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Abstract

Swarm control is an essential step in the progress of robotic technology. The use of multiple
agents to perform tasks more effectively and efficiently than a single agent allows for the
expansion of robot use in all aspects of life. One of the foundations of this area of research
is the concept of Leader-Follower swarm control. A crucial aspect of this idea is the genera-
tion of trajectories with respect to the leader’s path and some desired formation. With these
trajectories generated, one can use a tracking controller specific to the swarm vehicle of
choice to accomplish the desired swarm formation. In this paper, a Leader-Follower trajec-
tory generator is developed for a planar triangular formation with offset vertical positions.
A tracking controller is used to achieve formation flight for the quadrotor application. A
well-accepted model for quadrotor vehicles is used, with simulation parameters compara-
ble to those of a small commercial quadrotor. The swarm control objective is achieved in

simulation and is proved to be effective theoretically through the Lyapunov analysis.
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Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) have been rapidly growing in popularity over the past
decade. With new military [Orfanus et al.| (2016)] [McConnell| (2007)], medical [Nedjati
et al.|/(2016)] [Q1 et al. (2016)], commercial [Hongxia and Q1/(2016)] [Torrés-Sanchez et al.
(2014)], and academic applications [[Grgtli and Johansen (2012)] [Biirkle et al. (2011)],
UAV research has met an increased demand for sophistication. A branch of UAVs that
is gaining attention is the quadrotor vehicle. This is a helicopter-like vehicle with four
propellers providing lift. The main advantages to this type of UAV are that it is low-cost,
agile, able to hover, and mechanically simpler than a helicopter. In the natural progression
of this technology, it has been concluded that there is substantial need for the use of multiple
quadrotors, working together, to accomplish more difficult, large-scale missions [Schwager
et al. (2011)] [Franchi et al.|(2016)]. More than one quadrotor autonomously working in a

collaborative group is referred to as a swarm. A quadrotor swarm can be more efficient and
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more capable than a single quadrotor [Goodarzi and Lee|(2016)] [Lee|(2017)].

1.2 Swarm Control Approaches

There are three approaches to swarm control; leader-follower, behavioral, and virtual struc-
ture. They each have benefits and downfalls that should be taken into consideration when

choosing an approach for a specific application.

1.2.1 Leader-Follower Approach

The leader-follower approach is arguably the most popular swarm control approach. In the
swarm, one quadrotor is the leader and the rest are followers. The leader quadrotor has the
necessary technology to achieve the desired state of the swarm, while the follower quadro-
tors have enough technology to track a function of the leader’s state. In other words, the
leader can determine and execute the actions necessary to lead the swarm toward achieving

the goal, while the followers must simply follow the leader [Roldao et al.[(2014)].

1.2.2 Behavioral Approach

The behavioral approach is commonly used for distributed robotic systems. It uses a set of
simple behaviors that is predefined to characterize the state of the swarm and control the
movement of the swarm [Xu et al. (2014)]. To give context to this idea, example predefined
behaviors include take-off, hover, and land. These and other behaviors can be used by the

quadrotor swarm to achieve the goal.
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1.2.3 Virtual Structure Approach

The virtual structure approach has a range of applications. The swarm consists entirely
of follower quadrotors that follow the state of a leader quadrotor, which is not physically
present. This virtual leader determines the desired states of the swarm, in the form of a
structure, while the followers have enough technology to track the state of this structure.
This can be thought of as a swarm having a particular shape that moves in time according

to the control law given to the virtual leader [Mehrjerdi et al. (2011)].

1.3 Advantages, Disadvantages, and Applications of Each

Approach

Each swarm control approach has advantages and disadvantages. Consequently, in appli-

cation, there is typically one approach that works better than the other two.

1.3.1 Leader-Follower Approach Application

The leader-follower approach has the advantage of being minimalist and simple [Pereira
et al. (2017)]. The leader quadrotor must be equipped with the range of instrumentation to
determine the desired state history of the swarm. However, all of the followers need only
have enough technology to communicate with the leader, or another follower if the network
i1s connected, and achieve some function of the leader’s state [Mahmood and Kim| (2015)]
[Rabah and Qinghe (2015)] [[Vargas-Jacob et al. (2016)]. This eliminates the need to make

many highly sophisticated quadrotors. Instead, one, usually expensive, quadrotor is used
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as the leader, with many inexpensive followers. This allows the use of many followers with
respect to a fixed budget.

The main disadvantage of the leader-follower approach is that it has a single point of
failure. If the leader fails, the entire swarm fails.

In application, the leader-follower approach is used due to cost restrictions and hard-
ware limitations [Hu and Feng (2010)] [[Cu1 et al.[(2010)]. Additionally, the leader-follower
approach has the application driven advantage of providing the ability to integrate a manned
UAV. A manned UAV can be used as the leader, with many followers following for auxil-
iary aid and functionality. This is highly preferred since a manned vehicle is less prone to
failure and does not require the highly sophisticated control law and instrumentation that a

typical leader would. It does, however, require additional size and safety accommodations.

1.3.2 Behavioral Approach Application

The behavioral approach has the advantage of accommodating distributed systems of highly
autonomous robots, allowing a more diverse and robust swarm [Lawton et al. (2003)]
[Balch and Arkin|(1998)] [Schneider-Fontan and Mataric|(1998))]. Since there are less strin-
gent conditions on the state of the swarm and individuals, and more focus on the desired
action, or behavior, of the swarm, it is easier to incorporate obstacle and threat avoidance.
Additionally, there is no single point of failure, so if one member fails, the swarm can still
continue on the mission [Parker (1998)].

However, the behavioral approach can be considered the most complicated and expen-

sive approach since each member of the swarm must be highly sophisticated with respect
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to on board technology and autonomy [Veloso et al. (1999)].

1.3.3 Virtual Structure Approach Application

The virtual structure approach has advantages as well. This approach does not have a
single point of failure in the swarm itself, making it a viable option for UAVs in general
[Mortazavi et al.| (2015)]. Additionally, the structures can be either rigid or flexible, de-
pending on the application [Sun and Xia (2016)] [Nadjim and Karim|(2014)] [Lewis and
Tan| (1997)]. A decentralized approach can also be used with the virtual structure concept
[Ren and Beard (2004)]. However, this approach requires each of the followers to have
the computing power to track a function of the virtual leader’s desired state history while
also maintaining the structure, with respect to the other followers. This lends itself to more

sophisticated control and instrumentation for each agent, which increases cost.

1.4 Contribution of Thesis

This thesis provides a Leader-Follower formation control for quadrotors. A Lyapunov-
based integrator-backstepping trajectory generator is used for all followers with respect to
a predefined leader’s path. Additionally, a backstepping, sliding-mode tracking controller
is used for the quadrotor vehicle application to track the generated trajectories. Simulation

results are presented for one leader and two followers.
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1.5 Organization of Thesis

This thesis is organized as such. Chapter 2 explains the necessary mathematical back-
ground for the developed theory. Chapter 3 includes the theoretical derivations and sim-
ulation results for the trajectory generation. Chapter 4 shows theoretical derivations and
simulation results for the quadrotor tracking controller. Chapter 5 concludes this thesis

with future research proposals and further applications and experiments.



Chapter 2

Mathematical Model

2.1 Objectives

The purpose of this chapter is to develop the mathematical model that describes the motion
of a quadrotor vehicle. This is important because these nonlinear quadrotor dynamics will
be used to simulate the tracking controller presented in Chapter 4] Additionally, the Lya-
punov analysis methodology is explored. This is used to show asymptotic stability of the
formation flight trajectory generator. Finally, LaSalle’s invariance principle is explained.
Since the Lyapunov analysis has a negative semi-definite result, LaSalle’s invariance prin-
ciple must be used to show global asymptotic stability of the formation flight trajectory

generator.
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2.2 Quadrotor Dynamics

For the quadrotor tracking simulation presented in Chapter[d] a plant describing the quadro-
tor dynamics is necessary to show that the control law is effective. The translational and
rotational dynamics are derived in [Wie (2008)]. The quadrotor is assumed to translate and
rotate as a rigid body. This implies that rigid body dynamics can be used for this model.
These dynamics will be developed for a right-handed coordinate system in which the body-
fixed positive z-direction is oriented in the direction of thrust due to the propellers of the
quadrotor as shown in Figure [2.1] For translational motion, the development starts with
Newton’s Law:

F, = mj 2.1)

where F; is the force on the quadrotor, m is the mass of the quadrotor, and p is the inertial
position of the quadrotor represented by:

X
Y

p— (2.2)

Z
For this formulation, the drag force on the quadrotor will be considered negligible.
Thus, Equation (2.1)) can be expanded as such:
mp = (mu BT 63 — mgés) (2.3)
where u] is the acceleration magnitude due to the thrust of the quadrotor propellers, g is the

acceleration magnitude due to gravity, €3 is the vertical unit vector, and Z is the rotation

matrix represented by:
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-

FB

Figure 2.1: Inertial and Body Reference Frames.

where ¢ is the roll angle, 0 is the pitch angle, and v is the yaw angle. Here the abbrevia-
tions ¢(-) = cos(-) and s(-) = sin(-) have been used to shorten the notation.

After simplifying Equation (2.3)) the following translational quadrotor dynamics are

obtained:
X = (cos(9)sin(8)cos(y) + sin(9 )sin(y) ur @.5)
7 = (cos(9)sin(8)sin(y) — sin(9)cos() Jur 2.6)
7 = cos(9)cos(0)uy — g (2.7)

In addition to the translational dynamics, the rotational dynamics for a rigid body are
used to determine the angular acceleration terms. This development begins with Euler’s
rotational equations of motion:

JotwxJw=T1 (2.8)

where J 1s the inertia matrix with respect to the body frame, w is the vector angular velocity



CHAPTER 2. MATHEMATICAL MODEL 10

in the body frame, and 7 includes the moments about each axis that are caused by thrust
components and gyroscopic terms. To simplify the inertia matrix, the quadrotor is assumed

to be axisymmetric. This results in a diagonal inertia matrix shown in Equation (2.9).

Jo 0 0
J=10 J, 0 (2.9)
0 0 J.

where Jyy, Jyy, and J;; are the moments of inertia about the X, y, and z axes, respectively.

After simplifying Equation (2.§), the following equations are obtained:

Jyy @y — (Joz — ) 0x 0, = uz — Jyttg 0y 2.11)
S22 @ = Jzuy (2.12)

where u; is the angular acceleration about the roll axis caused by the thrust component, u3
is the angular acceleration about the pitch axis caused by the thrust component, u4 is the
angular acceleration about the yaw axis caused by the thrust component, J, is the moment
of inertia of the rotors, and u, is the gyroscopic input term.

Equations (2.10), (2.11), and (2.12) can be rearranged to solve for the angular acceler-

ations of the quadrotor as such:

J
@Dy = Jypx Oy O, + ——Ug Oy + Up (2.13)
Jxx
. Jr
Dy = Jory O O; — =g O + 3 (2.14)
yy
@, = uy (2.15)

_ Iy _ Sz
where Jy, = B and Jy,y = =

In Chapter [ u;, up, uz, and uy are developed. Finally, as shown in [Wie] (2008)], the
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angular rates of the body relative to the inertial frame can be expressed as:

q:) 1 cos(0) sin(@)sin(0) cos(¢)sin(0) Oy
= cos(@) 0 cos(@)cos(0) —sin(P)cos(0)| |y (2.16)
0 sin(¢) cos(9) o,

2.2.1 Simplified Quadrotor Dynamics

These nonlinear quadrotor dynamics can now be simplified for utilization in the tracking
control law development. This simplification process requires the assumption that ¢, 6,
and y remain small. This is a well studied method, for which the result is only used for
the control law development. The nonlinear dynamics are still used as the simulation plant
for the results presented in Chapter 4] Making the assumption that cos(-) = 1, sin(-) = (-),

and:

x ¢
o =16 (2.17)
; 4

the dynamics in equations (2.5)), (2.6), (2.7), and (2.16)) can be simplified. The simplified
equations are more manageable to work with in the control law development and are as

follows:

X =0u (2.18)
¥ = —ou (2.19)

Z=u1—g (2.20)
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¢ = Jyox O + Jyug 0 + 1 (2.21)
0 = Ty @V — Jyttgd + 3 (2.22)
V= uy. (2.23)

2.3 Lyapunov Analysis

One of Aleksandr Lyapunov’s main contributions to control theory involves his method
of determining stability of nonlinear systems. Lyapunov’s stability criteria and theorems
play a role in both the translational and rotational control schemes developed in this thesis.
In developing these control schemes, Lyapunov’s direct (or second) stability theorem is
used to prove that the formation trajectory generation control law is effective. This chapter
briefly describes Lyapunov’s stability criteria and summarizes the results on Lyapunov’s
second stability method.
Let X = (x1,...,x,)! denote an n dimensional state vector and consider an autonomous
nonlinear dynamical system written in the form
x = f(x) (2.24)
where the f(x) function is considered to be continuously differentiable. Let x, denote an

equilibrium state, i.e. let

f(x,) =0 (2.25)

e The equilibrium state X, is said to be Lyapunov stable if for any € > 0 there exists a
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real positive number 8 (€,7y) such that
1x(70) =% || < 8(€,20) = [|Ix(t0) —%c[| < & (2.26)

for all r > 1y where ||x]| = VxTx.

e The equilibrium state X, is said to be locally asymptotically stable if it is Lyapunov

stable as explained above and if
|1X(t0) —Xe|| < 6 = x(1) — X, (2.27)

ast — oo,

Finally, the equilibrium point X, is said to be globally asymptotically stable if both of
the above conditions are met for any initial conditions x(#). Essentially, if it can be shown
that the control laws presented here provide global asymptotic stability, then starting from
any 1nitial condition the system will reach the desired equilibrium state.

Proving stability of nonlinear systems with the basic stability definitions and without
resorting to local approximations can be quite tedious and difficult. Lyapunov’s direct
method provides a tool to make rigorous, analytical stability claims of nonlinear systems
by studying the behavior of a scalar, energy-like Lyapunov function.

Let V(x) be a continuously differentiable function defined on a domain D C C", which

contains the equilibrium state x,. Then we have the following definitions:

e V(x) is said to be positive definite if V(x,) = 0 and

V(x,) >0VxED—x, (2.28)

e V(x) is positive semidefinite in the same domain if

V(x) >0VxeD (2.29)
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Negative definite and negative semidefinite are defined as: if —V is positive definite or if

—V is positive semidefinite, respectively

2.4 Lyapunov’s Second Stability Theorem

Consider a dynamical system and assume that X, is an isolated equilibrium state. If a
positive-definite scalar function V(x) exists in a region D around the equilibrium state x,,
with continuous first partial derivatives with respect to X, where the following conditions

are met:
1. V(x) >0 forall x # x, in D, V(x,) = 0.
2. V(x) <0 forall x # X, in D.

then the equilibrium point is stable. Figure [2.2] shows examples of both stable and unstable
systems, while Figure [2.3] shows an example of the Lyapunov function for a stable system.

If, in addition to 1 and 2,

3 V(x) is not identically zero along any solution of the dynamical system other than

X., then the equilibrium point is locally asymptotically stable.
If, in addition to 3,

4 there exists in the entire state space a positive-definite function V(x) which is radi-
ally unbounded; i.e., V(x) — o as ||x|| — o, then the equilibrium point is globally

asymptotically stable, i.e. X(t) — X, as t — oo for any initial condition x(7y).

Note that conditions 3 and 4 follow directly from LaSalle’s invariance principle.



CHAPTER 2. MATHEMATICAL MODEL
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Stable Unstable

Figure 2.2: Stable and unstable systems.

V{x(0))

xl

Figure 2.3: Example of a Lyapunov function.



Chapter 3

Leader-Follower Trajectory Generation

In this chapter, a three-dimensional formation trajectory generator is developed. A Lya-
punov analysis is used to show stability of the system. Finally, a simulation is shown
where a triangular formation "figure-eight" trajectory with staggered vertical positions is
generated for arbitrary initial conditions of a simplified model. Successful trajectory gen-
eration is achieved. This formulation was adapted from [Roldao et al.|(2014)]. The current

design is shown to achieve improved results from the original design.

3.1 Trajectory Generation Design

In this section, a trajectory generator is designed so that a virtual follower can follow the
predefined trajectory of the virtual leader of the swarm. This trajectory generation allows
the virtual follower to follow at any predefined distance from the virtual leader’s trajectory.
This formulation can be applied to any number of virtual followers to achieve the desired

formation.

16
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3.1.1 Planar Formation

A two-dimensional formation trajectory generator is developed first. A simplified model is
used with capability of two actuations, planar thrust and torque. The planar thrust generates
velocity in the x-direction and y-direction, while the planar torque generates rotation in the

plane. Rotations in the plane about the angle y can be achieved using the rotation matrix

in equation (3.1.

cos(y) —sin(y)
sin(y)  cos(y) G-

Using this idea, the position of the leader with respect to a follower can be expressed

as:

FpL=2%" (pL—pr) (3.2)

where ©p; is the distance between the leader and the follower, py is the position of the
leader, and pr is the position of the follower.

The goal for the trajectory generator is to drive this distance to some desired distance
vector, which is represented as such:

[

where d, is the x-direction distance between the leader and the follower and d, is the y-
direction distance between the leader and the follower.

Asin [Roldao et al.| (2014)] the kinematics of a simplified system, such as that described

above, can be expressed as:
K = RS(r) (3.4)

. u
Pr=% M 3.5)
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where u is the linear speed of the follower, r is the angular speed of the follower, and S(r)
is a skew-symmetric matrix given by S(r) = [(r) —Or} .
Additionally, the dynamics of such a simplified system can be expressed as:
u="T (3.6)
F=7 (3.7
where # is the linear acceleration of the follower, 7 is the angular acceleration of the fol-
lower, T is the thrust of the follower, and 7 is the torque of the follower.
The control scheme is developed using the error dynamics of the system. The first error
coordinate is shown in equation (3.8)), designed with the goal of driving the actual distance
between the leader and follower to the predefined desired distance between the leader and

follower

where e is the first error coordinate.
In the spirit of determining the error dynamics, the time derivative of the first error
coordinate must be determined:
€ = —S(l’) (e1 + d) -i—@TI.)L — |:g:| 3.9
where the goal is to drive € to zero.
A positive definite Lyapunov function is developed, using the first error coordinate,
with the intention of driving this error coordinate to the origin, such that the actual distance
between the leader and follower converges to the predefined desired distance between the

leader and follower:

1
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where V] is the first Lyapunov function and & is a constant control gain.
In accordance with the Lyapunov analysis, the time derivative of the first Lyapunov

function is determined:

Vl = klle{{ —S(r)(e1 —l—d)—l—%TpL— {g:| } (3.11)

A saturation term is introduced into the first Lyapunov derivative with the first error

coordinate as the argument to smooth any spikes in the error:

Vl = —e]TO'K(el) +e1T I

aK(e1)+l{ —S(r)(e;+d) + 2 P — m }] (3.12)

where ok is a saturation function such that:

_ |ox(x)
ok(x) = {O'K(Xz)l (3.13)
ok(0)=0 (3.14)
x0x(x) > 0 forall x £ 0 (3.15)
lim ok (x) = £K for some K > 0 (3.16)

X—>doo

The following approximation was chosen as the saturation function in accordance with

the saturation function properties given by equations (3.13)), (3.14)), and (3.16)):

ok (x) ~ K‘x‘% (3.17)
Sk (x) ~ K(MET)ZX (3.18)

where € is a constant governing the steepness of the saturation function.

In the spirit of a backstepping approach, a second error coordinate is developed:

&2 = ox(er) +é{ S+ #py - [0] >} (3.19)
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where e; is the second error coordinate.
As in equation (3.9), the derivative of the second error coordinate is found because it is
needed in the Lyapunov analysis. The second error coordinate is given by:
é :&K(e1)+k—11(5—I‘u)—|—b (3.20)

where b is a two-dimensional unknown constant disturbance and

b [(1) _ddy] BT m . 8=—S(NZ pL+2 Pr, (3.21)

A second Lyapunov function is constructed, using the second error coordinate and, as
the backstepping procedure dictates, the first Lyapunov function. The second Lyapunov

function is designed as such:

1
Vo=V + 2—kze2T e (3.22)

where V; is the second Lyapunov function and k3 is a constant control gain.

Once again, the time derivative of the Lyapnuov function is taken, and shown as:

T
. (&
Vo = —el ox(er) +el ey + —2(ki6k(er) + 0 — T+ kib). (3.23)

kikz
Instead of the typical backstepping procedure, the integral backstepping approach is

taken to allow for disturbance rejection of the constant disturbance b. Thus, an integral
term is added to the error dynamics as such:
E=e (3.24)
where £ is the integral term.
This allows for the construction of a third Lyapunov function, using the second Lya-

punov function, which by design includes the first Lyapunov function, and the integral term
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as shown:

vyt Lo, 1
Vs—V2+2k2(€ k3b) (& k3b) (3.25)

where V3 is the third Lyapunov function and k3 is a constant control gain.

As done previously, the time derivative of the Lyapunov function is taken:

Lk 1
Vs=Vo+—(6——b)Te, (3.26)
ky'> ks
and expanded as
T
. (&
Vs = —ejox(er) +ejer+ - (kiok(e) + 8 —Tp+kiksg). (327)
1R2

Now, u is designed to satisfy the Lyapunov stability criteria. This control law is differ-
ent from that in [Rold3ao et al.|(2014)] and allows for a proof of asymptotic stability using
both the negative semi-definite Lyapunov result and LaSalle’s Invariance Principle instead
of bounding arguments. The modified control law is shown as:

p=T"18+k6g(e))+kikyer +kiks€ +kikye;) (3.28)
Substituting equation (3.28)) into the following negative semi-definite Lyapunov re-
sult is achieved:

V3 =—ele, —elok(e) (3.29)

This negative semi-definite result indicates stability of the error dynamics with the chosen
control law, p. For the implementation of this scheme, the error dynamics are simplified

with the substitution of the control law term. The error dynamics are shown to be:
e =—S(r)e; +kiey —kjog(e;) (3.30)
é2 = —k262 —k3£’—k2e1 (3.31)

£ =e (3.32)
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where &' = € — %b to simplify the notation while including the constant disturbance in the
integral term of the error dynamics.

Since the Lyapunov analysis has a negative semi-definite result, LaSalle’s Invariance
Principle is used to prove asymptotic stability of the error dynamics. From equation (3.29)
the only trajectory that results in a solution of V(x) = 0 is that which includes e; = 0 and
e; = 0. For LaSalle’s Invariance Principle to hold, this must imply that £ = 0 is also the
result of this solution. Since e; = 0 and e> = 0, it must also be true that ¢, =0 &, = 0.
Thus, if e =0, e; =0, €; =0, and &, = 0, the only way that equation can be true is
if ¢ = 0. This concludes that the only solution for which V (x) = 0 is the trivial solution.

LaSalle’s Invariance Principle holds and the system is asymptotically stable.

3.1.2 Internal Dynamics

Based on [Roldao et al.| (2014)] and trial by simulation, it is not sufficient to use the simple
relationship, y = r since there are an infinite number of solutions to this equation for a
given desired distance vector. Thus, a relationship between the linear and angular velocities
of the leader and the linear and angular velocities of the follower is necessary.

After convergence of the error dynamics, the following equation holds true:

H —T'%"p, (3.33)
v
Based on the geometry, let the velocity of the leader be represented as such:
. cos(yr)
=VL| . 3.34
pL=VL [ sin (WL)} (3.34)

where V7 is the linear velocity of the leader and ;. indicates the direction of the leader’s
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velocity. Substituting the relationships from equation (3.34)) into (3.33), the following in-

ternal dynamics are determined.

4 o sin(yg, — y)

To prevent the followers from orbiting the leader at the predetermined desired distance, the

[u] _ [VLcos(wL—w)+Vf1—?sin(y/L—l//) (3.35)

relationships in equation (3.35) must be used, since they encompass the geometry of the

leader’s heading with respect to the follower’s heading.

3.1.3 Vertical Formation Trajectory Generation Design

To achieve three-dimensional formation trajectory generation, vertical formation trajectory
generation must be added to the planar formation trajectory generation. A desired verti-
cal distance between the leader and a follower must be predetermined for any number of

followers. The vertical error coordinate is defined for the follower as such:

€; = pr:— Pr:+d; (3.36)
where e, is the vertical error coordinate, py, is the z-direction position of the leader, pr,
is the z-direction position of the follower, and d, is the desired vertical distance between
the follower and the leader. This is different from the vertical error coordinate presented in
[Roldao et al. (2014)] in that a positive d, will result in the follower trajectory being that
distance above the leader and a negative d, will result in the follower being that distance
below the leader. The vertical control law is given in the form of an acceleration in the
z-direction as:

PF; = Ok (ﬁLz) + GK(kzlez + kz2éz) (3.37)
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where jir, is the z-direction acceleration of the follower, j;, is the z-direction acceleration
of the leader, ¢, is the z-direction velocity error between the leader and follower, and &
and k,, are constant control gains. Using this controller, the error dynamics for the vertical

direction are shown to be:
e =epn (3.38)

¢ = Pr; — Ok (PLz) — Ok (kz1e:1 +kpez) (3.39)
where e,; = e, and e,; = ¢é,. By inspection one can conclude that this scheme asymptoti-
cally stabilizes the actual vertical distance between the follower and leader to the desired

vertical distance between the follower and leader given that || < K.

3.2 Simulation Results

The formation trajectory generation scheme discussed in Section [3.1] has been simulated
in MATLAB. One can see that the control law proposed in Section [3.1] shows improved
performance when compared with that of [Roldao et al.|(2014)]. The formation trajectory
generator has been simulated with the same parameters as those in [Roldao et al.| (2014)]
with the exception of the control gains, a nonzero constant disturbance, and the addition
of the vertical trajectory generation. It is reasonable to assume that the inclusion of a
nonzero disturbance would have decreased the performance of the controller. However,
with the modified control law, the performance is highly improved, even with the nonzero

disturbance. The simulation was run with two followers and the following parameters:
2c0s(0.25¢)
p.(t) = | sin(0.5¢)
3
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b=0.5 € = 10000

0.35 3
dry = [0.35 pr1(0) = |3
0.35 0
3n
uFl(O) =0.5 rpl(()) =-0.5 l[/Fl(O) = 7
0.35 3
dry = |—0.35 Pr2(0) = |1
—0.35 0

up(0) =0 rr2(0) = 0.5 yr2(0) =0
ki =0.4 ky =2 kz = 0.005
k;1 =7500 k;» = 7500 K=5

As shown in Figure [3.1] the two followers move in a "figure-eight" trajectory and qual-
itatively maintain a constant distance from the leader. The virtual followers must compen-
sate for the undesirable nonzero initial conditions to converge to the desired path. A more
quantitative visual is presented in Figure [3.2] The position errors converge to zero within
11 s, which is approximately 40% shorter for Virtual Follower 1 and approximately 10%
shorter for Virtual Follower 2 than the results in [Roldao et al.| (2014)]. Figure shows
the velocity errors converging to zero within approximately 11 s, which is comparable to
the results when the original control law is applied.

The angular positions and angular velocities shown in Figure [3.4 converge in less time
than the original result, as well. The angular positions converge between followers after 6.5
s which is approximately 60% shorter than the original result. The angular rates converge
after 13 s, which is approximately 30% shorter than the original result.

Figure [3.5] shows the distances between the followers and between each follower and
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Figure 3.1: Two Virtual Followers Following the Predefined Figure-Eight Virtual Leader
Trajectory in a Planar Triangular Formation.

the leader. Each virtual follower converges to the desired distances from the leader, 0.495
m, and a constant distance from each other, 0.7 m, with maximum peak-to-peak variations
of 0.018 m, 0.002 m, and 0.013 m for the distances between Virtual Follower 1 and the
Virtual Leader, Virtual Follower 2 and the Virtual Leader, and Virtual Follower 2 and Vir-
tual Follower 1, respectively. These variations are expected due to the constant disturbance;
however, these values are acceptable being that they are only 3.7%, 0.4%, and 1.9% of their
total distance values, respectively. Additionally, the convergence occurs within 11 s, as ex-

pected from Figure [3.2] Figure [3.6] shows convergence of the vertical distances between
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Figure 3.2: Stabilization of Position Error in the x-direction for Virtual Follower 1 (green)
and Virtual Follower 2 (red), y-direction for Virtual Follower 1 (blue) and Virtual Follower
2 (black), and z-direction for Virtual Follower 1 (pink) and Virtual Follower 2 (cyan).

Virtual Follower 1 and the Virtual Leader, Virtual Follower 2 and the Virtual Leader, and
Virtual Follower 2 and Virtual Follower 1 to 0.35 m, 0.35 m, and 0.7 m, respectively. The
convergence occurs in 4 s and has no peak-to-peak variation. This result was not included
in the original result. Thus, no comparison can be made. Finally, a three-dimensional
view of the trajectory generation is displayed in Figure With this, the goal of three-
dimensional trajectory generation is achieved and shown to be improved from the original
result. It is worth noting that the faster convergences could cause increase thrust and torque

requirements from the quadrotors. This concern is explored in the next chapter.
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Figure 3.3: Stabilization of Velocity Error in the x-direction for Virtual Follower 1 (green)
and Virtual Follower 2 (red), y-direction for Virtual Follower 1 (blue) and Virtual Follower
2 (black), and z-direction for Virtual Follower 1 (pink) and Virtual Follower 2 (cyan).
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Figure 3.4: Tracking Convergence of Angular Distances (red) and (green) and Angu-
lar Velocities (blue) and (black) As Both Virtual Followers Follow the Virtual Leader’s

Figure-Eight.
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Figure 3.5: Convergence of Triangular Formation Planar Distances Between Virtual Fol-
lower 1 and the Virtual Leader (blue), Virtual Follower 2 and the Virtual Leader (green),
and Virtual Follower 2 and Virtual Follower 1 (red).
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Figure 3.6: Convergence of Distances in the z-direction Between Virtual Follower 1 and
the Virtual Leader (blue), Virtual Follower 2 and the Virtual Leader (green), and Virtual
Follower 2 and Virtual Follower 1 (red).
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Figure 3.7: Three-Dimensional Representation of Two Virtual Followers Following the
Predefined Figure-Eight Virtual Leader Trajectory in a Planar Triangular Formation Offset
by Equal Heights.



Chapter 4

Quadrotors Tracking Generated

Trajectories

The purpose of this chapter is to develop a nonlinear tracking controller for the quadrotor
vehicle. This allows any quadrotor to track a known path. A tracking technique is used
because the desired trajectory of the leader is known and the desired trajectories of the fol-
lowers are generated by the leader-follower trajectory generator. A sliding mode tracking
controller is developed in theory, and successful tracking of the leader and two followers is
demonstrated in simulation. This formulation is adapted from Dr. Reyhanoglu’s point-to-

point stabilization sliding mode controller.

4.1 Quadrotor Tracking Controller Design

In this section, the quadrotor tracking controller is designed. The linearized quadrotor

dynamics in equations (2.18)), (2.19), (2.20), (2.21), (2.22), and (2.23]) are used to develop

33
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the control law. This control law is then used on the nonlinear quadrotor dynamics in
equations (2.5), (2.6), (2.7), and (2.16) for the simulation. The following equations are
developed such that the roll and pitch angles are dependent on the position and velocity
errors of the coordinate in the direction which that angle generates translational motion,
i.e. roll causes motion in the Y-direction and pitch causes motion in the X-direction:
6 = —kr1(X —Xy) —kra(X — Xy) (4.1)
O =kr3(Y —Yy) +kra(Y —Yy) 4.2)
where X, is the desired X-direction position on the trajectory at a particular time instance,
X, is the desired X-direction velocity, Y, is the desired Y-direction position on the trajectory
at a particular time instance, Y, is the desired Y-direction velocity, and k71, k72, k13, and
kr4 are constant, positive control gains.
In the spirit of sliding mode control, two functions are determined such that they en-
compass the information from equations (4.1)) and (4.2)), but are also equal to zero. The

equations and their derivatives are as follows:

V1= 0 4+kr1 (X —Xg) +kra (X — Xy) 4.3)
2 =9 —kr3(Y —Yq) —kra(Y —¥y) (4.4)
Vi =0+kr1 (X —Xy) +kra(X —Xy) (4.5)
V2 =9 —kr3(Y —Yy) —kra(¥ —Yq) (4.6)

where y; and y, are the variables that are equal to zero and encompass the information in

equations (4.1)) and (4.2). After substituting equations (2.18) and (2.19)) into (.5)) and (#.6),
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the following relationships are obtained for use in the sliding surface:
y1 =0 +kri(X —Xg) +kra(g6 — Xy) 4.7)
V2 =0 —kp3(Y —Y;) +kra(g9 +¥,) (4.8)
The following sliding surfaces are defined for the system:
s1=Y1+ariy (4.9)
s2 =y2+0r2y2 (4.10)
where s and s, are the sliding surfaces, and o7 and o, are constant, positive control

gains.

Substituting equations @.5)), (4.7), @.6) and (4.8)) into equations (4.9) and (@.10), the

following relationships are obtained:
s1=0+kri1 (X —Xy) +kr2(80 —Xq) + 071 (0 + kri (X — Xg) + ko (X —Xg))  (4.11)
so=0 —kr3(Y —Yy) +kra(gd +Yy) +ara(¢ —kr3(Y —Yy) —kra(Y —Yy)).  (4.12)
In the spirit of sliding mode control, the time derivatives are taken of the sliding surfaces

as such:
S| = 0 + k11 (X—Xd) —l—sz(ge _X.d) + OCTl(Q —l—le(X—Xd) —l—sz(X —Xd)) 4.13)
= ¢ —kr3 (Y — Yd) —|—kT4(g(]3 + Yd) + OCT3(¢ + k3 (Y — Yd) +kT4(Y — Yd)) 4.14)

Substituting equations (2.21) and (2.22)) into (#.13)) and (.13), while neglecting the
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gyroscopic terms, the following equations are found for the slide surface time derivatives:

§1 = szyél[/+u3 + k1 (X —Xg) +kr2 (g0 — Xq)
(4.15)

+OCT1(9 +kT1(X —Xd) —{-sz(X —Xd))

$2 =Jyx 00 +up — k3 (Y — ¥y) + kra(gd + V')
(4.16)

+ora (¢ +kr3(Y —Yy) +kra(Y —¥y))

An asymptotically stable relationship between the sliding surface and its time-derivative
is used with a saturation function for smoothing of the sliding surface. In in this case, the

hyperbolic tangent function is used as such:
s1 = —Aritanh(grs;) 4.17)
sy = —Apptanh(grsy) (4.18)
where A7y and A, are constant, positive control gains and m is a constant that dictates the
steepness of the hyperbolic tangent function.

Rearranging equations (4.15) and (4.16) and substituting equations and (4.18),

the following controls are developed:

uz = —Ary tanh(grsi) — Jony @V — kr1 (X — Xy) — kr2 (860 — X a)
4.19)

—OCTl(é +kT1(X —Xd) —|—kT2(X —Xd))

Uy = —Ars tanh(QTSZ) — Jyzx9¢ + k13 (Y — Yd) — kT4(gd5 + Yd)
(4.20)

—or3( +kp3 (Y —Yy) +kpa(Y —1y))

Additionally, the other two controls are used to asymptotically stabilize the vertical

position and velocity and the yaw angle and rate with those of the desired trajectory:
ui :g_szl(Z_Zd)_sz2<Z_Zd) (4.21)

us = 1 (¥ = Yia) — (¥ — Y (4.22)
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where k.71, k;72, [1, and [ are constant, positive control gains.
Thus, with the use of the controls u;, u, u3, and uy, and their asymptotically stable

nature, successful quadrotor tracking control has been achieved.

4.2 Quadrotor Formation Tracking Simulation Results

With the tracking controller developed, a leader and two follower quadrotors can be shown
to effectively track the predefined virtual leader’s trajectory and the two virtual follower
generated trajectories presented in Section [3.2] This is done through simulation in MAT-
LAB. The nonlinear quadrotor dynamics presented in Section are used as the plant,
while the tracking controller presented in Sectiorf.1]is used to drive the quadrotors to the
desired paths. To set up the desired paths, the simulation in Section [3.2]is run prior to
initiating the tracking controller. The following simulation parameters are used in the sim-

ulation for the tracking control portion:
kr;1 =6.5 kro =0.5 kr3 =6.5 kra =0.5
k.1 =2.5 ko =4.5
=2 lh=2
Ari=4 Arp=4
o =3 o =3
Joe = 0.001kg-m*  Jy, =0.00lkg-m*  J, = 0.002kg - m*

gr=100 g=9815
A
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where the control gains have been tuned for optimum performance and the quadrotor pa-
rameters are equal to those in [Roldao et al.| (2014)]. Additionally, the quadrotor initial
conditions have been chosen to match those of the virtual agent initial conditions presented
in Section[3.2] As another note, the third derivative terms for the desired states are ignored
due to their small magnitude.

In figures and 4.3|the paths of the virtual agents and their respective quadrotor
counterparts are shown. One can see that all three quadrotors track the desired "figure-
eight" trajectories. Figure [4.4] shows all three quadrotors following their respective three-
dimensional trajectories. This is the desired result of this thesis. Now, the analysis of the
performance of the tracking controller is of importance.

In Figure one can see the magnitude of distance between each virtual agent and its
respective quadrotor. These distances converge to a desired value of zero, in other words,
the quadrotors track the desired trajectories. This convergence takes approximately 11 s.
With a maximum peak-to-peak variation of only 0.03 m, 0.03 m, and 0.04 m, for the leader,
follower 1, and follower 2, respectively, this result is considered successful. This variation
is due to the chattering nature of a sliding mode controller.

Figures [4.6] and [4.8|show the x-direction, y-direction, and z-direction positions of
all quadrotors, alongside their virtual agent counterparts. One can see convergence of the
quadrotors to their desired tracking positions, in approximately 11 s. This result is compa-
rable to that achieved in [Roldao et al. (2014)], where it takes approximately 11 s for the
positions to converge. The tracking is smooth with regard to the positions. Additionally,

the quadrotor velocities are presented alongside their virtual agent counterpart velocities,
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Figure 4.1: Two-Dimensional Representation of Leader Quadrotor Tracking Predefined
Virtual Leader Trajectory

in figures 4.9] .10, and .11} Again, tracking ensues after approximately 11 s. One no-
tices the chattering in the velocity tracking. This is expected due to the nature of sliding
mode control. With maximum deviations from the desired velocities of only 0.03 %, the
velocity tracking can be considered a success, especially when considering that there is no
noticeable chattering in the position tracking.

Perhaps the most important result is the planar desired distance vector convergence be-
tween the leader and followers. This was the goal of this thesis, leader-follower formation

flight of three quadrotors at desired distance vectors. The desired vertical distances were



CHAPTER 4. QUADROTORS TRACKING GENERATED TRAJECTORIES 40

_ TrackingF1

VlrtuaIF1

_4 | | | | | | |
-4 -3 -2 -1 0 1 2 3 4

X [m]

Figure 4.2: Two-Dimensional Representation of Follower 1 Quadrotor Tracking Generated
Virtual Follower 1 Formation Trajectory

achieved within 0.001 m, which is practically unnoticeable, as presented in Figure[d.8] The
planar distance vectors between the quadrotor leader and quadrotor follower 1, the quadro-
tor leader and quadrotor follower two, and quadrotor follower 2 and quadrotor follower 1
are presented in Figure 4.12] This shows a highly improved result when compared with
that of [Roldao et al.| (2014)], where tracking was achieved with peak-to-peak variations
within 20% of the total distance vectors. In the result presented in Figure #.12] maximum
peak-to-peak variations of 0.06 m, 0.04 m, and 0.04 m for the planar distance vectors be-

tween the quadrotor leader and quadrotor follower 1, the quadrotor leader and quadrotor
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Figure 4.3: Two-Dimensional Representation of Follower 2 Quadrotor Tracking Generated
Virtual Follower 2 Formation Trajectory

follower two, and quadrotor follower 2 and quadrotor follower 1, respectively. This corre-
sponds to 12%, 8%, and 6% of the desired distances of 0.495 m, 0.495 m, and 0.7 m for the
planar distance vectors between the quadrotor leader and quadrotor follower 1, the quadro-
tor leader and quadrotor follower two, and quadrotor follower 2 and quadrotor follower 1,
respectively. This result is considered to be highly successful, especially when compared

with the result achieved in [Roldao et al.|(2014)].
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Figure 4.4: One Leader and Two Follower Quadrotors Achieving Three-Dimensional
Tracking Control of Generated Formation Flight Trajectories
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Figure 4.5: Convergence of Planar Distances Between the Virtual Leader and the Quadrotor
Leader (pink), Virtual Follower 1 and Quadrotor Follower 1 (purple), and Virtual Follower
2 and Quadrotor Follower 2 (black).
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Figure 4.6: Convergence of All Three Quadrotors’ X-Direction Positions To Their Respec-
tive Virtual Agents’ X-Direction Positions
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Figure 4.7: Convergence of All Three Quadrotors’ Y-Direction Positions To Their Respec-
tive Virtual Agents’ Y-Direction Positions



CHAPTER 4. QUADROTORS TRACKING GENERATED TRAJECTORIES 46

4 T T T T T T T T
TrackingL
- VirtualL 7
TrackingF1
R VirtualF1 7
TrackingF2
- ——— Virtual 2 7
I
.‘
1 - —
0.5 i
O | | | | | | | |
0 5 10 15 20 25 30 35 40 45

t[s]

Figure 4.8: Convergence of All Three Quadrotors’ Z-Direction Positions To Their Respec-
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Figure 4.9: Convergence of All Three Quadrotors’ X-Direction Velocities To Their Re-
spective Virtual Agents’ X-Direction Velocities
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Figure 4.10: Convergence of All Three Quadrotors’ Y-Direction Velocities To Their Re-
spective Virtual Agents’ Y-Direction Velocities
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Chapter 5

Conclusions and Future Work

A background and motivation for using the leader-follower formation flight scheme was
used, along with the importance of the quadrotor application. A model for the quadrotor
dynamics was developed for the fully nonlinear rigid body motion, which was to be used as
the tracking control plant. These dynamics were then simplified for use in developing the
tracking controller. Following this development, an explanation for the use of the Lyapunov
analysis was discussed, to show the need for proving stability of the formation trajectory
generator. The case where LaSalle’s invariance principle is needed was explored.

An asymptotically stable formation trajectory generator was developed based on the
integral backstepping process for a simplified dynamic model. The formulation began with
planar formation trajectory generation, and then was extended to include the vertical di-
rection. The Lyapunov analysis was used to show stability of the trajectory generator.
A further step was taken to show asymptotic stability of the system, through the use of

LaSalle’s invariance principle. A simulation including one virtual leader and two virtual
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followers was used to show the effectiveness of the trajectory generator. The trajectory gen-
erator was able to successfully allow both virtual followers to achieve a three-dimensional
desired distance vector from the virtual leader, as the virtual leader moved on a predefined
path. Although only two followers were used here, any number of followers could have
been used.

A quadrotor trajectory tracking control law was developed, as well. This was done
using sliding mode control, with relationships between the angles and desired states as
the sliding surfaces. Using the generated trajectories of the followers and the predefined
trajectory of the virtual leader, a leader quadrotor and two follower quadrotors were able to
track the desired paths and achieve leader-follower formation flight.

There is future work to be done on this topic. Simulations of large quantities of fol-
lower quadrotors are desired. The incorporation of active relative position feedback for
the trajectory generation could prove useful. Also, the performance of other application
vehicles would be interesting to study. In the same spirit, simulations of multiple types
of vehicles should be explored. Despite the importance of these additional research topics,
perhaps the most desirable is the experimental application. This would involve a number of
quadrotors, with one designated as the leader and the others as followers. Various methods
could be used for implementation including dead-reckoning, where each quadrotor knows
its generated desired trajectory and tracks that without knowledge of the other quadrotors.
This could be done with the current development. Additionally, an external motion capture
system could be used to give relative position feedback between the leader and the fol-
lowers. Finally, on a global scale, sophisticated GPS and communcation techniques could

also be used to give relative position feedback. Practical uses for these research topics are
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evident with the expansion of quadrotor, and more generally UAV, interest, research, and

development.
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Appendix

MATLAB Code

Main Code

%% Leader—Follower Swarm Control

clc

clear

variables

close all

9% State Initialization

global m h sim_t dl d2 kl k2 k3 b K eps kzl kz2 dz_f1 dz_f2
k_1 k_2 k_ 3 k_4 kz_1 kz_2 alpha_1 alpha_2 beta gamma J_rx

I_yzx I_zxy

9% Gains

k1 =26.5;
k2 = 0.5;
k3 =6.5;
k4 = 0.5;
kz_ 1 = 2.5;
kz 2 = 4.5;

xd yd zd g lamda_1 lamda_2 1_1
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1_1 = 2;

1.2 = 2;
lamda_1 = 4;
lamda_2 = 4;
alpha_1 = 3;
alpha_2 = 3;
b =0.5;

eps = 10000;
kl = 0.4;

k2 = 2;

k3 = 0.005;
kzl = 7500;
kz2 = 7500;
K = 5;

%% Initial Conditions

pLO = [2;0];
pldot0 = [O;

plz_0 = 3;
plzdot_0O

Il
]

psi_f1_0 = 3xpi/2;

psi_f2_0 = 0;

p_f1_0 = [3;3];
p_f2_0 = [3;1];

pfz_f1_0 = 0;

pfzdot_f1_0 =
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0;
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.35];

—0.35];

pfz_f2_0 = 0;
pfzdot_f2_0 =
dl = [0.35; O
d2 = [0.35;
dz_fl1 = 0.35;
dz f2 = —0.35;
R f1 =

R_f2

r_f1_
2 _

r_

S_f1
S_12

u_f1_

u_ f2 0

el_f1_0
e2_f1_0
R_f1’xpldot0 — [u_f1_0; 0]);
zeta_pr_f1_0

fn_R(psi_f1_0);
fn_R(psi_f2_0);

-0.5;
0.5;

fn_S(r_f1_0);
fn_S(r_f2_0);

ezl f1_0
ez2 f1 0O

el_f2_0
e2_f2_0
R_f2’xpldot0 — [u_f2_0; 0]);

0.5;

9

(R_f1 % (pLO—p_f1_0))—dl;
Kxsign_fn(el_f1_0,eps) + (1/kl)*(—S_flxdl +

[0;0];

plz_O0—pfz_f1_0+dz_f1;
plzdot_0—pfzdot_f1_0;

zeta_pr_f2_0

R_f2’°x«(pLO—p_f2_0)—d2;
Kxsign_fn(el_f2_0,eps) + (1/kl)*(—S_f2xdl +

[0;0];
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g ezl 2 0 plz_O0—pfz_{2_0+dz_f2;
ss ez2_f2_0 = plzdot_0—pfzdot_f2_0;
89 9% Simulation Duration

o sim_t = 40;

o1

2 %l Prepare initial conditions vector

w z0=[el_f1_0; e2_f1_0; zeta_pr_f1_0; r_f1_0O;psi_fl1_0;ezl1_f1_0
;ez2_f1_0;el_f2_0; e2_f2_0; zeta_pr_f2_0; r_f2_0;psi_f2_0
;ezl _f2_0;ez2_f2 0];

96 %o solve ODE using RK4

s h=0.1;
9w t0=0;
w  t=[t0];
01

02 Q=z0";
103

we while t(end)<sim_t

105 t0O=t(end) ;

106 x0=(Q(end ,:)) ’;

107 X=rk4 (' fn_formationcontrol’,t0,x0,h);
108 t=[t;t0+h];

109 Q=[Q:X"];

o end

2 9% Pull states from rk4 output
13

m el _f1_1 = Q(:,1);

s el _f1_2 = Q(:,2);

116

moel_fl = Q(:,1:2);

118



119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

BIBLIOGRAPHY

e2_fl_1 = Q(:,3);
e2_fl1_2 = Q(:,4);

e2_fl1 = Q(:,3:4);
zeta_pr_fl = Q(:,5:6);

r_f_ 1 =Q(,7);
psi_f_1 = Q(:,8);

ezl_f1 = Q(:,9);
ez2_fl = Q(:,10);

el _f2_1 =Q(:,11);
el _f2_2 = Q(:,12);

el_f2 =Q(:,11:12);

e2_f2_1 = Q(:,13);
e2_f2_ 2 = Q(:,14);

e2_f2 = Q(:,13:14);
zeta_pr_f2 = Q(:,15:16);

r_f_ 2 =Q(,17);
psi_f_2 = Q(:,18);

ezl_f2 = Q(:,19);
ez2_f2 = Q(:,20);

9% Reconstruct all important quantities

P_L =1[];
PF1=11];
PF2=11];:
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P Fz 1
P Fz 2

for 1
P_1
P_L
P 1z =
P 1z

/o
R_f1 =
S_f1

P_f 1
P_F_1

P fz 1
P Fz 1

9o

R_f2 =
S_f2 =

P_f 2
P_F 2

P fz 2
P Fz 2

end

=[]
= [1I;

= l:length(t)
[2%xcos(0.25%xt(1));sin(0.5xt(i))];
[P_L;P_1"7;

3;

[P_Lz;P_1z"];

fn_R(psi_f_1(1));
fn_S(r_f_1(1));

P_1-R_flx(el_f1(i,1:2)’+dl);
[P.F 1;P f 1°];

= P_lz—ez1_f1(i,1)+dz_f1;
= [P_Fz_1;P_fz_1"];

fn_R(psi_f_2(i));
fn_S(r_f_2(i));

P 1-R_ f2x(el_f2(i,1:2)’+d2);
[P_.F_ 2;P_f 2°];

= P _lz—ezl1_f2(i,1)+dz_£2;
= [P_Fz_2;P_fz_2"];

9% Trajectory Generator Plotting

pink =

(1/255) %[255,51,153];
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purple = (1/255)%[102,0,2041;

figure (1)

plot(P_L(:,1),P_L(:,2),’b”);hold on;

plot(P_F_1(:,1) ,P_F_1(:,2), ¢g");hold on;

plot(P_F_2(:,1) ,P_F_2(:,2),’r");

xlabel ("x [m] ) ;

ylabel ("y [m]");

legend (’Leader’,’ Follower 1°,  Follower 2°,’Location’,’
Northwest’);

print (’C:\ Users\campo\Desktop\Thesis\Correct_Format\

TwoDTrajGen’ ,’—depsc’);

figure (2)

plot(t,el_f1(:,1), g ); hold on;
plot(t,el_f2(:,1),—r1"); hold on;
plot(t,el_f1(:,2),’b"); hold on;
plot(t,el_f2(:,2),—k’); hold on;
plot(t,ezl_fl1, Color’  ,pink); hold on;
plot(t,ezl_f2, —c’);
axis([0,40,—-1.5,3.5]);

xlabel ("Time [s]);

ylabel (" Position Error [m]’);
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legend ("elx_{F1}’, elx_{F2}’,’ely_{F1}’,’ely_{F2}’,’elz_{F1}

T,oelz_{F2}7);
print (’C:\ Users\campo\Desktop\Thesis\Correct_Format\

PosErrors’, —depsc’);

figure (3)

plot(t,e2_f1(:,1), g ); hold on;
plot(t,e2_f2(:,1),—r1r"); hold on;
plot(t,e2_f1(:,2),’b"); hold on;
plot(t,e2_f2(:,2),—k’); hold on;
plot(t,ez2_fl1, Color’  ,pink); hold on;
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plot(t,ez2_f2, —c’);

axis ([0,40,—-3,2.5]);

xlabel ("Time [s]’);
ylabel (" Velocity Error [m/s]’);
legend ("e2x_{F1}’,’e2x_{F2}’,’e2y_{F1}’,’e2y_{F2}’,’e2z_{Fl1}

", e2z_{F2}7);

print (’C:\ Users\campo\Desktop\Thesis\Correct_Format\

VelErrors’, —depsc’);

figure (4)

plot(t,psi_f_1,7¢g"); hold on;
plot(t,psi_f_2,—r"); hold on;
plot(t,r_f_1,°b’); hold on;
plot(t,r_f_ 2, —k’);

axis ([0,40,—-1.5,6.5]);

xlabel ("Time [s]’);
ylabel (" Angular Distance [rad] and Angular Speed [rad/s]’);

legend ("\Psi_{F1} ,"\Psi_{F2} ,"r_{F1} , r_{F2}");
print (’C:\ Users\campo\Desktop\Thesis\Correct_Format\

TwoDAngVelandPos’ ,’—depsc’);

figure (5)

norm_f_1 = sqrt((P_F_1(:,1)-P_L(:,1))."2+(P_F_1(:,2)—-P_L

(:,2)).72);

norm_f_2 = sqrt((P_F_2(:,1)-P_L(:,1))."2+(P_F_2(:,2)-P_L

(:,2))."2);

norm_f1_f2 = sqrt((P_F_2(:,1)-P_F_1(:,1))."2+(P_F_2(:,2)—

P F_ 1(:,2)).72);
plot(t,norm_f_1, b’ );hold on;

plot(t,norm_f_2, —g’);hold on;

plot(t,norm_f1_f2,°r")
axis ([0,40,0,3.5]);
xlabel ("Time [s]’);

ylabel (’ Distance

[m] ") ;
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legend (" I P_{F1}-P_LII’,” IIP_{F2}-P_LII"’,” IIP_{F2}—-P_{F1 }II~
)
print (’C:\ Users\campo\Desktop\Thesis\Correct_Format\

TwoDDistances’, —depsc’);

figure (6)

plot(t,P_Fz_1(:,1)-P_Lz(:,1),’b"); hold on;

plot(t,P_Fz_2(:,1)-P_Lz(:,1), g’); hold on;

plot(t,P_Fz_2(:,1)-P_Fz_1(:,1),’r");

axis ([0,40,—-3,0.5]);

xlabel ("Time [s]’);

ylabel (’z [m]’);

legend (’ |1 Pz_{F1}—Pz_L I, II1Pz_{F2}—-Pz_LII’,’ IIPz_{F2}-Pz_{
F1}Il’,’Location’,’ Southeast’);

print (’C:\ Users\campo\Desktop\Thesis\Correct_Format\

ZDistances’ ,’—depsc’);

figure (7)

plot3(P_L(:,1),P_L(:,2),P_Lz(:,1),b");grid on;hold on;

plot3(P_F_1(:,1),P_F_1(:,2),P_Fz_1(:,1), g );grid on;hold on

plot3(P_F_2(:,1) ,P_F_2(:,2),P_Fz_2(:,1), r );grid on;hold on

view ([335,25]);

xlabel ("x [m]’);

ylabel ("y [m]");

zlabel('z [m]’);

legend (' Leader’,’ Follower 1°,’ Follower 27)

print ('C:\ Users\campo\Desktop\ Thesis\Correct_Format\
ThreeDTrajGen’ , —depsc’);

9% Quadrotor Tracking

%% Leader
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dplzldot = (0.%xt);
pldot = [—=0.5.%xsin(0.25.xt), 0.5.%xcos(0.5.x¢t)];
psi_l= acot(pldot(:,1)./pldot(:,2));
plddot = [—0.125.%xco0s(0.25.%xt),—0.25.xsin (0.5.%xt) ];
V_1l = pldot(:,2) ./sin(psi_l);
dpsi_1 = ((plddot(:,2)./sin(psi_l))—plddot(:,1))./(((pldot
(:,2).xcos(psi_l))./((sin(psi_l)."2)))—(V_l.xsin(psi_l)))
timer = 1;
sat = 0.3;
for timer = 1:1:length(dpsi_l)
if dpsi_l(timer,1) > sat
dpsi_l(timer ,1) = sat;
elseif dpsi_l(timer,1) < —sat
dpsi_l(timer ,1) = —sat;
end

end

phi_I_0 = 0;
theta_1_0 = 0;
dphi_I_0 = 0;
dtheta_ 1 _0 = O;

PLz O = 0;
P_Lx_0 = pLO(1,1);
P_Ly_0 = pLO(2,1);

pldddot = [0.0313.%sin(0.25.%xt),—0.125.%xcos(0.5.xt)];

desired_leader = [P_L(:,1),pldot(:,1),P_L(:,2),pldot(:,2),
P_Lz(:,1),dplzldot(:,1), psi_l,dpsi_l,plddot(:,1),plddot
(:,2)1;%,pldddot (:,1) ,pldddot(:,2) ];

initial_leader = [P_Lx_O;P_Ly O;P_Lz_0;pldot(1,1);pldot(1,2)
;dplzldot(1,1);phi_I_0; theta_1_0; psi_I(1,1); dphi_1_0;
dtheta_1_0; dpsi_l(1,1)];



299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

316

317

318

319

320

321

322

323

324

BIBLIOGRAPHY 68

states_leader = f_quadtracking(t,desired_leader ,

initial_leader);

figure (8);

plot(states_leader (:,1),states_leader (:,2), Color’,pink);
hold on;

plot(P_L(:,1),P_L(:,2), —b");

axis([—4.,4,—4.,4]);

xlabel ("x [m]’);

ylabel ("y [m]’);

legend (’ Tracking_{L}’,’ Virtual_{L}’, Location’,’ Southeast’);

print ('C:\ Users\campo\Desktop\Thesis\Correct_Format\
TwoDLeaderTrack’, —depsc’);

9% Follower 1

u_fl = (V_I(:,1).xcos(psi_l(:,1)—psi_f_1(:,1)))+((V_I(:,1).%
dl(2,1)./d1(1,1)).xsin(psi_1(:,1)—psi_f_1(:,1)));

pfldot(:,1)
pfldot(:,2)

u_f1(:,1).xcos(psi_f_1(:,1));
u_fI(:,1).xsin(psi_f_1(:,1));

dpsi_d_f1 = (V_1./d1(1,1)).x(sin(psi_1(:,1)—psi_f_1(:,1)));

Gamma_f1 = [1 —d1(2,1); O d1(1,1)];

Delta_f1(:,1) = —r_f_1(:,1).xpldot(:,1).xsin(psi_f_1(:,1))+
r_f_1(:,1).xpldot(:,2).xcos(psi_f_1(:,1))+plddot(:,1).x%
cos(psi_f_1(:,1))+plddot(:,2).xsin(psi_f_1(:,1));

Delta_f1(:,2) = —r_f_1(:,1).xpldot(:,1).xcos(psi_f_1¢(:,1))—
r_f_1(:,1).xpldot(:,2).xsin(psi_f_1(:,1))—plddot(:,1) .x
sin(psi_f_1(:,1))+plddot(:,2).xcos(psi_f_1(:,1));

sigmadot_fl = Kxdsign_fn(el_fl,eps,e2_f1);
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zeta_fl = zeta_pr_fl + (1/k3)xb;

invGamma = inv (Gamma_f1);

mu_f1(:,1) = invGamma(1,1).x(Delta_f1(:,1) + kl.xsigmadot_f1l
(:,1) + kl.xk2.xe2_f1(:,1) + kl.xk3.xzeta_f1(:,1) + kl.x
k2.xel_f1(:,1))+invGamma (1l ,2).x(Delta_f1(:,2) + kl.x
sigmadot_f1(:,2) + kl.xk2.xe2_f1(:,2) + kl.xk3.xzeta_f1
(:,2) + kl.xk2.xel_f1(:,2));

mu_fl(:,2) = invGamma(2,1).x(Delta_f1(:,1) + kl.xsigmadot_{f1
(:,1) + kl.xk2.%xe2_f1(:,1) + kl.xk3.xzeta_f1(:,1) + kl.x
k2.xel_f1(:,1))+invGamma(2,2).x(Delta_f1(:,2) + kl.x
sigmadot_f1(:,2) + kl.xk2.xe2_f1(:,2) + kl.xk3.xzeta_f1
(:,2) + kl.xk2.xel_f1(:,2));

udot_f1(:,1) mu_f1(:,1);

pflddot(:,1) —r_f_1(:,1).xu_f1(:,1).xsin(psi_f_1(:,1))+
udot_f1(:,1).xcos(psi_f_1(:,1));

pflddot(:,2) = r_f_1(:,1).xu_f1(:,1).xcos(psi_f_1¢(:,1))+
udot_f1(:,1).xsin(psi_f_1(:,1));

pfldddot = [0,0];

dpfzldot = —ez2_f1(:,1);

sat_fl = 0.3;
for timer_fl = 1:1:length(dpsi_d_f1)
if dpsi_d_f1(timer_f1,1) > sat_fl1
dpsi_d_f1 (timer_f1 ,1) = sat_f1;
elseif dpsi_d_fl(timer_f1,1) < —sat_f1
dpsi_d_f1(timer_f1,1) = —sat_f1;
end

end

phi_f1_0 = 0;



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

3

3

2

BIBLIOGRAPHY 70

theta_f1_0 = O;
dphi_f1_0 = 0;
dtheta _f1_0 = 0;

desired_followerl = [P_F_1(:,1),pfldot(:,1),P_F_1(:,2),
pfldot(:,2) ,P_Fz_1(:,1),dpfzldot(:,1),psi_f_1 ,dpsi_d_f1,
pflddot(:,1) ,pflddot(:,2)];%,pfldddot(:,1) ,pfldddot(:,2)
I

initial_f1 = [P_F_1(1,1);P_F_1(1,2);P_Fz_1(1,1);pfldot(1,1);
pfldot(1,2);dpfzldot(1,1);phi_f1_0; theta_f1_0; psi_f_1
(1,1); dphi_f1_0; dtheta_f1_0; dpsi_d_f1(1,1)];

states_followerl = f_quadtracking(t,desired_followerl ,

initial_f1);

figure (9)

plot(states_followerl (:,1),states_followerl (:,2), Color’,
purple); hold on;

plot(P_F_1(:,1),P_F_1(:,2), —¢g’);

axis([—4.,4,—4.,4]);

xlabel (’x [m]’);

ylabel ("y [m]");

legend (’ Tracking_{F1}’,’ Virtual_{F1}’,  Location’,’Southeast’
)

print ('C:\ Users\campo\Desktop\ Thesis\Correct_Format\
TwoDFollowerlTrack’,’—depsc’);

%% Follower 2

u_f2 = (V_I(:,1).xcos(psi_l(:,1)—psi_f_2(C:,1)))+((V_I(:,1).%
d2(2,1)./d2(1,1)).xsin(psi_1(:,1)—psi_f_2(:,1)));

pf2dot(:,1) = u_f2(:,1).xcos(psi_f_2(:,1));
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pf2dot (:,2) = u_f2(:,1) .xsin(psi_f_2(:,1));

dpsi_d_f2 = (V_1./d2(1,1)).x(sin(psi_1(:,1)—psi_f_2(:,1)));

Gamma_f2 = [1 —d2(2,1); 0 d2(1,1)];

Delta_f2(:,1) = —r_f_2(:,1).xpldot(:,1).xsin(psi_f_2(:,1))+
r_f_2(:,1).xpldot(:,2).xcos(psi_f_2(:,1))+plddot(:,1).x%
cos(psi_f_2(:,1))+plddot(:,2).xsin(psi_f_2(:,1));

Delta_f2(:,2) = —r_f_2(:,1).xpldot(:,1).xcos(psi_f_2(:,1))—
r_f_2(:,1).xpldot(:,2).xsin(psi_f_2(:,1))—plddot(:,1) .x
sin(psi_f_2(:,1))+plddot(:,2).xcos(psi_f_2(:,1));

sigmadot_f2 = Kxdsign_fn(el_f2 ,eps,e2_f2);

zeta_f2 = zeta_pr_f2 + (1/k3)xb;

invGamma = inv (Gamma_{2) ;

mu_f2(:,1) = invGamma(1,1).x(Delta_f2(:,1) + kl.xsigmadot_f2
(:,1) + kl.xk2.xe2_f2(:,1) + kl.xk3.xzeta_f2(:,1) + kl.x
k2.xel_f2(:,1))+invGamma(1,2).x(Delta_f2(:,2) + kl.x
sigmadot_f2 (:,2) + kl.xk2.xe2_f2(:,2) + kl.xk3.xzeta_f2
(:,2) + kl.xk2.xel_f2(:,2));

mu_f2(:,2) = invGamma(2,1) .x(Delta_f2(:,1) + kl.xsigmadot_{f2
(:,1) + kl.xk2.%xe2_f2(:,1) + kl.xk3.xzeta_f2(:,1) + kl.x
k2.xel_f2(:,1))+invGamma(2,2).x(Delta_f2(:,2) + kl.x
sigmadot_f2 (:,2) + kl.xk2.xe2_f2(:,2) + kl.xk3.xzeta_f2
(:,2) + kl.xk2.xel_f2(:,2));

udot_f2 (:,1) mu_f2(:,1);
pf2ddot (:,1) —r_f_2(C:,1).xu_f2(:,1).xsin(psi_f_2(:,1))+
udot_f2(:,1).xcos(psi_f_2(:,1));
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pf2ddot (:,2) = r_f_2(:,1).xu_f2(:,1).xcos(psi_f_2(:,1))+
udot_f2 (:,1).xsin(psi_f_2(:,1));

pf2dddot = [0,0];

dpfz2dot = —ez2_f2(:,1);

timer_f2 = 1;
sat_f2 = 0.3;
for timer_f2 = 1:1:length(dpsi_d_f2)
if dpsi_d_f2(timer_f2 ,1) > sat_f2
dpsi_d_f2 (timer_f2 ,1) = sat_f2;
elseif dpsi_d_f2(timer_f2,1) < —sat_f2
dpsi_d_f2 (timer_f2 ,1) = —sat_f2;
end

end

phi_f2_0 = 0;
theta _f2 0 = O;
dphi_f2_0 = 0;
dtheta_f2_0 = 0;

desired_follower2 = [P_F_2(:,1),pf2dot(:,1),P_F_2(:,2),
pf2dot (:,2) ,P_Fz_2(:,1) ,dpfz2dot(:,1) ,psi_f_2 ,dpsi_d_f2,
pf2ddot (:,1) ,pf2ddot(:,2) ];%,pfldddot(:,1) ,pfldddot(:,2)
I

initial_f2 = [P_F_2(1,1);P_F_2(1,2);P_Fz_2(1,1);pf2dot(1,1);
pf2dot(1,2);dpfz2dot(1,1);phi_f2_0; theta_f2_0; psi_f_2
(1,1); dphi_f2_0; dtheta_f2_0; dpsi_d_f2(1,1)];

states_follower2 = f_quadtracking(t,desired_follower2 ,
initial_f2);

figure (10)
plot(states_follower2 (:,1),states_follower2 (:,2), k" ); hold

on;
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plot(P_F_2(:,1) ,P_F_2(:,2), —717);

axis([—4.,4,—4.,4]);

xlabel ("x [m] ) ;

ylabel ("y [m]");

legend (’ Tracking_{F2}’,’ Virtual _{F2}’, Location’,’ Southeast’
)

print (’C:\ Users\campo\Desktop\Thesis\Correct_Format\
TwoDFollower2Track’,’—depsc’);

9% Tracking Plotting

figure (11)

plot3(P_L(:,1),P_L(:,2),P_Lz(:,1), —b’ );grid on;hold on;

plot3(P_F_1(:,1) ,P_F_1(:,2),P_Fz_1(:,1),—g’);grid on;hold
on;

plot3(P_F_2(:,1) ,P_F_2(:,2),P_Fz_2(:,1),—1");grid on;hold
on;

plot3 (states_leader (:,1),states_leader (:,2),states_leader
(:,3), Color’ ,pink);grid on;hold on;

plot3 (states_followerl (:,1),states_followerl (:,2),
states_followerl1 (:,3), Color’ ,purple);grid on; hold on;

plot3 (states_follower2 (:,1),states_follower2 (:,2),
states_follower2 (:,3), k" );grid on; hold on;

view ([335,25]);

xlabel (’x [m]’);

ylabel ("y [m]");

zlabel('z [m]’);

legend (’ Virtual_{L}’,’ Virtual_{F1}’,’ Virtual _{F2}’,’
Tracking_{L}’,  Tracking_{F1}’,  Tracking_{F2}’)

print ('C:\ Users\campo\Desktop\ Thesis\Correct_Format\
ThreeDTrack’, —depsc’);

figure (12)
norm_Il_track = sqrt((P_L(:,1)—states_leader (:,1)).22+(P_L
(:,2)—states_leader (:,2)).72);
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norm_f1_track = sqrt ((P_F_1(:,1)—states_followerl (:,1)).72+(
P_F_1(:,2)—states_followerl (:,2)).72);

norm_f2_track = sqrt ((P_F_2(:,1)—states_follower2 (:,1)).72+(
P_F 2(:,2)—states_follower2 (:,2)).72);

plot(t,norm_l_track , Color’,pink);hold on;

plot(t,norm_f1_track , Color’ ,purple);hold on;

plot(t,norm_f2_track , 'k’)

xlabel ("Time [s]’);

ylabel (" Distance [m]);

legend (’ Il Virtual Position_{L} — Tracking Position_{L}II’,”
Il Virtual Position_{F1} — Tracking Position_{F1}II’," 1|l
Virtual Position_{F2} — Tracking Position_{F2}Il”);

print ('C:\ Users\campo\Desktop\ Thesis\Correct_Format\
TwoDTrackDistances’ ,’—depsc’);

figure (13)

plot(t,states_leader (:,1), Color’,pink); hold on;

plot(t,P_L(:,1),—b’); hold on;

plot(t,states_followerl (:,1), Color’,purple); hold on;

plot(t,P_F_1(:,1), —g’); hold on;

plot(t,states_follower2 (:,1), k”); hold on;

plot(t,P_F_2(:,1), —17);

xlabel ("t [s]7);

ylabel ("x [m]");

legend (’ Tracking_{L}’,’ Virtual_{L}’,  Tracking_{F1}’,’
Virtual _{F1}’,  Tracking_{F2}’,’ Virtual _{F2}’);

print (’C:\ Users\campo\Desktop\Thesis\Correct_Format\
CompareXCon’ ,’—depsc’);

figure (14)

plot(t,states_leader (:,2), Color’,pink); hold on;
plot(t,P_L(:,2), —b’"); hold on;
plot(t,states_followerl (:,2), Color’,purple); hold on;
plot(t,P_F_1(:,2),—g’); hold on;
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plot(t,states_follower2 (:,2), k’); hold on;

plot(t,P_F_2(:,2), —r17);

xlabel ("t [s]7);

ylabel ("y [m]");

legend (’ Tracking_{L}’,’ Virtual_{L}’,  Tracking_{FI1}’,’
Virtual _{F1}’,’Tracking_{F2}’,’ Virtual_{F2}’);

print (’C:\ Users\campo\Desktop\Thesis\Correct_Format\
CompareYCon’ ,’—depsc’);

figure (15)

plot(t,states_leader (:,3), Color’,pink); hold on;

plot(t,P_Lz(:,1), —b’"); hold on;

plot(t,states_followerl (:,3), Color’,purple); hold on;

plot(t,P_Fz_1(:,1), —g’); hold on;

plot(t,states_follower2 (:,3), k’); hold on;

plot(t,P_Fz_2(:,1), —r17);

xlabel ("t [s]7);

ylabel(’z [m]");

legend (’ Tracking_{L}’,’ Virtual_{L}’,  Tracking_{F1}’,’
Virtual _{F1}’,  Tracking_{F2}’,’ Virtual_{F2}’);

print ('C:\ Users\campo\Desktop\ Thesis\Correct_Format\
CompareZCon’ ,’—depsc’);

figure (16)

plot(t,states_leader (:,4), Color’,pink); hold on;

plot(t,pldot(:,1),—b’); hold on;

plot(t,states_followerl (:,4), Color’,purple); hold on;

plot(t,pfldot(:,1), —g’); hold on;

plot(t,states_follower2 (:,4), k’); hold on;

plot(t,pf2dot(:,1), —r17);

xlabel ("t [s]7);

ylabel ("dx [m/s]’);

legend (’ Tracking_{L}’,’ Virtual_{L}’,  Tracking_{FI1}’,’
Virtual _{F1}’, Tracking_{F2}’,’ Virtual _{F2});
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print ('C:\ Users\campo\Desktop\ Thesis\Correct_Format\
CompareDXCon’ ,’—depsc’);

figure (17)

plot(t,states_leader (:,5), Color’,pink); hold on;

plot(t,pldot(:,2),—b’); hold on;

plot(t,states_followerl (:,5), Color’,purple); hold on;

plot(t,pfldot(:,2), —g’); hold on;

plot(t,states_follower2 (:,5), k’); hold on;

plot(t,pf2dot(:,2), —r17);

xlabel ("t [s]7);

ylabel ("dy [m/s]’);

legend (’ Tracking_{L}’,’ Virtual_{L}’,  Tracking_{FI1}’,’
Virtual _{F1}’, Tracking_{F2}’,’ Virtual _{F2}’);

print (’C:\ Users\campo\Desktop\Thesis\Correct_Format\
CompareDYCon’ , ’—depsc ) ;

figure (18)

plot(t,states_leader (:,6), Color’,pink); hold on;

plot(t,dplzldot(:,1), —b"); hold on;

plot(t,states_followerl (:,6), Color’,purple); hold on;

plot(t,dpfzldot(:,1), —g’); hold on;

plot(t,states_follower2 (:,6), k’); hold on;

plot(t,dpfz2dot(:,1), —71");

xlabel ("t [s]7);

ylabel ('dz [m/s]’);

legend (’ Tracking_{L}’,’ Virtual_{L}’,  Tracking_{F1}’,’
Virtual _{F1}’,  Tracking_{F2}’,’ Virtual_{F2}’);

print ('C:\ Users\campo\Desktop\ Thesis\Correct_Format\
CompareDZCon’ , ’—depsc ) ;

figure (19)
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norm_fl_1_formation = sqrt((states_followerl (:,1)—
states_leader (:,1))."2+(states_followerl (:,2)—
states_leader (:,2))."2);

norm_f2_1_formation = sqrt((states_follower2 (:,1)—
states_leader (:,1))."2+(states_follower2 (:,2)—
states_leader (:,2))."2);

norm_f2_f1_formation = sqrt((states_follower2 (:,1)—
states_followerl (:,1)).22+(states_follower2 (:,2)—
states_followerl (:,2)).72);

plot(t,norm_f1_I_formation, b’ );hold on;

plot(t,norm_f2_I1_formation, —g’);hold on;

plot(t,norm_f2_f1_formation, 'r")

xlabel ("Time [s]’);

ylabel (" Distance [m]’);

legend (" I P_{F1}—-P_LII’,” IIP_{F2}—-P_LII"°,” [IP_{F2}-P_{F1 }II’
)

print ('C:\ Users\campo\Desktop\Thesis\Correct_Format\

TwoDFormationDistances’, ’—depsc ) ;
Trajectory Generation Function

%Formation Trajectory Generation

function dx = fn_formationcontrol (t,xx)

global dlI d2 k1 k2 k3 b K eps kzl kz2 dz_fl dz_f2

9% States assignment

el _f1 = xx(1:2);
e2_fl = xx(3:4);
zeta_pr_fl = xx(5:6);
r_f1 = xx(7);
psi_fl = xx(8);
ezl_f1 = xx(9);

ez2 fl1 = xx(10);
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el_f2 = xx(11:12);
e2_f2 = xx(13:14);
zeta_pr_f2 = xx(15:16);
r_f2 = xx(17);
psi_f2 = xx(18);
ezl_f2 = xx(19);
ez2 f2 = xx(20);

9% leader

pl = [2%c0s(0.25%xt);sin(0.5%xt)];
pldot = [—=0.5%xsin (0.25%xt); 0.5%xcos(0.5xt)];

plddot

plz = 3;

plzdot
plzddot

9

[—0.125%xco0s(0.25%xt); —0.25%xsin (0.5%xt) ];

0;

= 0;

%% Follower |1

R_f1 =
S_f1

fn_R(psi_f1);
fn_S(r_f1);

Gamma_f1

Delta_f

1

= [1 —=d1(2,1); 0 d1(1,1)1];
—S_f1«R_f1’xpldot+R_f1 «plddot;

sigmadot_fl = Kxdsign_fn(el_fl,eps,e2_f1);

zeta_ f1

mu_fl =

= zeta_pr_fl + (1/k3)xb;

inv (Gamma_fl) *(Delta_fl + klxsigmadot_fl + klxk2x

e2_fl + klxk3xzeta_fl1 + klxk2xel_f1);

eld_f1

e2d_f1

—S_flxel_fl+klxe2_fl—kl«Kxsign_fn(el_f1 ,eps);

—k2xe2_fl — k3xzeta_pr_fl — k2xel_f1;
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zetadot_pr_fl = e2_f1;

rdot_f1 = mu_f1(2,1);

psi_l = acot(pldot(1l)/pldot(2));
V_1 = pldot(2)/sin(psi_l);

psid_f1 = (V_I/dl(1l))*sin(psi_l—psi_f1l);
ezld_fl1 = ez2_f1;

ez2d f1
ezl_fl+kz2xez2_f1 ,eps);

plzddot—XKsx«sign_fn (plzddot ,eps)—Kxsign_fn (kzlx

%% Follower 2

R_f2 = fn_R(psi_1f2);
S_12 fn_S(r_f2);

Gamma_f2 = [1 —d2(2,1); 0 d2(1,1)];

Delta_f2

—S_f2xR_f2 * pldot+R_f2 x plddot ;

sigmadot_f2 = Kxdsign_fn(el_f2 ,eps,e2_1f2);

zeta_f2 = zeta_pr_f2 + (1/k3)xb;

mu_f2 = inv(Gamma_f2)«(Delta_f2 + klxsigmadot_f2 + klxk2x
e2_f2 + klxk3xzeta_f2 + klxk2xel_f2);

eld _f2 —S_f2xel_f2+klxe2_f2—kl«Kxsign_fn(el_f2,eps);

e2d_12

—k2xe2_f2 — k3xzeta_pr_f2 — k2xel_f2;
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zetadot_pr_f2 = e2_f2;

rdot_f2 mu_f2(2,1);

psid_f2 = (V_I/dl(1l))*sin(psi_l—psi_f2);
ezld_f2 = ez2_f2;

ez2d_f2 plzddot—XKsxsign_fn (plzddot ,eps)—Kxsign_fn (kzlx
ezl_f2+kz2xez2_f2 ,eps);

9% Solve Diff Eq

dx = [eld_fl;e2d_f1;zetadot_pr_f1;rdot_f1;psid_f1;
ezld_f1;ez2d_fl;eld_f2;e2d_f2;zetadot_pr_f2;rdot_f2;
psid_f2;ezld_f2;ez2d_f2];

end

Runge Kutta for the Trajectory Generation Function

function x=rk4 (name,t0,q0,h)
t1=t0+h/2;

t2=t0+h;

fO=feval (name,t0,q0);
x1=q0+hxf0/2;

fl=feval (name,tl ,x1);
x2=q0+hxf1/2;

f2=feval (name,tl ,x2);
x3=q0+h*f2;

f3=feval (name,t2 ,x3);
x=q0+hx(fO+2xf14+2+xf2+f3)/6;

Rotation Matrix Function

function R = fn_R(psi)
R = [cos(psi) —sin(psi); sin(psi) cos(psi)];
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end

Skew Symmetric Matrix Function
function S = fn_S(r)
S =100 —-r; r 0];

end

Saturation Function

function ret = sign_fn(arg,eps)

ret = arg./(sqrt(arg.*xarg)+eps);

end

Time-Derivative of the Saturation Function

function ret = dsign_fn(arg,eps,dotx)

ret = (eps./(sqrt(arg.xarg)+eps)."2).xdotx;

end

Quadrotor Tracking Function

function states = f_quadtracking(t,desired ,initial)

81

global dzd ddxd ddyd dpsi_d dxd dyd counter sim_t psi_d k_1

k_ 2 k_3 k_4 kz_1 kz_2 alpha_1 alpha_2 beta gamma J_rx

I_yzx I_zxy xd yd zd g lamda_1 lamda_2 1_1 1_2 K_v m

%% Parameter Definitions

K_ v = 54.945; % |[rad s/V]
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J_r

I xx
I_yy
I zz
b

d

1

m
g
J rx

I_yzx
I_zxy

m = 100;

= 6e-—5; % [kg m"2]
= 0.001; % [kg m"2]
= 0.001; % [kg m” 2]
= 0.002; % [kg m"2]

= 3.935139e—-6; % [N/V]
= 1.192464e¢—7; % [Nm/V]

= 0.1969; % [m]

= 2.85; % [kg]

= 9.81; % [m/s”2]
= J r/l_xx;

= (I_yy — 1_zz)/1_xx;
= (I_zz — I_xx)/1_yy;

%% Declare Desired States

xd = desired (:,1);
dxd = desired (:,2);
yd = desired (:,3);
dyd = desired (:,4);
zd = desired (:,5);
dzd = desired (:,6);
desired (:,7);

psi_d =
dpsi_d
ddxd =
ddyd =

desired (:,8) ;

desired (:,9);
desired (:,10);

%% Initial conditions:

% X = [x y z dx dy dz phi theta psi

40 X

41

initial (1,1);
initial (2,1);

WX Wy wz]

% m

% m
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2 0 = initial (3,1);

dx O = initial (4,1);

dy_0 = initial (5,1);

dz_ 0 = initial (6,1):

phi_0 = initial(7,1);

theta_0 = initial (8,1);

psi_0 = initial (9,1);

wx_0 = initial (10,1);
wy_0 = initial (11,1);
wz_ 0 = initial (12,1);
X0 = [x_0; y_0; z_0;

dx_0; dy_0;

; wx_0; wy_0; wz_0];

9% Simulate Dynamics

h=0.

1

t0=0;

t=[t0];

Z=X0";

counter

= 1;

while t(end)<sim_t
tO=t(end) ;

Z0=(Z(end ,:)) ’;

%

%o
%

%%

%
%

%

%
%%
%

m/ s
m/ s

m/s

rad
rad

rad

rad/s
rad/s
rad/s

dz_0; phi_O;

theta_O;

states=rk4_track ( f_tracking_controller ,t0,Z0,h);
t=[t;t0+h];

sat_phi = 0.3;

if

states (7 ,:) > sat_phi

states (7 ,:)

sat_phi;

83

psi_0O
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75 elseif states (7,:) < —sat_phi
76 states (7 ,:) = —sat_phi;
77 end

» sat_theta = 0.3;

80 if states (8,:) > sat_theta

81 states (8 ,:) = sat_theta;

82 elseif states (8,:) < —sat_theta
83 states (8 ,:) = —sat_theta;
84 end

ss sat_psi = 0.3;

87 if states (9,:) > sat_psi

88 states (9,:) = sat_psi;

89 elseif states(9,:) < —sat_psi
9% states (9,:) = —sat_psi;

o1 end

9

s sat_wz = 1.5;

04 if states (12,:) > sat_wz

95 states (12 ,:) = sat_wz;

9% elseif states (12,:) < —sat_wz
97 states (12 ,:) = —sat_wz;
9% end

%

100 Z=[|7Z;states ’];

101 counter = counter + 1;

02 end

103
w %% Reconstruct states

105

106 X =7Z(:,1);
07y = 7(:,2);
108 Z = 2(1,3);
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dX :Z(’4)’
dy =7Z(:,5);
dz =7Z(:,6);
phi = Z(:,7);
theta = 7Z(:,8);
psi = 7(:,9);
WX =Z7Z(:,10);
wy =7Z((,11);
wz =7(:,12);

states = [Xx,y,z,dx,dy,dz,phi,theta,psi,wx,wy,wz];

end

Runge Kutta for the Quadrotor Tracking Function

function x_track=rk4_track(name_track ,tO_track ,qO_track ,h)

tl _track=t0_track+h/2;

t2_track=t0_track+h;

fO_track=feval (name_track ,tO_track ,qO_track);

x1_track=q0_track+hxf0_track/2;

fl1_track=feval (name_track ,tl_track ,x1_track);

x2_track=q0_track+hxfl_track/2;

f2_track=feval (name_track ,tl_track ,x2_track);

x3_track=q0_track+hxf2_track;

f3_track=feval (name_track ,t2_track ,x3_track);

x_track=qO0_track+hx(fO_track+2«fl_track+2xf2_track+f3_track)
/16;

Tracking Controller Function

function dY = f_tracking_controller (t_track ,Y)
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w

global dzd ddxd ddyd h dpsi_d dxd dyd counter psi_d k_1 k_2
k_ 3 k_ 4 kz_1 kz_2 alpha_1 alpha_2 J_rx I_yzx I_zxy xd yd
zd g lamda_1 lamda_2 1_1 1_2 m

s 9% Retrieve States

6 X =Y(1l);
7y = Y(2);
s Z = Y(3);
9

0 dx =Y(4);
o dy =Y(5);
2 dz = Y(6),;
13

i phi =Y(7);
s theta = Y(8);
6 psi =Y(9);

s sat_phi = 0.3;

19 if phi > sat_phi

20 phi = sat_phi;

21 elseif phi < —sat_phi
2 phi = —sat_phi;

2 end

24

s sat_theta = 0.3;

2 if theta > sat_theta

7 theta = sat_theta;

28 elseif theta < —sat_theta
29 theta = —sat_theta;

30 end

» sat_psi = 0.3;
3 if psi > sat_psi

34 psi = sat_psi;
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elseif psi < —sat_psi

psi = —sat_psi;
end
WX = Y(10);
wy =Y(11);
wZ =Y(12);
sat_wz = 1.5;

if wz > sat_wz
wz = sat_wz,
elseif wz < —sat_wz
wz = —sat_wz,

end

9% Calculate angular rates

dphi = wx+wyxsin (phi)xtan(theta)+wzxcos(phi)*xtan(theta);
dtheta

wy*cos (phi)—wzxsin (phi);

dpsi wy*sin (phi)/cos(theta)+wzxcos(phi)/cos(theta);

%% Control law

s(1) = dtheta+(k_2xg+alpha_1l)xtheta+(k_l+alpha_1xk_2)x(dx—
dxd(counter ,1))+alpha_1xk_1x*(x—xd(counter ,1))—k_2xddxd (
counter ,1) ;

s(2) = dphi—(k_3+alpha_2xk_4)*(dy—dyd(counter ,1))+(k_4x*xg+
alpha_2)xphi—alpha_2xk_3*(y—yd(counter ,1))+k_4xddyd(

counter ,1);

u(l) = g—kz_1x*(z—zd(counter ,1))—kz_2x%(dz—dzd(counter ,1));

u(2) = —lamda_2xtanh (m*s (2))—I_yzxxdthetax(dpsi—dpsi_d/(
counter ,1))—(k_3+alpha_2xk_4)*(gxphi+ddyd(counter ,1))—(
k_4xg+alpha_2)xdphi+alpha_2x*k_3x(dy—dyd(counter ,1));

87
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u(3) = —lamda_lxtanh (m*s (1) )+I_zxy*(dpsi—dpsi_d (counter ,1))x*
dphi —(k_2xg+alpha_1)xdtheta —(k_l+alpha_1xk_2)x(gxtheta—
ddxd (counter ,1))—alpha_1xk_1x*(dx—dxd(counter ,1));

u(4) = —I_1x(psi—psi_d(counter ,1))—1_2x*(dpsi—dpsi_d (counter
1))

u_g = 0; % Gyroscopic effect 1s ignored

9% Test controller on nonlinear dynamics

dY = zeros(12,1);

dY (1) = dx;

dY (2) = dy;

dY (3) = dz;

dY (4) = (cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi))
*u(l);

dY (5) = (cos(phi)xsin(theta)*sin(psi)—sin(phi)*xcos(psi))
xu(l);

dY (6) = cos(phi)*cos(theta)xu(l)—g;

dY (7) = wx + wyxsin(phi)=«tan(theta) + wzxcos(phi)x*tan (
theta) ;

dY (8) = wyxcos(phi) — wzxsin(phi);

dY (9) = wyxsin (phi)/cos(theta) + wzxcos(phi)/cos(theta);

dY(10) = [_yzxxwyxwz + J_rx*xu_gsxwy + u(2);

dY(11) = [_zxyxwxswz — J_rxxu_gxwx + u(3);

dY(12) =u(4);

end
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