Sky
Survey (SDSS) (York et al. 2000), or 6dF on the UK
Schmidt telescope (Watson, Parker, & Miziarski 1998), with
others planned for installation at many telescopes in the
near future. These instruments can rapidly assemble librar-
ies of 103È105 spectra even during the course of a single
night or single observing run ; new spectrographs with even
greater multiplexing advantages are in various stages of
development. Although aimed at the study of galaxies and
quasars, the ongoing SDSS will amass about 104 stellar
spectra with a resolving power of R\ 2000 between 3900
and 9100 in a Ðeld around the north Galactic pole. TheA�
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combination of microarcsecond accuracy astrometry with
R^ 3700 spectroscopy for D108 stars that will be available
in the future from the Global Astrometric Interferometer for
Astrophysics (GAIA) (see Perryman et al. 2001) will revol-
utionize our understanding of the dynamics and the chemi-
cal evolution of the Milky Way and neighboring galaxies.

The extraction of useful physical information from these
large spectral databases (for stars, parameters such as e†ec-
tive temperatures, surface gravities, metallicities, elemental
abundance ratios, and radial velocities) can of course be
done one star at a time using well-understood analysis tech-
niques, but this requires a small army of researchers. A
much more sensible approach is to adapt and develop new
techniques for automatic, accurate, and efficient extraction
of key physical information from the spectra, ideally in real
time.

A number of previous authors have pursued the develop-
ment of methods for obtaining estimates of atmospheric
parameters from low- to medium-resolution stellar spectra.
Jones (1966), for example, in early pioneering work, made
visual estimates of 10 line ratios and six line strengths for a
uniform set of photographic spectra obtained withcoude�
the Palomar 200 inch (5.08 m) telescope. He then performed
a principal component analysis of these data and calibrated
the three largest principal components with temperature,
luminosity, and metal abundance. & Foy (1983)The� venin
explored a technique based on the comparison of measured
equivalent widths for several prominent spectral lines in
*jD 2 resolution spectra with grids of theoretical equiv-A�
alent widths obtained from model atmospheres. Although
their test sample of stars was rather small, the resulting
derived errors were certainly respectable. Cayrel et al. (1991)
pursued similar ideas, making use of a matching algorithm
that compared relatively high signal-to-noise ratio (S/N)
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(40È100), low-resolution (*jD 5 spectra with grids ofA� )
synthetic spectra, and again achieved encouraging results
based on a small number of comparison stars covering a
wide range of atmospheric parameters. Cuisinier et al.
(1994) and Gray, Graham, & Hoyt (2001) described several
techniques for the estimation of stellar parameters from
medium-resolution spectra, based on comparisons with a
grid of model atmospheres, but their application was mostly
to more metal-rich stars of the Galactic disk populations.

In this paper we examine the merits of a particular type of
expert system based on back-propagation artiÐcial neural
networks (ANNs) for astrophysical parameter estimation
from medium-resolution stellar spectroscopy. Previously
explored parameter estimation techniques include cross-
correlation and maximum likelihood Ðtting (Katz et al.
1998) and minimum vector distance estimation (Kurtz
1984). Line Ðtting techniques depend on prior knowledge of
approximate spectral types before the determination of
which lines to Ðt can be made, since di†erent species can
absorb at the same wavelengths in di†erent log g)(Teff,domains. Cross-correlation, in its simplest form, also
weights comparisons by line strength, although the strong-
est lines are not necessarily the features with the highest
weight in classiÐcation assignment. Cross-correlation also
requires a well-populated library of homogeneous quality.
Minimum vector distance techniques have had some
success but have not been pursued to the level desired for
our purposes. It is important to note that these classical
techniques are based on the application of linear oper-
ations. Since we expect to Ðnd rather subtle nonlinear
relationships between temperature, surface gravity,
and metallicity indicators in a given stellar spectrum,
classiÐcation schemes that allow nonlinear relationships
between parameters, such as ANNs, should o†er signiÐcant
advantages.

Supervised ANNs have application to a wide variety of
nonlinear optimization problems. For the estimation of
stellar atmospheric parameters, a growing body of work
(e.g., Gulati et al. 1994 ; von Hippel et al. 1994 ; Vieira &
Ponz 1995 ; Weaver & Torres-Dodgen 1995, 1997 ; Bailer-
Jones et al. 1997 ; Bailer-Jones, Irwin, & von Hippel 1998)
has demonstrated that automated ANNs can be robust and
precise classiÐers of stellar spectra. Recently, Bailer-Jones
(2000) has explored the capability of ANN techniques to
deduce log g, and [Fe/H] for stars to be observed withTeff,the medium-band and broadband photometric systems to
be implemented for the GAIA space mission. Rhee, Beers, &
Irwin (1999) and Rhee (2000) discussed the development
and implementation of an ANN approach for the analysis
of digital scans of the HK survey objective prism plates and
found that, with the addition of rough color information
from calibrated photographic surveys, they were able to
select metal-deÐcient stars without the introduction of bias
related to the temperature that plagued the original visual
selection technique. Allende Prieto et al. (2000) applied an
ANN approach to sets of prominent line indices in medium-
resolution spectra from the HK survey and demonstrated
that reasonably accurate estimates of [Fe/H] and broad-
band color could be obtained in this way. We refer(B[V )0interested readers to these papers, and references therein,
for both general information on ANNs and speciÐc mathe-
matical details of their training and testing.

In this paper we demonstrate the utility of the ANN
approach for the analysis of medium-resolution spectra of

metal-poor stars of the Galactic halo and thick-disk popu-
lations. Most of the previous automated stellar spectral
classiÐcation e†orts have focused on local samples of stars
with metallicities characteristic of the Galactic disk. We
note, however, that Prugniel & Soubiran (2001) have
recently provided a large database of high- and low-
resolution spectra (including stars with metallicities as low
as [Fe/H]\ [2.7), obtained with the ELODIE spectro-
graph on the Observatoire de Haute-Provence (OHP) 1.5 m
telescope, and are clearly in the process of further
developing the TGMET spectral parameterization method
of Soubiran, Katz, & Cayrel (1998) and Katz et al. (1998).

In ° 2 the data set for training and testing the ANNs is
described, and in ° 3 the preparation of the database for
ANN input is outlined. The assignment of ““ known ÏÏ atmo-
spheric parameters for the stars in our sample is discussed
in ° 4. A detailed description of our adopted ANN method-
ology and the results of its application to stellar spectra are
provided in ° 5. In this same section we explore the impact
of spectral S/N on the derivation of atmospheric parameters
through a series of numerical experiments. Our conclusions
and suggestions for future work are provided in ° 6. In the
Appendix we discuss the small number of deviant cases that
were noted during the course of our analysis.

2. THE SPECTROSCOPIC DATABASE

The stars that form the basis of our evaluation of the
ANN approach were observed during medium-resolution
spectroscopic campaigns by Beers and collaborators for the
metal-poor stars of the HK survey (Beers, Preston, & Shect-
man 1985, 1992). A discussion of the various campaigns is
given in Beers (1999) ; in Table 1 we list the parameters of
the spectra employed in the present study. To improve the
homogeneity, we limited our sample to the best six tele-
scope detector combinations, from the 12 considered by
Beers et al. (1999). This Ðltering reduces the number of stan-
dards from the more than 500 studied by Beers et al. (1999)
to 279 stars. Columns (1) and (2) of the table list the tele-
scope and detector used. Column (3) lists the wavelength
coverage of the spectra obtained. Column (4) lists the dis-
persion of the spectra, in some cases after a rebinning was
employed during the initial data reduction. Column (5) lists
the total number of spectra contributed to this study for
each of the various combinations.

The stars that comprise our study are a subset of the
calibration stars used in the Beers et al. (1999) medium-
resolution surveys. They were selected to cover the range of
metallicities, temperatures, and surface gravities (see ° 4)
expected to pertain to the metal-poor stars discovered in the
extensive HK survey. Thus, these were the template stars
used to judge the accuracy of the atmospheric parameters
(in particular the metallicity) derived for candidate HK
survey low-metallicity stars. Hence, all our program stars
have available estimates of [Fe/H]. We employ the stan-
dard abundance notation that [A/B] 4 log10 (NA/NB)starand equate metallicity to the stellar[ log10 (NA/NB)_[Fe/H] value from previous analyses of high-resolution
spectroscopy by many workers. We have supplemented this
information with newly derived estimates of and log gTefffrom several techniques, as described below.

Beers et al. (1999) describe a method for the estimation of
stellar metallicity from medium-resolution (*jD 1È2 A� )
spectroscopy and broadband colors. This tech-(B[V )0nique makes use of empirical corrections, based on stan-
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TABLE 1

THE SPECTROSCOPIC DATA SETS

Coverage Dispersion
Telescope Detector (A� ) (A� pixel~1) Number

(1) (2) (3) (4) (5)

ESO 1.5 m . . . . . . . . . . . . . Ford ] Loral 2048 ] 2048 3750È4750 0.65] 0.50 52
KPNO 2.1 m . . . . . . . . . . Tek 2048 ] 2048 3750È5000 0.65 115
LCO 2.5 m . . . . . . . . . . . . Reticon] 2D-Frutti 3700È4500 0.65 50
ORM INT 2.5 m . . . . . . Tek 1024 ] 1024 3750È4700 0.85 3
PAL 5 m . . . . . . . . . . . . . . . Reticon] 2D-Frutti 3700È4500 0.65 3
SSO 2.3 m . . . . . . . . . . . . . SITe 1752 ] 532 3750È4600 0.50 58

NOTE.ÈESO: European Southern Observatory ; KPNO: Kitt Peak National Observatory ; LCO:
Las Campanas Observatory ; ORM: Observatorio del Roque de los Muchachos ; PAL: Palomar
Observatory ; SSO: Siding Spring Observatory.

dard stars of known abundance, to the predicted line
strengths from synthetic spectra and estimated broadband
colors from model atmospheres. The Ðnal calibration
obtained by Beers et al. (1999) provides the means for accu-
rate estimation of metallicity [p([Fe/H])D 0.15È0.20 dex]
over the entire range of metallicities of known Galactic stars
([4.0¹ [Fe/H]¹ 0.3). This represents a clear improve-
ment over the Beers et al. (1990b) calibration, which had
difficulty in obtaining metallicity estimates for stars with
[Fe/H]º 1.0 as a result of saturation of the Ca II K line
they used as their primary abundance indicator. However,
there still are limitations to the Beers et al. (1999) approach.
For instance, the use of multiple levels of empirical correc-
tions makes the approach somewhat cumbersome to imple-
ment for general use. This is one of the reasons we have
begun to explore the use of ANNs for future work.
Although both the ANN approach and the Beers et al.

(1999) method are capable of providing accurate metallicity
estimates, we demonstrate below that the ANN approach
can obtain a similar level of accuracy using nonÈÑux-
calibrated spectra without the need for additional broad-
band photometric observations, and it is largely insensitive
to reddening. Furthermore, our ANN technique is also
capable of estimating temperatures and surface gravities,
which the Beers et al. (1999) calibration did not provide.

The reduction and analysis of the spectroscopic data are
described in Beers et al. (1999) and will not be repeated here.
Because this is our Ðrst attempt at developing a medium-
resolution neural network for future use, we decided to
impose a rather severe lower limit on the S/N of the spectro-
scopic data that were used for the construction of our train-
ing and testing sets. In order to be used in our analysis, a
stellar spectrum was required to have S/N[ 20 at 4000 A�
and cover at least the wavelength range 3850È4450 AsA� .

FIG. 1.ÈExamples of original raw spectra for four program stars covering a variety of log g, and [Fe/H]Teff,
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part of the selection process for program stars, care was
taken to make certain that any spurious features, such as
cosmic-ray hits, were removed from each spectrum prior to
assembly of our data sets, since our ANN uses the entire
spectrum in its analysis. In the end, spectra of 279 stars were
chosen for the ANN experiments described in this paper.
Several examples of the raw (extracted and wavelength-
calibrated) spectra, prior to their preparation for the ANNs,
are shown in Figure 1.

3. UNIFICATION OF THE SPECTROSCOPIC DATA

Successful application of the ANN techniques described
below Ðrst requires the creation of a data set that is as
uniform as possible. For our purposes this means manipu-
lating the spectra until (1) they are all on the same stellar
rest wavelength scale, with identical starting and ending
wavelengths ; (2) they have closely matched spectral
resolutions ; and (3) their observed Ñuxes have been rectiÐed
in a consistent manner. The steps taken to transform the
raw spectra into a form acceptable for ANN analysis are
described in this section. For all of these steps we employed
various tasks contained within the IRAF5 software
package.

First, the spectra were continuum Ñattened, e†ectively
cancelling the combination of the stellar spectral energy
distribution (SED) and the instrumental response. Although
the (potentially useful) stellar SED is therefore destroyed, it
would not have been possible to recover this information
for the majority of our stars as a result of the lack of avail-

5 IRAF is distributed by the National Optical Astronomy Observa-
tories, which are operated by the Association of Universities for Research
in Astronomy, Inc., under cooperative agreement with the National
Science Foundation.

able Ñux calibrations for most of the spectroscopic obser-
vations obtained during the HK survey campaigns. The
most important part of this step was to treat the varied
pseudocontinua of the raw spectra in a uniform manner.
We were aided by the general weak-lined nature of our
metal-poor program spectra, which allowed reasonable
identiÐcation of regions that were relatively free of absorp-
tion features in wavelength domains from the red to as blue
as 3900 At shorter wavelengths, a conspiracy of increas-A� .
ing spectral line density, decreasing stellar Ñux, and decreas-
ing instrumental efficiency generally resulted in low S/N
and larger uncertainties in the placement of the pseudocon-
tinuum level. We experimented extensively with di†erent
continuum rectiÐcation techniques and eventually found
that discarding the strongest absorption features and
repeatedly applying a smoothing Ðlter worked best for our
spectra as a whole. This technique did not produce satisfac-
tory results for the few very carbon-rich stars with strong
bands of CH and (e.g., CS 22957[027 ; Norris, Ryan, &C2Beers 1997 ; Bonifacio et al. 1998) for which continuum
placement based on intermediate-resolution observations is
difficult with any technique. As a result, the carbon-
enhanced stars were not used in the present study.

The continuum-Ñattened spectra were then shifted to a
common radial velocity. Since uniformity in the velocity
frame is crucial, but the zero point is not, all of our spectra
were shifted in velocity to a single program star template
spectrum, using the IRAF task dopcor. Cross-correlations
of all spectra with the template were done with the task
fxcor. The template spectrum was chosen to be that of HD
122563 (F8 IV), which contains features common to all of
the spectra being prepared. The program stars in our study
range from warm main-sequence dwarfs to cool red giants,
and the stellar metallicities have a range of 3 orders of

FIG. 2.ÈExamples of the same program stars as appeared in Fig. 1, but after preparation for the ANNs
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magnitude. We note that for future work on more extensive
data sets, it may be best to use di†erent velocity templates
for di†erent log g, [Fe/H]) domains and carefully tie(Teff,the templates to a common system. We found this addi-
tional step unnecessary for the initial exploration of ANNs
considered here.

Next, the spectra were rebinned to a common wavelength
binning. We adopted a Ðxed binning of 0.65 pixel~1 (theA�
dispersion of the template star and the majority of our
spectra) and used the IRAF task dispcor to rebin all of the
program stars. The resolution is 2È3 times larger than the
dispersion, depending on the data source and the particular
observing conditions. With the same task, we trimmed the
spectra to a common wavelength range, as our ANN can
perform only on data sets of identical wavelength coverage.
Using the IRAF task wspectext, we converted the spectra to
a text format acceptable to the ANN. Finally, we multiplied
the spectra by a constant factor to have an average value of
0.5 in a selected wavelength range, since our ANNs were
developed to be most sensitive to Ñux values between 0 and
1. In Figure 2 we show the fully modiÐed spectra, ready for
ANN input, of the same stars whose raw spectra appear in
Figure 1.

4. ATMOSPHERIC PARAMETERS OF THE PROGRAM STARS

Beers et al. (1999) compiled and averaged metallicities
that had been determined from high-resolution spectro-
scopic analyses, based on Ñux constant plane-parallel LTE
model atmospheres, for over 500 stars of the Galactic halo
and thick-disk populations. We selected our testing and
training sets from that pool, taking particular care to
achieve a reasonably complete distribution throughout the
parameter space of log g, and [Fe/H]. Although, inTeff,principle, an averaged set of and log g determinationsTefffrom the high-resolution analyses could have been used in
our application, we have chosen not to take this approach.
The and log g employed in the high-resolution analysesTeffcome from a wide variety of sources (broadband and/or
narrowband photometry, Ðts to isochrones, or Ðne analysis
of the spectra themselves), hence a more homogeneous set
of temperatures and surface gravities is desirable. This deci-
sion also permits a comparison of our derived parameters
with independently obtained estimates from the high-
resolution work.

E†ective temperatures were derived from the (B[V )
colors, reddening corrections, and metallicities com-E

B~Vpiled by Beers et al. (1999). For dwarfs and subgiant stars,
we applied the calibrations of Alonso, Arribas, & Mart•� nez-

(1996). For more evolved giant stars, we used theRoger
Alonso, Arribas, & (1999) calibrations.Mart•� nez-Roger
These calibrations are based on the infrared Ñux method
(IRFM), developed by Blackwell and collaborators (see
Blackwell & Lynas-Gray 1994 and references therein). The
IRFM compares the observed ratio of the bolometric and
monochromatic Ñux in the infrared with the ratio predicted
by model atmosphere analyses. Since the e†ective tem-
perature deÐnes the bolometric Ñux, the method only relies
on the models to estimate the monochromatic Ñux in the
infrared. From the use of several infrared photometric
bands, it is possible to check for internal consistency, which
turns out to be exceptionally good for K,Teff Z 4500
resulting in mean errors of only 1%È2%. The standard devi-
ations of the polynomial Ðts to the IRFM as functionsTeffof color and metallicity are in the range 100È170 K(B[V )0

over the entire parameter space relevant to our program
stars.

For their main-sequence, subgiant, and giant stars, Beers
et al. (1999) derived absolute magnitudes and distances by
making use of the revised Yale isochrones (Green 1988 ;
King, Demarque, & Green 1988), over the metallicity inter-
val [3.0¹ [Fe/H]¹ 0.0, and assuming ages between 5
and 15 Gyr. To provide estimates for horizontal branch
stars and asymptotic giant branch stars, they adopted a
relation between [Fe/H], and B[V (see Beers et al.M

V
,

1999 for more details). We used their absolute magnitudes
to interpolate in the oxygen-enhanced isochrones of Berg-
busch & Vandenberg (1992) and derived bolometric correc-
tions and stellar masses. The calculated luminosities were
then combined with the e†ective temperatures from the
Alonso et al. (1996, 1999) calibrations to obtain stellar radii
and then with the masses to derive estimates of the surface
gravities. This procedure involved the adoption of an age to
select the appropriate isochrone. The age was set at 15 Gyr
for the more metal-poor stars ([Fe/H] \ [1.1), at 4 Gyr for
those with [Fe/H][ 0.03, and a linear variation between
the extremes, Ðtting the trend found by Edvardsson et al.
(1993).

Gravities can also be estimated by making use of the
trigonometric parallaxes (n), in combination with the iso-
chrones, as described in Allende Prieto et al. (1999) or
Allende Prieto & Lambert (1999), although the relatively
low accuracy of present parallax measurements limits the
validity of the procedure to a small subset of our stars. In
Figure 3 we illustrate the comparison between n-based and

gravity estimates for the stars analyzed by BeersM
V
-based

et al. (1999) with available Hipparcos parallaxes (ESA 1997).
The errors in the parallaxes dominate the discrepancies for
stars farther away than 100 pc (n \ 10 mas). For 115
(generally metal-rich) dwarfs closer to the Sun than 100 pc,
the mean di†erence between the n-based gravities and the

gravities is dexM
V
-based Slog gn[ log g

MV
T \[0.15

(p \ 0.31 dex). The lack of nearby evolved stars in our
sample precludes the application of the same test to them.

The atmospheric parameters log g, and [Fe/H]Teff,adopted for each star in our study will hereafter be referred
to as ““ catalog ÏÏ (CAT) values. In Table 2 the catalog values
for the set of stars used to train the ANNs are listed as

FIG. 3.ÈComparison of the di†erences in estimated surface gravity for
program stars based on values inferred from the Hipparcos distances,
based on the reported by Beers et al. (1999), and described in the text.M

V



TABLE 2

CATALOG AND ANN PARAMETERS FOR THE TRAINING SAMPLE

Teff,CAT Teff,ANN log gCAT log gANN [Fe/H]CAT [Fe/H]ANN
Star Source (K) (K) (dex) (dex) (dex) (dex)
(1) (2) (3) (4) (5) (6) (7) (8)

BD ]03¡2782 . . . . . . . K 4790 4770 2.32 2.29 [2.02 [2.05
BD ]04¡2621 . . . . . . . K 4712 4795 1.71 1.83 [2.41 [2.43
BD ]06¡648 . . . . . . . . K 4455 4633 0.97 0.91 [2.09 [2.11
BD ]09¡2870 . . . . . . . K 4672 4749 1.62 1.53 [2.39 [2.31
BD ]09¡352 . . . . . . . . E 6050 5987 4.14 4.25 [2.09 [2.09
BD ]10¡2495 . . . . . . . K 4875 4884 2.81 3.05 [1.83 [2.12
BD ]17¡3248 . . . . . . . K 4995 5042 2.94 2.73 [2.03 [2.13
BD ]17¡4708 . . . . . . . O 6085 6092 4.50 4.25 [1.72 [1.79
BD ]19¡1185 . . . . . . . K* 5435 5427 4.38 4.31 [1.33 [1.22
BD ]30¡2611 . . . . . . . K 4362 4642 1.12 1.27 [1.32 [1.38
BD ]37¡1458 . . . . . . . K 5422 5181 4.71 : 4.00 : [1.95 [2.09
BD [01¡2582 . . . . . . . E 5145 5125 4.61 4.71 [2.23 [2.16
BD [13¡3442 . . . . . . . E 6160 6276 4.29 4.28 [3.14 [3.08
BD [18¡5550 . . . . . . . K 4785 4963 1.87 1.88 [2.89 [2.83
CD [31¡622 . . . . . . . . L 5285 5224 4.75 4.68 [2.00 [2.04
CD [33¡3337 . . . . . . L 5930 6069 4.11 4.09 [1.40 [1.32
CD [71¡1234 . . . . . . E 6082 6297 4.29 4.40 [2.65 [2.57
CS 22873[055 . . . . . . L 4675 4700 1.53 1.54 [2.88 [2.94
CS 22873[166 . . . . . . L 4605 4600 1.30 1.16 [2.90 [2.95
CS 22878[101 . . . . . . E 4757 4947 2.14 1.94 [3.13 [3.10
CS 22892[052 . . . . . . E 4640 4632 1.91 1.96 [3.01 [2.99
CS 22896[154 . . . . . . L 5107 5032 2.94 2.84 [2.73 [2.72
CS 22947[187 . . . . . . E 5077 5251 2.80 2.69 [2.49 [2.50
CS 22949[037 . . . . . . P 4810 : 5097 : 2.16 2.05 [3.99 : [3.46 :
CS 22952[015 . . . . . . P 4667 4666 1.95 1.85 [3.26 [3.32
G5-19 . . . . . . . . . . . . . . . . K 5607 5606 4.45 4.54 [1.55 [1.50
G8-16 . . . . . . . . . . . . . . . . K* 6020 6089 4.12 4.07 [1.59 [1.68
G9-27 . . . . . . . . . . . . . . . . K 5440 5383 4.57 4.55 [1.78 [1.82
G10-26 . . . . . . . . . . . . . . . S* 5900 5915 4.25 4.35 [0.03 [0.13
G11-36 . . . . . . . . . . . . . . . S* 5682 5583 4.32 4.40 [0.68 [0.56
G11-37 . . . . . . . . . . . . . . . K* 5287 5228 4.85 4.77 [0.14 [0.19
G11-44 . . . . . . . . . . . . . . . K 6010 6082 4.18 4.18 [2.07 [2.05
G11-45 . . . . . . . . . . . . . . . K* 5490 5535 4.82 4.93 [0.01 [0.03
G13-1 . . . . . . . . . . . . . . . . S* 5817 5792 4.67 4.58 [0.25 [0.22
G13-9 . . . . . . . . . . . . . . . . K 6082 6270 4.24 4.22 [2.31 [2.26
G13-38 . . . . . . . . . . . . . . . S* 5220 5204 4.60 4.66 [0.96 [0.96
G14-5 . . . . . . . . . . . . . . . . S* 5342 5507 4.65 4.63 [0.70 [0.57
G14-24 . . . . . . . . . . . . . . . K 4970 4815 4.76 4.85 [2.17 [2.22
G14-26 . . . . . . . . . . . . . . . S 5800 5772 4.40 4.66 [0.20 [0.20
G14-38 . . . . . . . . . . . . . . . S 5235 5180 4.75 4.76 [0.42 [0.24
G14-54 . . . . . . . . . . . . . . . S 5612 5490 4.57 4.73 [0.13 [0.14
G16-9 . . . . . . . . . . . . . . . . E* 4892 4903 4.89 4.89 [0.77 [0.72
G16-13 . . . . . . . . . . . . . . . S 5562 5460 4.40 4.40 [1.03 [1.01
G16-31 . . . . . . . . . . . . . . . S* 4890 4753 4.82 4.84 [0.55 [0.63
G17-16 . . . . . . . . . . . . . . . E 5190 5216 4.61 4.50 [0.83 [0.76
G17-21 . . . . . . . . . . . . . . . L* 5835 5873 4.27 4.44 [0.66 [0.64
G17-29 . . . . . . . . . . . . . . . E* 5322 5311 4.95 5.23 0.05 0.02
G17-30 . . . . . . . . . . . . . . . S* 5600 5672 4.57 4.69 [0.48 [0.42
G18-40 . . . . . . . . . . . . . . . K 5800 5778 4.24 4.46 [1.76 [1.75
G20-8 . . . . . . . . . . . . . . . . E 5957 6066 4.23 4.19 [2.30 [2.27
G22-20 . . . . . . . . . . . . . . . E 6060 5898 3.86 4.32 [0.82 [1.07
G23-14 . . . . . . . . . . . . . . . K 4922 5000 4.87 4.60 [2.05 [1.92
G23-16 . . . . . . . . . . . . . . . K* 4900 4773 4.97 5.01 [0.03 [0.02
G24-15 . . . . . . . . . . . . . . . L* 5912 5926 4.09 4.06 [1.10 [1.12
G24-17 . . . . . . . . . . . . . . . K* 4777 4639 4.78 4.60 [0.95 [0.94
G24-18F . . . . . . . . . . . . . K* 4767 4602 4.91 4.74 [0.87 [0.84
G28-31 . . . . . . . . . . . . . . . L 5762 6009 4.39 4.34 [2.22 [2.16
G29-25 . . . . . . . . . . . . . . . K 5340 5372 4.46 4.54 [0.99 [0.86
G29-71 . . . . . . . . . . . . . . . K 5685 5585 4.48 4.26 [2.26 [2.34
G31-26 . . . . . . . . . . . . . . . K 5345 5389 4.51 4.84 [1.49 [1.51
G37-26 . . . . . . . . . . . . . . . L* 5940 5860 4.21 4.08 [1.93 [1.87
G40-14 . . . . . . . . . . . . . . . S 6257 6260 4.20 3.98 [2.54 [2.55
G43-5 . . . . . . . . . . . . . . . . K 5310 5210 4.66 4.58 [2.12 [2.09
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G43-30 . . . . . . . . . . . . . . . K* 5120 5108 5.05 4.92 [0.12 0.02
G43-33 . . . . . . . . . . . . . . . L* 5925 5899 4.30 4.42 [0.37 [0.26
G43-44 . . . . . . . . . . . . . . . K* 5307 5114 4.90 5.07 [0.08 [0.06
G44-6 . . . . . . . . . . . . . . . . S* 5617 5629 4.61 4.60 [0.54 [0.63
G44-30 . . . . . . . . . . . . . . . S 5425 5405 4.49 4.62 [0.89 [0.88
G46-31 . . . . . . . . . . . . . . . S 5772 5706 4.29 4.42 [0.89 [0.90
G48-29 . . . . . . . . . . . . . . . L 6257 6373 4.22 4.16 [2.50 [2.53
G53-30 . . . . . . . . . . . . . . . S 5450 5492 4.57 4.65 [0.43 [0.39
G53-41 . . . . . . . . . . . . . . . L 5967 5951 3.91 3.73 [1.21 [1.20
G54-21 . . . . . . . . . . . . . . . K* 5862 5788 4.48 4.64 [0.03 [0.17
G56-48 . . . . . . . . . . . . . . . K 4775 4673 4.78 4.85 [2.20 [2.20
G58-23 . . . . . . . . . . . . . . . K* 5540 5456 4.40 4.43 [0.97 [0.90
G58-25 . . . . . . . . . . . . . . . K* 5930 5908 4.01 4.07 [1.41 [1.37
G58-30 . . . . . . . . . . . . . . . K* 5855 5803 4.70 4.62 0.30 : [0.05 :
G58-41 . . . . . . . . . . . . . . . K* 5865 5869 4.39 4.33 [0.33 [0.46
G59-1 . . . . . . . . . . . . . . . . K 5430 5353 4.56 4.43 [1.02 [0.74
G59-27 . . . . . . . . . . . . . . . K 6092 6136 4.09 4.16 [2.10 [2.08
G60-46 . . . . . . . . . . . . . . . S 5300 5160 4.59 4.59 [1.19 [1.28
G60-48 . . . . . . . . . . . . . . . L 5817 5835 4.28 4.15 [1.63 [1.62
G62-44 . . . . . . . . . . . . . . . S* 5102 5024 4.87 4.81 [0.58 [0.29
G62-52 . . . . . . . . . . . . . . . K* 5252 5224 4.59 4.62 [1.28 [1.36
G62-61 . . . . . . . . . . . . . . . S* 5830 5733 4.52 4.39 [0.32 [0.31
G64-12 . . . . . . . . . . . . . . . K 6272 6354 4.28 4.13 [3.31 [3.16
G64-37 . . . . . . . . . . . . . . . E 6377 6367 4.20 4.01 [3.00 [3.04
G64-54 . . . . . . . . . . . . . . . S* 5332 5361 4.89 4.91 [0.10 [0.28
G65-47 . . . . . . . . . . . . . . . S* 5607 5598 4.58 4.72 [0.35 [0.36
G66-9 . . . . . . . . . . . . . . . . E 5685 5747 4.49 4.51 [2.23 [2.24
G66-15 . . . . . . . . . . . . . . . S* 5590 5375 4.53 4.61 [0.20 [0.46
G66-49 . . . . . . . . . . . . . . . S* 5345 5478 4.74 4.86 [0.57 : [0.13 :
G75-56 . . . . . . . . . . . . . . . K 6040 6238 4.19 4.13 [2.33 [2.21
G79-42 . . . . . . . . . . . . . . . K 5635 5655 4.32 4.36 [1.10 [1.16
G80-15 . . . . . . . . . . . . . . . K* 5800 5823 4.23 4.35 [0.78 [0.81
G82-42 . . . . . . . . . . . . . . . K 5535 5453 4.23 4.08 [1.16 [1.14
G82-47 . . . . . . . . . . . . . . . E* 4837 4765 4.92 5.09 [0.45 [0.52
G84-37 . . . . . . . . . . . . . . . K* 5945 5896 4.17 4.14 [0.81 [0.80
G89-14 . . . . . . . . . . . . . . . K 5917 5962 4.19 4.09 [1.76 [1.57
G90-25 . . . . . . . . . . . . . . . K* 5392 5296 4.52 4.73 [1.62 [1.67
G92-15 . . . . . . . . . . . . . . . K* 5725 5684 4.55 4.57 [0.11 [0.25
G92-6 . . . . . . . . . . . . . . . . S 6127 6192 4.23 4.15 [2.68 [2.66
G99-40 . . . . . . . . . . . . . . . K 5970 5856 4.08 4.30 [0.35 [0.41
G99-48 . . . . . . . . . . . . . . . K 5077 5044 4.70 4.46 [1.92 [1.96
G106-46 . . . . . . . . . . . . . S 5842 5864 4.29 4.47 [0.51 [0.49
G108-33 . . . . . . . . . . . . . K 6082 6222 4.33 4.27 [2.69 [2.81
G108-53 . . . . . . . . . . . . . S* 5645 5583 4.45 4.40 [0.57 [0.56
G110-34 . . . . . . . . . . . . . K 6105 6146 3.83 4.14 [1.58 [1.54
G112-1 . . . . . . . . . . . . . . . S 5425 5213 4.55 4.77 [2.57 [2.58
G113-22 . . . . . . . . . . . . . S 5525 5522 4.39 4.47 [1.21 [1.26
G114-18 . . . . . . . . . . . . . S* 5545 5528 4.73 4.64 0.05 [0.16
G114-26 . . . . . . . . . . . . . S* 5837 5844 4.31 4.24 [1.78 [1.72
G114-48 . . . . . . . . . . . . . S 5555 5544 4.52 4.67 [0.41 [0.27
G121-12 . . . . . . . . . . . . . K 5955 5964 4.03 4.09 [0.92 [0.96
G125-64 . . . . . . . . . . . . . K* 5860 5697 4.28 4.27 [1.92 [2.11
G126-36 . . . . . . . . . . . . . K 5555 5582 4.54 4.50 [0.91 [0.91
G126-52 . . . . . . . . . . . . . E 6302 6302 4.05 4.06 [2.41 [2.47
G137-87 . . . . . . . . . . . . . S 5755 5890 4.45 4.64 [2.62 [2.68
G139-49 . . . . . . . . . . . . . E 5315 5336 4.59 4.51 [1.11 [0.99
G141-19 . . . . . . . . . . . . . E 5135 5212 4.85 4.54 [2.43 [2.42
G143-27 . . . . . . . . . . . . . K 5670 5708 4.37 4.23 [1.62 [1.61
G151-59 . . . . . . . . . . . . . S* 5167 4941 4.95 5.01 0.03 [0.05
G152-67 . . . . . . . . . . . . . K 5227 5180 4.72 4.40 [2.47 [2.53
G160-3 . . . . . . . . . . . . . . . E* 5575 5657 4.76 4.89 [0.14 [0.14
G161-14 . . . . . . . . . . . . . S 5652 5690 4.26 4.53 [1.10 [0.89
G161-73 . . . . . . . . . . . . . S 5797 5821 4.23 4.26 [1.29 [1.10
G162-16 . . . . . . . . . . . . . S 5690 5658 4.34 4.56 [0.53 [0.33
G162-51 . . . . . . . . . . . . . S 5765 5724 4.16 4.48 [0.52 [0.62
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G162-68 . . . . . . . . . . . . . S* 5385 5177 4.67 4.77 [0.54 [0.72
G163-70 . . . . . . . . . . . . . S 5805 5768 4.19 4.41 [1.25 [1.23
G165-11 . . . . . . . . . . . . . K* 5785 5817 4.32 4.38 [0.46 [0.66
G166-45 . . . . . . . . . . . . . E* 5997 6187 4.30 4.36 [2.35 [2.30
G170-47 . . . . . . . . . . . . . E 5225 5191 4.82 4.62 [2.59 [2.58
G171-50 . . . . . . . . . . . . . K 5320 5100 4.70 4.60 [1.97 [1.94
G180-58 . . . . . . . . . . . . . K* 5090 5013 4.76 4.71 [2.14 [2.15
G186-26 . . . . . . . . . . . . . E 6215 6336 4.22 4.23 [2.64 [2.74
G195-52 . . . . . . . . . . . . . K* 5332 5384 4.90 4.87 [0.10 [0.10
G196-48 . . . . . . . . . . . . . K 5690 5634 4.30 3.73 [1.74 [1.50
G206-34 . . . . . . . . . . . . . E 6170 6241 4.27 4.22 [2.62 [2.74
G209-35 . . . . . . . . . . . . . K* 5070 5069 4.88 4.85 [0.49 [0.33
G229-34 . . . . . . . . . . . . . K* 5527 5576 4.60 4.59 [0.50 [0.27
G236-11 . . . . . . . . . . . . . K* 5970 5821 4.51 4.56 0.31 : [0.10 :
G271-34 . . . . . . . . . . . . . L* 5647 5669 4.48 4.56 [0.68 [0.76
HD 693 . . . . . . . . . . . . . . E* 6120 6010 4.08 4.36 [0.38 [0.53
HD 3567 . . . . . . . . . . . . E 5990 6022 4.50 4.38 [1.29 [1.27
HD 4306 . . . . . . . . . . . . L 4815 4701 2.40 2.28 [2.71 [2.80
HD 6268 . . . . . . . . . . . . L 4695 4731 2.07 2.01 [2.48 [2.55
HD 6461 . . . . . . . . . . . . L 4810 5147 2.68 2.80 [0.93 [0.87
HD 6833 . . . . . . . . . . . . K 4707 4682 2.54 2.67 [0.93 [0.96
HD 8724 . . . . . . . . . . . . K 4680 4760 2.00 1.96 [1.64 [1.69
HD 16031 . . . . . . . . . . . E 6005 6009 4.12 4.22 [1.71 [1.73
HD 59392 . . . . . . . . . . . L 5892 5905 4.22 4.05 [1.65 [1.63
HD 74000 . . . . . . . . . . . L 6075 6056 4.14 3.79 [1.82 [1.87
HD 76932 . . . . . . . . . . . L* 5860 5840 4.02 4.17 [0.99 [0.91
HD 83212 . . . . . . . . . . . K 4575 4738 1.98 2.08 [1.48 [1.45
HD 84937 . . . . . . . . . . . K* 6180 6293 4.09 4.09 [2.06 : [2.37 :
HD 85773 . . . . . . . . . . . K 4470 4654 0.99 0.92 [2.27 [2.23
HD 87140 . . . . . . . . . . . K 4822 4909 2.79 2.99 [1.71 [1.81
HD 89499 . . . . . . . . . . . S 4780 4737 2.39 2.39 [2.15 [2.21
HD 92588 . . . . . . . . . . . K* 4942 5010 4.65 5.03 [0.07 [0.12
HD 93529 . . . . . . . . . . . K 4810 4777 2.32 2.34 [1.67 [1.71
HD 97320 . . . . . . . . . . . L* 5935 5872 4.13 4.08 [1.18 [1.15
HD 97916 . . . . . . . . . . . L 6132 6337 3.73 3.63 [1.20 [1.12
HD 101063 . . . . . . . . . . L 4865 4991 2.95 3.18 [1.15 [1.13
HD 102644 . . . . . . . . . . K 6157 6052 4.44 4.39 [1.83 [1.86
HD 103545 . . . . . . . . . . K 4835 4837 2.48 2.53 [2.14 [2.17
HD 105546 . . . . . . . . . . K 4727 : 5095 : 2.49 2.53 [1.40 [1.33
HD 107752 . . . . . . . . . . K 4710 4787 2.07 2.14 [2.74 [2.69
HD 108317 . . . . . . . . . . K 5310 5179 3.33 3.39 [2.27 [2.30
HD 108405 . . . . . . . . . . S* 5705 5676 4.48 4.48 [0.60 [0.87
HD 110184 . . . . . . . . . . L 4360 4582 0.80 0.84 [2.46 [2.38
HD 113083 . . . . . . . . . . E* 5737 5605 4.20 4.54 [1.04 [1.09
HD 115444 . . . . . . . . . . K 4757 4830 2.16 1.93 [2.73 [2.72
HD 115772 . . . . . . . . . . L 4930 5133 2.56 2.82 [0.70 [0.70
HD 116064 . . . . . . . . . . S* 5862 5957 4.37 4.26 [1.91 [2.01
HD 117220 . . . . . . . . . . L 4895 5238 2.68 2.53 [0.86 [0.85
HD 122196 . . . . . . . . . . L 5905 5913 4.30 4.15 [1.89 [1.87
HD 122563 . . . . . . . . . . L 4687 4746 1.61 1.54 [2.62 [2.57
HD 122956 . . . . . . . . . . L 4600 4630 1.81 1.93 [1.75 [1.74
HD 126778 . . . . . . . . . . K 4807 4897 2.60 2.63 [0.59 [0.44
HD 128188 . . . . . . . . . . K 4677 4752 2.04 2.13 [1.37 [1.38
HD 132475 . . . . . . . . . . L* 5550 5564 3.76 3.80 [1.70 [1.62
HD 134169 . . . . . . . . . . L* 5782 5844 4.26 4.24 [0.85 [0.77
HD 134439 . . . . . . . . . . E 4950 4862 4.66 4.52 [1.53 [1.54
HD 134440 . . . . . . . . . . K 4732 4675 4.73 4.52 [1.37 [1.42
HD 136202 . . . . . . . . . . E* 6300 6088 5.70 : 4.64 : [0.13 [0.16
HD 140283 . . . . . . . . . . L* 5792 5875 3.75 3.70 [2.47 [2.58
HD 142948 . . . . . . . . . . L 4647 4697 1.86 2.20 [0.89 [0.89
HD 154417 . . . . . . . . . . E* 5880 6043 4.43 4.66 [0.18 [0.30
HD 161770 . . . . . . . . . . K* 5182 5335 4.78 4.45 [2.12 [2.01
HD 163810 . . . . . . . . . . E* 5570 5421 4.32 4.56 [1.34 [1.34
HD 166161 . . . . . . . . . . L 5125 5154 1.84 1.89 [1.22 [1.23
HD 184499 . . . . . . . . . . K* 5710 5801 4.38 4.41 [0.58 [0.46
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HD 193901 . . . . . . . . . . E* 5655 5620 4.40 4.50 [1.08 [1.09
HD 200654 . . . . . . . . . . E 5105 5065 2.84 2.86 [2.93 [2.91
HD 201889 . . . . . . . . . . O* 5657 5621 4.24 4.50 [0.92 [0.82
HD 201891 . . . . . . . . . . L* 5830 5799 4.20 4.30 [1.13 [1.13
HD 210295 . . . . . . . . . . K 4725 4783 2.48 2.71 [1.36 [1.36
HD 211744 . . . . . . . . . . L 4865 4943 3.03 3.15 [1.03 [0.99
HD 216143 . . . . . . . . . . K 4622 4719 1.51 1.45 [2.16 [2.12
HD 218502 . . . . . . . . . . K* 5750 5673 3.72 3.63 [1.88 [1.99
HD 218857 . . . . . . . . . . L 5165 : 4740 : 2.51 2.53 [1.94 [1.91
HD 221170 . . . . . . . . . . K 4610 4686 1.57 1.54 [2.12 [2.11
LP 635-14 . . . . . . . . . . . E 6045 6258 4.31 4.26 [2.80 [2.80
LP 685-44 . . . . . . . . . . . E 5290 : 4726 : 4.69 4.44 [2.67 [2.62
LP 732-48 . . . . . . . . . . . K 6122 6324 4.25 4.18 [2.46 [2.48
LP 831-70 . . . . . . . . . . . E 6192 6312 4.33 4.26 [3.40 [3.25
LTT 2437 . . . . . . . . . . . S 5677 5534 4.52 4.76 [2.56 [2.39
LTT 6194 . . . . . . . . . . . S 5877 6029 4.43 4.30 [2.79 [2.86

NOTE.ÈE: ESO 1.5 m, K: KPNO 2.1 m, L: LCO 2.5 m, O: ORM 2.5 m, P: PAL 5 m, and S : SSO 2.3 m. An
asterisk indicates that the star is a member of the nearby subsample, while a colon indicates a large discrepancy
between the catalog (CAT) and network (ANN) parameter estimates ; see the Appendix. Table 2 is also available in
machine-readable form in the electronic edition of the Astrophysical Journal.

and the parameters used toTeff,CAT, log gCAT, [Fe/H]CAT ;
test the ANNs are listed under the same names in Table 3.
Note that column (2) of each of these tables lists the source
of the spectrum for each of our program stars, according to
the following key : E : ESO 1.5 m, K: KPNO 2.1 m, L: LCO
2.5 m, O: ORM 2.5 m, P: PAL 5 m, and S : SSO 2.3 m.6 An
asterisk next to the listed source indicates that the star is a
member of the nearby subsample described below. A colon
next to the catalog or network parameters indicates a large
discrepancy ; see the Appendix for discussion of individual
cases.

5. APPLICATION OF AN ARTIFICIAL NEURAL NETWORK

5.1. Initiating and Running the ANN Code
In this work we have employed a back-propagation

ANN code kindly made available by B. D. Ripley (see
Ripley 1993, 1994). Back-propagation is a standard ANN
training technique, though Ripley has implemented a few
clever additions that allow his code to operate without the
free parameters of momentum and the learning coefficient.
ANN training is based on multidimensional minimization
techniques that converge to the desired solution by iter-
atively providing the direction, but not the magnitude, of
the updates necessary for the many weights connecting the
ANN nodes. A learning coefficient is commonly used to set
the magnitude of the weight updates, whereas the momen-
tum term sets the degree to which the weight updates in the
current iteration are related to prior weight updates.
Careful tuning of the learning coefficient and the momen-
tum term are necessary in standard back-propagation codes
when the solution space has a number of local minima. The
only remaining free parameters are the initial random
weights interconnecting the various layers of the ANN and

6 ESO: European Southern Observatory (Chile) ; KPNO: Kitt Peak
National Observatory (USA) ; LCO: Las Campanas (Chile) ; ORM: Obser-
vatorio del Roque de los Muchachos (Spain) ; PAL: Mount Palomar
(USA) ; SSO: Siding Spring Observatory (Australia).

the criterion for stopping the learning process ; more dis-
cussion of these is provided below. Our network architec-
tures were also standard and fully connected from the input
layer to one, and sometimes a second, hidden layer and then
to the output layer. The connections between nodes are
numerical weights that contain the knowledge of the classi-
Ðcation system. The training step involves adjusting the
weights so that the ANNs provide a generalized mapping of
the input space (in our case, stellar spectra) to the output
space (in our case, the estimated atmospheric parameters of

log g, or [Fe/H]). The number of nodes in the inputTeff,layer was dictated by the number of spectral elements per
spectrum. In other words, our ANNs ingest spectra, not
derived parameters. The number of output nodes was
always one.

Experimentation demonstrated that ANNs designed to
ambitiously Ðt two or more desired parameters simulta-
neously (here log g, and [Fe/H]) converged on a robustTeff,solution far less frequently than those that specialized in a
given parameter, e.g., Thus, we built separate ANNs toTeff.determine each of the atmospheric parameters. Decisions
on the appropriate number of hidden nodes, and on
whether to employ two layers of hidden nodes or just one,
are dictated by the level of complexity and nonlinearity in
mapping the input space to the output space. We experi-
mented with a wide range of numbers of hidden nodes in
one layer (3, 5, 7, 9, 11, and 13) and in two layers (3 :3, 5 :5,
and 7 :7). We chose odd numbers of hidden nodes in order
to span a wider range of ANN complexity without having
to train as many ANNs. It is an important general rule of
ANN applications not to use too many hidden nodes, or the
number of free parameters grows too large and the ANNs
just memorize their training set rather than converge to the
desired mapping.

As explained in ° 2, the spectra in our present application
were obtained at a variety of observatories on a number of
di†erent spectrographs with a range of wavelength cover-
ages. We wished to explore whether the heterogeneity in the
data sources would limit the quality of the classiÐcations.



TABLE 3

CATALOG AND ANN PARAMETERS FOR THE TESTING SAMPLE

Teff,CAT Teff,ANN log gCAT log gANN [Fe/H]CAT [Fe/H]ANN
Star Source (K) (K) (dex) (dex) (dex) (dex)
(1) (2) (3) (4) (5) (6) (7) (8)

BD ]01¡2916 . . . . . . . L 4247 : 4782 : 1.02 : 1.83 : [1.82 : [2.37 :
BD ]29¡2091 . . . . . . . K* 5740 5660 4.36 4.39 [1.98 [1.77
BD [04¡680 . . . . . . . . K 5650 : 5902 : 4.53 4.20 [2.22 : [1.81 :
BD [09¡5746 . . . . . . . E 5960 5942 4.15 4.20 [1.73 [1.85
BD [14¡5890 . . . . . . . K 4767 4925 2.27 : 3.01 : [2.07 [2.05
CS 22873[128 . . . . . . E 4882 4779 2.50 : 3.37 : [2.88 [2.98
CS 22891[200 . . . . . . L 4632 : 5053 : 1.87 : 4.02 : [3.49 : [2.88 :
CS 22949[048 . . . . . . P 4665 4858 1.95 2.13 [3.17 [2.98
CS 22968[014 . . . . . . L 4815 : 5335 : 2.24 2.96 [3.43 : [2.94 :
G13-35 . . . . . . . . . . . . . . . L* 6055 6145 4.08 3.85 [1.63 [1.82
G14-41 . . . . . . . . . . . . . . . S 5350 5410 4.74 4.82 [0.34 [0.16
G15-6 . . . . . . . . . . . . . . . . S* 5295 5265 4.65 4.61 [0.65 [0.63
G15-14 . . . . . . . . . . . . . . . S 5102 4925 4.77 4.89 [0.37 [0.37
G15-17 . . . . . . . . . . . . . . . S* 5067 4954 4.88 4.91 [0.39 [0.31
G17-22 . . . . . . . . . . . . . . . S* 4765 : 5687 : 4.90 4.42 [0.77 [0.80
G20-24 . . . . . . . . . . . . . . . E 6052 5974 4.12 4.23 [2.07 [2.29
G21-22 . . . . . . . . . . . . . . . E 6167 : 5828 : 3.70 : 4.64 : [0.88 : [1.18 :
G28-42 . . . . . . . . . . . . . . . K 5397 5143 4.46 4.59 [1.57 [1.58
G44-44 . . . . . . . . . . . . . . . K* 5637 5726 4.66 4.57 [0.16 [0.13
G54-7 . . . . . . . . . . . . . . . . K* 5887 5862 4.34 4.52 [0.16 [0.23
G56-30 . . . . . . . . . . . . . . . S 5842 5656 4.19 4.45 [0.91 [1.00
G57-11 . . . . . . . . . . . . . . . K* 5570 5664 4.84 4.71 0.03 [0.08
G59-24 . . . . . . . . . . . . . . . S 5995 5828 4.26 4.07 [2.42 [2.50
G60-66 . . . . . . . . . . . . . . . S* 5437 5537 4.73 4.76 [0.26 [0.28
G63-46 . . . . . . . . . . . . . . . K 5625 5744 4.39 4.30 [0.91 [0.75
G66-65 . . . . . . . . . . . . . . . K* 5727 5596 4.21 4.32 [0.78 [0.78
G84-29 . . . . . . . . . . . . . . . E 6355 6326 4.14 4.20 [2.67 [2.79
G84-39 . . . . . . . . . . . . . . . E* 5055 5086 4.83 5.01 [0.66 [0.61
G90-3 . . . . . . . . . . . . . . . . K 5842 5821 3.86 3.99 [2.18 [2.22
G97-43 . . . . . . . . . . . . . . . E 5215 5216 4.71 4.77 [0.49 [0.31
G99-52 . . . . . . . . . . . . . . . S 5082 5172 4.64 4.38 [1.40 : [2.01 :
G106-53 . . . . . . . . . . . . . . S* 4955 5135 4.88 4.81 [0.21 : [0.58 :
G113-24 . . . . . . . . . . . . . . S* 5737 5711 4.34 4.46 [0.49 [0.59
G114-19 . . . . . . . . . . . . . . S* 5265 5553 4.80 4.42 [0.42 [0.58
G122-43 . . . . . . . . . . . . . . K 5570 5689 4.58 4.34 [2.36 [2.25
G139-8 . . . . . . . . . . . . . . . E 5997 5894 4.31 4.34 [2.36 [2.60
G141-15 . . . . . . . . . . . . . . S 5955 6181 4.32 4.50 [2.67 [2.57
G146-76 . . . . . . . . . . . . . . K 5150 5046 4.69 : 3.57 : [2.15 [2.06
G154-32 . . . . . . . . . . . . . . E* 5765 5822 4.54 4.58 [0.19 [0.32
G161-84 . . . . . . . . . . . . . . S 4605 : 5013 : 4.72 4.60 [1.57 [1.32
G200-62 . . . . . . . . . . . . . . K* 5080 5086 4.84 4.86 [0.45 [0.44
Gmb 1830 . . . . . . . . . . . O 5010 4846 4.63 4.54 [1.31 [1.47
HD 3008 . . . . . . . . . . . . . K 4370 4720 0.99 0.50 [1.90 [1.87
HD 6755 . . . . . . . . . . . . . K 5230 : 4864 : 2.98 3.55 [1.49 : [1.98 :
HD 13979 . . . . . . . . . . . L 4925 5072 2.58 2.01 [2.61 [2.71
HD 20010 . . . . . . . . . . . E* 6077 6020 4.72 4.38 [0.27 [0.41
HD 20038 . . . . . . . . . . . L 4875 4979 2.41 : 3.21 : [0.87 [1.14
HD 22484 . . . . . . . . . . . K* 6080 5880 5.02 4.57 [0.16 [0.22
HD 34328 . . . . . . . . . . . E* 5857 5809 4.15 4.47 [1.61 [1.59
HD 44007 . . . . . . . . . . . L 4750 4733 2.71 : 1.61 : [1.58 [1.85
HD 45282 . . . . . . . . . . . K 4980 4990 3.53 3.96 [1.52 : [1.84 :
HD 63791 . . . . . . . . . . . K 4762 4760 2.21 2.00 [1.67 [2.00
HD 74462 . . . . . . . . . . . K 4812 4777 2.91 : 1.89 : [1.42 [1.61
HD 99383 . . . . . . . . . . . L* 5892 6085 4.13 4.04 [1.65 [1.79
HD 111721 . . . . . . . . . . L 4750 4511 3.01 : 1.46 : [1.26 : [2.72 :
HD 111980 . . . . . . . . . . L* 5747 5679 4.26 4.43 [0.99 [1.15
HD 114762 . . . . . . . . . . K* 5860 5832 4.23 4.49 [0.70 [0.72
HD 128279 . . . . . . . . . . L 5130 5093 3.11 : 4.54 : [2.20 [2.15
HD 149414 . . . . . . . . . . L* 5040 5001 4.64 4.61 [1.30 [1.29
HD 160617 . . . . . . . . . . E 5955 5817 4.15 4.12 [1.78 [1.88
HD 181743 . . . . . . . . . . L* 5915 6076 4.16 4.05 [1.79 [2.02
HD 186478 . . . . . . . . . . K 4712 4776 1.71 1.51 [2.58 [2.49
HD 187111 . . . . . . . . . . K 4247 : 4688 : 0.97 1.17 [1.78 [1.79
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TABLE 3ÈContinued

Teff,CAT Teff,ANN log gCAT log gANN [Fe/H]CAT [Fe/H]ANN
Star Source (K) (K) (dex) (dex) (dex) (dex)
(1) (2) (3) (4) (5) (6) (7) (8)

HD 188510 . . . . . . . . . . K* 5470 5388 4.39 4.51 [1.53 [1.47
HD 195636 . . . . . . . . . . K 5487 : 5820 : 3.27 3.75 [2.80 [2.58
HD 196944 . . . . . . . . . . K 5122 5045 2.89 : 1.57 : [2.33 : [1.95 :
HD 213657 . . . . . . . . . . E 6060 5986 4.10 4.13 [1.98 [2.13
HD 219617 . . . . . . . . . . E* 5907 5785 4.17 4.29 [1.31 [1.65
LP 815-43 . . . . . . . . . . . E 6305 6299 4.24 4.20 [3.20 : [2.79 :
Ross 740 . . . . . . . . . . . . . 5010 : 5968 : 4.75 4.39 [2.75 [2.66

NOTE.ÈE: ESO 1.5 m, K: KPNO 2.1 m, L: LCO 2.5 m, O: ORM 2.5 m, P: PAL 5 m, and S : SSO 2.3 m. An
asterisk indicates that the star is a member of the nearby subsample, while a colon indicates a large discrepancy
between the catalog (CAT) and network (ANN) parameter estimates ; see the Appendix. Table 3 is also available in
machine-readable form in the electronic edition of the Astrophysical Journal.

We thus chose to train ANNs on the entire training set
(hereafter the total/full sample), as well as three additional
subsamples. One subsample (nearby/full) was comprised of
101 stars with parallaxes larger than 10 mas, as measured
by Hipparcos, and therefore with a fairly well constrained

(see ° 4). We note that the catalog gravities for the starsM
Vin the nearby sample were substituted by the Hipparcos

value only for the training with that subsample. The derived
Hipparcos gravities were found consistent with those
published by Allende Prieto et al. (1999) but are not
included in Tables 2 and 3. Another subsample (total/kpno)
consisted only of data obtained at the KPNO 2.1 m tele-
scope, since this was the most common source for our spec-
troscopy. The Ðnal subsample (nearby/kpno) was the
intersection between the nearby and the KPNO sub-
samples. For the KPNO data the available wavelength
range was 3733.9È4964.5 corresponding to 1906 inputA� ,
parameters ; for the other two subsamples the available
wavelength range was 3836.6È4452.9 corresponding toA� ,
955 input parameters. Table 4 lists the number of stars
contained in each subsample. Below we point out that, in
some instances, the additional information provided by the
extended spectral coverage in the KPNO spectra results in

superior performance of the ANNs, which is perhaps no
surprise.

Since our data sets were small, we used approximately
75% of the data, randomly drawn, to train the ANNs and
the remaining 25% of the data to test the ANNs. Standard
practice is to divide the data set in half for training and
testing, but other divisions are acceptable as long as the
training and testing sets span the same regions of classi-
Ðcation space. As shown in Figure 4, our training and
testing data essentially satisfy these criteria. A few spectra
near the limits of the parameter domains will force the
ANNs to extrapolate, but objects with the most extreme
parameters will be difficult to classify by any automated
technique.

We found little di†erence between the results of most of
the ANNs that we tried, indicating that this classiÐcation
problem is well posed and has a broad global minimum
(optimal solution) and that the data are appropriate for the
task. Rather than present the results for all ANNs that we
built, we will concentrate on the architectures with one
hidden layer and nine hidden nodes for and log g andTeff13 hidden nodes for [Fe/H]. These particular architectures
yielded the best classiÐcations. For comparison, the archi-

TABLE 4

STATISTICS OF THE ANN RESULTS

Subsample C
BI

Training C
BI

Testing S
BI

Training S
BI

Testing Number Training Number Testing
(1) (2) (3) (4) (5) (6) (7)

Teff
Nearby/kpno . . . . . . [4 [38 37 139 30 10
Nearby/full . . . . . . . . [12 39 67 219 76 25
Total/kpno . . . . . . . . 4 77 72 215 86 28
Total/full . . . . . . . . . . 7 3 110 185 209 70

log g

Nearby/kpno . . . . . . [0.03 0.00 0.10 0.17 30 10
Nearby/full . . . . . . . . 0.00 0.02 0.07 0.17 76 25
Total/kpno . . . . . . . . 0.02 0.04 0.16 0.32 86 28
Total/full . . . . . . . . . . 0.01 0.00 0.15 0.36 209 70

[Fe/H]

Nearby/kpno . . . . . . 0.00 [0.16 0.08 0.16 30 10
Nearby/full . . . . . . . . [0.01 0.04 0.05 0.24 76 25
Total/kpno . . . . . . . . [0.01 0.00 0.13 0.30 86 28
Total/full . . . . . . . . . . 0.00 [0.05 0.09 0.21 209 70
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FIG. 4.ÈDistribution of the catalog atmospheric parameters for the
training set (asterisks) and testing set (open circles). (a) vs. log g dis-Tefftribution. (b) vs. [Fe/H] distribution. (c) log g vs. [Fe/H] distribution.TeffNote that the testing set data track similar regions of the physical param-
eter spaces as do the training set data.

tectures that led to the worst classiÐcations still provided
adequate results, however, with errors larger by only 50 K

0.04 dex (log g), and 0.15 dex ([Fe/H]).(Teff),The input-to-output mapping function that is used in the
nodes saturates when the total input to a given node (the
sum of the individual inputs multiplied by their weights)
approaches 0 or becomes signiÐcantly greater than 1. For
this reason the initial range of the weights connecting the

nodes is from [1 to 1, and the actual range of atmospheric
parameters needs to be remapped to values between 0

and 1. Given the ranges for our program stars in e†ective
temperature K), surface gravity(4000[Teff [ 6500

and metallicity(0.0[ log g [ 6.0), ([4.0[ [Fe/H][ 0.5),
we remapped these parameters with the following simple
equations :

Teff,remap \ Teff [ 4000
2500

,

(log g)remap \ log g
6

,

[Fe/H]remap \ [Fe/H][ 0.5
[4.5

.

We arbitrarily set the maximum number of learning iter-
ations to 1000, stopping the ANN training at that point.
Since the major portion of the error minimization occurs in
the Ðrst few dozen iterations, followed by an exponential
decrease in the rate of learning, by the time the networks
had trained to 1000 iterations the learning rate was essen-
tially zero. Although the training of a given ANN architec-
ture with 1000 iterations took only 30 minutes on a Sun
Ultra 30 workstation, the exploration of a range of architec-
tures (and details of the data set) required weeks of com-
puter time. Note, however, that classifying data with a
trained ANN is much faster than training the ANN; an
individual classiÐcation requires less than 1 s of CPU time.

We explored 10 di†erent initial random weight conÐgu-
rations for each of the Ðnal ANNs we chose to apply. By
training the same architecture with di†erent initial random
weights, we obtained a measure of how likely the ANNs
were to converge on local minima rather than the desired
global minimum. The ANNs were the easiest to trainTeffand converged on spurious local minima in only one out of
10 instances. The log g problem was more challenging,
especially when training on the smaller nearby sample. For
this parameter the ANNs converged on local minima in
seven out of 10 instances. Since cross-validation, i.e., testing
with the unseen data set, makes it readily apparent when
the ANNs converge on local minima, it is easy to retain and
apply only the well-trained ANNs. The difficulty that our
ANNs experienced when training on the small data sets
indicates that we are approaching the lower limit on the
appropriate number of spectra for the training step. We also
expect the data heterogeneity to be a factor in making it
more difficult for the ANNs to train. While ANNs have the
advantage over many other techniques in that they can be
trained to ignore data heterogeneity, the training procedure
is certain to be improved by the provision of more exam-
ples, thus avoiding unwanted correlations between the
input and output spaces.

5.2. Results
In Tables 2 (the training set) and 3 (the testing set) the

atmospheric parameters computed by our best ANNs are
listed as and respectively.Teff,ANN, log gANN, [Fe/H]ANN,
Figure 5 presents the results for our ANNs for the fourTeffsubsamples. Asterisks represent the training set, open circles
the testing set. Naturally, the training set displays a better
distribution about the correspondence line, exhibiting both
a lower mean residual and a lower scatter. The statistics of
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FIG. 5.ÈResults obtained by the ANNs for the four data subsamples. See the text for the deÐnition of the subsamples. The horizontal axes display theTeffcatalog (CAT) values, while the vertical axes display the network classiÐcation (ANN) values, both in K. The line drawn in each panel is the one-to-Teff Teffone correspondence line. Asterisks are for the training set, and the open circles are for the testing set.

the residuals are discussed below. Note that there are a few
deviant classiÐcations, especially in the total/full sub-Teffsample, the most heterogeneous of the data sets. The stars
with the most deviant classiÐcations are discussed in further
detail in the Appendix.

Figure 6 presents the results for our log g ANNs. Note
that the axes of panels (a) and (b) display a much smaller
range of log g values than the axes of panels (c) and (d), since
the nearby star sample does not include any giants. Since
the log g classiÐcations are based on a few spectral features,
the level of scatter seen in the Ðgures is to be expected. As
before, the total/full subsample exhibits the most deviant
classiÐcations.

Figure 7 presents the results for our [Fe/H] ANNs; the
metallicity classiÐcations clearly are of high quality. Com-
parison of this Ðgure with Figure 5 might suggest that the
[Fe/H] results are even superior to the ones, despite theTefflarge amount of information contained in stellarTeffspectra. This is a matter of appearance only, as the TeffclassiÐcations cover a limited range of only 2000 K, i.e., a
variation of ¹50% in while the [Fe/H] classiÐcationsTeff,cover a range of º3 dex, a factor of more than 1000 in
metallicity.

Table 4 summarizes the statistics for the ANNs. The table
is grouped into three divisions (for the three atmospheric
parameters that have been modeled) of four rows each (for
the four subsamples considered, as labeled in col. [1]). For
the purposes of making our comparisons, we have used the
robust biweight estimators of central location, C

BI(comparable to the mean), and scale, (comparable to theS
BI

standard deviation), as described by Beers, Flynn, & Geb-
hardt (1990a). These estimators remain resistant to the pres-
ence of outliers, without the need for subjective pruning.
Column (2) of Table 4 lists the central location of the inter-
nal error (the residual o†set in the training sample), in the
sense where Q represents the quantityQANN [ QCAT, Teff,log g, and [Fe/H], respectively. Column (3) is the corre-
sponding central location of the external error (the residual
o†set in the testing sample). Columns (4) and (5) list estima-
tors of the internal and external scales, respectively.
Columns (6) and (7) list the number of stars in the training
and testing subsamples, respectively. Note that, as expected,
the central locations and scales of the internal errors are
generally substantially smaller than those of the external
errors. Nevertheless, the central locations of the external
errors are quite acceptable and close to zero.

Figure 8 is a graphical summary of the distribution of
residuals for the three ANNs, grouped according to the
training and testing data. In this Ðgure, the training data are
shown above the label for each subsample, and the testing
data are shown below the label for each subsample. The
vertical line in each box plot is the location of the median
residual. The box extends to cover the central 50% of the
data (the interquartile range [IQR]). The ““ whiskers ÏÏ on
each box extend to cover the last portion of the data not
considered likely outliers (this range extends to cover the
distance from the lower and upper ends of the IQR plus a
factor of 1.5 times IQR. The asterisks and open circles indi-
cate modest and large outliers (lower and upper ends of the
IQR plus a factor of 3.0 times IQR), respectively. See



FIG. 6.ÈResults obtained by the log g ANNs for the four data subsamples. Note that the axes of panels (a) and (b) display a much smaller range of log g
values than the axes of panels (c) and (d). Lines and symbols are as in Fig. 5.

FIG. 7.ÈResults obtained by the [Fe/H] ANNs for the four data subsamples. Lines and symbols are as in Fig. 5.
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FIG. 8.ÈBox plots illustrating comparisons between residuals obtained by the ANNs for the four data subsamples, in the sense where QQANN [ QCAT,represents the quantity (a) (b) log g, and (c) [Fe/H], respectively. The box plots immediately above the subsample labels are those obtained from theTeff,training sets, while those immediately below the subsample labels are those obtained from the testing sets. The vertical line in each box plot is the location of
the median residual. The box extends to cover the central 50% of the data. The ““ whiskers ÏÏ on each box extend to cover the last portion of the data not
considered likely outliers. The asterisks and open circles indicate modest and large outliers, respectively.

Emerson & Strenio (1983) for a general discussion of box
plots.

The scales of the external errors in Table 4 provide our
best estimates of the performance of the ANNs. The scale
estimates obtained for the total/full subsample for each of
the three ANNs, K, dex,S

BI
(Teff)\ 185 S

BI
(log g)\ 0.36

and dex, are all acceptably low. NoteS
BI

([Fe/H])\ 0.21
that, in general, the scale estimates obtained for the nearby/
kpno subsample are often somewhat smaller than those for
the total/full subsample. We expect this result because of the
more homogeneous nature and larger spectral coverage of
the kpno data, relative to the full data. Furthermore, the
spectra of the nearby stars typically have higher S/N than
those included in the total/full subsample, and, in the case of
the log g results, it should be kept in mind that the trigono-
metric gravities for the nearby stars are more accurate than
those obtained for the more distant stars included in the
total/full subsample.

Our external scale errors in the estimates of the atmo-
spheric parameters include the errors in the determination
of the parameters for the program stars, i.e., the catalog
values. Given that the catalog values were drawn from a
variety of sources and no doubt incorporate a number of
systematic o†sets from star to star, we conservatively esti-
mate that the errors of determination for the catalog values
are of the order K, p(log g)D 0.20È0.25p(Teff)D 100È125
dex, and p([Fe/H])D 0.10È0.15 dex, respectively. Subtrac-
ting these contributions to the external scale estimates

obtained for the total/full subsample suggests that our likely
errors in the physical quantities lie in the range p(Teff)DK, p(log g) D 0.25È0.30 dex, and p([Fe/135È150
H])D 0.15È0.20 dex, respectively. The internal scale errors
obtained from inspection of the training set for the total/full
subsample are quite low, K,S

BI
(Teff) \ 110 S

BI
(log g)\

0.15 dex, and dex, suggesting that theS
BI

([Fe/H])\ 0.09
intrinsic accuracy of our technique is limited by the accu-
racy of the training catalog values themselves, and not by
any clear deÐciency of the ANN approach.

Katz et al. (1998) have pursued a study of a least-squares
matching technique, based on the comparison of high-
resolution stellar spectra to a grid of stars with known at-
mospheric parameters, and obtained internal errors of
estimation of K, p(log g) D 0.28 dex, andp(Teff) D 85È100
p([Fe/H])D 0.17 dex, respectively, for stellar spectra with
S/N in the range 10È100. These errors are completely in line
with our own internal errors, suggesting that, when apply-
ing the ANN technique, one is not forced to employ high-
resolution spectroscopy, at least for accurate determination
of these stellar parameters.

5.3. L imitations of the ANN Approach and Deviations from
the General Trends

The scatter of points seen in Figure 8 is dominated by a
small number of stars with large mismatches between input
catalog parameters and output network predictions. Blame
for these clashes must be assessed on a case-by-case basis
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and is provided in the Appendix. Included in that list are
stars with oANN[CAT o parameter deviations in excess of
350 K in 0.6 dex in log g, and 0.3 dex in [Fe/H]. BelowTeff,we discuss some factors that may be responsible when good
points go bad.

The reader is cautioned again that the ANNs of this
study, in common with all automated pattern recognition
algorithms, are far better interpolators than extrapolators.
Our ANNs have trouble in those areas of the log g,(Teff,[Fe/H]) parameter space where the training spectra are few
or absent. For example, from inspection of Figure 4b one
expects difficulties for stars with especially[Fe/H][ [3,
over the temperature regime K, where5000 \ Teff \ 6000
we have no training or test spectra. Five of the deviant stars
discussed in the Appendix have extremely low metallicities,
and their spectra at moderate resolution have very few
strong atomic features. Undoubtedly, the ANNs
undoubtedly are losing some parameter sensitivity in this
metallicity regime, a limitation that should be easily over-
come by training on larger samples of lower metallicity
stars.

Subgiants, those stars in the parameter space deÐned
roughly by K and 3.2 \ log g \ 3.85100 \ Teff \ 5600
(Fig. 4a), are apparently not well represented among our
program stars. However, this gap may be, at least in part,
tied to our adopted methods of setting catalog parameters
for the program stars. One virtue of the approach outlined
in ° 4 lies in its uniformity : every star is treated as identically
as possible. However, this demands that some more or less
arbitrary choices be made. For example, the adopted tem-
perature scale is that of Alonso et al. (1996, 1999), which is
based upon application of the IRFM. The IRFM has very
few input assumptions but does rely on model atmospheres
to predict monochromatic IR Ñuxes. On the other hand, the
adopted gravities are derived from the absolute magnitudes
of Beers et al. (1999), based on a visual spectral classi-
Ðcation. Consider as one example the well-studied subgiant
HD 140283. Our application of the Alonso temperature
calibration yields K, but a glimpse atTeff,CAT \ 5792
several recent high-resolution analyses shows a wide range
of values : 5640 K (Magain 1989, hereafter M89), 5750 K
(Ryan, Norris, & Beers 1996, hereafter RNB96), 5755È5779
K (Gratton, Carretta, & Castelli 1996, hereafter GCC96),
and 5843 K (Fuhrmann et al. 1997, hereafter F97). This
particular case exempliÐes a general tendency : the tem-
perature scales from the IRFM advocated by Alonso et al.
(1996, 1999) are among neither the highest nor the lowest
scales in the literature. We assigned to thislog gCAT\ 3.75
star, close to the highest values among the high-dispersion
studies : 3.10 (M89), 3.40 (RNB96), 3.60È3.80 (GCC96), and
3.20 (F97). However, Allende Prieto et al. (1999) derived
log g D 3.80 from the measured Hipparcos parallax.
Finally, which falls in the middle of[Fe/H]CAT \[2.47,
the range spanned by the high-dispersion analyses : [2.70
(M89), [2.54 (RNB96), [2.38 to [2.42 (GCC96), and
[2.34 (F97).

We want to emphasize that considerable care is required
in the examination of the temperature, gravity, and metal-
licity scales adopted in this and other studies. The same
warning applies to individual cases of deviations between
input catalog and output ANN parameters, as not all of our
program stars have been treated with equal vigor in past
studies. Indeed, a few of our program stars have not yet had
the beneÐt of high-resolution spectroscopic analysis over

wide wavelength ranges. The ANNs constructed here may
fail for particular stars, but often they also bring to light
stars that deserve further study.

5.4. Experiments on Spectra with ArtiÐcially
Increased Noise

If ANNs are to be successfully employed in the analysis of
extremely large spectroscopic data sets (which we anticipate
will become available in the near future), they will need to
work reliably on both spectra with high S/N, like the
spectra employed here, and spectra of much lower S/N. Our
data are not ideally suited to explore the e†ects of variable
S/N values on ANNs, but we have attempted a few experi-
ments that may point the way toward more comprehensive
e†orts in the future.

From our original sample of program stars we randomly
selected a subset of 52 stars having S/ND 50 near 4000 A�
and artiÐcially degraded their S/N at this wavelength to
D26 and then to D13. The strong wavelength dependence
of the S/N in the original spectra was preserved using the
square root of the raw (unÑattened) spectra to scale the
extra Poissonian noise introduced. In Figure 9 we display
one example of the S/N degradation procedure. The per-
nicious e†ect of low S/N is clearly seen in this Ðgure, as
some prominent features (e.g., the CH G band near 4300 A� ,
or Fe I at 4045 in the original spectrum shown in the topA� )
panel become nearly undetectable in the low-S/N spectrum
shown in the bottom panel.

As a Ðrst experiment, we submitted these sets of spectra
with di†erent noise levels as new data into the Ðnal ANNs
that we had trained as described above. In this manner, we
sought to ascertain whether or not the ANNs built to recog-
nize di†erences in high-S/N spectra could produce reason-
able estimates of the atmospheric parameters for stars with
lower S/N spectra.

In Table 5 we summarize the statistics of the ANN classi-
Ðcations of these data sets, organized in a similar manner to
Table 4. Figure 10 is a graphical summary of the distribu-
tion of residuals for this experiment. Inspection of the table

FIG. 9.ÈSpectrum of BD ]01¡2901, one of the program stars chosen
to evaluate the e†ect of S/N on the ANN approach. Top panel : Original
spectrum, as prepared for submission to the ANNs. Middle panel : Spec-
trum degraded to S/N \ 26. L ower panel : Spectrum degraded to
S/N \ 13.
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TABLE 5

STATISTICS OF THE ANN RESULTS : S/N EXPERIMENTS

Subsample C
BI

Training C
BI

Testing S
BI

Training S
BI

Testing Number Training Number Testing
(1) (2) (3) (4) (5) (6) (7)

Trained on High-S/N Spectra

Teff
S/N [ 40 . . . . . . 59 [16 116 144 37 15
S/N \ 26 . . . . . . 42 [47 123 142 37 15
S/N \ 13 . . . . . . 46 [42 115 165 37 15

log g

S/N [ 40 . . . . . . [0.04 0.04 0.12 0.23 37 15
S/N \ 26 . . . . . . [0.25 [0.20 0.19 0.29 37 15
S/N \ 13 . . . . . . [0.61 [0.66 0.36 0.50 37 15

[Fe/H]

S/N [ 40 . . . . . . 0.00 0.03 0.08 0.24 37 15
S/N \ 26 . . . . . . [0.38 [0.41 0.12 0.26 37 15
S/N \ 13 . . . . . . [0.75 [0.80 0.19 0.33 37 15

Trained on Similar S/N Spectra

Teff
S/N [ 40 . . . . . . 2 32 38 121 38 14
S/N \ 26 . . . . . . [8 37 38 184 38 14
S/N \ 13 . . . . . . [1 18 40 131 38 14

log g

S/N [ 40 . . . . . . 0.01 0.10 0.09 0.39 38 14
S/N \ 26 . . . . . . 0.00 [0.02 0.10 0.40 38 14
S/N \ 13 . . . . . . 0.00 0.05 0.10 0.31 38 14

[Fe/H]

S/N [ 40 . . . . . . [0.02 0.11 0.06 0.22 38 14
S/N \ 26 . . . . . . 0.01 0.13 0.07 0.31 38 14
S/N \ 13 . . . . . . [0.01 0.07 0.05 0.21 38 14

and Ðgure reveals several features of note. As expected,
there is a clear general trend toward increasing the zero-
point error and the scatter for both the internal(C

BI
) (S

BI
)

and external subsamples as one progresses to lower S/N.
The classiÐcation is the least a†ected, with the changesTeffin location and scale of the residuals staying almost con-
stant as one progresses from high to low S/N. The log g
classiÐcation su†ers rapid degradation with declining S/N
and exhibits a systematic shift in the zero point from near
0.0 dex to on the order of [0.6 to [0.7 dex and roughly a
tripling of the scatter. Similarly, the [Fe/H] classiÐcation
indicates a zero-point shift and increase in scatter with
declining S/N.

The systematic errors in [Fe/H] are puzzling, and
opposite those seen in the autocorrelation function
approach described by Beers et al. (1999), where decreasing
S/N leads to a positive systematic error in the metallicity
scale. Furthermore, there also exists a trend in metallicity at
a Ðxed S/N, in the sense that metal-rich stars have their
abundances more underestimated than the metal-deÐcient
stars. At present, we cannot explain these systematic trends
in log g or [Fe/H] classiÐcation with decreasing S/N, and
we leave this to future investigation.

As a Ðnal experiment, we constructed new ANNs, trained
on input spectra having similar S/N to the spectra we test
them with, i.e., S/N[ 40, 26, and 13, respectively. Table 5

and Figure 11 show the results. It is immediately clear that
the zero-point shifts previously encountered have now dis-
appeared. Of even greater interest, the scatter obtained in
the estimates of the internal and external errors holds essen-
tially unchanged for spectra of declining S/N. Beside, the
scatter is equivalent to that found when using ANNs
trained and tested with only high-S/N spectra, as can be
noted by comparison of Figure 10 with Figure 8. We con-
clude that it is better to classify spectra of a given S/N with
ANNs trained on spectra of similar S/N than with ANNs
trained exclusively on higher S/N spectra. This result sug-
gests two future approaches. One should either train ANNs
on spectra with a variety of S/N (and much larger training
sets) or train ANNs for speciÐc S/N and carry out an inter-
polation between the derived results for the observed S/N of
the spectrum.

6. CONCLUSIONS

We have explored the use of artiÐcial neural networks
(ANNs) for three-dimensional classiÐcation of medium-
resolution stellar spectra. We have constructed, trained, and
tested ANNs speciÐc to the individual estimation of the Teff,log g, and [Fe/H] and Ðnd that these parameter-speciÐc
networks are superior to the simultaneous estimation of
multiple parameters from an omnibus ANN. The external
accuracy of the physical parameter estimates, p(Teff)\



FIG. 10.ÈBox plots illustrating comparisons between residuals obtained by the ANNs for the S/N exploration subsamples, in the sense QS@N [ QS@N;40,where Q represents the quantity (a) (b) log g, and (c) [Fe/H], respectively. The box plots immediately above the subsample labels are those obtained fromTeff,the training sets, while those immediately below the subsample labels are those obtained from the testing sets. Note the obvious systematic o†sets in
estimated log g and [Fe/H] for the lower S/N subsamples.

FIG. 11.ÈBox plots illustrating comparisons between residuals obtained by the ANNs for the S/N exploration subsamples, for (a) (b) log g, and (c)Teff,[Fe/H], respectively. The box plots immediately above the subsample labels are those obtained from the training sets, while those immediately below the
subsample labels are those obtained from the testing sets. Note that in this case, in which the ANNs are trained on spectra of similar S/N as that of the spectra
that are submitted to them for evaluation, the systematic o†sets seen in Fig. 10 disappear.
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135È150 K over the range K,4250 ¹Teff ¹ 6500
p(log g)\ 0.25È0.30 dex over the range 1.0¹ log g ¹ 5.0
dex, and p([Fe/H])\ 0.15È0.20 dex over the range
[4.0¹ [Fe/H]¹ 0.3, strongly encourages further reÐne-
ment of this approach for future work. Furthermore, we
Ðnd that the derived accuracies of parameter estimates are
not severely a†ected by the presence of modest spectral
noise, at least when networks are trained with spectra with
similar S/N to those that will be analyzed. Further experi-
mentation is necessary to identify the limiting S/N for which
useful parameter estimation is still possible ; already, we Ðnd
that reasonably accurate estimates can be obtained with
spectra of S/N as low as 13.

In the near future, we anticipate the construction of
trained ANNs, covering a variety of S/N and spectral
resolutions, with which stellar spectra exhibiting a wide
range of atmospheric parameters can be usefully analyzed.
The recent study by Gray et al. (2001), which makes use of
stellar spectra very similar to those employed here, has
revealed that microturbulence has to be taken into account
as an independent parameter in order to recover properly
the surface gravity. A second addition that will improve the
results is to decouple the abundances of the a-elements from

the rest of the metals, modeling it as a new variable. So far,
the simple tests carried out in this paper encourage the use
and reÐnement of ANNs for ongoing and soon to be under-
taken large-scale surveys of stellar spectra, from both
ground-based and space-based observatories.
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APPENDIX

COMMENTS ON DEVIANT STARS

In spite of the excellent general predictive capability of our ANNs, some stars obviously have poor matches between one or
more of their CAT and ANN atmospheric parameters. In this appendix we draw attention to those cases with parameter
clashes oCAT[ANN o that are larger than 350 K in 0.6 dex in log g, and 0.3 dex in [Fe/H]. The discrepant cases areTeff,noted in Tables 2 and 3 with a colon next to the relevant parameters. Since one expects (and we found) a larger overall
agreement for the training set than for the testing set, these subsets will be considered separately. We refer the reader back to
Figures 5È7 to visually locate these deviant stars in relation to the vast majority of conforming stars.

For each star only the deviating parameters will be quoted here ; see Tables 2 and 3 for the remaining parameters.
Comments given here will primarily address comparisons with previous papers that report extensive abundance analyses
from high-resolution spectroscopy. Several useful papers discuss the derivation of atmospheric parameters for large stellar
samples from medium-resolution (R4 j/*jD 5000) spectra (e.g., Beers et al. 1999 ; Ryan & Norris 1991) or from very low
S/N, small wavelength coverage spectra (e.g., Carney et al. 1994 and references therein). Such studies have formed the basis for
compilation of our catalog metallicities and so will not be reexamined in detail here. In citing literature sources to support
catalog or ANN parameters, it should be understood that although the results of various studies are hopefully internally
self-consistent, in our application they were normalized to a variety of log g, and [Fe/H] systems. Consequently, theTeff,reader is urged to view the following comments with indulgence.

First we consider the parameter mismatches in the ANN training set. Two stars of this set have not been studied extensively
with high spectral resolution data : G66-49 and G236-11([Fe/H]CAT \[0.57, [Fe/H]ANN \ [0.13) ([Fe/H]CAT \ 0.31,

Note that the Beers et al. (1999) medium-resolution study obtained estimates of metallicity of[Fe/H]ANN \[0.10).
for G66-49 and for G236-11, closer to the predictions of the ANN. These two stars[Fe/H]AK2\[0.32 [Fe/H]AK2\[0.20

will not be discussed further here. For the handful of other discrepant stars, we list below a few brief comparisons to the
literature.

BD ]37¡1458 starÏs Hipparcos parallax (ESA 1997) is consistent with subgiant(log gCAT \ 4.71, log gANN \ 4.00).ÈThis
evolutionary status, and Gratton et al. (2000) derive log g \ 3.3, thus the ANN gravity value is clearly to be preferred over
that of the catalog.

CS 22949[037 extremely metal-poor star is warm enough to have little([Fe/H]CAT \ [3.99, [Fe/H]ANN \ [3.46).ÈThis
heavy-element line absorption at moderate spectral resolution. The ANN can recognize the starÏs low metallicity but cannot
be expected to derive a very accurate abundance estimate because of the few training stars at such low metallicities and
intermediate temperatures. Nevertheless, comparison with the recent high-resolution analysis of Norris, Ryan, & Beers (2001),
who obtain [Fe/H]\ [3.79, indicates that the correct abundance lies roughly halfway between the CAT and ANN values.
Note that the Beers et al. (1999) abundance, exactly matches the ANN determination.[Fe/H]AK2\ [3.46,

G58-30, HD 94835 & Gustafsson (1998) derive [Fe/H]\ 0.13, split-([Fe/H]CAT \ 0.30, [Fe/H]ANN \ [0.05).ÈFeltzing
ting the di†erence between the catalog and ANN values. The Beers et al. (1999) abundance estimate for this star is

closer to the ANN value.[Fe/H]AK2\[0.32,
HD 84937 Gratton, & Sneden (2000) derive [Fe/H]\ [2.04 from([Fe/H]CAT\ [2.06, [Fe/H]ANN \ [2.37).ÈCarretta,

a reanalysis of literature data ; the approximate mean value of other recent literature sources (Cayrel de Strobel et al. 1997)
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suggests [Fe/H]\ [2.2, so the catalog metallicity is probably to be preferred. The Beers et al. (1999) estimate for HD 84937
is closer to the catalog abundance estimate.[Fe/H]AK2\ [2.14,

HD 105546 K, K).ÈThe ANN temperature is in better agreement with high-resolution(Teff,CAT \ 4727 Teff,ANN \ 5095
spectroscopic studies : K (Pilachowski, Sneden, & Kraft 1996) and 5147 K (Gratton et al. 2000).Teff \ 5300

HD 136202 latest update of the Cayrel de Strobel et al. (1997) catalog lists(log gCAT\ 5.70, log gANN \ 4.64).ÈThe
literature studies deriving Slog gT \ 4.0. The SIMBAD database lists a spectral type of F8 IIIÈIV. Therefore, the inferred
extremely high catalog log g is incorrect.

HD 218857 K, K).ÈPrevious high-resolution analyses (e.g., K; Pilachowski et(Teff,CAT \ 5165 Teff,ANN \ 4740 Teff \ 5125
al. 1996) and B[V \ 0.65 from the SIMBAD database support the higher catalog temperature.

L P 685-44 K, K).ÈNo extensive analysis of this star using high spectral resolution data(Teff,CAT \ 5290 Teff,ANN \ 4726
has been published. The SIMBAD database has B[V \ 0.63, consistent with the higher catalog Teff.Next we consider parameter estimation problems in the testing set of stars. The discrepant stars of this set that apparently
lack extensive high-resolution spectroscopic analyses are as follows : G17-22, HD 149162 K,(Teff,CAT \ 4765 Teff,ANN \ 5687
K) ; G99-52 G106-53 G146-76([Fe/H]CAT\ [1.40, [Fe/H]ANN \[2.01) ; ([Fe/H]CAT\[0.21, [Fe/H]ANN \ [0.58) ;

and G161-84 K, K). The Beers et al. (1999) abundance(log gCAT \ 4.69, log gANN \ 3.57) ; (Teff,CAT \ 4605 Teff,ANN \ 5013
determination for G99-52 is while that for G106-53 is These stars will not be[Fe/H]AK2\[0.87, [Fe/H]AK2\[0.31.
discussed further here. Below we list comments based on comparisons with the literature for this somewhat larger list of
discrepant stars.

BD ]01¡2916 K, K;(Teff,CAT \ 4247 Teff,ANN \ 4782 log gCAT \ 1.02, log gANN \ 1.83 ; [Fe/H]CAT \[1.82, [Fe/H]ANN \
[2.37).ÈHigh-resolution studies (Cayrel de Strobel et al. 1997 ; Shetrone 1996) favor the catalog values of all parameters. The
Beers et al. (1999) abundance determination for this star, seems to support the catalog value as well.[Fe/H]AK2\ [1.60,

BD [04¡680 K, K; & Molaro(Teff,CAT \ 5650 Teff,ANN \ 5902 [Fe/H]CAT \ [2.22, [Fe/H]ANN \ [1.81).ÈBonifacio
(1997) recommend K, log g \ 3.73, and [Fe/H]\ [2.07, in rough agreement with the means of the CAT andTeff \ 5866
ANN temperatures and metallicities, but their gravity value is much lower than either of our estimates, so further investiga-
tion of this star is warranted. The Beers et al. (1999) abundance determination for this star, agrees well[Fe/H]AK2\ [2.17,
with the catalog estimate.

BD [14¡5890 analysis of Bonifacio, Centurion, & Molaro (1999), drawing on(log gCAT \ 2.27, log gANN \ 3.01).ÈThe
results of an earlier study by Cavallo, Pilachowski, & Rebolo (1997), yields gravity estimates of log g \ 2.34 from the starÏs
Hipparcos parallax and log g \ 1.4 from a spectrum analysis ; these appear to rule out the higher ANN gravity. Note also that
Bonifacio et al. (1999) derived [Fe/H]\ [2.52, substantially lower than either of our metallicity estimates. The Beers et al.
(1999) abundance determination for this star is midway between the CAT and ANN values, and again,[Fe/H]AK2\ [2.07,
rather di†erent from the Bonifacio et al. (1999) estimate.

CS 22873[128 et al. (1995) derive log g \ 2.1 for this extremely metal-(log gCAT\ 2.50, log gANN \ 3.37).ÈMcWilliam
poor giant, and our ANN probably does not have many good log g indicators in this cool starÏs very weak-lined spectrum.

CS 22891[200 K, K;(Teff,CAT \ 4632 Teff,ANN \ 5053 log gCAT\ 1.87, log gANN \ 4.02 ; [Fe/H]CAT\ [3.49,
McWilliam et al. (1995) high-dispersion analysis provides a temperature estimate, K,[Fe/H]ANN \[2.88).ÈThe Teff \ 4700

that matches the catalog value but di†ers somewhat in its derived surface gravity estimate, log g \ 1.0. The ANN log g is
clearly incorrect.

CS 22968[014 K, K;(Teff,CAT \ 4815 Teff,ANN \ 5335 log gCAT\ 2.24, log gANN \ 2.96 ; [Fe/H]CAT\ [3.43,
McWilliam et al. (1995) high-dispersion analysis completely supports the catalog values for this[Fe/H]ANN \[2.94).ÈThe

star, yet another example of our trained ANNs having trouble with a cool, very weak-lined spectrum. The Beers et al. (1999)
abundance determination for this star, is closer to the catalog value.[Fe/H]AK2\[3.35,

G21-22 K, K;(Teff,CAT \ 6167 Teff,ANN \ 5828 log gCAT \ 3.70, log gANN \ 4.64 ; [Fe/H]CAT \[0.88, [Fe/H]ANN \
[1.18).ÈBonifacio & Molaro (1997) derive K, log g \ 3.93, and [Fe/H]\ [1.63, thus agreeing with the ANNTeff \ 5869
result for temperature, with the catalog input for gravity, and with neither for metallicity ! The Beers et al. (1999) abundance
determination for G99-52 is in agreement with the catalog estimate. This obviously is a case for further[Fe/H]AK2\ [0.87,
exploration on all fronts.

HD 6755 K, K; of the literature (Cayrel(Teff,CAT \ 5230 Teff,ANN \ 4864 [Fe/H]CAT\ [1.49, [Fe/H]ANN \ [1.98).ÈAll
de Strobel et al. 1997) studies support the catalog values for this star, as does the Beers et al. (1999) abundance determination,

the ANN result is clearly in error.[Fe/H]AK2\[1.35 ;
HD 20038 et al. (2000) derive log g \ 2.38, so the catalog value is to be(log gCAT\ 2.41, log gANN \ 3.21).ÈGratton

preferred.
HD 44007 mean of the entries in Cayrel de Strobel et al. (1997) suggests(log gCAT \ 2.71, log gANN \ 1.61).ÈThe

log g ^ 2.1, nearly splitting the di†erence between the CAT and ANN values.
HD 74462 previous studies (Cayrel de Strobel et al. 1997) support the ANN(log gCAT\ 2.91, log gANN \ 1.89).ÈMost

value, and Gratton et al. (2000) derive log g \ 1.56, thus the catalog entry appears incorrect.
HD 111721 high-resolution analysis of(log gCAT \ 3.01, log gANN \ 1.46 ; [Fe/H]CAT \[1.26, [Fe/H]ANN \ [2.72).ÈThe

Gratton et al. (2000) obtains log g \ 2.5 and [Fe/H]\ [1.27, in support of the catalog values. The Beers et al. (1999)
abundance determination for this star is also in better agreement with the catalog value.[Fe/H]AK2\[0.88,

HD 128279 star is clearly evolved from the main sequence, as Pilachowski et al.(log gCAT \ 3.11, log gANN \ 4.54).ÈThis
(1996) derive log g \ 2.8, and Gratton et al. (2000) obtain a value of 3.0. The catalog gravity is correct.

HD 187111 K, K).ÈMost literature sources (Cayrel de Strobel et al. 1997) agree with the(Teff,CAT \ 4247 Teff,ANN \ 4688
lower catalog temperature, but Gratton et al. (2000) derive in the middle of the CAT/ANN range.Teff \ 4429,

HD 195636.ÈAlthough the CAT and ANN parameters do not disagree enough to qualify as discrepant here, we note that



548 SNIDER ET AL.

this unique star has been described by Preston (1997) as a star near the transition region between the horizontal and
asymptotic giant branches. It also is rapidly rotating for a highly evolved star : v sin i \ 25 km s~1. Its line spectrum will not
Ðt easily into classiÐcation schemes based on more normal metal-poor stellar spectra.

HD 196944 is a carbon-rich metal-(log gCAT\ 2.89, log gANN \ 1.57 ; [Fe/H]CAT\ [2.33, [Fe/H]ANN \ [1.95).ÈThis
poor star, and our ANNs have not been properly trained to deal with spectra of those objects. However, the detailed analysis
of Zacs, Nissen, & Schuster (1998) yields log g \ 1.7 and [Fe/H]\ [2.45, strongly supporting the ANN gravity while in
closer agreement with the catalog [Fe/H] value.

L P 815-43 et al. (1991) obtain [Fe/H]\ [3.20, and all agree that the([Fe/H]CAT\ [3.20, [Fe/H]ANN \[2.79).ÈRyan
star is a warm main-sequence star ; its very weak-lined spectrum is clearly difficult for our ANN to treat properly for
metallicity. However, the Beers et al. (1999) abundance determination for this star is closer to the ANN[Fe/H]AK2\ [2.92,
value.

Ross 740, L T T 743 K, K).ÈRyan et al. (1991) derive log g \ 3.2, and [Fe/(Teff,CAT \ 5010 Teff,ANN \ 5968 Teff \ 5500,
H]\ [2.75, and Beers et al. (1999) obtain so both of our metallicity estimates appear to be reasonable,[Fe/H]AK2\ [2.91,
but both the catalog and the ANN claim main-sequence gravity for a star that seems to be a subgiant from high-resolution
analysis.
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