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ABSTRACT

We obtained new VLT/ISAAC H-band observations for five MACHO LMC source stars and adjacent
LMC field regions. After combining our near-IR photometry with Hubble Space Telescope/PC BVRI optical
photometry, we compared the MACHO objects to the adjacent field stars in a variety of color-magnitude and
color-color diagrams. These diagnostic diagrams were chosen to be sensitive to our hypothesis that at least
some of the MACHO lenses were foreground Galactic disk or thick-disk M dwarfs. For the five lensed objects
we studied, our hypothesis could be ruled out for main-sequence lens masses e0.1 M� for distances out to
4 kpc. On the other hand, the fact that LMCMACHO 5, an object not in our study, has been recently found to
have just such a foreground lens highlights that the remainder of the LMCMACHOobjects should be searched
for the signature of their lenses using our photometric technique or via near-IR spectroscopy. We also
constructed diagnostic color-color diagrams sensitive to determining reddening for the individual MACHO
source stars and found that these five objects did not show evidence for significant additional reddening. At
least these fiveMACHOobjects are thus also inconsistent with the LMC self-lensing hypothesis.

Subject heading: gravitational lensing

1. INTRODUCTION

Searches for gravitational microlensing along the line of
sight toward the Large Magellanic Cloud (LMC; Paczynski
1986; Udalski, Kubiak, & Szymanski 1997; Alcock et al.
2000a; see also Alfonso et al. 2003) were meant to test for
the existence of Galactic dark matter in the form of massive
compact halo objects (MACHOs). A handful of gravita-
tional microlensing events toward the LMC with the dura-
tion and amplification expected for MACHOs have now
been found. Fitting these events into the dark matter picture
or into the well-constrained picture of Galactic structure
has been problematic, however. For instance, the MACHO
collaboration (Alcock et al. 2000a) concluded that they had
found 13–17 true microlensing events. After carefully mod-
eling these events and comparing them to known sources of
photometric variability that might mimic microlensing as
well as known stellar populations along the line of sight to
the LMC, Alcock et al. argued that they had detected a pre-
viously unknown Galactic halo population of MACHOs
with masses between 0.1 and 1 M�. Assuming the assign-
ment of these objects to the Galactic halo, these MACHOs
are abundant enough to account for approximately 20% of
the Galactic dark matter implied by dynamical studies.
While the impliedMACHOmass density is dynamically sig-
nificant, explaining one-fifth of a problem with no hint
regarding the other four-fifths of the problem is deeply
unsatisfying. More concretely, a large number of studies
have found difficulties with any suggested form of MACHO
consistent with the mass range and other properties. For

example, the CNO abundance patterns of Galactic stars
essentially rule out (Gibson & Mould 1997) the most dis-
cussed MACHO candidates, cool white dwarfs. Addition-
ally, a halo of faint M stars is inconsistent with the Hubble
Deep Field observations (Gould, Bahcall, & Flynn 1997). If
other galaxies contain halo MACHOs in the form of either
white dwarfs orM stars, these galaxy halos would be readily
observable in the near-IR (Charlot & Silk 1995). Given
these difficulties, is there an alternative explanation for the
observed microlensing? Some of the events seem to be
caused by background supernovae mimicking the expected
microlensing light curves (Alcock et al. 2000a), while other
events are likely caused by LMC self-lensing. While these
photometric variables may account for some of the
MACHO sources, we sought to test an additional form of
contamination among the MACHO events due to true
gravitational microlensing but by a known and possibly
underestimated population: M stars from the old disk and
thick disk.

The number of Galactic old-disk and thick-disk stars that
contribute to the lensing optical depth can be estimated
from the local normalizations and scale heights of these
populations as well as their mass functions down to approx-
imately 0.1 M�. Unfortunately, all these parameters except
the old-disk normalization and scale height are uncertain.
For example, one of the most recent studies to count the
faintest, lowest mass Galactic stars (Gould et al. 1997) relied
on a color–absolute luminosity relation (Reid 1991) to
determine stellar distances and thereby densities. If, how-
ever, the stars detected by Gould et al. are subluminous
compared to the local sample used by Reid (1991), then the
implied density would be much higher. The timescale of1 Based on data obtained at ESO (VLT/UT1) under project 66.B-0326.
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lensing also is not a meaningful discriminant between lens-
ing by halo and thick-disk objects, as the mean expected val-
ues (101 vs. 129 days; Alcock et al. 2000a) differ by too little
with the current small samples.

If the MACHO lenses were garden variety old- or thick-
disk M stars, there would be clear observable consequences.
Such lenses still lie along the line of sight to the LMC
sources and would be observable as significant additional
near-IR light, measurable as an excess in the near-IR flux of
the LMC source. We can check for this near-IR excess by
comparing, for example, H-band photometry to optical
photometry for the MACHO objects. Also, in a matter of
time (see below), foreground disk or thick-disk lenses will
move through a large enough angle to be detectable as sepa-
rate objects. Note that our hypothesis is related to but not
identical to that of Gates et al. (1998), who argued for the
disk as a partial source of darkMACHO lenses.

Assuming our hypothesis is correct, the primary reason
we should be able to observe the lens as a near-IR excess is
that we expect it to be significantly closer than the LMC,
i.e., it should have a distance modulus of �10–13 versus
18.5 for the LMC. [Disk-star lenses should be distributed
according to the combination of population scale height
and volume element, which gives a modal distance at 2 times
the scale height, i.e., �2� cscðbÞ � 350 pc and 2� cscðbÞ�
1000 pc for the old and thick disk, respectively. For our
viewing angle through the Galactic disk toward the LMC,
cscðbÞ ¼ cscð33�Þ ¼ 1:8, so modal disk and thick-disk stars
will be found at 1.3 and 3.7 kpc, respectively.] This example
also illustrates why we chose to perform this experiment for
the LMC sources rather than for the Galactic bulge lensing
sources, since the latter have a much smaller distance modu-
lus, approximately 14.5. In addition, the nature of stellar
populations along the line of sight to the Galactic bulge is
significantly more complex, including the effects of large
columns of dust and the Galactic bar.

We decided to search for near-IR excesses only among
those lensing sources that are LMC main-sequence stars or
slightly evolved subgiants, reasoning that the LMC red
giant lensing sources would be too red to notice any near-IR
contribution from foreground, line-of-sight Galactic M
dwarf lenses. In retrospect, it would have been worthwhile
to test our hypothesis against some of the reddest LMC
sources as well, and we return to this point later.

2. DATA

TheMACHO collaboration obtained optical photometry
with the Planetary Camera on the Hubble Space Telescope
(HST) to image a number of the LMC lensing sources, in
particular, to rule out background supernovae as MACHO
mimics. These HST data provide the bulk of what we need
for our experiment. We selected a sample of six MACHO
sources with HST/WFPC2 multiband photometry and
locations in optical color-magnitude diagrams indicative of
being main-sequence or subgiant stars. In addition, all but
one of these objects (event 9) pass the stricter lensing candi-
date selection criteria A of Alcock et al. (2000a), criteria
published after we selected our observing sample. Our
approach is to supplement the HST optical photometry
with near-IR photometry. The combination of optical and
near-IR photometry allows us to explore M dwarfs as possi-
ble lenses with masses as low as 0.1 M� out to 4 kpc or
higher massM dwarfs to greater distances.

2.1. VLTH-Band Data

We obtained H-band queue observations at VLT UT1
using ISAAC (Moorwood 2000) on 2000 November 6–7.
The VLT+ISAAC, along with scheduling observations in
the queue, allowed us to obtain data that were both photo-
metric and had good image quality—a challenge at the far
southern declination (decl. � �70�) of the LMC but neces-
sary for the relatively crowded LMC fields. We obtained
observations for six fields with exposure times ranging from
390 to 780 s and delivered image quality ranging from 2.8 to
4.8 pixels, or 0>42 to 0>71 (see Table 1 for details of the
observations), along with sky fields taken near the midpoint
of the observing sequence. Because of an error (by the PI,
not the VLT staff) in the phase II proposal process, one
pointing missed the target LMC source, and this field is
dropped from further consideration. The H band was
chosen as the best near-IR compromise between exposure
time to a depth of interest and sensitivity to the near-IR
excess expected for any line-of-sightM dwarfs.

The ISAAC data were reduced essentially as described in
the ISAAC User’s Manual.2 The data were dark subtracted,
flat-fielded, sky subtracted, residual bias corrected, bad pixels
were found and masked, and then all frames of a given field
were registered and averaged. Some image irregularities
remained, though these were �0.5%, and at least a fraction
of this effect should be additive and thus come out with the
sky subtraction during the point-spread function (PSF)-
fitting photometry. Given the small range in air-mass values
for each field, stacking all images of a given field should not
compromise the photometry. For object identification, we
used SExtractor (Bertin & Arnouts 1996). Since all five
MACHO source objects were at least partially blended with
nearby stars, as were the majority of LMC field stars, we
employed DAOPHOT II/ALLSTAR (Stetson 1987) to fit
empirical PSFs to the reduced and combined H-band data.
Between 50 and 100 bright uncrowded stars were used to
construct the spatially variable PSF on each image. The
ALLSTAR routine then iteratively fit the PSF to the central
regions of the detected profiles and calculated total magni-
tudes by integrating the PSFs over their volumes. Using the
same 50–100 bright uncrowded stars, we then measured and
applied a small, spatially variable aperture correction to the
PSFmagnitudes to arrive at total aperturemagnitudes.

The photometry was calibrated using three standard stars
(Persson et al. 1998) observed along with our program,
although these standards were observed at lower air-mass
values ðX ¼ 1:024 1:134Þ than our program fields. Since
the number of standards observed was too few for a color or

2 Go to http://www.eso.org/instruments/isaac/.

TABLE 1

Log of VLT Observations

Object

Exposure

(s)

DIQ

(pixels) AirMass

4....................... 780 3.5–4.8 1.538–1.560

6....................... 624 2.8–3.4 1.511–1.527

7....................... 780 2.8–3.3 1.412–1.415

8....................... 780 2.8–3.2 1.428–1.436

9....................... 390 3.0 1.408–1.411

14..................... 390 3.1–3.7 1.600–1.614
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air-mass term determination, we used the mean H-band
extinction value for Paranal, 0.06 mag, and assumed a color
term of 0.0, as indicated in the ISAAC Data Reduction
Guide.3 Amico et al. expect theH-band color term, using J–
K for the color, to be �0.01 but have not yet measured its
value. We obtained an H-band zero point of 24:69� 0:02.
The zero point includes aperture corrections of �0:015�
0:01 mag. Uncertainties in the air-mass term of the order of
0.01–0.02 mag per air mass would cause H-band offsets of
�0.006–0.012 mag in the extrapolation of the calibration to
X � 1:6 for all stars in the field, whereas a small color term
would cause a color-dependent H-band offset. While we
have no way to estimate the error in the assumed zero-
valued color term, if a color term does exist for the H band,
it would not affect our primary goal of identifying an
H-band excess for the MACHO sources, since such an
excess will be detected relative to the other objects in the
field with similar colors.

2.2. HST/WFPC2 BVRI Data

The MACHO team imaged a number of LMC micro-
lensing sources, and these observations are now available in
the archive. We used the CADC archive to download the
relevant archival images and recalibrate them with the most
up-to-date calibration files. Since the HST data probed the
LMC fields to significantly greater depths than the H-band
data, we did not always use all of the available HST data
when a subset in a particular filter had a different roll angle
or short exposures. The properties of the data we did use are
listed in Table 2. Since the MACHO sources were centered
in the PC chip, only the PC data were fully processed. These
data were combined and cosmic rays rejected with the
IRAF4 task CRREJ. Sources were found with SExtractor,
which also provided morphological classification, allowing

us to identify and reject nonstellar objects. The PC images,
with a resolution of �2 pixels or 0>092 FWHM, were mar-
ginally crowded. We were thus able to employ aperture
photometry and chose CCDCAP5 for its subpixel light
redistribution and accuracy with small apertures in margin-
ally sampled HST data (Mighell 1997). An aperture of 4
pixels was used for all objects in the PC fields, and aperture
corrections to 0>5 (11 pixels = 0>506) were determined
empirically for the brighter objects in each field and filter.
As is now well known, the WFPC2 CCDs suffer from a
time-dependent charge transfer efficiency (CTE) problem.
These exposures were short enough that the background
counts on the PC frames ranged from 0 to fewer than 4
counts, and therefore CTE corrections were necessary, espe-
cially for the fainter objects and objects at higher y-column
values. Time-dependent CTE corrections were installed on
the basis of the prescription of Dolphin (2000) updated by
the data he kindly makes available on his Web site.6 The
CCD dewar window throughput also changes as a function
of time and, although such changes are small for these filters
(always <1.5%), we applied these corrections as well.
Finally, we applied the color corrections and zero points to
transform the F439W, F555W, F675W, and F814W instru-
mental magnitudes to standard B, V, R, and I magnitudes
using the coefficients listed by Dolphin (2000) and updated
on his Web page. The photometric transformations of
Dolphin are similar to those of Holtzman et al. (1995) but
updated for the CTE corrections one first applies and with
some additional calibration information. These calibrated
HST data should be on the BVRI system of Landolt (1983,
1992) to within�0.03 mag.

The optical PC data were merged with the requirement
that an object be detected in at least two filters. The resulting
merged photometry lists were then merged with theH-band
VLT data. Transformations between the PC and VLT refer-
ence frames were performed with great care, and typical
matches were possible within �0.3–0.5 ISAAC pixels,
depending on the field. In a number of cases, besides the
best-matched object on the PC frames, there were one or a
few other PC detections within theH-band FWHM. During
the final merging process, we kept track of all such objects
and added their contributed light in each filter if the object
would not have been deblended (i.e., if within 3 ISAAC
pixels) by theH-band PSF-fitting photometry.

Our photometry for the five MACHOs is presented in
Table 3. The optical V and I magnitudes were previously
presented by Alcock et al. (2001a). We find a small differ-
ence between their and our results of �0:09� 0:08 in V
and �0:049� 0:02 in I, in the sense of their photometry
minus ours. These differences are consistent with our
use of updated CTE corrections and photometric
transformations.

Since most of the LMC MACHO sources were them-
selves blended and would not have survived the blending
cuts we apply to the remainder of the data (below), we
performed a final adjustment to their H-band photometry.
We carefully examined the location, brightness, and optical
colors of objects in the region of each MACHO source on
theHST/PC and VLT/ISAAC images to determine, as best

4 IRAF is distributed by the National Optical Astronomy Observatory,
which is operated by the Association of Universities for Research in
Astronomy, Inc., under cooperative agreement with the National Science
Foundation.

5 IRAF implementations of CCDCAP are available via the Web at the
following site: http://www.noao.edu/staff/mighell/ccdcap/.

6 Go to http://www.noao.edu/staff/dolphin/wfpc2_calib/.

TABLE 2

Log ofHST Observations

Object Filter Exposure Epoch

4....................... F439W 1620 1999 Aug 19

F555W 1590 1997Dec 12

F675W 1590 1997Dec 12

F814W 16500 1997Nov 12

6....................... F439W 1620 1999 Aug 26

F555W 1620 1999 Aug 26

F675W 820 1999 Aug 26

F814W 1040 1999 Aug 26

8....................... F439W 1600 1999Mar 12

F555W 1620 1999Mar 12

F675W 820 1999Mar 12

F814W 1020 1999Mar 12

9....................... F439W 1600 1999 Apr 13

F555W 1620 1999 Apr 13

F675W 820 1999 Apr 13

F814W 1020 1999 Apr 13

14..................... F555W 2120 1997May 13

F675W 2120 1997May 13

F814W 2120 1997May 13

3 The ISAAC Data Reduction Guide v.1.5 by Amico et al. (2002)
is available on-line at http://www.eso.org/instruments/isaac/drg/html/
drg.html.
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as possible, the likely contribution of any blended objects
that lie within theH-band PSFs. We found probable contri-
butions by adjacent objects of �0.0, 0.2, 0.2, � 0.1, and
0.05–0.1 mag inH for LMCMACHO objects 4, 6, 8, 9, and
14, respectively. These expected H-band contributions are
incorporated into (removed from) the values presented in
our figures and discussion, though these corrections are not
applied to the measured photometry listed in Table 3.

3. DISCUSSION

The VI color-magnitude diagram (CMD) for all five
LMC fields is presented in Figure 1. The five triangle
symbols are the five MACHO microlens source stars. The
adjacent field objects are also plotted if their photometric
errors were less than 0.1 mag, if any luminosity contributed
in the I band from blended objects were 	2.5 mag fainter
than the object of interest, and if their morphological classi-
fications from SExtractor were	0.9. The blending criterion
meant that objects which had 	10% luminosity contribu-
tions from blended sources in I were excluded. Note that a
typically blended object identified as an LMC main-
sequence star will have a photometric companion that is
also a main-sequence star. The brightest such photometric
(line-of-sight) companions will have nearly the same color

as the identified object and, thus, will add luminosity more
effectively than optical color, much like the observed binary
sequences in clusters. The situation is somewhat different
for colors composed of optical and H-band data, however,
since the ground-based H-band data had substantially
larger PSFs, and thus, objects were generally not blended in
the optical PC data but they may be blended in the ISAAC
H data. With regard to the morphological classification,
although the SExtractor classifier is not strictly Bayesian,
the morphology cut removes objects with d90% chance of
being point sources. All five fields are overplotted since these
LMC fields are only a few degrees apart, and therefore, their
distance moduli should be the same within�0.03 mag (from
eq. [13] and the LMC geometry given by van der Marel &
Cioni 2001 applied to these field positions). Also plotted are
eight model sequences. The left-most isochrone and the
isochrone approximately tracing the giant branch are
[Fe/H
 ¼ �0:7 models for logðageÞ ¼ 8:5 and 9.5 (0.3 and
3.2 Gyr) populations, respectively. We use a 0.3 Gyr model
to represent a zero-age main sequence (ZAMS), and the
metallicity is chosen to approximate the mean observed
value (e.g., see Cole, Smecker-Hane, & Gallagher 2000) for
the LMC. The dotted line most visible along the upper main
sequence is the expected location of a solar metallicity
logðageÞ ¼ 8:5 (ZAMS) population. The dashed lines from
left to right represent the addition to the [Fe/H
 ¼ �0:7
young isochrone of a 0.1, 0.2, 0.3, 0.4, and 0.5M� star along
the line of sight at a distance of 4 kpc. All models assume a
distance modulus to the LMC of 18.5, consistent with
Benedict et al. (2002), and EðB�VÞ ¼ 0:1, consistent with
Harris, Zaritsky, & Thompson (1997), who found
EðB�VÞ ¼ 0:13.We derived the stellar model loci from syn-
thetic photometry of Lejeune, Cuisinier, & Buser (1997)
model atmospheres appropriate for each metallicity, effec-
tive temperature, and surface gravity for specific Padova
(Bertelli et al. 1994) isochrones. The contribution by possi-
ble line-of-sight low-mass stars is necessarily approximate,
since the mass-luminosity relation for low-mass stars is
poorly known. We used the mass-luminosity relation of
Henry & McCarthy (1993) supplemented by interpolation
of the low-mass main-sequence data presented by Leggett
(1992). The line-of-sight stars are assumed to be approxi-
mately solar metallicity, as appropriate for Galactic disk
stars. Thick-disk or halo stars with lower metallicity would
be brighter in both the optical and H bands and so more
detectable at any given distance than solar-metallicity stars.
Our assumption of solar metallicity for any line-of-sight star
is thus conservative in terms of detectability.

Figure 1 reveals LMC field stars with an extended main
sequence as well as a subgiant branch, giant branch, and a
red clump. The age range of these stars covers at least 0.3–3
Gyr. The location of individual stars is determined by their

TABLE 3

Photometry of MACHO Sources

Object B V R I H

4....................... 21.73� 0.02 21.41� 0.01 21.17� 0.01 20.90� 0.01 20.28� 0.11

6....................... 20.46� 0.01 20.07� 0.01 19.88� 0.01 19.62� 0.01 18.93� 0.03

8....................... 20.60� 0.01 20.40� 0.01 20.22� 0.01 20.02� 0.01 19.46� 0.06

9....................... 22.28� 0.03 21.39� 0.01 20.79� 0.01 20.38� 0.01 19.16� 0.05

14..................... . . . 19.52� 0.01 19.51� 0.01 19.41� 0.01 19.25� 0.06

Fig. 1.—LMC MACHO sources (triangles) and LMC field stars in the
VI CMD. Far left solid and dotted lines, respectively: Models based on the
Bertelli et al. (1994) isochrones and the Lejeune et al. (1997) model
atmospheres for age = 0.3 Gyr with [Fe/H
 ¼ �0:7 and [Fe/H
 ¼ 0:0. A
3.3 Gyr, [Fe/H
 ¼ �0:7 model is also presented.Dashed lines: Models for a
combination of the 0.3 Gyr, [Fe/H
 ¼ �0:7 sequence and 0.1, 0.2, 0.3, 0.4,
and 0.5 M� line-of-sight main-sequence disk stars at 4 kpc. Star symbols:
Expected locations for the source-only and combined photometry for LMC
MACHO 5.
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abundance and age and possibly also by differential redden-
ing, image blending with other LMC stars, and line-of-sight
low-mass star lenses for which we are searching. Two of the
MACHO sources appear to be on or near the main
sequence, two appear somewhat redder and possibly consis-
tent with a 0.2–0.3 M� main-sequence star along the line of
sight at 4 kpc, and the remaining object could have a similar
explanation or could just be at the base of the giant branch.
The VI CMD offers too little leverage to test for 0.1 M�
line-of-sight contributors, as can be seen from the dashed
line for the 0.1M� contributor that is minimally offset from
the [Fe/H
 ¼ �0:7 isochrone.

Figure 2 presents the same models and data in the opti-
cal+near-IR VH CMDwith theH-band error cut set at less
than 0.2 mag rather than at less than 0.1 mag, as is used for
the optical bands. Although the models and data now cover
a greater color range, this diagram does not break the
degeneracy between reddening, evolution away from the
main sequence, and a line-of-sight contribution to redness
for the MACHO lenses. Figure 3 presents a subset of these

data and models in the VRI color-color diagram. For
clarity, the 0.3 and 0.4 M� line-of-sight model sequences
have not been plotted and the photometric precision
requirements have been tightened to �0.02 mag in each
band. The 1 � photometric errors for the MACHO sources
are smaller than the plotting symbols. This color-color dia-
gram is independent of distance and insensitive to redden-
ing, as can be seen by the nearly parallel reddening vector.
Likewise unimportant is metallicity: the solar and [Fe/H
 ¼
�0:7 isochrones are nearly on top of each other. Giants and
dwarfs are included in these sequences, and they too lie
nearly on top of each other. Except for the bluest object, the
MACHO sources all lie among the sequence delineated by
the LMC field stars and are consistent with no line-of-sight
low-mass star lens, although this color-color diagram is not
meaningfully sensitive to lenses with mass as low as 0.1 M�
at 4 kpc. Figure 4 presents the LMC field stars in the VRH
color-color diagram, along with the same model stellar
sequences. Because of the wide range of the V�H axis and
the shallower limits of theH-band photometry, the photom-
etry error selection is relaxed to <0.2 mag for the H band.
The 1 � photometric errors for the five MACHO sources
range from about half the size to about one and a half times
the size of the plotting symbols. The reddening vector is also
largely parallel to the stellar sequence in Figure 4, and
metallicity has again essentially no effect in this color-color
diagram. Now, with greater sensitivity to any low-mass
main-sequence lenses, the MACHO source photometry for
all but the bluest object is inconsistent with low-mass, lens-
ing main-sequence stars, unless they have masses less than
0.1M� or distances greater than 4 kpc.

With photometry through five filters (BVRIH ) available
to us for four of our five fields and photometry through four
filters (VRIH ) available to us for the remaining (LMC
MACHO 14) field, we were able to create a large number of
CMDs and color-color diagrams. We do not present these
diagrams here as they add little extra insight. The optical
CMDs and color-color diagrams all appear to be variations
on the themes of Figures 1 and 3, and the H band CMDs
and color-color diagrams appear to be variations on Figures
2 and 4.

Fig. 2.—LMC MACHO sources and field stars in the VH CMD.
Symbols have the samemeaning as in Fig. 1.

Fig. 3.—VRI color-color diagram for the LMC data, ZAMS models,
and combination lens+source models. For clarity, the 0.3 and 0.4 M� lens
models are not presented. The reddening vector for EðB�VÞ ¼ 0:1 is also
presented.

Fig. 4.—VRH color-color diagram for the LMC data, ZAMS models,
and combination lens+source models. Symbols have the same meaning as
in Fig. 3.
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Before proceeding on to further interpretation, we ver-
ify the location of the model main sequences. In Figure
5, we compare the location of the models to modern
photometry for open clusters in the VRH color-color dia-
gram. The open cluster data are a combination of optical
photometry for M35 (C. P. Deliyannis et al. 2003, in
preparation), M67 (Montgomery, Marschall, & Janes
1993), and NGC 2420 (Anthony-Twarog et al. 1990)
along with the Two-Micron All-Sky Survey (2MASS)
H-band photometry merged with the optical data by
Grocholski & Sarajedini (2003). The fit is excellent, with
only a DðV�HÞ � 0:1 mag offset for a given V�R color
out to V�H � 2:5. The CMD fits are also excellent,
although there one has the adjustable parameters of
distance, metallicity, and reddening.

3.1. Blending

With 800–2500 stars per LMC HST/PC field down to
I � 24, or 0.6–1.8 stars arcsec�2, the degree of blending seen
in the H-band data is expected. For the HST/PC with an
image quality of �2 pixels and nearly 500 pixels arcsec�2,
blending is typically not a problem. The PC data thus pro-
vides an excellent indicator for the expected blending in the
ISAAC H-band data. We used the I-band data for the
blending measurement since these data are closest in wave-
length to the H-band data and since the I band reaches
about 4 mag deeper than the H-band data. Thus, for any
H-band detections more than 1 mag above the H-band
limit, we are able to determine whether there is any blending
contribution to �1%. In the preceding analysis and plots,
we have, however, presented objects with I-band blending
as large as 10%. Could this �10% blending, perhaps by
intrinsically redder stars that would contribute relatively
more inH than in I, have caused problems in the interpreta-
tion? In Figure 6, we present the VRH color-color diagram
with a blending limit of �1%. The results are the same,
though there are fewer LMC stars to see the general trend.
This more stringent blending cut was tested in all CMDs
and color-color diagrams, with no net effect on the general
location of the LMC field stars.

3.2. LMCSelf-Lensing

The optical depth of LMC self-lensing has been examined
in detail by a number of authors (e.g., Sahu 1994; Gyuk,
Dalal, & Griest 2000; Zhao 2000). In this section, we exam-
ine whether our photometry can constrain the contribution
of LMC self-lensing. The addition of the H band to the
optical data allows us to construct a variety of reddening-
free versus reddening-sensitive color-color diagrams.
Reddening-free color combinations can be created from any
two color combinations linearly differenced in proportion
to their reddening ratio. In classic Johnson UBV photom-
etry, these reddening-free parameters are abbreviated by Q
(see Mihalas & Binney 1981). We constructed eight red-
dening-free indices, which we shall refer to as Q1 through
Q8, and plotted those against the V�H color, the longest
wavelength baseline color we had for every field. The V�H
color is the most sensitive to reddening: EðV�HÞ ¼
2:58 EðB�VÞ. The coefficients in the reddening relations
are based on equations (3a) and (3b) of Cardelli, Clayton, &
Mathis (1989). The hypothesis we are testing is that many of
the lens sources are more distant than the majority of the
LMC field stars, which is a prediction of the self-lensing
hypothesis, and therefore, on average, they will be more red-
dened (Zhao 2000). In comparing the lensed stars with
objects close to them on the sky in a reddening-sensitive ver-
sus reddening-free diagram, the lensing sources should
stand out as typically being more reddened. We initially
chose as comparison objects all stars within 400 of the micro-
lens source star but subsequently relaxed the location crite-
rion to the full HST/PC field of view since there was no
statistical difference in the location of the field stars in this
small area versus the entire PC field and since including
more objects make it easier to locate the MACHO sources
relative to the field LMC stars. Note that reddening due to
dust along the line of sight is not the same sort of reddening
we were studying above, which would instead be caused by
the addition of near-IR light from a much redder object
along the line of sight. In various CMDs, either type of red-
dening might have the same effect, but they can, in principle,
be differentiated with the appropriate color-color diagrams.

Of the eight Q versus V�H diagrams we constructed,
three turned out to have the greatest diagnostic potential

Fig. 5.—VRH color-color diagram for the models along with data for
the open clustersM35,M67, andNGC 2420.

Fig. 6.—VRH color-color diagram for the LMC data, ZAMS models,
and combination lens+source models, but now the blending threshold has
been reduced from 2.5 to 5.0 mag.
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due to the slope of the stellar sequence through the diagram.
These three diagrams are presented in Figure 7. The data
and model sequences presented in the earlier figures are rep-
resented in these reddening-free versus reddening-sensitive
color-color diagrams. TheMACHO source stars are plotted

with their 1 � error bars to distinguish them from the LMC
field stars. The three MACHO source stars of intermediate
V�H color are consistent in two out of three of these dia-
grams with the average reddening of the field. In two out of
three Q diagrams, the bluest object, near V�H ¼ 0:2, is
within the envelope of the data but otherwise consistent
with a deficit in reddening of �0.8 in V�H or �0.3 in B�V.
Such a deficit in reddening is too large, given the small over-
all reddening, and is aphysical. All three Q diagrams can be
interpreted as implying excess reddening for the reddest
MACHO source star, or alternatively, given the shape of
the stellar sequences, two out of the three Q diagrams are
consistent or marginally consistent with no excess red-
dening. The large amount of reddening required in the
reddening interpretation for this object would equal an
additional EðV�HÞ � 1:5 or EðB�VÞ � 0:6. This is more
than necessary to place this object behind the LMC. The
most parsimonious explanation for the Q diagrams of the
five MACHO source stars is that they have typical red-
dening for their field and that the color variations seen
represent another effect, e.g., photometric blending. We
conclude that for these five MACHO sources, there is no
significant evidence that they are excessively reddened as
one would expect if they had been self-lensed.

3.3. GalacticMain-Sequence Stars as Lenses

Our experiment was specifically designed to test for the
contribution of thin- and thick-disk low-mass dwarfs as
MACHO lenses. Our search was sensitive to main-sequence
lensing objects with masses 	0.1 M� out to distances of 4
kpc. This statement has been generalized in Figure 8, where
we show as a function of LMC source star mass the limiting,
or maximum, distance for detecting 0.1, 0.2, 0.3, 0.4, and 0.5
M� main-sequence lenses by our technique. We assume that
lensing objects that add V�H ¼ 0:1 mag to the color of the
source star would be detectable on the basis of the limits
found above. We further assume solar-metallicity lenses
with the mass-luminosity relation of Henry & McCarthy

Fig. 7.—Q vs. V�H diagrams for the LMC data and the 0.3 Gyr,
[Fe/H
 ¼ �0:7 and [Fe/H
 ¼ 0:0 models. Q4 (top), Q5 (middle), and Q7

(bottom) are composed of different color-color combinations, as listed on
the vertical axes, which are insensitive to reddening. To identify the LMC
MACHO source photometry from the field star photometry, the MACHO
sources include their 1 � error bars.

Fig. 8.—Maximum detectable distances for main-sequence lenses of 0.1,
0.2, 0.3, 0.4, and 0.5M� as a function of the mass of the LMC source star,
assumed to have [Fe/H
 ¼ �0:7. Dotted and dashed curves: For the 0.1 and
0.5 M� case, the same quantities are presented under the assumptions of
solar metallicity and [Fe/H
 ¼ �1:3 for the LMC source star. Arrows at
bottom: Expected masses of the listed MACHO source stars. Dash-dotted
line: Distance equivalent to twice the thick-disk scale height for the Galactic
latitude of the LMC.
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(1993) and the [Fe/H
 ¼ 0:0,�0.7, or�1.3, 0.3 Gyr (Bertelli
et al. 1994) isochrones and Lejeune et al. (1997) stellar
atmospheres, as used above. These models and assumptions
are consistent with the previous analyses. Lower metallicity
main-sequence lensing stars would be somewhat brighter
for a given mass and therefore easier to detect via our tech-
nique. At present, we do not know the metallicities for the
LMC MACHO source stars, but it is reasonable to assume
that they have approximately the same metallicity as the
average star in the LMC. Changes in source star metallicity
to solar and [Fe/H
 ¼ �1:3 are shown for the 0.5 and 0.1
M� lens cases. The intermediate lens-mass cases look simi-
lar and so are not presented to avoid unnecessary crowding
in the figure. The region below each line represents the
parameter region in which our technique would have
detected main-sequence lenses. The horizontal dash-dotted
line is placed at 4 kpc, a path length at the Galactic latitude
of the LMC of �2 times the scale height of the thick disk.
Four of the five MACHO sources are most likely on the
main sequence (see below) or only slightly evolved. Assum-
ing their metallicity to be [Fe/H
 ¼ �0:7, their masses are
derived by interpolation in our synthetic photometry of the
Bertelli et al. (1994) isochrone and Lejeune et al. (1997)
atmosphere models. These masses are indicated in Figure 8
by the four arrows. Our technique would have detected the
MACHO lenses over a wide range of distance and lens mass,
assuming they were main-sequence stars. For three of the
MACHOs (4, 8, and 6), such a lens can be ruled out for
masses 	0.1 M�, and for slightly higher lens masses, even
placing the lens in the distant halo would not escape detec-
tion. The situation for MACHO 14 is less clear, as indicated
in Figures 8 and 4, where this object with a slight V�H
excess may match a variety of line-of-sight lens masses.
MACHO 9 cannot be so easily compared to an isochrone
since one star near the base of the giant branch can match a
wide variety of isochrones. On the other hand, in the VRH
color-color diagram, this object is too blue in V�H for its
V�R color. Since this diagram collapses the main sequence,
subgiant, and giant stars onto the same color-color
sequence, a near-IR excess is still expected for this object if
it had a main-sequence lens, though this technique is less
sensitive due to the source star’s redder color. For the
detailed properties of this LMC star, a lensing main-
sequence star at 4 kpc with mass = 0.1 or 0.2M� would pro-
duce a V�H excess of 0.06 or 0.19 mag, so the technique
remains sensitive down to nearly 0.1M�.

3.4. Details of Individual Lensing Sources

The above analyses demonstrates that the optical/near-
IR colors of the five MACHO source stars studied here are
minimally affected or even entirely unaffected by their
lenses. The CMD for these stars can then be interpreted in
the standard fashion. Object 4 appears to be either a main-
sequence star with [Fe/H
 > �0:7, or a turnoff star with
[Fe/H
 � �0:7. Assuming the models we have employed
and [Fe/H
 ¼ �0:7, its mass is 1.37 M�. Object 6 is cur-
rently evolving away from the main sequence. For the same
model assumptions, its mass is 1.99M�. Object 8 has a mass
of 1.78 M� and is also likewise somewhat evolved off the
main sequence. Object 9 is the reddest star and is currently
at the base of the giant branch. Its main-sequence mass
depends on the isochrone fit to this single object, but it is
most likely slightly more massive than object 4. The

photometry for object 9 is slightly suspect since Alcock et al.
(2001a) could not identify which of two adjacent stars had
been the lensing source. Both of these objects are fortui-
tously subgiants, however, so only a small photometric
error [DV ¼ 0:113, DðV�IÞ ¼ 0:011] would result from
assuming the wrong object in theHST/PC frames. Object 9
also underwent a binary lensing event (Alcock et al. 2000b).
Object 14 appears to be a minimally evolved main-sequence
star with a mass of 2.37M�.

Interestingly, we identify faint nebulosity around objects
8 and 14 in the HST/PC images. Alcock et al. (2000a)
concluded that none of these objects coincided with back-
ground galaxies and thus were not supernovae. This
assumption should be reexamined for these two objects,
though deeper imaging may be required.

3.5. LMCMACHOCandidate 5

One of the LMC MACHO candidates (5) that is not
part of this study was found behind a nearly line-of-sight
disk M dwarf star in follow-up HST/PC imaging and VLT
spectroscopy (Alcock et al. 2001b). This M star was sepa-
rated from the photometric center of the source star by only
0>134. Assuming it was the lens gives it a proper motion
consistent with the properties of the lens based on the
MACHO light-curve analysis. The conclusion of Alcock
et al. (2001b) was that finding one such object among the
LMC gravitational microlenses was entirely consistent with
the expected microlensing optical depth of the Galactic disk
population. Here we take a brief detour, using this object as
a guide, to ask whether our technique would have discov-
ered this object before it became visually separated on the
sky and how long one might have to wait for other such
lenses to move far enough away from the line of sight of
their source objects to be identified as a separate objects in
HST/PC photometry.

From the properties listed for this M dwarf star by
Alcock et al. (2001b), we can add this object to the HST
photometry of the LMC MACHO 5 candidate. Unfortu-
nately, different techniques yield different masses for the
lensing object. Their constrained lensing fit yields a mass of
0.036 M�, and their direct lensing calculation yields a 2 �
upper limit mass of 0.069 M�. From the lens parameters,
they derive a distance of 170–240 pc and MV ¼ 15:7 16:8.
On the other hand, the VLT/FORS2 spectrum for the can-
didate lens indicates that it is a M4–5 dwarf, consistent with
the HST optical colors. The mass for such an object is sig-
nificantly higher than their lensing estimates, at 0.095–0.13
M�, depending on its metallicity. From the spectrum, they
deriveMV ¼ 13:61� 0:55 and d ¼ 650� 190 pc. We prefer
the latter interpretation, under the assumption that the
observed object is the lens since the mass and absolute mag-
nitude estimate are based on the observed spectrum and col-
ors. Such an object would be detected by our technique, as
is clear from the mass estimate near 0.1 M� and the dis-
tance, which is much less than 4 kpc. Under the assumption
that the object is an M4 V or M5 V disk star, it would have
V�H ¼ 5:01 5:84 (Tokunaga 2000), and thus, MH ¼
7:22 9:15, taking the extremes in the 1 � errors in MV and
the color estimate. Using the observed source and lens opti-
cal photometry of Alcock et al. (2001b), a +1 � distance of
840 pc, the lower H flux implied by V�H ¼ 5:01, and
assuming V�HðsourceÞ ¼ 1:4, as we see in our LMC field

No. 2, 2003 TESTING MACHO LENS CANDIDATES 801



stars for objects with this source star’s V�I color, the
expected properties of this object in our CMDs and color-
color diagrams are presented in Figures 1–4 with star
symbols. In each of these figures, the source star alone is
plotted, as well as the photometrically merged object, which
is the redder object in all four of these diagrams. If this
apparent lensing object were still photometrically merged
with this MACHO source, its properties would highlight it
as an extremely red object in the CMDs. The VRI diagram
would be the most indicative of the true properties of this
object, although the VRH diagram would also indicate a
likely foreground low-mass main-sequence star lens. Note
that this analysis suggests that the LMC source stars that
are apparently redder than any expected stellar sequence
(objects 5, 11, 19, 20, and 24 in Alcock et al. 2000a) are
prime suspects for lensing by a foreground M dwarf.
Secondary suspects are the other red objects (1, 16, 17, 18,
and 25).

The Einstein ring radius for an object at 4 kpc is
�5:9� ðmassÞ1=2 mas (see eq. [16] of Paczynski 1986).
Assuming this object has a mass of 0.1M�, the Einstein ring
radius is �1.9 mas. This is 50 times smaller than the diame-
ter (FWHM) corresponding to the delivered image quality
of the HST/PC data. A gravitational microlensing event
lasting 2 months would correspond to a photometric align-
ment within the PC image that lasted approximately 8 yr,
split evenly between time before and time after the lensing
epoch. Typical MACHO lenses should be emerging from
photometric alignment with their LMC source stars when
viewed at HST/PC or HST/ACS resolution. The number
of photometrically aligned objects that will not become
microlenses is even larger, approximately the square of the
above radius ratio, or �625 for the PC image quality. The
total MACHO inventory of stars, from among which some-
what more than a dozen lenses were found, contains �107

stars. Approximately 0.01% of these objects should have
photometrically aligned foreground stars at HST/PC
resolution that will not cause lensing.

4. CONCLUSIONS

We obtained new VLT/ISAACH-band observations of a
handful of MACHO LMC source stars and adjacent LMC
field regions. After combining our new near-IR photometry
with BVRI optical photometry rederived from HST/PC

imaging, we compared the MACHO objects to the adjacent
field stars in a variety of color-magnitude and color-color
diagrams. These diagnostic diagrams were chosen to be sen-
sitive to our hypothesis that at least some of the MACHO
lenses were foreground Galactic disk or thick-disk M
dwarfs. For the five lensed objects we studied, our hypothe-
sis could be ruled out for main-sequence lens masses e 0.1
M� for distances out to 4 kpc. On the other hand, the fact
that LMC MACHO 5, an object not in our study, has been
recently found (Alcock et al. 2001b) to have just such a fore-
ground lens highlights that the remainder of the LMC
MACHO objects should be searched for the signature of
their lenses using our photometric technique or via near-IR
spectroscopy. A number of the remaining LMC MACHO
objects are excessively red, based on their positions in the
MACHO CMD, and these, in particular, should be investi-
gated. We also constructed diagnostic color-color diagrams
sensitive to determining reddening for the individual
MACHO source stars and found that these five objects did
not show evidence for significant additional reddening. At
least these five MACHO objects are also inconsistent with
the self-lensing hypothesis.

We also recommend an extension of our technique for
future MACHO searches: instead of complementing optical
photometry with near-IR photometry (or spectroscopy)
after the lensing event has passed, these near-IR data could
be obtained both during and after the lensing event. Such
lensing-event data would break the degeneracy between
excess reddening in the source star and the lensing object.
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