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ABSTRACT 

Clark, Matthew MSAE, Embry-Riddle Aeronautical University, March 2017. Collision 

Avoidance and Navigation of UAS Using Vision-Based Proportional Navigation 

Electro-optical devices have received considerable interest due to their light weight, low cost, and low 

algorithm requirements with respect to computational power. In this thesis, vision-based guidance laws are 

developed to provide sense and avoid capabilities for unmanned aerial vehicles (UAVs) operating in complex 

environments with multiple static and dynamic collision threats.  These collision avoidance guidance laws are 

based on the principle of proportional navigation (Pro-Nav), which states that a UAV is on a collision course 

with another vehicle or object if the line-of-sight (LOS) angles to the object remain constant.  The guidance 

laws are designed for use with monocular electro-optical devices, which provide information on the LOS angles 

to potential collision threats, but not the range.  The development of these guidance laws propagates from an 

investigation into numerous methods of Pro-Nav based guidance, including the use of LOS rate thresholding, 

avoidance of the most imminent threat detected, and objective-based cost optimization. The collision avoidance 

guidance laws were applied to nonlinear, six degree-of-freedom UAV models in various simulation 

environments including a varying number of static and dynamic obstacles.  A final form of the avoidance law, 

determined from these simulation studies, was applied to a small-scale UAV model flying through a virtual 

urban environment, which utilizes camera-in-the-loop simulation techniques.  

The final results of these studies showed that the most effective approach was to implement a cost 

function-based avoidance law that includes a term based on the Pro-Nav intercept heading for a desired 

waypoint and avoidance terms for all obstacles in view that pose a collision threat.  Obstacle avoidance 

headings in the cost function are based on the difference in the obstacle LOS rates from the magnitude of the 

minimum safe LOS rate.  When applied to UAV simulations in a virtual urban environment, this guidance law 

provided successful avoidance for the case of a single building, maintained a safe heading through an urban 

canyon, and determined the safest path through a complex urban layout.  For the case of the complex urban 

layout, a single collision during flight occurred due to a lack of visual feature points to contribute to the 

avoidance law calculation.  

 



1 
 

1. INTRODUCTION 

An “unmanned aerial vehicle” (UAV) is an aircraft without an on-board pilot to 

control it. While being previously synonymous with “unmanned aerial systems” (UAS), 

there has been clarification by the Federal Aviation Administration (FAA), European 

Aviation Safety Agency (EASA), and the International Civil Aviation Organization 

(ICAO), that they are distinctly different. A UAV is considered a device used for flight 

that has no pilot, including all classes of airplanes, helicopters, airships, and translational 

balloons. The classification of a UAS is comprised of an unmanned vehicle, as well as 

encompassing the ground control station, communication links, and launch retrieval 

systems (Angelov, 2012).  

 

 

Figure 1: Diagram of typical UAS (Angelov, 2012) 

This important distinction plays a critical role in the work presented in this paper. The 

nature of this research is to investigate a guidance and control system in relation to an 

unmanned aerial vehicle (UAV) alone, not an entire system; and while this scope seems 

limited, it is in fact a much desired and popular aspect of research in current UAV 

developments (Angelov, 2012). Current and prevalent developments of UAV sense and 

avoid (SAA) capabilities rely on technologies such as infrared sensors, lasers, acoustic 

emissions, and stereo cameras to map out point clouds of the environment or determine 
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physical distances between the UAV and objects or scenery in view.  

 

Figure 2: MQ-1 Predator, a well-known, SAA capable UAV (Angelov, 2012) 

The SAA method presented in this thesis investigates a less common method for 

UAV navigation and avoidance: using a single monocular camera and feature point 

bearings. While the immediate weight and computational benefits are known, the 

capabilities and limitations of a monocular vision-based controller, due to lack of range 

information, are investigated and presented in this thesis.  

1.1. Overview of UAV Sense and Avoid 

In the early 1900’s, automatic stabilization, remote control, and automatic navigation 

were the three primary technologies said to allow for the progression of powered, manned 

airplanes to become unmanned (Mueller, 2009).  
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Figure 3: Early RC Aircraft, Germany 1936 (Mueller, 2009) 

Prior to the emergence of the Lawrence and Sperry Aircraft company, small-scale, 

remote control (RC) aircraft had become well known and popular amongst a specific set 

of civilian interest groups, and was the closest thing to a modern definition of an 

unmanned aerial vehicle (Mueller, 2009). Lawrence and Sperry then provided a critical 

technology to full size aircraft, the gyroscope, that allowed for the possibility of attitude 

determination in an aircraft, in turn leading to the implementation of a stability autopilot, 

a mechanism or device capable of controlling an aircraft to ensure stability was 

maintained (Angelov, 2012). This was an opportunity that the military capitalized on, 

soon focusing on the development of autopilots for ordinance delivery devices and small 

aerial vehicles for anti-aircraft weapons training. After the Ryan Model 147 was put into 

service as the first reconnaissance UAV with a still camera, further developments in 

UAV and UAS focused primarily on airframe design and payload size to incorporate 

improved cameras (Angelov, 2012).  
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Figure 4: Ryan Model 147 (MrDrone.net, 2017) 

It was not until the late 1970’s, after the Vietnam war, that the production of smaller 

transmitters and electric sensors sparked interest by the Naval Research Laboratory 

(NRL) to outfit UAVs with video cameras, since advances in technology had decreased 

their size dramatically (Mueller, 2009). The first practical use of these newer UAV 

platforms became known during the Gulf War, with the AAI RQ-2 Pioneer leading 

reconnaissance and surveillance missions and providing a stepping-stone for the most 

famous UAV, the General Atomics MQ-1 Predator (Angelov, 2012). 

Civil development and use of UAVs gradually and quietly developed behind the 

scenes during the military integration. NASA, being a forerunner in civil research and 

development, undertook efforts for developing high altitude and prolonged endurance 

UAVs in the 1980’s (Angelov, 2012). When investigating the ozone depletion around 

Earth, NASA’s go-to flight vehicles, a modified Douglas DC-8 and a Lockheed ER-2, 

presented a serious risk to the project when planning to test ozone over the Antarctic. If 

an incident occurred in which the pilots had to eject from the aircraft, survival would be 

difficult and a rescue would take too long. The ER-2 also had a flight ceiling of 20 𝑘𝑚, 

whereas ozone measurements were to be taken at 30 𝑘𝑚, where depletion take place.  
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Figure 5: NASA ERAST's ER-2 in flight (Losey, 2001) 

In 1994, the Environmental Research Aircraft and Sensor Technology (ERAST) program 

became the research project that pushed to solve this problem and further civil 

development (Altman, 1998). Since then, significant research and growth have been seen 

with regards to civilian use of UAVs in areas of environmental application, such as 

pollution monitoring and weather forecasting, emergency response, including firefighting 

and tsunami watch, communications, particularly as relay services and cell phone 

transmissions, and commercial uses, the most popular of which being photography, 

agriculture, and mail (Angelov, 2012).  

The increase in usage of UAVs for military and civil applications has raised questions 

on criteria that define safety regulations in terms of hardware, software, and environment, 

specifically in the area of sense and avoid (SAA). An SAA system can be considered an 

upgraded autopilot, providing assistance following flight patterns, waypoints and other 

mission requirements, but also reacting to situations in which hazardous outcomes must 

be detected, assessed, and resolved (Angelov, 2012).  
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Figure 6: Example detection and response algorithm of a SAA UAV (Yu & Zhang, 2015) 

Immediate and non-immediate hazards are the two primary capabilities that SAA systems 

must encompass. An immediate hazard will present a collision risk to a UAV with little 

to no time to react, requiring an immediate response from the system and perhaps 

deviation from the primary objective or standard flight pattern. The maneuver from this is 

usually significant but necessary to ensure the UAV’s flight path is cleared from the 

hazard. A non-immediate hazard is usually detected well in advance, providing plenty of 

time for a slight adjustment to the UAV’s flight path, resulting in little to no deviation 

from the original objective (Angelov, 2012). A number of sub-functions are required for 

an SAA system to ensure these detections and reactions are executed appropriately, 

typically following the steps: 

1. Detecting any objects with potential for causing a hazard. 

2. Tracking the motion of objects participating in any hazardous situation. 

3. Prioritizing hazards into levels of importance. 

4. Determining the timeline necessary for any potential maneuvers. 

5. Determining a specific maneuver and path based on geometric or optical 

measurements. 

6. Commanding and executing the maneuver. 
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These guidelines are not standard and will differ significantly in particular 

implementations of SAA platforms, but they provide the baseline for developing 

algorithms applicable to both airborne and ground based avoidance systems. For airborne 

SAA systems specifically, laying out any pseudo algorithm like the one above is a crucial 

stage in development, due to the inherent processing and power limitations presented 

with UAVS, especially smaller ones (Angelov, 2012). Any SAA algorithm will be very 

dependent on the hardware required and the type of system, specifically whether it is a 

cooperative or non-cooperative one.  

Cooperative SAA methods utilize hardware that communicates between vehicles and 

ground stations, specifically providing data exchange of locations, trajectories, or other 

navigationally critical information. The traffic collision avoidance system (TCAS) is 

currently the method of choice for manned aircraft avoidance (Billingsley, Kochenderfer, 

& Chryssanthacopoulos, 2011). With a maximum range of 160 𝑘𝑚, TCAS systems 

create a virtual airspace map for an aircraft, alerting and providing instructions for the 

pilots if another aircraft intrudes on the airspace (Angelov, 2012).  

  

Figure 7: Traffic and Resolution Advisory Zones for TCAS (EuroControl, n.d.) 
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The aviation industry, specifically those interested in SAA, see TCAS as a viable 

option due to its current and widespread implementation, as well as its functionality for 

Visual Measurement Conditions (VMC) and Instrument Measurement Conditions (IMC) 

(Yu & Zhang, 2015). Automatic dependent surveillance – broadcast (ADS-B) is another 

similar, and proven, cooperative technology that provides participating receivers with 

aircraft global positioning system (GPS) coordinates, velocity, mission intent, and a 

specific identification value (Zeitlin & McLaughlin, 2007). While this is not yet a 

required or fully supported system, ADS-B can supply data exchange 240 𝑘𝑚 to and 

from ground stations, making it very favorable as a leading SAA technology. Both of 

these cooperative solutions, however, are limited in a few aspects in regards to use as 

SAA technology. TCAS is very capable with individual vehicles, but has not been proven 

to be able to incorporate multiple vehicles. ADS-B has the disadvantage of not working 

with ground or stationary objects (Yu & Zhang, 2015). The largest drawback of both 

these cooperative systems as SAA technologies stems from the necessity for all other 

vehicles to use the same technology to ensure collision trajectories are detected and 

avoidance maneuvers are made (Angelov, 2012). 

Due to cooperative methods needing to be universally implemented, non-cooperative 

SAA systems have obtained a significant standing for application and research. Non-

cooperative SAA methods have the advantage of not requiring communications or 

broadcasts between vehicles or ground stations. With use of technologies like synthetic 

aperture radar (SAR), Lidar, acoustic sensors, and electro-optical cameras, UAVs and 

other vehicles can independently detect and avoid other vehicles, buildings, and ground 

targets without any interaction with outside communications (Yu & Zhang, 2015).  
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Figure 8: Examples of current SAA technologies and the common range limitations (Yu & Zhang, 2015) 

These technologies, having been well established, present advantages and 

disadvantages, specifically in the area of physically sensing environments and obstacles 

surrounding them. SAR, for instance, has the capability to collect location, velocity, and 

size information about its environment or other vehicles using multiple radar pulses (Yu 

& Zhang, 2015). In particular, the NASA Jet Propulsion Lab (JPL) has proven the 

effectiveness of SAR for detection ranges of 16 𝑘𝑚 at a resolution capable of sensing 

miniature UAVs, and it provides General Atomic’s Predator B with 220° azimuth and 

30° elevation field of view (FOV) (Moses, Rutherford, & Valavanis, 2011). While it has 

a significant advantage of being SAA capable in all weather conditions, one fallback of 

SAR technology is the limitation of sending and receiving data at the speed of sound, 

making it difficult for real time implementation. In SAA systems, time becomes a 

mission, not a variable, meaning any critical detection and required avoidance maneuvers 

cannot be fully dependent on a time-consuming method (Yu & Zhang, 2015).  
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Lidar can also provide environment and obstacle location and distance information 

relative to the UAV, but can also be used to maintain a collection of point cloud data for 

virtual reconstruction of the environment. This powerful technology has been a tool for 

Carnegie Mellon University’s Robotics Institute to reduce false positives from other SAA 

methods, and has the potential to be utilized as a way to “remember” the environment, a 

concept that can allow for more than fly-through navigation, but also loitering and 

reconnaissance missions (Geyer, Dey, & Singh, 2009).  

 

Figure 9: Example point cloud scene collected via Lidar measurements (Ryabinin, 2017) 

With detection ranges typically between 200 𝑚 and 3 𝑘𝑚 and resolution capabilities 

of 5 𝑚𝑚, Lidar proves to be an excellent solution for SAA methods. However, a limiting 

factor for all of this potential is the limited FOV and large amount of data collected. Lidar 

typically have a relatively limited FOV in either azimuth or elevation, making its 

usefulness a function of specific scenarios. Collision avoidance scenarios requiring 

detection outside of the Lidar FOV places the UAV in an undesirable state. Also, the 

large amount of data that Lidar can collect poses a problem with data handling and 

processing to ensure the required computing and electrical power is available to allow for 

a real-time SAA system (Yu & Zhang, 2015).  
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Acoustic detection systems are not a particularly new technology, but their 

application for SAA methods is. The passive acoustic non-cooperative collision alert 

system (PANCAS), developed by Scientific Applications and Research Associates 

(SARA) Incorporated, is a leading project in the development of acoustic SAA detection 

systems (Yu & Zhang, 2015).  

 

Figure 10: Relative zones of detection for optical and PANCAS sensing technologies (SARA Inc., 2012) 

Using the noise generated by aircraft engines, propellers, and rotors, acoustic 

microphones can accurately determine intruding vehicle locations and velocities over a 

large range of frequencies within a sphere of detection, as seen in Figure 10. Because of 

its recent development, acoustic detection is limited in a number of ways, particularly 

with respect to its lack of range, poor performance in weather, and non-real time 

functionality.  

Electro-optical (EO) devices use visible light to create an image of the surrounding 

environment or obstacles in view. The extent of this technology ranges from common, 

fixed, monocular vision cameras systems, like those used by recreational and professional 

photographers, to gimballed, panoramic cameras. The popularity of use of EO sensors as 

a primary or auxiliary SAA technology stems from its advantages of typically being low 

cost, lightweight, and requiring low power consumption.  
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Figure 11: Aerial, infrared image of wildfires, taken by RQ-4 Global Hawk (US Navy, 2008) 

On a large scale, a notable implementation of EO technology for SAA is on Northrop 

Grumman’s RQ-4 Global Hawk, cooperatively developed by the Air Force Research 

Laboratory and Defense Research Associates. This system utilizes three optical cameras 

to produce an effective ±100° azimuth and ±15° elevation FOV (Griffith, Kochenderfer, 

& Kuchar, 2008). Figure 11 shows an example image, provided by the United States 

Navy, of Californian wild fires captured by the primary center optical camera. On a 

smaller scale, optical flow sensors provide a promising and compact method for position 

determination and tracking at specific altitudes, similar to that in Gageik et. al., where 

waypoint navigation, position holding, and landing are all autonomously performed on a 

small quadrotor (Gageik, Strohmeier, & Montenegro, 2013).  

EO cameras can, however, be greatly affected by weather conditions and may require 

an array of devices and sensor suites to be useful (Yu & Zhang, 2015). And while EO 

devices allow for a range of chosen detection algorithms, the most common of these 

require a comparatively large amount of data processing for vision-based tracking 

methods, and in the end still lack a critical piece of information: range. However, many 
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approaches can be implemented in order to overcome this lack of information with EO 

cameras.  

Stereo vision utilizes two monocular EO cameras separated by a small horizontal 

distance from each other. This distance creates a horizontal offset, known as parallax, 

between corresponding features within the two images, which can in turn be used to 

estimate the range to the feature or object of interest. An example of this can be seen in 

the diagram presented in Figure 12. The capable range of stereo vision cameras relies on 

a number of factors including disparity distance, focal length of the lenses, and 

environment conditions, but their overall capabilities are limited to smaller distance in 

comparison to other SAA devices (Yu & Zhang, 2015). 

 

Figure 12: Stereovision parallax, demonstrated by the overlapping FOV of camera A and B (Lau, 2012) 

A multitude of EO types can be used in this application, including infrared, 

demonstrated by Chen et al., in which infrared technology bridged the difficulty in 

detecting and tracking objects in subpar or low quality environments, something that 

proves difficult when using true-color EO devices (Chen, Cao, Wu, & Huang, January 

2014). 
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Homography vision measurements provide an alternative solution that utilizes EO 

monocular cameras to derive camera translation, rotation, skewing, and scaling. When 

fixed to a vehicle body reference frame, these transformations can be directly applied to 

the vehicle, providing useful information for application of vision-based navigation, or 

position estimation (Zhao, 2012) An important limitation of this approach is that the 

homography relationship only holds for tracked features that lie in a common 3-D plane.  

1.2. Vision-Based Proportional Navigation 

Proportional navigation, commonly referred to as constant bearing decreasing range, 

is a method of utilizing line-of-sight (LOS) angles for the determination of imminent 

collisions. This technique has been used more commonly in applications of guidance 

laws for modern guided munitions, known as intercept guidance laws, in which the path 

to be taken by a primary vehicle is the one in which its distance with an ultimate target 

approaches zero. Intercept guidance laws that are based on monocular image plane line-

of-sight angles use the change in line-of-sight to ensure that an intercept occurs. This 

proportional navigation (Pro-Nav) concept was originally discovered at sea, with ship 

navigators determining course corrections required for avoidance of other oncoming 

watercraft. This robust method of collision detection evolved rapidly for application in 

guided munitions, particularly with advancements in sensor and computing technology. 

Unlike stereo vision and other monocular vision techniques, at a basic level, vision-based 

proportional navigation requires much less computational power by utilizing optical flow, 

providing changes in positions along the image plane and in turn providing the 

information necessary to determine the LOS angles. For the objective of achieving 

intercept trajectories, the rate of change in the LOS angles provides the information 
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necessary to determine if a collision is imminent. By driving the LOS rate to zero and 

keeping it at zero, an interception or collision will occur, regardless of initial range or 

heading. Unfortunately, monocular vision-based guidance is unable to provide a critical 

piece of information that other sensors can: the range to targets. However, this 

shortcoming also plays a role in the advantage of Pro-Nav. The computational cost 

required for vision-based Pro-Nav is noticeably less than the cost required for most other 

guidance methods that determine and utilize range or distance information. This is also 

the point where this research seeks to utilize and apply Pro-Nav to its full potential. With 

an underlying low computational cost, this method can be applied to a very small vehicle 

with a large number of obstacles, targets, or features, providing a robust solution for 

incorporating dynamic and static environments into a resultant navigational path. 

The investigation into intercept guidance has been present for a long time; however, it 

was not well defined until 1966, when Cornell University’s Aeronautical Laboratory Inc. 

work that placed a classification to Pro-Nav. In its basic form, the paper published was 

related to missile/seeker interception with a target, using satellites as an example.  

Characteristics and limitations of Pro-Nav were presented and included optimal values 

for the Pro-Nav constant, 𝑁𝐻, best performance with and without continuous modulation 

of thrust, and inclusion of dead space with small LOS rate values (Murtaugh & Criel, 

1966). Since then, more advanced methods of Pro-Nav intercept have been examined, 

notably in work by Cornell University and the United States Army. In this work, the 

attitude angle at waypoint interception for a guided reentry vehicle is controlled using a 

time-varying gain, rather than the constant gains defined by Murtaugh and Criel (Kim & 

Grider, 1973). With the implementation of a linear quadratic controller, Kim and Grider’s 
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work has been distinguished as pioneering, and a notable stepping stone upon which 

others have expanded, including work by  Kim, Lee, and Han, which was a particularly 

noteworthy implementation of Pro-Nav in which a bias was used to ensure a zero miss 

distance for a nonlinear analytical model of an intercepting vehicle (Kim, Lee, & Han, 

1998).  

In relation to this thesis, vision-based Pro-Nav using EO pixel information has been 

investigated in the context of developing intercept guidance laws for micro aerial vehicles 

(MAVs) (Beard, Curtis, Eilders, Evers, & and Cloutier, 2007). In this paper, Beard et al. 

derive Pro-Nav guidance intercept commands based solely on pixel information. This 

contrasts with the work by Han, Bang, and Yoo, which manipulates Murtaugh & Criel’s 

original Pro-Nav definiton to fullfill avoidance criteria. Their proposed method utilizes a 

predicted zone of influence, which the primary vehicle must manuever away from (Han, 

Bang, & Yoo, 2009). Sharma et al. and Trinh et al. also implement modified methods of 

Han, Bang, and Yoo’s work in applications to path planning and planar navigation.  

While these works do not completely describe the amount of research and development 

that has been put towards Pro-Nav guidance and navigation, they are among the most 

notable. However, the one contrasting aspect that these works all have in common is the 

assumption of known range to targets or obstacle. These distances play a part in 

determining the time-to-target and using that information to develop successful intercept 

or avoidance commands. 

This thesis extends previous work in regards to using Pro-Nav guidance law for 

intercept and avoidance guidance to a set of guidance laws that will enable a UAV to 

avoid multiple dynamic and static obstacles. These algorithms are studied within a 
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simulation environment, utilizing a six degree of freedom (DoF) dynamic model, without 

the use of target and obstacle range. The results of these simulations are quantified and 

analyzed for each set of guidance laws in order to determine characteristics and traits, 

allowing for successive variations and improvements in methodology and algorithmic 

process. The performance of these algorithms are quantified in terms of the minimization 

of collision probability. 

The path of this thesis takes a developmental approach towards a final Pro-Nav 

avoidance law capable of avoiding dynamic and static obstacles using Pro-Nav concepts, 

without the use of range information. The approach systematically characterizes guidance 

law traits that contribute both positively and negatively, such that these can be taken into 

consideration for the next iteration of avoidance law development. The final form of the 

Pro-Nav guidance law is then implemented into a “camera-in-the-loop” simulation 

environment, where point-of-view images are captured in a realistic virtual environment, 

processed through an image feature detection algorithm, and applied to the design and 

implementation of Pro-Nav guidance laws to update the six DoF UAV model’s dynamic 

response. 
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2. UAV AND CAMERA MODELING 

This thesis presents the development of collision-avoidance guidance laws based on 

monocular vision and the principle of proportion navigation. The approach uses two 

different mathematical UAV simulation models: one during the beginning and middle 

stages of guidance law design and testing, and one for final realization and finalization of 

the chosen law. Both models utilize the 12 aircraft equations of motion to allow for 

nonlinear, six degree of freedom (DoF) UAV dynamics to be computed in a simulation 

environment. A waypoint guidance law provides an underlying goal for the UAV to 

achieve during all simulations (with the exception of intercepting guidance cases). 

Altitude and velocity are maintained during maneuvering using PID controllers that 

maintain pitch and velocity by changing elevator and thrust values. The primary method 

of lateral maneuvering is uses a bank-to-turn heading controller, shown in Figure 13, 

which converts a commanded change of a selected heading parameter to a commanded 

bank angle, 𝜙𝑐𝑜𝑚, with the proportional gain 𝐾𝜙𝑐𝑜𝑚 . The controller then converts the 

commanded change in bank angle to an aileron command, 𝛿𝑎𝑐𝑜𝑚, with a PID controller. 

It is important to note that Δ𝜓𝑐𝑜𝑚 is a resultant change in heading derived from the 

implementation of a Pro-Nav based guidance law. 

 

Figure 13: Diagram of Bank-to-turn control method for UAV simulations 
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While the modeling and control are similar for both UAVs, the initial conditions and 

geometric parameters differ greatly, which are discussed further below. 

2.1. Medium-Scale, Propeller UAV Model 

The initial aircraft model used for development of the Pro-Nav guidance laws 

represents a medium scale, propeller driven UAV. Some important aircraft geometric 

properties and flight conditions are shown in Table 1. 

Table 1: Medium scale UAV geometric and flight parameters 

Parameter Value Units 

bw 33.4 𝑓𝑡 

Aw 6.06  

Vo 176.4 𝑓𝑡/𝑠 

ho 1000 𝑓𝑡 

In Table 1, 𝑏𝑤 is the UAV wing span from tip to tip and 𝐴𝑤 is the wing aspect ratio, 

which relates the wing span to the wing surface area 𝑆𝑤 using the equation 𝐴𝑤 =
𝑏𝑤
2

𝑆𝑤
.      

𝑉𝑜 and ℎ𝑜 are the UAV trim velocity and altitude, respectively. This model was provided 

by students in the Embry-Riddle Flight Dynamics and Control Research Laboratory 

(FDCRL) that includes PID tracking controllers for velocity, altitude and roll angle. 

Control tests were conducted initially using waypoint navigation to ensure the validity of 

the controller gains. 

2.2. Small-Scale, RC Propeller UAV Model 

The Condor Skywalker 1880 was used as a representative model for a small-scale, 

RC propeller driven UAV, and modified accordingly to achieve greater lateral dynamic 

stability and response. The geometric properties and trim flight conditions are shown in 

Table 2 for comparison with the medium-scale UAV model. 
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Table 2: Small-scale UAV geometric and flight parameters 

Parameter Value Units 

bw 5.43 𝑓𝑡 

Aw 5.06  

Vo 45.3 𝑓𝑡/𝑠 

ho 23.0 𝑓𝑡 

 

This aircraft model was also provided by FDCRL students; however, the control laws 

were designed specifically for this research. Like the medium-scale UAV model, the 

control laws utilize PID controllers for altitude, velocity, and bank control, designed via 

the Ziegler-Nichols PID tuning method (Nelson, 1998). 

2.3. Camera Model 

A projective, pinhole camera model is the projection of three-dimensional geometry 

of the scene via a pinhole camera model, and can be represented by using three primary 

coordinate systems: the camera frame 𝐶 (in some instances also denoted by 𝑀), body-

fixed frame 𝐵, and navigational frame 𝐸. The use of a camera model in this thesis can be 

broken up into two primary methods. The first model, implemented for point-mass 

simulations, uses given point-mass locations in the inertial reference frame, also known 

as the north-east-down (𝑁𝐸𝐷) frame. The reference frame is a local coordinate system in 

which 𝑥 and 𝑦 are aligned with the magnetic north and east poles of earth, with 𝑧 oriented 

positively in the downwards direction. This camera modeling method computes the 

vector projection normalized about a focal-axis. For this case, the camera-fixed focal-axis 

is aligned with the 𝑁𝐸𝐷 𝑥-axis, resulting in the following normalized vector: 
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 {
𝑥
𝑦
𝑧
}

𝑝/𝑐

𝐸

= 𝑟𝑝
𝐸 − 𝑟𝑐

𝐸 →

{
 
 

 
 

1

(
𝑦𝑝/𝑐
𝐸

𝑥𝑝/𝑐
𝐸 )

(
𝑧𝑝/𝑐
𝐸

𝑥𝑝/𝑐
𝐸 )

}
 
 

 
 
𝐸

  (1) 

where 𝑟̲𝑝
𝐸 and 𝑟̲𝑐

𝐸  denote the inertial position of the target feature point and the UAV 

center of mass, respectively. It is important for the point-masses (or feature points) to be 

expressed with respect to the inertial frame when implementing Pro-Nav guidance laws. 

This means a few steps are not required when utilizing this camera model method, since 

the point locations are already provided in the inertial reference frame. However, multiple 

additional processing steps are required when using a real camera/EO device or a virtual 

reality environment.  

In real-world or virtual scenarios and simulation, the latter of which will be presented 

later in this thesis, the locations of feature points are provided in the two- dimensional 

camera frame, also known as the pixel frame. These pixel coordinates are converted to 

the inertial reference frame via the use of a camera calibration matrix, a camera-to-body 

frame rotation matrix, and a body-to-inertial frame rotation matrix, commonly known as 

the direction cosine matrix (DCM) with respect to the aircraft. This calculation can be 

represented as: 

 𝑥𝑝/𝑐
𝐸 = 𝑅𝑐

𝐸𝐾𝑥𝑝/𝑐
𝑐  (2) 

 

In Equation (2), 𝑥𝑐 and 𝑥𝐸  are the feature point relative to the camera coordinates 

with respect to the camera-pixel frame and the inertial frame, respectively. 𝐾 is the 

intrinsic calibration matrix that transforms the pixel coordinates into real-world camera 

coordinates. These real-world coordinates are values with physical units rather than pixel 



 
 
 

22 
 

dimensions. A physical representation of this conversion can be seen in Figure 14.  

 
𝐾 = [

𝛼𝑥 𝛾 𝑢𝑜
0 𝛼𝑦 𝑣𝑜
0 0 1

] (3) 

Equation (3) shows the specific form of the intrinsic calibration matrix, in which 𝛼𝑥 and 

𝛼𝑦 represent the focal length in terms of image pixels, and 𝛾 provides a coefficient to 

compensate for any skew angle between the 𝑥 and 𝑦 axis of the focal plane. 𝑢𝑜 and 𝑣𝑜 are 

the principle point, which is the center of the image with respect to the pixel coordinates. 

 

Figure 14: Visual representation of image and focal plane related by intrinsic matrix (OpenMVG, 2013) 

The calibrated coordinates are then transformed by the previously mentioned DCM 

and camera-to-body rotation, represented by 𝑅𝑐
𝐸, which will be defined further in the next 

section of this thesis. 

2.4. Simulation Environment 

MATLAB/Simulink is the primary simulation environment for the work presented in 

this thesis. MATLAB coding is used alongside Simulink block diagrams to simulate the 

guidance and navigation of a six degree-of-freedom aircraft model. The diagram in 

Figure 15 shows the point-mass simulation process, in which the aircraft model sends its 

position and orientation information to a vision measurement block so that the vision 
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based measurements of the obstacles relative to the UAV can be derived. The guidance 

commands produced by this block then send information for the tracking PID controllers 

to produce a commanded control input that the UAV model can interpret.  

 

Figure 15: Diagram of Simulink block configuration for point mass simulations 

The aerodynamics of the UAV model are shown in Figure 16, where a component 

buildup method using aerodynamic coefficients is implemented to determine the resultant 

aerodynamic forces and moments. Although there is more complexity to the UAV model, 

the application of these aerodynamic coefficients contributes largely to the dynamics 

exhibited by the aircraft. Each coefficient has a subset of contributing derivatives, such as 

from the wing, elevator, or aileron.  
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Figure 16: Aerodynamic component buildup for six DoF model 

Figure 17 shows a simulation diagram similar to that seen in Figure 15, but applicable to 

the simulation supporting virtual environment simulations. In this diagram, 

communication must be made to an application outside of the simulation environment. 

Information must then be received from the application before the simulation can 

continue. This information is then used to produce a guidance command and in turn, 

control the aircraft. This simulation configuration will be discussed further in depth in 

Chapter 8. 

 
Figure 17: Diagram of Simulink block configuration for virtual reality simulations 
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3. PRO-NAV INTERCEPT LAW 

The Pro-Nav intercept laws provide a mathematically derived heading and flight 

angle command to the UAV, which in turn initiates aileron and elevator control 

commands to avoid the obstacle. The commanded heading and flight path angles are 

determined using the information provided in the monocular image plane, specifically the 

horizontal and vertical location of the target(s) relative to the center of the image plane.  

 

Figure 18: LOS Angles with respect to the Image Plane. 

On the left of Figure 18, the three-dimensional camera frame, with respect to the 

image plane, shows the horizontal and vertical line of sight angles, 𝜒 and 𝛾, derived from 

the projected target locations, 𝑥𝑚 and 𝑦𝑚 on the image plane in the camera reference 

frame.  

 𝑟̂𝑝/𝑐
𝐸 = {

𝑥̂
𝑦̂
𝑧̂

}

𝐸

= 𝑅𝑐
𝐸𝐾𝑟̂𝑝/𝑐

𝑐 = 𝑅𝑐
𝐸𝐾 {

𝑥𝑚
𝑦𝑚
1
}

𝐶

 (4) 
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𝑅𝑐
𝐸 = 𝑅𝐵

𝐸𝑅𝑐
𝐵 = (𝐷𝐶𝑀)𝑇 [

0 −1 0
0 0 1
1 0 0

]
𝐹𝑖𝑥𝑒𝑑 
𝐶𝑎𝑚𝑒𝑟𝑎

 
(5) 

 

𝑅𝐵
𝐸 = (𝐷𝐶𝑀)𝑇

= [
cos 𝜃 cos𝜓 sin𝜙 sin 𝜃 cos𝜓 − cos𝜙 sin𝜓 cos𝜙 sin 𝜃 cos𝜓 + sin𝜙 sin𝜓

cos 𝜃 sin𝜓 sin𝜙 sin 𝜃 sin𝜓 + cos𝜙 cos𝜓 cos𝜙 sin 𝜃 sin𝜓 − sin𝜙 cos𝜓

− sin 𝜃 sin𝜙 sin 𝜃 cos𝜙 cos 𝜃
] 

(6) 

This derivation, shown in Equations (4) through (6), is obtained through the rotation 

matrix Rc
E and assumes the camera is fixed relative to the UAV. For the cases studied in 

this thesis, the camera is assumed to be pointed in the body-x direction; therefore, the RC
B 

defined in Equation (5) simply reorders the camera axes to coincide with the body-fixed 

axes. The resulting LOS angles, along with their respective LOS angular rates, can then 

be derived as follows: 

 
𝜒𝐿𝑂𝑆 = 𝑡𝑎𝑛

−1 (
𝑦̂𝑝/𝑐
𝐸

𝑥̂𝑝/𝑐
𝐸 ) → 𝜒̇𝐿𝑂𝑆(𝑡𝑘) =

𝜒𝐿𝑂𝑆(𝑡𝑘) − 𝜒𝐿𝑂𝑆(𝑡𝑘−1)

𝛥𝑡
 (7) 

 
𝛾𝐿𝑂𝑆 = 𝑠𝑖𝑛

−1

(

 
𝑧̂𝑝/𝑐
𝐸

√𝑥̂𝑝/𝑐
𝐸 2

+ 𝑦̂𝑝/𝑐
𝐸 2

)
)

  → 𝛾̇𝐿𝑂𝑆(𝑡𝑘) =
𝛾𝐿𝑂𝑆(𝑡𝑘) − 𝛾𝐿𝑂𝑆(𝑡𝑘−1)

𝛥𝑡
 (8) 

Equations (7) and (8) form the basis for the laws implemented in an intercept based 

simulation, in which a medium-scale UAV seeks to intercept and “collide” with a target 

moving at a constant velocity and heading. For an intercept to be made, the simulated 

UAV uses Equation (9) and (10) to initiate commanded heading and flight path angles. 

These longitudinal and lateral commands can vary, based on the method of 

implementation, but are presented below for a bank-to-turn method of lateral navigation. 
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𝜓̇𝑐𝑜𝑚 = 𝑁𝐻𝜒̇𝐿𝑂𝑆  → {

Δ𝜓𝑐𝑜𝑚 = 𝑁𝐻𝜒̇𝐿𝑂𝑆Δ𝑡𝑇
Δ𝜙𝑐𝑜𝑚 = 𝑘𝜙Δψcom

 (9) 

 
𝛾̇𝑐𝑜𝑚 = 𝑁𝑣𝛾̇𝐿𝑂𝑆 →  Δ𝛾𝑐𝑜𝑚 = 𝑁𝑣𝛾̇𝐿𝑂𝑆Δ𝑡𝑇 (10) 

Equations (9) and (10) are the proportional guidance commands that use proportional 

gains NH and NV to provide a commanded rate of change of yaw and vertical flight path 

angles. These constant are the proportional navigation constants that enable the concept 

of Pro-Nav to be successful. The optimal values have been previously been determined to 

be optimized at three (Murtaugh & Criel, 1966). Calculating the rate of change in LOS 

angles using finite differences allows the flight commands to be referenced to where the 

target will be in the next iteration. Results of the implementation of this intercept 

guidance controller can be seen in Figure 19 - Figure 21, in which a few representative 

examples of the numerous scenarios simulated are presented with an active intercept 

controller for the UAV and different headings for the target. 

 

Figure 19: Example 1 - UAV Intercept path (units in feet). 

Figure 19 displays an engagement scenario in which the target has an initial heading 
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of −90°, starting from one mile north and one mile east of the UAV. Both the UAV and 

target obstacle are traveling at the same initial velocity, which is the case for the rest of 

the scenarios as well. The similar velocities for the scenario in Figure 19 would mean the 

optimal UAV intercept path would be to continue on a constant north heading. The 

deviation seen in the path shows the intercept guidance law at work, generating control 

inputs based on the LOS angular rates rather than relative distances and velocities, which 

are assumed to be unknown. 

 

Figure 20: Example 2 - UAV Intercept path (units in feet). 

Figure 20 shows another engagement using the intercept controller, similar to the one 

presented in Figure 19, except that the target starting location is one mile north and half a 

mile east relative to the UAV. The controller’s effectiveness is seen almost immediately 

by the UAV’s deviation westward to intercept the target.   
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Figure 21: Example 3 - UAV Intercept path (units in feet). 

The scenario shown in Figure 21 differs from the previous two in that the obstacle has 

an initial starting point a half mile north and one mile west of the UAV, with a heading of 

26.6°. This scenario aids in verifying the functionality of the controller by having a target 

traveling from the opposite side as the previous cases. This shows that the sign of the 

calculated 𝜒̇ is accounted for and interpreted correctly, regardless of which direction the 

represented target is moving across the image plane. 
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4. PRO-NAV AVOIDANCE LAW – THRESHOLDING APPROACH 

Extending the intercept guidance law to avoidance based guidance laws requires a 

modified set of control laws. Specifically, the modified guidance laws must first 

determine if a collision avoidance maneuver is required and then compute the magnitude 

and direction of the avoidance maneuver that should be made. These two criteria are 

accounted for by using a threshold activation controller and a piecewise directional 

controller. 

The threshold activation controller compares the absolute value of the LOS angular 

rates with a selected threshold value. A zero LOS angular rate implies an imminent 

collision between the UAV and target, so that setting a threshold value to zero would 

only ensure any avoidance distance, no matter how small, would be acceptable. 

Therefore, a small threshold value is implemented to command an avoidance maneuver 

for LOS angular rates close to zero.  When considering the size of a medium size UAV, 

an avoidance larger than 20 𝑓𝑡 could be considered an acceptable distance, although this 

would depend on the size and speed of the other vehicle. The distance to the target is 

assumed to be unknown, but the threshold parameter determines the degree of resulting 

avoidance distance and sensitivity of the avoidance law. This is an area that was first 

investigated, with the results summarized in Table 3 - Table 5. 

In regards to commercial flight, when an incident occurs in which an avoidance 

maneuver is required, the FAA has regulated lateral maneuvering to be the primary 

course of action. The direction of this lateral maneuver, however, is not defined. The 

avoidance law implemented in this thesis uses the following logic, in which 𝜓̇𝑐𝑜𝑚 is 

selected to be a constant value: 
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ψcom = {
   ψ̇com∆𝑡𝑐,   χ̇ ≤ 0

−ψ̇com∆tc,   χ̇ > 0
 

This piecewise directional controller uses the logic of traveling behind the 

intercepting target, relative to its velocity and heading. Therefore, a negative LOS 

angular rate results in a positive commanded heading, while a positive LOS angular rate 

produces a negative commanded heading. Zero was included in the first definition of the 

piecewise function to favor deviating behind the collision threat. Any zero LOS rate 

requires some form of action to be taken, and without a direction of the intercepting 

obstacle, any reaction in a direction provides a better choice than not maneuvering at all. 

Several dynamic avoidance scenarios were used to demonstrate and further develop 

the avoidance controller. These scenarios are similar to those used for the intercept 

simulations. The initial conditions for the dynamic obstacles are varied in terms of 

obstacle heading, starting location, and velocity. A major difference between these 

simulations and the intercept simulations is that these initial conditions are modified to 

ensure an imminent collision if an avoidance maneuver is not made. Figure 22 - Figure 

24 show the first configuration set of three simulations. In this set, the obstacle velocity 

and heading are held constant at 176 𝑓𝑡/𝑠 and −90°, respectively, while the starting 

location of the obstacle is varied proportionally to ensure that an imminent collision 

along the north axis will occur if no avoidance maneuver is performed. By varying the 

range alone for this set of simulations, insight can be gained on the effectiveness of range 

on avoidance distance over a variety of threshold 𝜒̇ values.  Figure 22 shows the first of 

the three simulations varying range and holding all other variables constant. For this 

simulation, the initial position of the obstacle is one mile north and one mile east of the 
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UAV. The avoidance controller produces a deviation in the UAV path that becomes 

noticeable at a range of 4,000 𝑓𝑡 for each 𝜒̇ threshold value. 

 

Figure 22: UAV Single Avoidance Path – Effect on Distance – Position = (1,1) mile 

Figure 23 presents a similar scenario for investigating the effect of distance on 

avoidance distance using the Pro-Nav avoidance controller. The obstacle location, 

however, is set to two miles north and two miles east, ensuring that an intercept will 

occur two miles in front of the UAV along the north axis with no avoidance controller 

active. The simulations were computed for threshold values of 0.005, 0.01, and 

0.02 𝑟𝑎𝑑/𝑠 and show avoidance maneuvers implemented.  
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Figure 23: UAV Single Avoidance Path – Effect on Distance – Position = (2,2) mile 

In Figure 24, the obstacle is set with an initial heading of 90°, similarly to the 

simulations in Figure 22 and Figure 23,  but with a starting position of half a mile north 

and half a mile east. This is the third simulation in the set of three to investigate the effect 

of distance on the avoidance controller’s capability of ensuring an imminent collision is 

prevented. This path does not lead to a collision without active avoidance, but does not 

follow the trend of the previous scenarios, initiating an avoidance maneuver at around 

2,000𝑓𝑡 for each simulation of 𝜒̇ threshold values of 0.005, 0.01, and 0.02 𝑟𝑎𝑑/𝑠. 
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Figure 24: UAV Single Avoidance Path – Effect on Distance – Position = (0.5,0.5) mile 

Table 3 summarizes the results for the effect of obstacle range on avoidance distance 

from the obstacle. One noticeable trend for all avoidance thresholds simulated is an 

increase in avoidance distance with an increase in obstacle starting position and intercept 

distance. However, the increase in avoidance distance with the increase in 𝜒̇ threshold is 

not significant at shorter obstacle distances but does become effective at larger distances. 

Overall, it can be said that the guidance controller is more effective at avoiding obstacles 

further away than obstacles that are closer, with the value of 𝜒̇ threshold being more 

significant at further distances. 

  



 
 
 

35 
 

Table 3: UAV Single Avoidance, Effect of Position, V=176 ft/s 

 𝝌̇𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 (rad/sec)  

 0.01 0.05 0.1  

Position (ft, ft) Miss Distance (Guidance On) 
Miss Distance 

(No Guidance) 

(2,640, 2,640) 78 ft 90 ft 91 ft 1.2 ft 

(5,280, 5,280) 289 ft 457 ft 487 ft 1.2 ft 

(10,560, 10,560) 482 ft 1,661 ft 2,175 ft 1.6 ft 

 

The second set of simulations, the results of which are shown in Table 4, explore the 

effect of velocity on the UAV’s avoidance distance from the obstacle. For the simulations, 

the obstacle is set with an initial heading of −90° (due west), and has a varying velocity 

and initial east position. The position is increased proportionally with the speed to ensure 

a collision occurs along the north axis if an avoidance maneuver is not performed. An 

overarching interpretation of the results in Table 4 is that higher obstacle velocity, relative 

to the UAV velocity, leads to larger avoidance distances between the obstacle and UAV.  

Table 4: Single Avoidance Effect of Velocity, V=88, 176, 264 ft/s 

 𝝌̇𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 (rad/sec)  

 0.01 0.05 0.1  

Position (ft, ft) Miss Distance (Guidance On) 
Miss Distance 

(No Guidance) 

(5,280, 2,640) 286 ft 530 ft 587 ft 1.2 ft 

(5,280, 5,280) 289 ft 457 ft 487 ft 1.2 ft 

(5,280, 10,560) 282 ft 395ft 411ft 1.3 ft 

 

The scenario results presented in Table 5 are based on obstacle engagements where the 

UAV is not initially placed on a collision path. This means that the miss distances between 

the obstacle and UAV with no active avoidance in Table 5 are already sufficient, such that 

any added control input can be considered unnecessary, unlike the scenarios in Table 3, 

which required avoidance maneuvers.  
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Table 5: Single Avoidance No Intercept, V=88, 176, 264 ft/s 

 𝝌̇𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 (rad/sec)  

 0.01 0.05 0.1  

Position (ft, ft) Miss Distance (Guidance On) 
Miss Distance 

(No Guidance) 

(2,640, 2,640) 1,867 ft 1,994 ft 2,075 ft 1,870 ft 

(5,280, 5,280) 2,368 ft 2,565 ft 2,562 ft 2,361 ft 

(10,560, 10,560) 1,469 ft 1,605 ft 1,654 ft 1,464 ft 

 

The simulation sets presented in Table 3 - Table 5 show that the application of the 

Pro-Nav guidance law was successful in providing acceptable avoidance distance 

between the UAV and obstacles when initially set for intercepting paths. While some 

unnecessary maneuvering does occur, specifically when no collision is present, the 

amount of overcompensation is not considered to be excessive. 
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5. PRO-NAV AVOIDANCE LAWS – MOST IMMINENT THREAT 

With a proven method for single obstacle avoidance using LOS rate thresholds, the 

next step was to apply this controller to a more complicated scenario. Introducing a 

second intercepting target adds an element of risk when executing an avoidance 

maneuver. Successful avoidance of one moving obstacle may lead to an intercepting path 

with the other obstacle. In this section, the avoidance guidance laws are applied in 

scenarios involving multiple collision threats. 

To investigate these scenarios, the simulation environment first introduces two 

constant velocity obstacles at independent starting locations and headings. Due to the 

second obstacle being present in the simulation, the projection method for simulating a 

camera view exhibits two feature points, meaning the implemented guidance law has to 

be updated to process LOS angular rates for both obstacles. The modified law’s primary 

method of deciding on an avoidance maneuver is prioritization of the smallest LOS rate 

value at time 𝑡𝑘 between both targets. This most imminent threat strategy entails 

maneuvering to avoid the target with the smallest LOS rate, which is indicative of the 

most serious collision threat, while not reacting to the other obstacles in the scene. This 

strategy is the applied to a scene with multiple static obstacles. 

5.1. Dynamic Avoidance 

Several multiple engagement scenarios were simulated in which constant velocity 

obstacles were placed at starting positions and headings that would ensure an intercept is 

inevitable with at least one of them by the UAV. In some cases, one obstacle is 

positioned to intercept or have a near-intercept situation with the UAV as it attempts to 

avoid the other obstacle. For each scenario, the controller was set to actively avoid each 
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target individually for two individual simulations, followed by a third simulation with 

multi-avoidance active. 

In Figure 25, both obstacles have an initial heading of  −90° and starting positions 

such that they result in a collision with the UAV along the North axis. On the left side of 

the figure, a single avoidance simulation was performed in order to determine the miss 

distance between both obstacles and the UAV while attempting to avoid the closer of the 

obstacles, Obstacle 1.  

 

Figure 25: UAV Individual Avoidance Paths (ft) - Obstacle 1 and 2 North Intercept -  𝜒̇ = .01
𝑑𝑒𝑔

𝑠
 

Table 6 shows the obstacle offsets and miss distances from the simulations in Figure 

25. For the first simulation, in which Obstacle 1 is being avoided without regards to 

Obstacle 2, there is an avoidance distance of 457 𝑓𝑡 between Obstacle 1 and the UAV. 

Obstacle 2 is avoided by 237 𝑓𝑡, but it is important to note that this avoidance is only 

inherited by the intent to avoid Obstacle 1. For the second simulation, on the right of 

Figure 25, active avoidance of Obstacle 2 only resulted in an avoidance distance of 

506 𝑓𝑡 for Obstacle 2 and 1,661 𝑓𝑡 for Obstacle 1, noting again the miss distance 

between Obstacle 1 and the UAV is inherited. 
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Table 6: UAV Individual Avoidance Data - Obstacle 1 and 2 North Intercept 

 
Obstacle 1 Miss 

Distance (ft) 

Obstacle 2 Miss 

Distance (ft) 

Obstacle 1 

Avoidance 
457 237 

Obstacle 2 

Avoidance 
506 1,661 

 

The simulations for which the multi-avoidance controller was enabled can be seen in 

Figure 26. These simulations are represented by the UAV paths for a chosen set of 𝜒̇ 

threshold values, including 0.01, 0.05, and 0.1
𝑑𝑒𝑔

𝑠
. The resulting path resembles that of a 

superposition of the simulations in Figure 25, with an increase in path deviation because 

of the increased 𝜒̇ threshold. 

 

Figure 26: UAV Multi-Avoidance Paths (ft) - Obstacle 1 and 2 North Intercept 

Justification for the increasing path deviations in Figure 26 can be seen in Table 7, 

where the avoidance distance for both Obstacles 1 and 2 are larger the 400 𝑓𝑡. This 

avoidance distance differs slightly from the original 𝜒̇ threshold avoidance controller for 
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single obstacle avoidance; however, the results support the previous trend of increasing 𝜒̇ 

threshold values from the single avoidance cases. 

Table 7: UAV Multi-Avoidance Data - Obstacle 1 and 2 North Intercept 

𝝌̇  Threshold 

(rad/s) 
Obstacle 1 Miss 

Distance (ft) 
Obstacle 2 Miss 

Distance (ft) 
0.01 502 482 
0.05 506 1661 
0.10 506 2175 

 

For the single obstacle avoidance controller, the sensitivity of the controller was 

investigated with a scenario in which the obstacle was not set on an intercepting path. 

Figure 27 shows the avoidance path for the first of two similar multi-avoidance scenarios. 

Obstacle 2 is set to not intercept the UAV along the north axis, but instead along the path 

taken to avoid Obstacle 1 only. By doing this, the avoidance sensitivity can be assessed 

along with the reactiveness of the controller. Because avoiding Obstacle 1 will place 

Obstacle 2 on a collision course, it is critical to see what kind of avoidance maneuver will 

be taken, if at all, and whether it is enough to avoid both obstacles with enough distance 

without overcompensating. 

 

Figure 27: UAV Individual Avoidance Paths (ft) - Obstacle 2 Offset Intercept - 𝜒̇ = .01
𝑑𝑒𝑔

𝑠
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In Table 8, the 457 𝑓𝑡 miss distance of Obstacle 1 and the 1.3 𝑓𝑡 miss distance of 

Obstacle 2 correlates to the simulation on the left in Figure 27, where the avoidance 

controller is active for Obstacle 1. The small avoidance distances between Obstacle 2 and 

the UAV can be interpreted as an intercept and the focus of this simulation. On the right 

of Figure 27, the avoidance of Obstacle 2 leads to a similar avoidance of Obstacle 1 and 

2, the distance being 443 𝑓𝑡 and 759 𝑓𝑡, respectively. The avoidance distance between 

Obstacle 1 and the UAV is only an inherited aspect, due to the avoidance controller 

actively avoiding only Obstacle 2. 

Table 8: UAV Individual Avoidance Data - Obstacle 2 Offset Intercept 

 
Obstacle 1 Miss 

Distance (ft) 

Obstacle 2 Miss 

Distance (ft) 

Obstacle 1 

Avoidance 
457 1.3 

Obstacle 2 

Avoidance 
443 759 

 

Figure 28 shows the multi-avoidance path of the UAV for a North intercept of Object 

1, with a starting position East of the UAV, and an East offset intercept of Object 2, 

initially starting East as well. The paths deviate similarly to those in Figure 26, having a 

larger deviation with a larger 𝜒̇ threshold value, and resembling the superposition of the 

individual avoidance maneuvers in  Figure 27. 
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Figure 28: UAV Multi-Avoidance Paths (ft) - Obstacle 2 Offset Intercept 

The miss distances shown in Table 9 correspond to the avoidance paths shown in 

Figure 28. An increase in 𝜒̇ threshold, like previous simulations, increases the avoidance 

distance, but only slightly with regards to Obstacle 2, with a maximum closest distance of 

515 𝑓𝑡 between the Obstacle 2 and UAV for a 𝜒̇ threshold of 0.05
𝑑𝑒𝑔

𝑠
 . 

Table 9: UAV Multi-Avoidance Data - Obstacle 2 Offset Intercept 

𝝌̇  Threshold 

(rad/s) 
Obstacle 1 Miss 

Distance (ft) 
Obstacle 2 Miss 

Distance (ft) 
0.01 6.7 454 
0.05 6.7 515 
0.10 6.7 515 

 

Figure 29 shows the multi-avoidance path of the UAV for a north intercept of Object 

2, with a starting position East of the UAV, and an East offset intercept of Object 1, 

initially starting East as well, such that no intercept is to occur if no maneuver is made. 

The path in avoidance of Obstacle 1 deviates opposite to that seen in Figure 27, resulting 



 
 
 

43 
 

in an avoidance maneuver left of Obstacle 1. This is due to the obstacle being offset east, 

leading the avoidance law to travel the safest path, being in front of the obstacle. 

 

Figure 29: UAV Individual-Avoidance Paths (ft) - Obstacle 1 Offset Intercept 

Table 10 shows an 830 𝑓𝑡 miss distance of Obstacle 1 and the 63 𝑓𝑡 miss distance of 

Obstacle 2, correlating to the simulation on the left in Figure 29, where the avoidance 

controller is active for Obstacle 1. The avoidance distances between Obstacle 2 and the 

UAV is large enough to be interpreted as a safe engagement. On the right of Figure 29, 

the avoidance of Obstacle 2 leads to an avoidance of Obstacle 1 that is less than Obstacle 

2, the distances being 1.8 𝑓𝑡 and 1,661 𝑓𝑡, respectively. This avoidance distance between 

Obstacle 1 and the UAV can clearly be defined as a collision due to the inherited aspect 

of the avoidance controller actively avoiding Obstacle 2 only. 

Table 10: UAV Individual Avoidance Data - Obstacle 1 Offset Intercept 

 
Obstacle 1 Miss 

Distance (ft) 

Obstacle 2 Miss 

Distance (ft) 

Obstacle 1 

Avoidance 
830 63 

Obstacle 2 

Avoidance 
1.8 1,661 
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The scenarios in Figure 29 are again presented in simulations for which the multi-

avoidance controller was enabled, seen in Figure 30. These simulations are represented 

by the UAV paths for a chosen set of 𝜒̇ threshold values, including 0.01, 0.05, and 

0.1
𝑑𝑒𝑔

𝑠
. The resulting path resembles that seen in the right-hand side of Figure 29, where 

Obstacle 2 was the only obstacle actively avoided. The same trend previously seen in 

multi-avoidance simulations is present in this case as well, with an increase in path 

deviation due to an increased 𝜒̇ threshold. 

 

Figure 30: UAV Multi-Avoidance Paths (ft) - Obstacle 1 Offset Intercept 

The miss distances shown in Table 11 relate to the avoidance paths shown in Figure 

30. An increase in 𝜒̇ threshold, like previous simulations, increases the avoidance 

distance, but only with regards to Obstacle 2, with a maximum closest distance of 

1,481 𝑓𝑡 between Obstacle 2 and the UAV for a 𝜒̇ threshold of 0.05
𝑑𝑒𝑔

𝑠
 . However, the 

avoidance of Obstacle 1 is not only small, but decreases as the avoidance threshold 
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increases, due to the UAV choosing to avoid Obstacle 2 for a longer period of time, 

placing the UAV on a more imminent collision path with Obstacle 1. 

 
Table 11: UAV Multi-Avoidance Data - Obstacle 2 Offset Intercept 

𝝌̇  Threshold 

(rad/s) 
Obstacle 1 Miss 

Distance (ft) 
Obstacle 2 Miss 

Distance (ft) 
0.01 59 472 
0.05 48 1481 
0.10 48 1901 

 

Figure 31 presents an avoidance scenario with both obstacles having opposite 

trajectories. Obstacle 1 is positioned east of the UAV with a westward heading and 

velocity to ensure an intercept along the North axis. Obstacle 2 is set to start its trajectory 

west of the UAV with an Eastward heading, intercepting the UAV along the north axis as 

well. This scenario provides validation of the original avoidance laws applied to a multi-

avoidance case with a most imminent threat strategy. In this case, the UAV will select an 

avoidance path behind the obstacles. As Figure 31 shows, the UAV guidance law does 

take the path least threatening by going behind both obstacles, even though it requires the 

UAV to divert in the opposite direction as the previous scenarios in Figure 28 and Figure 

30. 
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Figure 31: UAV Multi-Avoidance Paths (ft) - Obstacle 1 and 2 North Intercept 

The avoidance distances in Table 12 provide insight on the avoidance law’s ability to 

ensure a safe distance is maintained for obstacles with opposite trajectories. The 

successful avoidance can once again be seen even as the smallest miss distances are 

450 𝑓𝑡 and 444 𝑓𝑡 for a LOS rate threshold of 0.01
𝑑𝑒𝑔

𝑠
. 

Table 12: UAV Multi-Avoidance Data - Obstacle 1 and 2 North Intercept 

Chi Dot  

Avoid (rad/s) 
Obstacle 1 Miss 

Distance (ft) 
Obstacle 2 Miss 

Distance (ft) 
0.01 450 444 
0.05 465 1541 
0.10 465 1991 

 

The final scenario in Figure 32 uses similar obstacle trajectories, with Obstacle 1 

starting from the East and Obstacle 2 starting from the West of the UAV. However, 

Obstacle 2 has an initial North starting point closer to the UAV, making it so an intercept 

will not occur along the North axis. The resulting path shows a deviation of the UAV for 
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the avoidance of Obstacle 1, then a short maneuver behind Obstacle 2, placing the UAV 

trajectory close to its original North axis position. This trajectory is not to be confused 

with the avoidance controller directing the UAV back to the North axis. This is a 

coincidence of the scenario and corresponds solely to a visual based avoidance maneuver. 

 

Figure 32: UAV Multi-Avoidance Paths (ft) - Obstacle 1 and 2 North Intercept - Close Paths 

The distances in Table 13 correlate with the scenario in Figure 31, but also match the 

miss distances of the previous scenario, presented in Table 12. The reason for this is that 

decreasing the North starting position of Obstacle 2 still places it within a range of the 

UAV such that its 𝜒̇ is below the threshold for avoidance. Since the trajectory direction is 

the same, the distance avoided by the UAV turns out the same, due to the limitation of 

the threshold value. This can be said for all three simulated LOS rate threshold values. 
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Table 13: UAV Multi-Avoidance Data - Obstacle 1 and 2 North Intercept - Close Paths 

𝝌̇  Threshold 

(rad/s) 
Obstacle 1 Miss 

Distance (ft) 
Obstacle 2 Miss 

Distance (ft) 
0.01 370 399 
0.05 461 909 
0.10 461 1037 

The previous scenarios were simulated to provide validation of a functional, 

minimum 𝜒̇ threshold avoidance controller for multi-obstacle avoidance. The different 

scenarios also helped to investigate the characteristics and limitations of the controller, 

discovering if adequate avoidance maneuvers are made without overcompensation. The 

results have shown that the validated single avoidance controller was successfully 

converted and implemented for a multi-avoidance situation using most imminent threat 

strategy. The variation in avoidance distance was significant between subsequent 𝜒̇ 

thresholds, at some points increasing the distance by about 1,200 𝑓𝑡. While previous 

results for single avoidance cases show that velocity and initial distance plays a role in 

avoidance distance, a 𝜒̇ threshold of 0.1
𝑑𝑒𝑔

𝑠
 leads to an avoidance maneuver that can be 

considered to result in overcompensation for all multi-avoidance scenarios, regardless of 

initial velocity or position. 

5.2. Static Avoidance 

The successful initial implementation of the most imminent threat avoidance law 

using dynamic objects provided motivation to develop a scenario in which the UAV 

would attempt to avoid multiple static objects as well. Static objects represent a different 

challenge in avoidance with regards to the need to consider a higher quantity of points. 

Dynamic objects tend to be small and moving quickly with the possibility to have a 
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difficult color or contrast to identify.  This means the number of points representing the 

object could be challenging to predict or small enough to isolate into one single centroid 

point.  Large, static objects, such as buildings, trees, or boulders, would be associated 

with many points, introducing potentially a large number of objects to be avoided. For 

this reason, multi-object avoidance has been extended to a scenario in which the 

previously developed avoidance law is tested to navigate the UAV to a waypoint. 

Figure 33 shows the scenario in which the effectiveness of the most imminent threat 

avoidance strategy is investigated on static objects. This environment consists of a single 

wall of points directly ahead of the UAV starting position. Keeping a simplistic 

environment for static point mass avoidance was important due to the lack of depth 

buffer, meaning at all times during the simulation, any obstacles behind other sets are still 

taken into consideration. This is not entirely representative of a real-world scenario, for 

which any buildings, rocks, or other objects behind one another are not taken into account 

due to their lack of visibility to the UAV. The first application of this simulation using 

the most imminent threat avoidance law can be seen in Figure 33. 

 
Figure 33: Most Imminent Threat Avoidance - Static Point Mass Wall 



 
 
 

50 
 

 In Figure 33, the most imminent threat avoidance method is simulated on the static 

scene described above. In this scenario, and others in which the wall is enlarged or the 

waypoint is shifted laterally, the most imminent threat avoidance method fails to 

determine a successful path. The reason for this is that when an avoidance maneuver is 

initiated using the most imminent threat, the next most imminent threat becomes the 

primary threat. For the case of a wall of obstacles, these two threats are directly next to 

each other, causing the avoidance law to switch back and forth between the two obstacles 

with the smallest LOS rate, producing no avoidance maneuver in relation to the other 

obstacles in view.  
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6. PRO-NAV AVOIDANCE LAWS – OBJECTIVE  

WEIGHTING FUNCTION APPROACH 

 

While the minimum LOS rate avoidance method with a most imminent threat strategy 

is effective for cases with a few, dynamic targets, its ability to effectively avoid numerous 

static and dynamic targets is limited. This shortcoming motivated the development of 

more robust guidance laws that implement a cost function to account for the UAV 

reaching a goal waypoint while determining effective avoidance maneuvers that 

incorporate all obstacles in view, not just the single most imminent collision threat. The 

progression for this development began with a broad approach, developing multiple cost 

functions based on three different Pro-Nav variables, 𝜒̇, 𝜓̇, and Δψ. Recalling the earlier 

discussion of Pro-Nav guidance laws, these three variables are related as shown in 

Equation (11): 

 𝜓̇ = 𝑁𝐻𝜒̇ →  Δ𝜓 = 𝑁𝐻𝜒̇Δ𝑡  (11) 

 

To investigate the use of these variables in a guidance law, three types of cost 

functions were developed and implemented. These three methods include a negation, 

inversion, and threshold differencing terms in the cost function. Equations (12) - (13) 

show the implementation of the LOS rate 𝜒̇ into the chosen cost functions. 

 𝐽(𝜒̇𝑐𝑜𝑚) = 𝑊𝑊𝑃(𝜒̇𝑐𝑜𝑚 − χ̇𝑊𝑃)
2 +∑𝑊𝑖(𝜒̇𝑐𝑜𝑚 − 𝜒̇𝑁𝑒𝑔𝑖)

2
𝑁

𝑖=1

 (12) 

 𝐽(𝜒̇𝑐𝑜𝑚) = 𝑊𝑊𝑃(𝜒̇𝑐𝑜𝑚 − χ̇𝑊𝑃)
2 +∑

𝑊𝑖

(𝜒̇𝑐𝑜𝑚 − 𝜒̇𝑖)2

𝑁

𝑖=1

 (13) 

 𝐽(𝜒̇𝑐𝑜𝑚) = 𝑊𝑊𝑃(𝜒̇𝑐𝑜𝑚 − χ̇𝑊𝑃)
2 +∑𝑊𝑖(𝜒̇𝑐𝑜𝑚 − 𝜒̇𝐷𝑖𝑓𝑓𝑖)

2
𝑁

𝑖=1

 (14) 
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As previously shown, 𝜒̇ provides an overall objective in target vision based Pro-Nav 

intercept and avoidance, by driving the horizontal LOS rate 𝜒̇ to or away from zero, 

respectively. Its application in Equations (12) - (14) is sought to have the same effect 

using different mathematical approaches. These cost functions, along with the others to 

follow, take the form of two components: the objective of the first term [ 𝑊𝑊𝑃(𝜒̇𝑐𝑜𝑚 −

χ̇𝑊𝑃)
2 ] is to intercept the waypoint, and the second term incorporates avoiding any 

obstacles that pose a threat, present in Equation (12) as 𝑊𝑖(𝜒̇𝑐𝑜𝑚 − 𝜒̇𝑁𝑒𝑔𝑖)
2
. This cost 

function approach differs from the most imminent threat method of avoidance in that 

there exists an intercept and avoidance component, as well as considering multiple 

obstacles rather than just one. The cost aspect of these terms are guided by the weights 

𝑊𝑊𝑃 and 𝑊𝑖, which control how much the waypoint intercept or obstacle avoidance 

influences the solution. When 𝑊𝑊𝑃 = 1 and 𝑊𝑖 = 0, the solution of this cost function 

simplifies to the LOS rate required for waypoint intercept.  This trivial solution also 

occurs when no obstacles are in view, or no obstacle LOS rates are below the specified 𝜒̇ 

threshold.  

Equation (12) is the first implementation of a cost function that is minimized for a 

commanded LOS rate, 𝜒̇𝑐𝑜𝑚. The computed value for the waypoint horizontal LOS rate, 

𝜒̇𝑊𝑃, is the Pro-Nav LOS rate required to intercept the desired waypoint, while the 

horizontal LOS rate required to intercept all obstacles below a specified threshold is 

negated, such that 𝜒̇𝑁𝑒𝑔𝑖 = −𝜒̇𝑖. This logic can be considered a basic, but practical 

implementation of Pro-Nav avoidance. By negating the obstacle 𝜒̇, the cost function is 

minimized for a solution that directs the UAV in the opposite direction of the Pro-Nav 

intercept. The solution to the cost function, 𝜒̇𝑐𝑜𝑚, is then used in to command a change in 
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heading, Δ𝜓, as shown in Equation (11). 

The cost function in Equation (13) uses LOS rate as a driving parameter as well, but 

in this form, it provides an inversion of the obstacle intercept 𝜒̇ instead of a negation. 

This implementation is anticipated to have a similar effect as the negative 𝜒̇, but in this 

case, each obstacle intercept 𝜒̇ is treated as a singularity to be avoided. The resulting 

𝜒̇𝑐𝑜𝑚 is then used as it was in Equation (12) to produce a resultant change in heading. 

Equation (14) is the last form of the cost functions, which is similar to the one used in 

Equation (12). Instead of negating 𝜒̇, however, the difference is taken between the 

obstacle intercept 𝜒̇ and a maximum 𝜒̇ value, resulting in 𝜒̇𝐷𝑖𝑓𝑓𝑖, shown below in 

Equation (15). 

 𝜒̇𝐷𝑖𝑓𝑓𝑖 = −𝑠𝑔𝑛{𝜒̇𝑖}(𝜒̇𝑚𝑎𝑥 − |𝜒̇𝑖|) (15) 

 𝑠𝑔𝑛{𝜒̇𝑖} = {
1, 𝜒̇𝑖 ≥ 0

−1, 𝜒̇𝑖 < 0
 (16) 

In Equation (15), 𝜒̇𝑚𝑎𝑥 is the threshold value for avoidance criteria, such that only 

obstacles with a LOS rate less than this magnitude are considered for determining a 

solution to the cost function minimization. Equation (14) provides a form of the cost 

function that considers the magnitude and direction of 𝜒̇ required to drive each obstacle 

LOS rate above the threshold.  

6.1. Dynamic Avoidance 

Figure 34 shows three avoidance paths, each representative of the three cost functions 

shown in Equations (12) - (14). The simulation scenario for these avoidance comparisons 

is similar to that performed for the multiple obstacle avoidance for the most imminent 

threat method; however, the medium-scale UAV model has been replaced with the small-
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scale UAV model defined in Chapter 2. This change comes as a progression towards 

implementation into an urban environment, a scenario for which the medium-scale UAV 

would be too large and fast for practical purposes.  

The scenario presented in Figure 34 sets up a waypoint objective in front of the UAV 

along the north axis, with two obstacles on an intercepting trajectory with UAV along the 

north axis. These obstacles have a slower velocity than the UAV and have an initial north 

and east offset position such that their intercept with the UAV will occur along the north 

axis.  

 

Figure 34: UAV avoidance path comparison using 𝜒̇ cost function forms - Dynamic 

Comparing the three methods, the cost function implementing 𝜒̇ inverse resulted in 

the most aggressive avoidance maneuver, the negative 𝜒̇ application had the least 

aggressive, and the 𝜒̇ differencing method provided a maneuver aggressiveness in 

between the other two. Table 14 provides support for this classification, with the 
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differencing method cost function providing ample miss distances between the obstacles 

and the UAV, and are in between the values provided by the other methods of avoidance. 

Table 14: Corresponding miss distance between UAV and obstacles for 𝜒̇ based cost functions 

Cost Function Obstacle 1 Miss 

Distance (ft) 
Obstacle 2 Miss 

Distance (ft) 
𝝌̇ Inverse 157.2 259.7 

𝝌̇ Negative 17.2 38.5 

𝝌̇ Difference 85.5 136.6 

 

In Figure 35, the corresponding heading history of the 𝜒̇ cost function avoidance laws 

can be seen for the three paths in Figure 34. These headings provide greater insight into 

the aggressiveness of the guidance laws, such that large and sporadic heading changes 

correlate to a more aggressive avoidance law. This trend can be seen for the UAV 

heading produced by the 𝜒̇ inverse method, where large heading changes are produced at 

the start of the simulation, when intercepting trajectories are first accounted for, and then 

again after the avoidance of the first obstacle has occurred. The cost function guidance 

law using the negative 𝜒̇ avoidance method provides a relatively small miss distance 

between the UAV and obstacles, as seen in Table 14. Investigation into the UAV heading 

commands for this avoidance law suggests that an avoidance maneuver slowly grew as 

the obstacle 𝜒̇ increased, resulting in a delayed avoidance. The resulting UAV heading 

produced by the 𝜒̇ differencing cost function can be described as a trending increase and 

decrease relative to the UAVs avoidance criteria. 
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Figure 35: Comparison of actual UAV heading for corresponding 𝜒̇ cost function avoidance paths – Dynamic Case 

Equations (17) through (19) provide a second set of cost functions that utilize the Pro-

Nav variable, 𝜓̇, rather than the use of 𝜒̇, in the same forms of the cost function shown in 

Equations (12) - (14). The implementation of these cost functions varies in that once a 

minimized solution is found for 𝜓̇𝑐𝑜𝑚, the difference in this value and the UAV current 𝜓̇ 

is used to produce a commanded bank angle.  

 𝐽(𝜓̇𝑐𝑜𝑚) = 𝑊𝑊𝑃(𝜓̇𝑐𝑜𝑚 − 𝜓̇𝑊𝑃)
2
+∑𝑊𝑖(𝜓̇𝑐𝑜𝑚 − 𝜓̇𝑁𝑒𝑔𝑖)

2
𝑁

𝑖=1

 (17) 

 𝐽(𝜓̇𝑐𝑜𝑚) = 𝑊𝑊𝑃(𝜓̇𝑐𝑜𝑚 − 𝜓̇𝑊𝑃)
2
+∑

𝑊𝑖

(𝜓̇𝑐𝑜𝑚 − 𝜓̇𝑖)
2

𝑁

𝑖=1

 (18) 

 𝐽(𝜓̇𝑐𝑜𝑚) = 𝑊𝑊𝑃(Δ𝜓𝑐𝑜𝑚 − Δ𝜓𝑊𝑃)
2 +∑𝑊𝑂𝑖

(𝜓̇𝑐𝑜𝑚 − 𝜓̇𝐷𝑖𝑓𝑓𝑖)
2

𝑁

𝑖=1

 (19) 

 

The difference between Equations (17) - (19) and Equations (12) - (14) can be noted 

using Figure 36. The UAV avoidance paths have similar trends, specifically with respect 
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to the aggressiveness of each avoidance function used. However, using 𝜓̇ as the primary 

function minimization variable leads to more significant oscillations in the UAV 

avoidance path, and in turn the heading.  

 

Figure 36: UAV avoidance path comparison using 𝜓̇ cost function forms – Dynamic 

 

Along with Table 15, it is also clear that the cost functions in Equations (17) through 

(19) cost functions trend towards larger miss distances between the UAV and obstacles. 

While this is favorable, it comes at a cost of an oscillating characteristic, which is clearly 

seen in Figure 37. 

Table 15: Corresponding miss distance between UAV and obstacles for 𝜓̇ based cost functions 

Cost Function Obstacle 1 Miss 

Distance (ft) 
Obstacle 2 Miss 

Distance (ft) 
𝝍 ̇  Inverse 194.1 309.1 

𝝍 ̇  Negative 27.2 48.5 

𝝍 ̇  Difference 108.8 175.4 
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The magnitudes of the UAV heading history in Figure 37 are smaller than those 

shown in Figure 35, where 𝜒̇ is used as the primary Pro-Nav variable in the cost function 

equations; however, the presence and frequency of the heading oscillations is highly 

undesirable.  

 

Figure 37: Comparison of UAV actual heading for corresponding 𝜓̇ cost function avoidance paths – Dynamic Case 

 

Equations (20) - (22) represent a third set of cost functions that utilize the Pro-Nav 

variable Δ𝜓, rather than the use of 𝜒̇ of 𝜓̇. In this cost function set, Δ𝜓𝑁𝑒𝑔𝑖 , Δ𝜓𝑖, and 

Δ𝜓𝐷𝑖𝑓𝑓𝑖 are the individual obstacle Pro-Nav headings referenced previously in Equation 

(11), such that the Pro-Nav constant, 𝑁𝐻, and time step, Δ𝑡, are used.  

 𝐽(Δ𝜓𝑐𝑜𝑚) = 𝑊𝑊𝑃(Δ𝜓𝑐𝑜𝑚 − Δ𝜓𝑊𝑃)
2 +∑𝑊𝑖(Δ𝜓𝑐𝑜𝑚 − Δ𝜓𝑁𝑒𝑔𝑖)

2
𝑁

𝑖=1

 (20) 

 𝐽(Δ𝜓𝑐𝑜𝑚) = 𝑊𝑊𝑃(Δ𝜓𝑐𝑜𝑚 − Δ𝜓𝑊𝑃)
2 +∑

𝑊𝑖

(Δ𝜓𝑐𝑜𝑚 − Δ𝜓𝑖)2

𝑁

𝑖=1

 (21) 
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 𝐽(Δ𝜓𝑐𝑜𝑚) = 𝑊𝑊𝑃(Δ𝜓𝑐𝑜𝑚 − Δ𝜓𝑊𝑃)
2 +∑𝑊𝑖(Δ𝜓𝑐𝑜𝑚 − Δ𝜓𝐷𝑖𝑓𝑓𝑖)

2
𝑁

𝑖=1

 (22) 

Implementing Δ𝜓 into the cost functions has the potential to provide a more direct 

approach by determining a weighted change in heading based on all the obstacles that 

pose a threat, rather than producing a commanded heading using a weighted 𝜒̇ value. The 

ensuing avoidance paths for these cost functions can be seen in Figure 38, which show 

that a similar trend in aggressiveness once again applies to each subsequent cost function 

method using Δ𝜓.  

 

Figure 38: UAV avoidance path comparison using 𝛥𝜓 cost function forms – Dynamic Case 

 

The miss distances between the UAV and obstacles using the cost function set for Δ𝜓 

are like those produced using the 𝜒̇ implementation, as shown by the avoidance distances 

in Table 16. The paths do differ however, most noticeably for the Inverse Δ𝜓 cost 

function, which exhibits a larger waypoint intercepting radius than previously seen. 
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Table 16: Corresponding miss distance between UAV and obstacles for 𝛥𝜓 based cost functions 

Cost Function Obstacle 1 Miss 

Distance (ft) 
Obstacle 2 Miss 

Distance (ft) 
𝚫𝝍 Inverse 172.9 257.8 

𝚫𝝍 Negative 22.2 53.3 

𝚫𝝍 Difference 127.0 196.3 

 

The UAV heading histories for the Δ𝜓 cost functions in Figure 39 show similar 

trends as the previous heading histories in Figure 35 and Figure 37 with regards to the 

consistency of the heading change using the differencing function and the large change in 

heading using the inverse cost function. Oscillations do still exist throughout the entire 

flight; however, they are much less aggressive than the oscillations present in with the 

implementation of the 𝜓̇ cost functions. 

 

Figure 39: Comparison of UAV heading for corresponding 𝛥𝜓 cost function avoidance paths – Dynamic Case 

 

 



 
 
 

61 
 

6.2. Static Avoidance 

The primary motivation for developing a cost function based avoidance law was to 

overcome the complication of avoiding multiple obstacles successfully. The effort in 

previous sections shows that considering only the most imminent static threat at any time 

during flight can result in a back-and-forth maneuvering effort when considering multiple 

obstacles, eventually resulting in a collision. In this section, avoidance results using the 

cost functions provided in the dynamic avoidance section are presented for static 

avoidance cases. This static scenario places a wall of point-masses in front of the UAV, 

which are sought to be avoided. Simulations are once again generated for the three cost 

function methods using the three primary Pro-Nav variables.  

 

Figure 40: UAV avoidance path comparison using 𝜒̇ cost function forms – Static Case 

 

Figure 40 shows a comparison of avoidance paths taken using the 𝜒̇ based avoidance 

cost functions in the static obstacle environment. The same trend as noted with the 
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dynamic obstacle simulations again presents itself, with the inverse cost function 

providing the largest avoidance maneuver, the negative Pro-Nav function providing the 

smallest avoidance maneuver, and the differencing avoidance path having an in-between 

level of aggressiveness. 

Avoidance distances between the UAV and obstacles for these simulations are not 

included. The reason for this is that in these static scenarios, the point-masses 

representing the wall are placed close enough together such that any maneuver that places 

the UAV path directly through the wall can be considered a collision. This property, 

along with static obstacles being easier to visualize than dynamic obstacles in two 

dimensions, makes it so collisions can be easily inferred.  

 

Figure 41: Comparison of UAV actual heading for corresponding 𝜒̇ cost function avoidance paths – Static Case 

 

To aid in the understanding of the maneuvers produced, the UAV heading history is 

once again provided in Figure 41 for the avoidance law using the three 𝜒̇ cost functions. 
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The inverse cost function again produces aggressive heading commands, resulting in 

large oscillations about the UAV yaw axis. The negative Pro-Nav cost function produces 

very little heading change throughout the flight, corresponding to the straight, non-

avoiding flight path seen in Figure 40. 

Figure 42 shows a comparison of avoidance paths taken using the 𝜓̇ based avoidance 

cost functions. A larger avoidance maneuver can be seen in the path generated using the 

negative cost function method and a decreased aggressiveness is evident in the avoidance 

path generated using the inverse cost function. The most notable aspect in Figure 42 is 

the differencing cost function path, which makes an avoidance maneuver left of the point-

mass wall. This is due to the representative signum function used for the differencing cost 

function, for which if a 𝜒̇ of zero occurs, an avoidance maneuver to the left is 

commanded. 

 

Figure 42: UAV avoidance path comparison using 𝜓̇ cost function forms – Static Case 
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The corresponding heading history for the static 𝜓̇ cost function avoidance law is 

shown in Figure 43. Though the negative Pro-Nav cost function provides another 

unsuccessful avoidance maneuver, it exhibits the most well behaved maneuvers when 

attempting to avoid and returning to a waypoint intercept trajectory. The inverse Pro-Nav 

cost function once again generates an aggressive maneuver, but does not show the large 

oscillations in heading that were seen using the 𝜒̇ based cost functions. The differencing 

cost function for this scenario exhibits large oscillations, which is clearly shown in the 

heading history. These large heading oscillations are similar to those obtained using the 𝜒̇ 

based differencing equation. In this scenario, the effect of the oscillation is large enough 

to be noticed in the flight path visualized in Figure 42. 

 
Figure 43: Comparison of UAV actual heading for corresponding 𝜓̇ cost function avoidance paths – Static Case 

 

The final static scenario in Figure 44 shows the avoidance paths generated using the 

cost function set with Δ𝜓. Again, the use of the negative Pro-Nav cost function for 

avoidance leads to a collision with the point-mass wall, while the other two avoidance 
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functions lead to successful avoidance maneuvers. The magnitude of the avoidance 

maneuver generated by the inverse Pro-Nav and differencing cost functions results in a 

greater deviation than the previous methods using 𝜒̇ and 𝜓̇, shown in Figure 40 and 

Figure 42.  

 
Figure 44: UAV avoidance path comparison using 𝛥𝜓 cost function forms – Static Case 

 

The heading histories for the three cost functions using Δ𝜓 can been seen in 

Figure 45. Each history shows a similar trend as the previously provided histories in 

Figure 41 and Figure 43; however, there is an overall decrease in aggressiveness for all 

avoidance paths, noted by the decrease in oscillation magnitudes. The heading history 

shown for the differencing method is particular important because of the relatively 

smooth transition of heading changes that correlate to the avoidance path. This path does 

not have significant oscillations or sharp turns, like those exhibited in the inverse Pro-

Nav path.  
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Figure 45: Comparison of UAV actual heading for corresponding 𝛥𝜓 cost function avoidance paths – Static Case 

 

The results provided using the three sets of cost functions for three Pro-Nav variables 

provide information that can be used to determine an all-around successful avoidance 

law. Overall, all methods had positive and negative aspects with regards to capabilities 

and trends relating to the characteristics of using each Pro-Nav variable. 

Implementation of the negative Pro-Nav cost function for all dynamic and static 

simulations provides the least aggressive path for avoidance. While this is a positive 

aspect for avoidance of dynamic obstacles, since effort is required to make a successful 

avoidance maneuver, it failed to provide enough avoidance in the case of static obstacles. 

Regardless of the Pro-Nav variable used, there is a consistency in the lack of avoidance 

provided by the negative Pro-Nav method, particularly when applied with 𝜒̇ as the cost 

function objective. 

The use of inverse Pro-Nav for each investigated variable provides an overall 

successful avoidance maneuver in each dynamic and static simulation. The maneuvers do 
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tend to exhibit large, aggressive changes in the avoidance headings and, in turn, the 

resulting UAV paths. This trend is particularly prevalent with the use of 𝜓̇ as the cost 

function optimization variable. In Figure 37 and Figure 43, the magnitude and frequency 

of the heading oscillations imply a negative aspect of the guidance law, being that a 

constant overcompensation leads to an overreactive recovery towards a waypoint 

intercept path, which once again places the UAV on a collision path that must be avoided 

with another aggressive maneuver.  

The differencing cost function, which uses the difference in a maximum LOS rate and 

the obstacle LOS rate for optimization, shows favorable traits in all dynamic and static 

scenarios with the use of Δψ as the optimization variable. The avoidance paths shown in 

Figure 39 - Figure 45 provide a practical miss distance between the dynamic and static 

obstacles, while the UAV heading maintained a consistent progression that did not show 

overly aggressive maneuvers or significant heading oscillations. Based on the simulation 

results, the use of Δ𝜓 as the optimization variable with the differencing cost function 

provides the most viable avoidance function for collision avoidance of multiple dynamic 

and static obstacles. Therefore, further investigation into this method of guidance is 

presented in the next section of this thesis. 
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7. PRO-NAV AVOIDANCE LAW – OBJECTIVE FUNCTION  

USING 𝚫𝝍 DIFFERENCING 

 

Among the developed objective based cost functions, the LOS rate differencing 

method for use of optimizing avoidance based on a change in heading was chosen as the 

most suitable method for further application, development, and characterization. 

Therefore, several new scenarios were constructed and introduced that incorporate the 

avoidance of multiple groups of static obstacles, and the integration of dynamic and static 

obstacles into one scenario. 

The first of these new scenarios presents static obstacles, represented by point-

masses, aligned in the shape of a large corner as an attempt to simulate an urban scenario 

which has a building present in between the UAV and waypoint. Generating a solution to 

this scenario would provide a better insight into how the guidance law will react when 

presented a set of feature points at a larger angle of trajectory, such as if the UAV were to 

approach a building directly into its corner.  

 

Figure 46: UAV avoidance path for static corner avoidance 
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Figure 46 shows the generated UAV avoidance path for the scenario presenting the 

mentioned collection of feature points in the shape of a corner, the vertex of which lies 

400 𝑓𝑡 north of the UAV starting position. The UAV successfully avoids the static 

obstacle set by deviating to the east and briefly traveling parallel to the obstacle. Finally, 

once clear of the obstacle, the UAV makes a continuous heading adjustment to intercept 

the waypoint. This heading change, along with the history describing the avoidance 

portion of the path, can be seen in Figure 47. 

 

Figure 47: UAV heading history for static corner avoidance 

Figure 47 shows the avoidance heading history for the UAV path in Figure 46. The 

increase in heading until 13 seconds correlates to the east avoidance maneuver generated 

by the guidance law to navigate the UAV around the obstacle set. The heading then 

decreases accordingly to keep the UAV on an intercepting path with the waypoint. 

The next simulation in Figure 48 places two static point-mass walls in between the 

intercepting trajectories of two dynamic obstacles. This setup locates the walls near the 
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path taken by the UAV when only the dynamic obstacles were present. Again, it is easy 

to see the avoidance of static obstacles in this scenario, but difficult to interpret the 

avoidance of the dynamic obstacles. The distances between the first and second dynamic 

obstacle and the UAV are 16.7 𝑓𝑡 and 45.9 𝑓𝑡. Though these distances seem small, this 

is a relatively successful miss distance for a small-scale UAV.  

 

 

Figure 48: UAV Avoidance Path of dynamic and close static obstacles 

The different aspects of the entire avoidance path are made more clear in the heading 

history provided in Figure 49. The initial reaction of the avoidance law results in a 

positive heading change, as the UAV maneuvers to avoid the dynamic obstacles. This 

maneuver moves the UAV off a collision path with the first dynamic obstacle, but also 

changes heading to ensure avoidance of the right static wall. Once the static wall is out of 

view and no longer a threat, the UAV makes a large heading change to ensure avoidance 

of the second dynamic obstacle. 
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Figure 49: UAV actual heading history for avoidance of dynamic and close static obstacles 

 

The next simulation in Figure 50 places two static point-mass walls farther aft of the 

intercepting trajectories of the dynamic obstacles. This setup locates the walls farther 

away for similar reasons as the previous simulation; however, placing them near the path 

taken by the UAV when only the dynamic obstacles were present at a farther range 

presents a more challenging scenario. The avoidance path places the UAV at a minimum 

distance of 50.7 𝑓𝑡 and 166.0 𝑓𝑡 for the first and second dynamic obstacle. 
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Figure 50: UAV Avoidance Path of dynamic and far static obstacles 

 

The heading history for UAV avoidance of dynamic and far static obstacles is shown in 

Figure 51. The gradual and then steep increase of the heading change relates directly to 

the path shown in Figure 50, in which the avoidance maneuver increases drastically close 

to the first dynamic obstacle, then progresses back towards an intercepting path with the 

waypoint. 
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Figure 51: UAV heading history for avoidance of dynamic and far static obstacles 
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8. VIRTUAL REALITY SIMULATION 

The point-mass obstacle simulations discussed in the previous sections of this thesis 

provide a thorough investigation into the understanding and development of a successful, 

vision-based Pro-Nav avoidance law, capable of multi-obstacle avoidance in dynamic 

and static scenarios. The characteristics determined in each progression of development 

have provided an overall “best” avoidance method that utilizes an objective-based cost 

function to optimize a change in heading, Δ𝜓𝑐𝑜𝑚, required for avoidance of all obstacles 

that pose a collision threat. These simulations were performed under “ideal” conditions, 

with exact obstacle point coordinates known, no camera information to be translated, and 

no noise introduced into the guidance law. The reason for this was so that the 

characteristics of the Pro-Nav guidance laws could be studied under best-case scenarios. 

This section extends the previous simulation results to provide an investigation of the 

chosen Pro-Nav avoidance law in a “real-world” environment using a virtual reality 

simulator. 

8.1. MetaVR Virtual Reality Scene Generator 

MetaVR Virtual Reality Scene Generator (VRSG) is a distributed interactive 

simulation (DIS) protocol based virtual environment that allows for the design and 

control of virtual environments and objects within the environment. MetaVR was used 

for this thesis to provide a virtual environment in which a “camera-in-the-loop” 

simulation could be conducted using a viewpoint generated in MetaVR. The process of 

this simulation begins with MATLAB Simulink providing UAV position and orientation 

information such that the viewpoint in MetaVR can be controlled. The 6 DoF nonlinear 

model in Simulink provides realistic control of the UAV based on the commands directed 
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by the Pro-Nav guidance law. Once updated, the viewpoint in MetaVR is transferred to 

Simulink, in the form of a synthetic camera image, which is then processed by a feature 

point tracking algorithm. Based on tracked feature points, the Pro-Nav guidance law 

generates an updated command and maneuver that is once again sent to MetaVR for 

position and orientation update. Figure 52 shows a high-level overview of the simulation 

process, which initially begins with the host simulator, MATLAB/Simulink, providing 

initial position and orientation information for MetaVR, the image generator, for a 

viewpoint to be generated. 

 

Figure 52: process overview for Pro-Nav guidance virtual reality integration 

Common Image Generator Interface (CIGI) is the communication interface that 

translates the data packages from MATLAB/Simulink into DIS protocol packets for 

MetaVR to interpret and apply. This simulation setup can provide both a point of view 

(POV) camera image, as well as Lidar information about the environment. The use of 

simulated Lidar has practical implications; however, its use is beyond the scope of this 

thesis.  

The first of the virtual environment scenarios places the objective waypoint directly 

in front of the UAV, with a large building in between. The buildings and textures used in 

this simulation are premade and provided with MetaVR installation software. The scale 

of buildings may be increased or decreased accordingly; however, depending on the 

original size of the rendered building, the textures may decrease in quality with a large 
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increase in scaling. The most appropriately sized building has been chosen for this 

simulation such that the quality of the texture can still provide “good” quality feature 

point definitions.  

8.2. Feature-Point Tracking 

In the virtual reality simulations, the bearings to static obstacles are provided using a 

Kanade-Lucas-Tomasi (KLT) feature point tracking algorithm. Corners, or intersections 

of high gradient profiles in the image provide good feature points that have the potential 

and quality to be found and tracked throughout a dynamic scene. The Harris corner 

detection algorithm identifies a corner, defined when a small area, or window, of pixels 

in the image exhibits a large intensity change in all directions when the window is shifted 

from its original location. The KLT tracking algorithm attempts to find these corners in 

the next image generated and determines the direction and magnitude of the change in 

each corner’s location. This is then interpolated for a set number of frames, at which 

point the interpolation may provide improved accuracy. As tracked feature points leave 

the field of view, new corner detections are necessary to reidentify feature points to track 

for the next set of images. An example use of corner detection can be seen in Figure 53, 

where features on a sample MetaVR building are identified as corners and tracked 

throughout the simulation, although the tracking visualization is not visible through this 

still image. 
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Figure 53: Example corner detection of building features in MetaVR 

During this feature point tracking process, feature point will eventually be removed 

from the dynamic tracking list, due to their movement out of view of the camera or a 

decrease in quality based on camera angle or noise. This is compensated by re-

establishing feature points every certain number of frames recorded. By doing so, 

previous points still in view and of sufficient quality are detected and tracked again while 

new points are added for use in the Pro-Nav avoidance law. It is important to note that 

KLT feature tracking is reliable only when changes to the feature location are small. This 

condition suits this application because the UAV is traveling at a relatively low velocity 

with a relatively high frame rate. 
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8.3. Single Obstacle Avoidance 

The first scenario presented in this section places a single building in between the 

UAV and waypoint within the virtual environment, 1,500 𝑓𝑡 from the UAV. It is 

important to note that the waypoint is still represented by a point mass, whose LOS angle 

and rate measurements are derived using the same method of the previous point mass 

simulations. Figure 54 shows the initial camera view captured from MetaVR, with a total 

vertical and horizontal view angles of 36° and 60°, respectively.  

 

Figure 54: Camera view from UAV of single building MetaVR simulation 

This simulation, and the ones to follow, utilize the chosen cost-function-based 

avoidance law that uses the signum differencing method for Δ𝜓. Due to the nature of a 

virtual environment, new criteria implemented for handling tracked feature points, such 

that both their horizontal and vertical LOS rates must be below a threshold to be 

considered for cost function minimization, rather than just the horizontal LOS rate being 

used previously.  Figure 55 shows an instantaneous capture of the camera view point with 

overlaid feature points selected for the avoidance law to use in determining the UAV 

maneuver. 
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Figure 55: Feature point overlay of UAV camera view for single building avoidance 

Figure 56 shows the result of this cost function avoidance implemented for the virtual 

environment. The left image in this figure is representative of the physical travel and 

avoidance distances while the image on the right shows a top down view of the path in 

relation to the virtual environment. The paths shown are considered successful 

avoidances and resembles those seen in the previous point-mass simulation. Similarities 

can also be seen in the recorded heading history.  

 
Figure 56: UAV avoidance path for single building MetaVR simulation 
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Figure 57 shows similar trends in the heading history for the single building MetaVR 

simulation as seen in previous point-mass simulations. There is a slight oscillation in the 

heading but an overall increase related to the avoidance maneuver around the building, 

followed by a decrease in heading while the UAV returns to a waypoint intercept 

trajectory. The slight oscillation in the later portion of the history reflects on the 

temporary appearance of feature points detected along the textured ground and horizon 

line, something that did not need consideration for the point mass simulations.  

 

Figure 57: UAV heading history for single building MetaVR simulation 

8.4. Urban Canyon Avoidance 

The next scenario presented in this section places the UAV in the middle of what can 

be called an “urban canyon”. The reason for this scenario description becomes apparent 

in Figure 58, in which buildings of a custom urban setup surround the UAV on the left 

and right side, resembling the geography seen by natural canyons. The objective 

waypoint is placed directly in front of the UAV at 2,000 𝑓𝑡, giving the UAV avoidance 
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law a relatively simple, but enlightening task of navigating the UAV straight through the 

urban canyon. As mentioned for the scenario of a single building, the waypoint is still 

represented by a point mass, whose LOS angle and rate measurements are derived using 

the same method of the previous point mass simulations. Figure 58 shows the initial 

camera view captured from MetaVR, with total vertical and horizontal view angles of 

36° and 60°, respectively.  

 
Figure 58: Camera view from UAV of Urban Canyon MetaVR simulation 

Using the chosen cost function-based avoidance law that employs the signum 

differencing method for Δ𝜓, Figure 60 shows a successful UAV path with regards to both 

physical distances, on the left-hand side, and the virtual environment, on the right-hand 

side. The path is not perfectly straight as one might expect, due to the location of the 

feature points detected within the field of view and the number of feature points that have 

horizontal LOS rates below the threshold for avoidance. A scene capture with overlaid 

feature points can be seen in Figure 59 for a single instance of the entire UAV flight. 
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Figure 59: Feature point overlay of UAV camera view within the urban canyon 

In Figure 60, the initial deviation to the right indicates that the best course of action 

for the UAV was to maneuver slightly until more threatening features on the left-hand 

side of the image were no longer a threat, or until the threat balanced out with potential 

threats on the right-hand side. Later in the path, slight deviations can be seen as the UAV 

briefly turns towards the left, but returns to a far-right position as before. Finally, the 

UAV makes a maneuver to intercept the waypoint as the waypoint LOS rate increases, 

outweighing any potential threats along the sides of the canyon. 
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Figure 60: UAV avoidance path for Urban Canyon MetaVR simulation 

The UAV heading history for the urban canyon scenario can be seen Figure 61. Here, 

the heading trend throughout the entire flight correlates to the flight path shown in in 

Figure 60 and also provides insight on the not so obvious smaller deviations that the 

UAV exhibited during the flight. Small oscillations are seen throughout the process of 

increasing and decreasing the UAV heading, due to the maneuver placing old feature 

points outside the threatening threshold of LOS rate and placing newer points within that 

threshold, creating a temporary new heading. This oscillation is similar to that of the 

single building scenario heading history, seen in Figure 57. However, in this scenario, 

due to more buildings and potential feature points being present, the effect is more 

noticeable. 
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Figure 61: UAV heading history for Urban Canyon MetaVR simulation 

8.5. Urban Navigation and Avoidance 

This final simulation constructed in the virtual environment places the UAV in a 

location that presents a more challenging scenario. Figure 62 shows a viewpoint from the 

UAV at its starting location in the simulation with the waypoint placed 4,000 𝑓𝑡 north, 

placing it beyond the urban environment area. The objective for the UAV was to navigate 

through this environment to reach the waypoint without colliding with any obstacles. 

 

Figure 62: Complex Virtual Urban Environment 
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The UAV flight path generated in Figure 63 by the avoidance law navigates the UAV 

semi-successfully, creating a collision with a single building during flight, noted by the 

yellow square in the figure. The UAV continues on a clear avoidance path the rest of the 

flight until it reaches the waypoint, leading between two building sets that can be 

considered close encounters; however, this was an act of precision rather than random 

maneuvering. The left-hand side of Figure 63 shows the physical distances travels by the 

UAV while the right-hand side shows the avoidance path in relation to the virtual 

environment. 

 

Figure 63: UAV path for complex urban virtual reality scenario 

The UAV avoidance path results in a semi-successful attempt, avoiding all but one 

building during the flight. This instance can be shown in Figure 64, in which the UAV 

viewpoint with feature points shows that the building which was collided with had a lack 

of feature points relative to the rest of the scene, until the UAV was much closer to it. 

This prevented the avoidance law from accounting for the building earlier, and once it 

was detected, it was too late to make a significant avoidance maneuver.  
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Figure 64: UAV complex urban virtual scenario - pre-collision 

One of the two close encounters can be seen in Figure 65 as an example of how close the 

UAV comes to the obstacles. Because the space chosen to navigate through is particularly 

small, this encounter can be considered an achievement of the avoidance law regarding 

its ability to navigate the UAV through safe zones, regardless of the available space. 

 

 
Figure 65: Complex urban virtual scenario – post-collision 

Overall, the implementation of the chosen cost function using Δ𝜓 proved successful 

for all scenarios except for one. In that scenario, the limitation seemed to be related more 

to the feature point detection capabilities or the feature qualities of the building itself.  
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9. CONCLUSION 

Current SAA technologies and algorithms provide reliable but costly means of 

detection and avoidance for UAVs with regards to cost and computational power. 

Electro-optical devices have received considerable interest due to their light weight, low 

cost, and low algorithm requirements with respect to computational power. For this 

reason, this thesis has investigated UAV obstacle avoidance and navigation using vision-

based Pro-Nav guidance laws without the use of range information. The development of 

these guidance laws propagates from an investigation into numerous methods of 

guidance, including the use of LOS rate thresholding, avoidance of the most imminent 

threat detected, and objective based cost optimization. A final form of the avoidance law, 

determined using point-mass simulations, was applied to a real world, virtual 

environment which utilized “camera-in-the-loop” simulation techniques.  

The path of this thesis has taken a developmental approach of a final Pro-Nav 

avoidance law capable of avoiding dynamic and static obstacles using Pro-Nav concepts, 

without the use of range information. The approach systematically characterized 

guidance law traits that contribute both positively and negatively, such that these could be 

taken into consideration for the next iteration of avoidance law development.  

Pro-Nav guidance concepts were first applied for collision avoidance by using a LOS 

rate threshold. The threshold implemented produced a defined heading command when 

the magnitude of an obstacle’s horizontal LOS rate, 𝜒̇, was smaller than the specified 

threshold, which indicates a potential collision threat. Using a single obstacle on an 

intercepting trajectory, the results showed that the LOS rate and change in LOS rate of an 

intercepting or near intercepting obstacle will vary depending on initial obstacle position 
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and velocity. Obstacles that have a collision path occurring further away from the UAVs 

initial position have a greater avoidance distance generated between the UAV and 

obstacle. In similar fashion, UAV avoidance distances will be larger when obstacles with 

a larger velocity are on an intercepting trajectory.  

The success of threshold-based avoidance prompted its application to a multi-obstacle 

scenario, in which two obstacles were placed on a path that would collide with the UAV 

if no avoidance was made. The same avoidance law was applied, but a modification was 

required, such that the obstacle of most imminent threat (i.e., with smallest LOS rate) 

would be actively avoided using the same thresholding heading commands. Selected 

simulations placed the obstacles in multiple locations, such that investigation into the 

reactiveness of the guidance law could be performed. In this simulation, a primary 

obstacle was placed on an initial trajectory that intercepted the UAV along the north axis 

while a secondary obstacle was placed such that an avoidance of the primary intercepting 

obstacle would place the UAV on a collision course with the other. These simulations 

showed that due to the smaller change in LOS rate from the obstacle far away, avoidance 

was prioritized around obstacles that were further away. This led to multiple cases in 

which avoidance of at least one obstacle was comparatively small. This method of 

guidance was also shown to fail in some static obstacle scenarios, in which the UAV 

would be bound between avoiding the two most imminent threats, inducing an oscillating 

avoidance path. The overall interpretation of this avoidance law was that, although 

successful in single and some multi-obstacle avoidance cases, the lack of consideration of 

all threatening obstacles in the guidance law led to insufficient avoidance paths in many 

cases. 
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A set of objective-based cost functions was then investigated as an alternative to the 

most imminent threat method. The cost functions were designed to consider a primary 

objective of intercepting a waypoint, while taking into consideration all obstacles that 

posed a potential collision threat. This definition of collision threat relates back to the 

thresholding technique, such that any obstacle in view with a horizontal LOS rate below a 

specified value was considered and applied to the optimization of the cost function. It 

was also clear that applying a defined, constant heading change as an avoidance 

maneuver was not specific enough to relate the avoidance maneuver to the obstacle 

dynamics. For this reason, three Pro-Nav parameters 𝜒̇, 𝜓̇, and Δ𝜓 were applied to cost 

functions to provide avoidance maneuvers that had a connection to the obstacle dynamics 

and to investigate the similarities and differences, if any, between using one Pro-Nav 

parameter over the others for the primary avoidance law. The cost function types used the 

inverse Pro-Nav, negative Pro-Nav, and Pro-Nav difference to generate an optimized 

commanded guidance parameter. The results of simulating UAV avoidance with these 

three cost function sets showed that using the horizontal LOS rate as an optimization 

variable provided the most minimal, but successful avoidance of dynamic obstacles, but 

failed to avoid the static wall of obstacles between the UAV and waypoint successfully. 

The use of the inverse Pro-Nav cost function for every scenario using all three Pro-Nav 

variables resulted in excessive avoidance and aggressive maneuvers. The optimization of 

Δ𝜓 using the LOS rate differencing cost function showed the best overall performance, 

providing smooth transitioning avoidance maneuvers while not exhibiting overly 

aggressive heading commands. This method was therefore chosen for further 

development and testing using a variety of other scenarios to determine if any 
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modifications may produce better results or to find negative characteristics that were not 

apparent in the initial simulation scenarios. 

The final set of point-mass simulations correspond to an arrangement of static and 

dynamic obstacles combined into a single scenario along with a simulated “urban 

canyon” of static points. The combined static and dynamic scenarios utilized two static 

point-mass walls that were varied in location and position and placed in particularly 

inconvenient locations relative to the path that would generated by the avoidance law if 

only the dynamic obstacles were active. The results from these simulations showed that 

the UAV was capable of avoiding all obstacles; however, in particular cases the 

avoidance distance was much less than previously shown with individual dynamic and 

static avoidance configurations. 

Finally, a virtual environment was used in conjunction with the simulation 

environment to provide a realistic, camera-in-the-loop scenario, which provided images 

of the virtual environment that were used for obtaining feature points. These feature 

points were used in the chosen cost function guidance law for navigation of the UAV in 

an urban environment. Scenarios implementing a single building, a straight-line path 

through an urban canyon, and a complex navigation of an urban environment provided 

substantial results to support the effectiveness of the cost function guidance law using Δ𝜓 

as a solution for vision-based Pro-Nav.  

Future considerations and development for this proposed vision-based Pro-Nav law 

revolve around adapting the guidance law to better fit three-dimensional avoidance 

maneuvers in realistic engagement scenarios. This would first require work in 

determining an acceptable choice of action in the horizontal and vertical flight path 
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direction when avoidance maneuvering is required. This would then provide a stable 

basis for dynamic scenarios to be simulated in the virtual environment using actual 3-D 

models of small or large-scale obstacles. This is also currently limited by the interface 

between MetaVR and simulation environment not being capable of controlling 3-D 

obstacles (only viewpoints are currently controlled). A different image processing 

method can also be implemented to identify borders of building and dynamic obstacles as 

single entities, rather than hundreds of feature points spread out across the image, acting 

individually regardless of whether they are representative of the same object. 
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